初升高数学衔接班教案(学生版)分式方程与无理方程以及二元方程组
数学初高中衔接之分式方程和无理方程
2.2 分式方程和无理方程初中大家已经学习了可化为一元一次方程的分式方程的解法.本讲将要学习可化为一元二次方程的分式方程的解法以及无理方程的解法.并且只要求掌握 (1) 不超过三个分式构成的分式方程的解法,会用” 去分母” 或” 换元法” 求方程的根,并会验根; (2) 了解无理方程概念,掌握可化为一元二次方程的无理方程的解法,会用” 平方” 或” 换元法” 求根,并会验根.一、可化为一元二次方程的分式方程1 .去分母化分式方程为一元二次方程【例 1 】解方程.分析:去分母,转化为整式方程.解:原方程可化为:方程两边各项都乘以:即,整理得:解得:或.检验:把代入,不等于 0 ,所以是原方程的解;把代入,等于 0 ,所以是增根.所以,原方程的解是.说明:(1) 去分母解分式方程的步骤:① 把各分式的分母因式分解;② 在方程两边同乘以各分式的最简公分母;③ 去括号,把所有项都移到左边,合并同类项;④ 解一元二次方程;⑤ 验根.26(2) 验根的基本方法是代入原方程进行检验,但代入原方程计算量较大.而分式方程可能产生的增根,就是使分式方程的分母为 0 的根.因此我们只要检验一元二次方程的根,是否使分式方程两边同乘的各分式的最简公分母为 0 .若为 0 ,即为增根;若不为 0 ,即为原方程的解.2 .用换元法化分式方程为一元二次方程【例 2 】解方程分析:本题若直接去分母,会得到一个四次方程,解方程很困难.但注意到方程的结构特点,设,即得到一个关于的一元二次方程.最后在已知的值的情况下,用去分母的方法解方程.解:设,则原方程可化为:解得或.(1) 当时,,去分母,得;(2) 当时,.检验:把各根分别代入原方程的分母,各分母都不为 0 .所以,,都是原方程的解.说明:用换元法解分式方程常见的错误是只求出的值,而没有求到原方程的解,即的值.【例 3 】解方程.分析:注意观察方程特点,可以看到分式与互为倒数.因此,可以设,即可将原方程化为一个较为简单的分式方程.27解:设,则原方程可化为:.(1) 当时,;(2) 当时,.检验:把把各根分别代入原方程的分母,各分母都不为 0 .所以,原方程的解是,,.说明:解决分式方程的方法就是采取去分母、换元等法,将分式方程转化为整式方程,体现了化归思想.二、可化为一元二次方程的无理方程根号下含有未知数的方程,叫做无理方程.1 .平方法解无理方程【例 4 】解方程分析:移项、平方,转化为有理方程求解.解:移项得:两边平方得:移项,合并同类项得:解得:或检验:把代入原方程,左边右边,所以是增根.把代入原方程,左边 = 右边,所以是原方程的根.所以,原方程的解是.说明:含未知数的二次根式恰有一个的无理方程的一般步骤:28① 移项,使方程的左边只保留含未知数的二次根式,其余各项均移到方程的右边;② 两边同时平方,得到一个整式方程;③ 解整式方程;④ 验根.【例 5 】解方程分析:直接平方将很困难.可以把一个根式移右边再平方,这样就可以转化为上例的模式,再用例 4 的方法解方程.解:原方程可化为:两边平方得:整理得:两边平方得:整理得:,解得:或.检验:把代入原方程,左边 = 右边,所以是原方程的根.把代入原方程,左边右边,所以是增根.所以,原方程的解是.说明:含未知数的二次根式恰有两个的无理方程的一般步骤:① 移项,使方程的左边只保留一个含未知数的二次根式;② 两边平方,得到含未知数的二次根式恰有一个的无理方程;③ 一下步骤同例 4 的说明.2 .换元法解无理方程【例 6 】解方程分析:本题若直接平方,会得到一个一元四次方程,难度较大.注意观察方程中含未知数的二次根式与其余有理式的关系,可以发现:.因此,可以设,这样就可将原方程先转化为关于的一元二次方程处理.解:设,则原方程可化为:,29即,解得:或.(1) 当时,;(2) 当时,因为,所以方程无解.检验:把分别代入原方程,都适合.所以,原方程的解是.说明:解决根式方程的方法就是采取平方、换元等法,将根式方程转化为有理方程,体现了化归思想.练习:1 .解下列方程:(1) (2)(3) (4)2 .用换元法解方程:3 .解下列方程:(1) (2) (3)4 .解下列方程:(1) (2)5 .用换元法解下列方程:(1) (2)30。
初高中衔接内容数学教案
初高中衔接内容数学教案
一、教学目标:
1. 知识与技能:学生能够掌握初中数学与高中数学的衔接知识,如函数、方程、不等式等
内容。
2. 过程与方法:通过引导学生进行问题解决和思维拓展,培养学生的数学思维和解决问题
的能力。
3. 情感态度与价值观:培养学生对数学学习的兴趣和自信心,激发学生学习数学的积极性。
二、教学内容:
本节课主要教学内容为初高中数学衔接的知识点,包括但不限于:
1. 函数与方程的衔接:介绍高中函数与初中函数的联系,并引导学生探讨函数的性质和图
像变化。
2. 不等式的衔接:通过举例引导学生理解不等式的性质和解法,并培养学生分析问题、解
决问题的能力。
3. 逻辑推理与证明:引导学生进行逻辑推理和证明练习,培养学生的思维逻辑和分析能力。
