【微电网】_分布式发电与微电网
分布式发电与微电网
分布式发电与微电网一、分布式发电分布式发电技术是充分开发和利用可再生能源的理想发生,它具有投资小、清洁环保、供电可靠和发电方式灵活等优点,可以对未来大电网提供有力补充和有效支撑,是未来电力系统的重要发展趋势之一。
(一)分布式发电的基本概念分布式发电目前尚未有统一定义,一般认为,分布式发电(Distributed Generation, DG)指为满足终端用户的特殊要求、接在用户侧附近大的小型发电系统。
分布式电源(Distributed Resource, DG)指分布式发电与储能装置(Energy Storage,ES)的联合系统(DR=DG+ES)。
它们规模一般不大,通常为几十千瓦至几十兆瓦,所用的能源包括天然气(含煤气层、沼气)、太阳能、生物质能、氢能、风能、小水电等洁净能源或可再生能源;而储能装置主要为蓄电池,还可能采用超级电容、飞轮储能等。
此外,为了提高能源的利用效率,同时降低成本往往采用冷、热、电联供(Combined Cooling、Heat and Power, CCHP)的方式或热电联产(Combined Heat and Power, CHP 或Co-generation)的方式。
因此,国内外也常常将冷、热、电等各种能源一起供应的系统称为分布式能源(Distributed Energy Resource, DER)系统,而将包含分布式能源在内是电力系统称为分布式能源电力系统。
由于能够大幅提高能源利用效率、节能、多样化地利用各种清洁和可再生能源。
未来分布式能源系统是应用将会越来越广泛。
分布式发电直接接入配电系统(380V或10kV配电系统,一般低于66kV电压等级)并网运行较为多见,但也有直接向负荷供电而不与电力系统相联,形成独立供电系统(Stand-alone System),或形成所谓的孤岛运行方式(Islanding Operation Mode)。
采用并网方式运行,一般不需要储能系统,但采取独立(无电网孤岛)运行方式时,为保持小型供电系统的频率和电压稳定,储能系统往往是必不可少的。
微电网和分布式发电的“前世今生“
微电网和分布式发电的“前世今生”随着经济快速发展,能源分布与供应,消费与环保的矛盾日趋突出。
为保护生态环境,改善雾霾,国家大力倡导发展清洁能源,而伴随着清洁能源开发利用规模的扩大,清洁能源电力并网难却不断显现。
为改善并网的种种弊端,人们已将视角转向微电网技术,使微电网由科研试验向推广应用发展。
从技术层面看,微电网技术已成为分布式发电供电系统集成技术的核心,也是分布式发电大规模工业化应用的关键。
在清洁能源发电比重不断加大的状况下,只有通过分布式发电以微电网接入配电网,才能最大限度发挥分布式发电的效能,因而微电网发展将被寄予厚望。
微电网实质上是个小电网,而分布式发电是基础,但传统大电网是在火电体系下建起来的。
微电网的形成与发展绝不是对大电网的挑战,而是对大电网有益补充,也是实现电网高效、稳定、优质供电的重要环节。
微电网能将分布式发电与配电网连接起来而起到“桥梁”作用,破解可再生能源电力并网难题。
随着微电网技术的成熟,清洁能源发电成本下降,储能产业发展,以及石化能源价格上扬,必将促进微电网快速发展,为分布式发电并网提供支撑。
一、微电网概念及其优越性微电网的基础是分布式发电,实质是个小型电网,由各种分布式电源、储能系统、负荷、监控、保护、计量、通信等组成。
微电网相当于电力系统中的“毛细管”,也是智能电网中新的网络结构单元。
值得一提的是储能系统,它是微电网安全、稳定、可靠供电的基础,即在孤网运行也能保证重要客户的用电需求。
微电网技术的发展与电力电子技术、计算机控制技术和通信技术紧密相关,微电网的兴起让人们仿佛看到了有效化解清洁能源电力并网的希望,从而推动清洁能源发电的快速发展,具有鲜明的技术革命特征。
微电网具有灵活的运行方式和可调度的性能,既可接入配电网运行,也可作为独立电网运行。
通过相关控制装置对两种运行方式进行切换,使之达到协调配合,提高供电可靠性。
对配电网而言,微电网是个可控、可调度的负荷,使电力调度人员不再直面各个分布式电源,而是通过微电网对分布式电源进行有效控制和管理。
分布式发电系统与微电网技术
分布式发电系统与微电网技术随着能源需求的不断增长以及对可再生能源的关注度日益提高,分布式发电系统与微电网技术成为电子与电气工程领域的研究热点。
本文将从技术原理、应用场景和未来发展方向三个方面探讨这一主题。
一、技术原理分布式发电系统是指将发电设备分布在用户侧,通过小型化的发电装置进行电能的生产。
而微电网技术则是将分布式发电系统与传统电网相连接,形成一个小型的电力系统。
这两种技术的核心在于能源的分散和可再生能源的利用。
分布式发电系统通过利用太阳能、风能、水能等可再生能源进行发电,将电能直接供给用户。
这种分布式的发电方式能够减少能量传输过程中的能量损失,提高能源利用效率。
同时,分布式发电系统还可以通过能量存储装置将多余的电能储存起来,以备不时之需。
微电网技术则是将分布式发电系统与传统电网相连接,形成一个小型的电力系统。
通过智能电网管理系统,微电网可以实现对能源的有效调度和优化控制。
当传统电网出现故障或停电时,微电网可以独立运行,为用户提供可靠的电力供应。
二、应用场景分布式发电系统与微电网技术在许多领域都有广泛的应用。
首先,在偏远地区或无电区域,分布式发电系统可以为当地居民提供可靠的电力供应,改善生活条件。
其次,在工业和商业领域,分布式发电系统可以降低能源成本,提高能源利用效率。
此外,分布式发电系统还可以应用于农业温室、城市照明和交通系统等领域。
微电网技术在城市和社区中的应用也日益增多。
通过将分布式发电系统与传统电网相连接,微电网可以实现对能源的灵活调度。
在城市中,微电网可以实现对电动车充电桩的管理和优化,提高能源的利用效率。
在社区中,微电网可以实现对居民家庭能源的管理和监控,促进能源的节约和环保。
三、未来发展方向分布式发电系统与微电网技术在未来的发展中还有许多挑战和机遇。
首先,需要进一步提高可再生能源的利用效率和稳定性,以满足不同场景下的能源需求。
其次,需要加强对分布式发电系统和微电网的智能化管理和控制,以实现对能源的优化调度。
分布式发电与微电网技术在电网中的应用
分布式发电与微电网技术在电网中的应用摘要:目前,全世界积极探索新的发展路径以及新的节能产品,希望能够实现能源利用的可持续发展。
在这种背景下,美国专家学者R.H Lasseter 教授于21世纪初提出了微电网运行理念,作为一种典型的可再生能源发电装置,不仅仅能够实现发电,还能够将电能存储并输送到整个电网中。
将微电网技术和目前配电网络对接,可以和配电网络共同运行,当配电网络发生故障时,微电网还能够单独进行,其具有典型的灵活性特征,能够支撑分布式电源和电网。
关键词:分布式发电;微电网技术;电网;应用1分布式发电1.1 分布式发电的定义分布式发电(DU)通常用于发电功率从几千瓦到数百兆瓦(也有研究者认为限定范围应当在30~50MW以内)的小型分散式、模块化、可靠性较高以及配置在用户周围的具有较高运转效率的发电单元。
分布式发电主要是依靠可再生能源以及清洁能源,来实现发电的一项非常重要的技术。
其最主要的优势在于其能够对各种相对较为分散的能源进行聚集,包括本地取用相对较为方便的可再生能源和化石类燃料,故能够较好地实现对能源利用率的有效提升。
与此同时,还能够脱离主干电网实现独立运行。
1.2 分布式发电的特点分布式电源主要是与低压配电系统或者中压配电系统接入,有着非常显著的随机变动以及分散等特性,通过接入大量的分布式电源,能够促使配电系统的安全稳定运行受到较大的影响。
分布式电源绝大部分都能够借助并网设备来实现与电网的有效连接。
分布式发电因本身的电能质量相对较高、污染相对较小、安装地点较为灵活以及能源利用率相对较高等优势,通过与主网相互作为备用供电,能够更好地促使供电稳定性、可靠性的提升。
但分布式发电同样具有诸多的缺陷:其安装运行成本相对较高,并且很难实现对主网的有效控制,极易给主网带来冲击。
2微电网2.1微电网的定义微电网属于一种新型的网络结构,也被人们称为微网,该网络结构主要表现出规模小、分散性和独立性高等特性,由负荷、微电源、储能控制装置等共同组建成所需要的系统。
分布式光伏发电技术与微电网
PQ Analyze 分析软件 主机 电源线
电能质量图例
电压跌落
20 15 10 5 0 -5 1 -10 -15 -20 47 93 139 185 231 277 323 369 415 461 507
电压上升
电压波动
谐波
2.3 储能装置
分布式发电系统要求配备存储功能,通过自身的存储,来平抑自身 发电用电的错峰错谷现象。 电力是高品位、洁净的二次能源,比其他类型的动力更为通用,并 能高效地转换为其他形式,诸如能以近乎100%的效率转换为机械能或 者热能。然而,热能、机械能却不能以如此高的效率转换为电能。 电力的缺点是不易大规模储存,或者说电力储存的代价不菲。对于 几乎所有在使用的电能,其耗电量即为发电量,如果姑且不说输配电及 用电损耗的话。这对于传统电厂并无困难,不过是其燃料消耗量随着负 载需求而连续变化。但对光伏发电和风力发电等间隙性电源,就不能随 时、全时满足负荷需求。因此,储能成为一个必备的特征以配合这类发 电系统,尤其对独立光伏发电系统和离网型风机而言。储能,它能够显 著改善负荷的可用性,而且对电力系统的能量管理、安全稳定运行、电 能质量控制等均有重要意义。
IEC 61727 推荐的逆变器畸变率限制值
奇次谐波 3~9 11~15 17~21 23~33 偶次谐波 2~8 10~32 畸变限制值 <4.0% <2.0% <1.5% <0.6% 畸变限制值 <1.0% <0.5%
电压波动 引起电压波动的原因: (1)光伏电站出力变化 (2)电站电气系统 大量光伏电站接入在配网的终端或馈线末端,由于存 在反向的潮流,光伏电站电流通过馈线阻抗产生的压降将 使沿馈线的各负荷节点处电压被抬高,可能会导致一些负 荷节点的电压越限。 另外,光伏电站输出电流的变化也会引起电压波动, 当光伏发电站容量较大时,这将加剧电压的波动,可能引 起电压/无功调节装置的频繁动作,加大配电网电压的调 整难度。
分布式发电与微电网技术
2010年第10期 总第281期编者按:2010年是国家电网公司坚强智能电网规划试点阶段的关键一年,是积累经验、实现突破、为第二阶段全面建设打好坚实基础的重要一年。
为总结现阶段的工作经验,为今后智能电网建设打下坚实基础,本刊专门收集、整理了一些关于智能电网的文章,希望这些文章能够对大家的工作有所帮助,更加深刻的了解智能电网。
1 分布式发电与微电网技术背景目前,世界各国都非常重视清洁能源的开发和利用,其中分布式发电应用发展迅速。
截至到2009年底,全球光伏行业装机容量达到6 GW ,年增长率达到30%。
2009年全球风电装机容量为38.3 GW ,年增长率为31.7%。
随着人们对环境问题的日益关注和高效小容量发电技术的成熟,分布式电源数量及其在电力系统中所占的比重将越来越高。
世界许多能源和电力专家认为大电网与分布式发电技术相结合能够节省投资、降低能耗、提高电力系统可靠性和灵活性,是21世纪电力工业的发展方向。
分布式电源的接入使传统单电源辐射状配电网变成了一个遍布电源和负荷的多电源系统,并且在改变了配网结构的同时也改变了配网的潮流,从而对系统的运行和保护产生了一系列的影响。
随着分布式电源应用的日益广泛,现有的分布式发电运行方式已经不能满足电网运营商、分布式发电所有者和用户的要求,微电网技术应运而生,并很快成为电网技术领域的研究热点之一。
深入研究适用于智能微电网系统的关键技术和设备,具有很高的理论和应用价值。
美国是最早开展微电网技术研究的国家,其微电网技术研究处于领先地位。
美国电力可靠性技术解决方案协会(CERTS )提出了的微电网定义:微电网是一种由微型电源和负荷共同组成的系统,它可同时提供电能和热量;微电网内部的电源主要由电力电子器件负责能量的转换,并提供必要的控制;微电网相对于外部大电网表现为单一的受控单元,并可同时满足用户对电能质量和供电安全等方面的要求。
2007年度专题课题”中已对微电网的研究。
分布式发电与微电网
主要内容
• 认识电力系统 • 分布式发电 • 微电网及其控制 • 储能技术
-1-
认识电力系统
• 认识“电”
– 电是一种特殊的商品(质量、数量) – 电能不能大规模存储 – 每一瞬间电能的生产和消耗保持平衡 – 负荷曲线(削峰填谷)
-2-
认识电力系统
• 认识电网
– 发电、输电(变电、配电)、用电
分布式发电的特点
• 分布式发电 (DG) 或分布式能源 (DER) 是一种分散、 非集中式的发电方式,具有以下特点 – 接近终端用户 – 容量很小(几十 kW 至几十 M W) – 以孤立方式或与配电网并网方式,运行在380V 或 10kV – 采用洁净或可再生能源(天然气、沼气、太阳能、 生物质能、风能—小风电、或水能—小水电)
– 低频振荡(0.2~2Hz) – 次同步振荡(略低于50Hz) – 抑制措施
• PSS • HVDC • FACTS
-8-
FACTS控制器
-9-
电网分析的相关内容
• 网络拓扑 • 潮流计算 • 状态估计 • 稳定性分析 • 短路计算 • … … ….
--“电力系统博大精深!”
- 10 -
电网的发展方向
- 20 -
微电网基本结构
微电网按照结构可以分为三种类型:片区微网、工商业微网、偏远地区微网
片区微网
片区微电网有两种,一种是城市网络, 另一种则是农村的馈线。前者主要用 于城市的繁华地区,后者则用于农村 电网的计划解列。片区电网的发展动 力是停运管理和整合可再生能源发电 的需求。片区微电网的主要作用在于 降低温室气体的排放;提供对用户多 种能源方式的供给;阻塞管理;延缓 电力网络的升级等。另外,片区微电 网能提供当地无功电压支撑和较高的 电能质量等辅助服务。
微电网的组成及架构
1 微电网的组成微电网由分布式发电(DG)、负荷、储能装置及控制装置四部分构成,微电网对外是一个整体,通过一个公共连接点(Point of Common Coupling,PCC)与电网连接。
1)分布式发电(DG):DG可以是以新能源为主的多种能源形式,如光伏发电、风力发电、燃料电池;也可以是以热电联产(Combined Heat and Power,CHP)或冷热电联产(Combined Cooling、Heat and Power,CCHP)形式存在,就地向用户提供热能,提高DG利用效率和灵活性。
2)负荷:负荷包括各种一般负荷和重要负荷。
3)储能装置:储能装置可采用各种储能方式,包括物理储能、化学储能、电磁储能等,用于新能源发电的能量存储、负荷的削峰填谷,微电网的“黑启动”。
4)控制装置:由控制装置构成控制系统,实现分布式发电控制、储能控制、并离网切换控制、微电网实时监控、微电网能量管理等。
2 微电网总体架构微电网电压等级的选取与微电网规模、微电网电源的种类、容量及接入方式、并网点注入电流及运行电压范围等密切相关。
考虑微电网的应用目的,目前微电网的电压等级主要有10kV(20kV)和380V 两种。
由于微电网与配电网存在并网运行模式,其变压器接线形式应与地区配电网相匹配(10/0.4kV通常为D11,yn)。
下面以380V微电网为例对微电网的基本结构进行阐述。
微电网的基本结构如下图所示。
微电网系统由分布式发电系统(DG)、储能装置、滤波补偿装置、智能控制系统和负荷构成。
其中可以包含多个DG和储能装置,这些DG和储能装置联合向负荷供电,整个微电网相对大电网来说是一个整体,通过主隔离设备和大电网相连接。
微电网中DG除可以提供电负荷外,还可以通过热电联产(CHP)或冷热电联产(CCHP)的形式就地向负荷用户供热或制冷,提高能源多级利用的效率。
就电负荷而言,其按性质亦可分为三类:重要负荷、可调节负荷和一般负荷。
分布式发电及微电网技术
课程简介
主要内容
分布式发电与微电网简介 分布式电源--风力发电 分布式电源--太阳能光伏发电 分布式电源--燃气轮机发电 微电网的运行与控制 分布式发电对配电系统的影响
分布式发电与微电网简介
分布式发电的概念
分布式发电的概念 一般指发电容量较小(几十千瓦至一百兆瓦之间) 、 与配电网连接、分散在负载附近的发电形式。 在许多国家分布式发电一般不经规划或中央调度。 与远距离输电和大电网互联的电力系统相区别, 称之为分布式发电。
微电网的定义
美国 能源部给出的定义: 微电网由分布式电源和电力负荷构成,可以工作在并 网与独立两种模式下,具有高度的可靠性和稳定性。
电力可靠性技术解决方案协会给出的定义: 微电网是由负荷和微型电源共同组成的系统,它可同 时提供电能和热能;微电网内部的电源主要由电力电子器 件负责能量的转换,并提供必需的控制;微电网相对于外部 大电网表现为单一的受控单元,并同时满足用户对电能质 量供电安全等要求。
有助于防止大面积停电,增强电网抵御自然灾害的能力。
分布式电源的技术类型
分布式电源包括 小型燃汽轮机 微型燃汽轮机 燃料电池 太阳能光伏电池发电 地热发电等
分布式电源的技术类型
几种常见的分布式电源
分布式电源的技术类型
燃料电池(Fuel Cell)
分布式电源的技术类型
塔式太阳能热发电系统
分布式电源的技术类型
潮汐发电(Tidal Energy)力发电
分布式电源的技术类型
潮汐发电(Tidal Energy)力发电
分布式电源的技术类型
潮汐发电(Tidal Energy)力发电
分布式电源的技术类型
电力系统中的分布式发电与微电网技术
电力系统中的分布式发电与微电网技术在当今能源需求不断增长和环境保护日益受到重视的背景下,电力系统中的分布式发电与微电网技术正逐渐成为能源领域的热门话题。
这两项技术的发展和应用,为解决能源供应的可靠性、可持续性以及能源效率等问题提供了新的思路和方法。
分布式发电,简单来说,就是将小型的发电装置分散地布置在用户附近,实现就地发电、就地使用。
这些发电装置可以包括太阳能光伏发电、风力发电、小型燃气轮机发电等多种形式。
与传统的集中式发电方式相比,分布式发电具有许多显著的优点。
首先,分布式发电能够有效地减少输电过程中的能量损耗。
由于发电设备靠近用户,电能传输的距离大大缩短,从而降低了线路电阻带来的能量损失。
这不仅提高了能源的利用效率,还降低了对输电线路的投资和维护成本。
其次,分布式发电能够提高电力系统的可靠性和稳定性。
在传统的集中式供电模式中,如果大型发电厂出现故障或者输电线路受到破坏,可能会导致大面积停电。
而分布式发电系统分布广泛,即使部分发电设备出现问题,也不会对整个电力系统造成太大的影响。
此外,分布式发电还可以作为备用电源,在紧急情况下为重要用户提供电力保障。
再者,分布式发电有利于促进可再生能源的利用。
太阳能、风能等可再生能源具有分布广泛、清洁环保的特点,但由于其能量密度较低、间歇性强等原因,在大规模集中式开发中面临诸多困难。
而分布式发电模式可以充分利用这些可再生能源的分散性和随机性,实现就地开发、就地消纳,为可再生能源的广泛应用创造了条件。
然而,分布式发电也存在一些问题和挑战。
由于分布式电源的容量较小、输出功率不稳定,其接入电网可能会对电力系统的电能质量、电压稳定性等方面产生不利影响。
此外,分布式发电的管理和调度也相对复杂,需要建立有效的协调控制机制,以确保其与电网的安全稳定运行。
为了更好地整合和管理分布式发电资源,微电网技术应运而生。
微电网是由分布式电源、储能装置、能量转换装置、负荷等组成的一个小型发配电系统,它既可以与外部电网并网运行,也可以独立运行。
分布式发电与微电网的发展研究
分布式发电与微电网的发展研究引言随着能源需求的增长和能源供应的不稳定性,分布式发电与微电网的概念成为能源行业的热门话题。
分布式发电是指将能源的产生地点移近到能源使用地点的一种方式,而微电网是由多个分布式发电系统组成的局部电力网络。
随着技术进步和支持的推动,分布式发电与微电网在可持续能源发展、能源安全和能源效率等方面具有巨大的潜力。
本文将对分布式发电与微电网的发展进行研究,分析其对能源行业的影响以及面临的挑战。
一、分布式发电的概念与技术1.1 分布式发电的定义分布式发电是指将能源的产生地点从传统的集中式发电站转移到能源使用地点附近的一种能源供应方式。
它通过利用可再生能源(如太阳能、风能等)或传统能源(如天然气、燃料电池等)在用户端或用户附近进行能源的产生和供应。
相较于传统的集中式发电,分布式发电具有灵活性、可靠性和可持续性等优势。
1.2 分布式发电的技术分布式发电涉及多种技术,包括太阳能光伏发电、风能发电、生物质能发电、燃料电池发电等。
太阳能光伏发电是最常见的分布式发电技术之一,利用光伏电池板将太阳能转化为电能。
风能发电则利用风力驱动风力发电机产生电能。
生物质能发电通过利用有机废料和生物质资源进行发电。
燃料电池发电则利用燃料与氧气反应产生电能。
这些技术的发展为分布式发电的实施提供了坚实的技术基础。
二、微电网的概念与运行模式2.1 微电网的定义微电网是一种由分布式发电系统组成的局部电力网络,它可以与传统的集中式电网相互连接,也可以独立于传统电网运行。
微电网具有自主调度、自主管理的能力,能够实现自身的能源供应与需求平衡,同时还具备可调度性、高可靠性和高效率等优势。
2.2 微电网的运行模式微电网的运行模式可分为两种:独立运行模式和互联运行模式。
独立运行模式下,微电网与传统电网相互隔离,通过能源存储设备(如储能电池、超级电容器等)实现电能的储存与调度。
互联运行模式下,微电网与传统电网相连,可以根据电网的需求进行电能的供应或接受电网的支持。
微电网的组成及架构
1 微电网的组成微电网由分布式发电(DG)、负荷、储能装置及控制装置四部分构成,微电网对外是一个整体,通过一个公共连接点(Point of Common Coupling,PCC)与电网连接。
1)分布式发电(DG):DG可以是以新能源为主的多种能源形式,如光伏发电、风力发电、燃料电池;也可以是以热电联产(Combined Heat and Power,CHP)或冷热电联产(Combined Cooling、Heat and Power,CCHP)形式存在,就地向用户提供热能,提高DG利用效率和灵活性。
2)负荷:负荷包括各种一般负荷和重要负荷。
3)储能装置:储能装置可采用各种储能方式,包括物理储能、化学储能、电磁储能等,用于新能源发电的能量存储、负荷的削峰填谷,微电网的“黑启动”。
4)控制装置:由控制装置构成控制系统,实现分布式发电控制、储能控制、并离网切换控制、微电网实时监控、微电网能量管理等。
2 微电网总体架构微电网电压等级的选取与微电网规模、微电网电源的种类、容量及接入方式、并网点注入电流及运行电压范围等密切相关。
考虑微电网的应用目的,目前微电网的电压等级主要有10kV(20kV)和380V 两种。
由于微电网与配电网存在并网运行模式,其变压器接线形式应与地区配电网相匹配(10/0.4kV通常为D11,yn)。
下面以380V微电网为例对微电网的基本结构进行阐述。
微电网的基本结构如下图所示。
微电网系统由分布式发电系统(DG)、储能装置、滤波补偿装置、智能控制系统和负荷构成。
其中可以包含多个DG和储能装置,这些DG和储能装置联合向负荷供电,整个微电网相对大电网来说是一个整体,通过主隔离设备和大电网相连接。
微电网中DG除可以提供电负荷外,还可以通过热电联产(CHP)或冷热电联产(CCHP)的形式就地向负荷用户供热或制冷,提高能源多级利用的效率。
就电负荷而言,其按性质亦可分为三类:重要负荷、可调节负荷和一般负荷。
分布式发电与微电网技术
Transmission Network
House
Distribution Network
Factory
Commercial building
一、分布式发电
分布式发电的基本概念 发展分布式发电系统的意义 分布式发电技术 分布式发电与并网技术 分布式发电技术的研发重点与应用前景
一、分布式发电
风力发电系统主要类型:
(1)恒速恒频风力发电机系统(小容量)
(2)变速恒频双馈感应发电机系统(大容量)
双馈感应发电机
Us
Is
齿轮箱
Ur
Ir
Ic
电网
风力机
变频器
齿轮箱 风力机
异步发电机
电网
并联电容器
Us Is
Uc Ic
同步发电机
变频器
电网
风力机
(3)永磁直驱的同步发电机系统(大容量)
一、分布式发电
分布式发电技术
靠性。此可以降低网损。
一、分布式发电
分布式发电技术
燃气轮机、内燃机、微燃机发电技术 光伏(Photo-Voltaic,PV)发电技术 燃料电池(FuelCell)发电技术 生物质(Biomass)发电技术 风力发电技术 分布式储能技术
一、分布式发电
分布式发电技术
燃气轮机、内燃机、微燃机发电技术
独立运行
并网运行
光伏发电系统示意图
一、分布式发电
分布式发电技术
燃料电池(FuelCell)发电技术
燃料电池主要包括碱性燃料电池、质子交换膜燃料电池、 磷酸燃料电池、熔融碳酸盐燃料电池、固体氧化物燃料电池。
一、分布式发电
分布式发电技术
燃料电池(FuelCell)发电技术
电力系统中的分布式发电与微电网技术
电力系统中的分布式发电与微电网技术随着全球对可再生能源的需求不断增加,电力系统正经历着一场革命性的变革。
分布式发电与微电网技术成为了电力系统转型的关键。
本文将探讨分布式发电与微电网技术在电力系统中的应用,并分析其对电力系统可靠性、经济性和可持续性的影响。
一、分布式发电技术的概念与分类分布式发电是指将发电设备分布在电力系统中的各个节点,与传统的集中式发电相对应。
根据发电设备的类型和规模,分布式发电技术可以分为小型分布式发电和中型分布式发电。
小型分布式发电包括太阳能光伏发电、风能发电、生物质能发电等,而中型分布式发电则包括燃气轮机发电、微型水电站等。
二、微电网技术的概念与特点微电网是由多种分布式发电设备、储能装置和负荷组成的小型电力系统。
与传统的电力系统相比,微电网具有自主运行、互联互通和可控性强的特点。
微电网技术的核心是能量管理系统(EMS),通过智能控制和优化算法,实现对微电网内部各种能源的协调运行。
三、分布式发电与微电网技术的应用1. 提高电力系统可靠性传统的集中式发电系统存在单点故障的风险,一旦发生故障,将导致大面积停电。
而分布式发电和微电网技术将发电设备分布在多个节点,降低了单点故障的风险,提高了电力系统的可靠性。
2. 促进电力系统的经济性分布式发电和微电网技术可以降低电力系统的输电损耗和传输成本。
由于分布式发电设备接近负荷,输电损耗减少,同时可以减少对远距离输电线路的依赖,降低传输成本。
3. 推动电力系统的可持续发展分布式发电主要利用可再生能源,如太阳能和风能,减少对传统化石燃料的依赖,降低碳排放。
同时,微电网技术可以实现对多种能源的灵活调度和优化利用,提高能源利用效率,推动电力系统向可持续发展方向发展。
四、分布式发电与微电网技术的挑战与展望1. 技术挑战分布式发电和微电网技术面临着电网接入、系统稳定性和运行控制等方面的技术挑战。
如何实现分布式发电设备与传统电力系统的无缝衔接,确保系统的稳定运行,是当前亟待解决的问题。
分布式电源与微电网
微电网结构示意图
智能微电网模拟系统图
微网的控制结构:(分为三层)
微电网能量管理系统各模块间关系
某风电场监测
振动信号
定子、转子电压、电流动态同步信号 振动信号
配网设备、线路、变电站局放、 温度、外观等
覆冰、腐蚀、外 观、场景 图像
发展及应用情况
国外发展情况: 美国:
美国是最早提出了微电网概念的国家,在世界微电网的研究和实践中居 于领先地位,拥有全球最多的微电网示范工程。美国微电网示范工程地域分 布广泛、投资主体多元、结构组成多样、应用场景丰富,主要用于集成可再 生分布式能源、提高供电可靠性及作为一个可控单元为电网提供支持服务。
北京延庆智能微电网; 西安世园会智能电网展示项目
发展及应用情况
上海、北京、广州等大城市,10多年前就尝试分布式供电,已有成功 范例。
2005年,我国首个分布式电力技术集成工程中心落户广州,标志着我 国分布式供电技术进入实质性发展阶段。
冷热电三联供技术应用最广泛,发展前景较好,我国大部分地区的住 宅、商业大楼、医院、公用建筑、工厂等,都有供电、供暖及制冷需 求,而且很多地方配有自备发电设备,这些都为冷热电三联供提供了 市场。
冷热电三联供 CCHP(Combined Cooling, Heating and Power)
分布式系统的储能
由于自然资源的特性,可再生能源用于发电时其功率输出具有明显的 间歇性和波动性,其变化甚是可能是随机的,容易对电网产生冲击, 严重时会引发电网事故。 为充分利用可再生能源并保障其供电可靠性,就要对这种难以准确预 测的能量变化进行及时的控制和抑制。 储能装置,就是用来解决这一问题。
分布式发电与微电网技术在多种一次能源中的应用
分布式发电与微电网技术在多种一次能源中的应用摘要:在国民经济的推动下,我国电力事业得到较快发展,电网整体规模逐渐增大。
由于人们生活水平不断提高,许多家庭中增加了大量的电子产品,对电能的需求越来越大,虽然大型电力系统为人们正常用电带来了较大便利,但是在实际情况中,受人为因素及自然因素的影响,电力系统在运作中出现了许多问题。
分布式发电与微电网技术能够对一次能源进行较好利用,缓解电力系统整体负荷影响,更好进行供电,所以如何将分布式发电与微电网技术更好应用在多种一次能源中成为技术人员面临的重大问题。
关键词:分布式发电;微电网;一次能源;应用由于人们对高质量电能的需求越来越大,为了实现正常供电,目前很多地区的供电方式依旧属于传统中的集中供电模式,这种方式虽然能满足人们电能需求,但是成本较高,且易受人为因素及自然因素的影响,在运作过程中存在许多安全隐患,长期以往,不仅影响正常供电,而且会对整个电网造成破坏。
分布式发电技术以及微电网技术能够有效利用一次能源进行发电,降低电网整体负荷,从而更好满足人们电能需求。
分布式发电技术概要分布式发电技术主要的应用基础为分布式电源,分布式电源对清洁能源进行了有效利用,包括风能、太阳能等,其体积虽然较小,但是在实际应用过程中有着极大容量。
其一般分布在电力负荷周围,能够与环境较好相融,整体成本也较低,在实际生活中能发挥出较大作用。
分布式电源主要有两种运行方式,一种是独立运行,另一种是并网运行,这两种方式都能较好实现正常供电。
随着国家对绿色供电的重视度不断增强,分布式发电技术有着广阔的应用前景,从而更好满足人们的电能需求。
如图1,显示的是分布式电源。
图1 分布式电源分布式发电技术有多种发电形式,主要包括不可再生资源发电形式、可再生资源发电形式、小型水力发电形式以及储能电源发电形式,在应用时需根据实际情况进行设置。
分布式发电技术在实际应用过程中有许多优势,首先,分布式电源虽然体积较小,但是容量较大,所以有着较广的适用范围,为工作人员的安装工作及运营工作带来了极大便利;其次,由于分布式电源以清洁能源为发电基础,所以其有着较广的分布范围,且有着多种运行方式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微电网基本结构
工商业微网
工商业微网的用户一般定义为关键负荷 或者敏感负荷,即需要较高等级的供电 可靠性和电能质量。该类微电网能够提 供对多个工商业区域的负荷需求,如大 学校园、购物中心或工业设备。该类微 电网同样可以供给小型的居民负荷,如 一组城市用房或者独立公寓,也可以成 为居民区微电网。该类微电网能够提供 便利且可靠的能量供给,并且能够提供 用户定制的多种分布式电源供电。该类 微电网的主要作用是提供较高的电能质 量;提供不同水平的电能可靠性水平; 整合CHP和需求侧管理。运行方式有GD、 GI和IG,当大电网故障或者电能质量不 满足要求、电价较高或者系统维修时从 GI模式切换到IG模式。
– 钢铁企业……..
– 电网
• 输电网(供电网) 220KV,110KV,35KV,750KV
• 配电网
10KV
-3-
认识电力系统
Generation Transmission
Distribution
Load
Hydroelectric plant
Fossil-fuelled plant
Nuclear pl地区微网
利用微电网对这些偏远地区微 电网进行供电,可以利用可再 生能源发电或其他分布式电源 来形成孤立的电网或者独立的 微电网来为偏远地区的居民或 者商业用户供电或热。该类微 电网的主要目的就是为偏远地 区供电,并降低传统化石燃料 的消耗。它具有如下好处:整 合可再生能源发电、降低温室 气体排放和需求侧管理。主要 运行方式为IG。
新能源发电VS.分布式发电
• 新能源发电→分布式发电:概念和内容上有发展
– DG大多利用新的能源和新型发电技术; – 利于环保; – 电源容量小,电压等级低; – 接近负荷中心,接入配电网; – 电力生产者和消费者合一,功率双向流动; – 运行方式灵活,可连接于配电网,也可不联网; – 比集中发电更可靠;在一批小型发电机组成的系统中
• 国外:
– DR (Distributed Resource)-分布式电源,非直接接入 大输电系统的电源,包括发电机和储能
– DG (Distributed Generation)-分布式发电,是分布式电 源DR的一个子集
– DG(Dispersed Generation) —分散式发电
- 15 -
- 19 -
微电网基本结构
微电网的结构示意图如图所示, 它可能组成中压或低压配电网 的一部分,负荷通过分布式电 源供电。根据微电网的运行特 性,微电网可能通过PCC连接到 大电网并网运行,也可与之断 开进入孤网运行模式(Isolated
Grid,IG)。当微电网并网的 时候,微电网的运行和控制模式 也在两种状态之间转换,即依赖 于大电网的模式(Grid Dependent, GD)和独立于大电网的模式 (Grid Independent,GI)。 GD与GI模式的区别在于微电网 与大电网之间是否有功率交换。
分布式发电的特点
• 分布式发电 (DG) 或分布式能源 (DER) 是一种分散、 非集中式的发电方式,具有以下特点 – 接近终端用户 – 容量很小(几十 kW 至几十 M W) – 以孤立方式或与配电网并网方式,运行在380V 或 10kV – 采用洁净或可再生能源(天然气、沼气、太阳能、 生物质能、风能—小风电、或水能—小水电)
• 区域电网互联--坚强智能电网 • 微型电网(微电网)
– 接入配电网 – 分布式发电(风力、太阳能、生物质…….) – 分布式储能
- 11 -
- 12 -
微电网典型结构
- 13 -
1 术语和基本概念
(1)分布式发电 (2)新能源发电
(3)微电网
- 14 -
分布式发电的定义
• 国内:
– 分布式发电(Distributed Generation)是指功率不大 (一般几十kW到几十MW)、建设在负荷中心附近的、 模块式采用先进信息控制技术的、清洁环保、经济、 高效、可靠的自主智能发电形式。
主要内容
• 认识电力系统 • 分布式发电 • 微电网及其控制 • 储能技术
-1-
认识电力系统
• 认识“电”
– 电是一种特殊的商品(质量、数量) – 电能不能大规模存储 – 每一瞬间电能的生产和消耗保持平衡 – 负荷曲线(削峰填谷)
-2-
认识电力系统
• 认识电网
– 发电、输电(变电、配电)、用电
– 电厂(水电站、火电站、核电站、风电场……)
- 20 -
微电网基本结构
微电网按照结构可以分为三种类型:片区微网、工商业微网、偏远地区微网
片区微网
片区微电网有两种,一种是城市网络, 另一种则是农村的馈线。前者主要用 于城市的繁华地区,后者则用于农村 电网的计划解列。片区电网的发展动 力是停运管理和整合可再生能源发电 的需求。片区微电网的主要作用在于 降低温室气体的排放;提供对用户多 种能源方式的供给;阻塞管理;延缓 电力网络的升级等。另外,片区微电 网能提供当地无功电压支撑和较高的 电能质量等辅助服务。
发生大的停电(高负荷、风暴、地震、恐怖袭击、战 争)几率较小;
- 17 -
具有分布式发电的示范配电系统
- 18 -
微电网的定义
微电网是以分布式发电技术为基础,以靠近分 散型资源或用户的小型电站为主,结合终端用户电能 质量管理和能源梯级利用技术形成的小型模块化、分 散式的供能网络。微电网是智能电网的重要组成部分, 能实现内部电源和负荷的一体化运行,并通过和主电 网的协调控制,可平滑接入主网或独立自治运行,充 分满足用户对电能质量、供电可靠性和安全性的要求。
-4-
电力系统稳定性与控制
• 稳定性 • 电力系统稳定性
– 功角稳定性
• 小干扰稳定性(电源、负荷) • 暂态稳定性(三相短路)
– 电压稳定性(无功平衡) – 频率稳定性(有功平衡)
-5-
单机无穷大系统
-6-
单机无穷大系统传递函数框图
-7-
电力系统稳定性与控制
• 送端关注功角稳定性(发电机) • 受端关注电压稳定性 (负荷) • 振荡稳定性及控制
– 低频振荡(0.2~2Hz) – 次同步振荡(略低于50Hz) – 抑制措施
• PSS • HVDC • FACTS
-8-
FACTS控制器
-9-
电网分析的相关内容
• 网络拓扑 • 潮流计算 • 状态估计 • 稳定性分析 • 短路计算 • … … ….
--“电力系统博大精深!”
- 10 -
电网的发展方向