三、教学过程:
1. 导入:通过提出一个问题或引入一个实例,激发学生对本课内容的兴趣。
2. 学习与讨论:教师介绍和讲解本节课的知识点,引导学生进行讨论和互动,加深对知识
的理解。
3. 练习与应用:设计一些练习题和问题,让学生进行练习和解答,巩固所学知识。
4. 总结与拓展:对本课内容进行总结,引导学生拓展思维,思考更深层次的问题。
5. 作业布置:布置相关的作业,加强对知识的巩固与熟练掌握。
四、教学评估:
通过课堂表现、作业情况和考试成绩等多方面对学生进行评估,及时发现问题并进行针对
性调整和指导。
五、教学反思:
教学结束后,教师应对本节课的教学效果进行反思和总结,发现问题并加以改进,为下一
节课的教学做好准备。
2024年初升高衔接课教学规划
练才是硬道理(一) 练才是硬道理(二) 练才是硬道理(三) 练才是硬道理(四) 练才是硬道理(五) 练才是硬道理(六)
休息
7 月 10 日 7 月 11 日 7 月 12 日 7 月 13 日 7 月 14 日 7 月 15 日
第十三课:解不等式(一) 第十四课:解不等式(二) 第十五课:二次函数的图象及性质 第十六课:二次函数的应用 第十七课:平行线分线段成比例定理与射影定理 第十八课:角平分线性质定理与面积法 第十九课:三角形的“四心” 第二十课:圆幂定理 第二十一课:集合的概念 第二十二课:集合间的基本关系 第二十三课:集合的基本运算(一) 第二十四课:集合的基本运算(二)
练才是硬道理(七) 练才是硬道理(八) 练才是硬道理(九) 练才是硬道理(十) 练才是硬道理(十一) 练才是硬道理(十二)
1
2023 年暑假数学初升高衔接课教学安排5日 7月6日 7月7日 7月8日 7月9日
第一课:“缘”在高中 一路同“学” 第二课:多项式的乘法 第三课:耐克函数与耐克兄弟 第四课:基本不等式初步 第五课:因式分解的多种方法(一) 第六课:因式分解的多种方法(二) 第七课:根式与分式(一) 第八课:根式与分式(二) 第九课:一元二次方程 第十课:二元二次方程 第十一课:分式方程 第十二课:无理方程
初升高数学课程内容(衔接班)
【知识要点】一、一元二次不等式:1、解法步骤:(1)分解成一次因式的积,并使每一个因式中一次项的系数为正;(2)根据不等号取解集:大于号取两边,小于号取中间。
一元高次不等式的解法:穿根法(穿针引线):将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线(奇数个根穿过,偶数个根穿不过),再根据曲线显现()f x 的符号变化规律,写出不等式的解集。
2、一元二次不等式恒成立情况小结:20ax bx c ++>(0a ≠)恒成立⇔00a >⎧⎨∆<⎩.20ax bx c ++<(0a ≠)恒成立⇔0a <⎧⎨∆<⎩.二、分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后转化成整式不等式求解集。
1.()0()f x g x >⇔()()0f x g x ⋅>;()0()f xg x <⇔()()0f xg x ⋅<2.()0()f x g x ≥⇔()()0()0f x g x g x ⋅≥⎧⎨≠⎩;()0()f x g x ≤⇔()()0()0f xg x g x ⋅≤⎧⎨≠⎩三、含绝对值的不等式的解法(大于取两边,小于取中间):|()|f x a <,(0a >)⇔()a f x a -<<|()|f x a >,(0a >)⇔()()f x a f x a<->或【知识讲练】1、解下列不等式:(1)27120x x -+>(2)2230x x --+≥(3)2(1)(3)(2)0x x x --+≥解不等式(4)307x x -≤+(5)2317x x -<+(6)25023xx x -<--(7)|2x -1|≤3(8)223->-x x (9)|1|12+>-x x 2、已知不等式20ax bx c ++>的解集为{|23}x x <<求不等式20cx bx a ++>的解集.3、对于任意实数x ,不等式23208kx kx +-<恒成立,则实数k 的取值范围是【巩固练习】1、不等式02<+-b x ax 的解集为{}12x x <<,则a b +=2、不等式32-+x x x )(<0的解集为3、不等式221x x +>+的解集是()A.{}101|><<-x x x 或 B.{}101-|<<<x x x 或C.{}1001|<<<<-x x x 或 D.{}11-|><x x x 或(-∞,-1)∪(1,+∞)4、已知不等式250ax x b -+>的解集为{|32}x x -<<,则不等式250bx x a -+>的解集为()A、11{|}32x x -<<B、11{|}32x x x <->或C、{|32}x x -<<D、{|32}x x x <->或5、(1)若函数34)(2++=kx kx x f 的定义域是R,则k 的取值范围是(2)已知函数1)(2--=mx mx x f ,对一切实数0)(,<x f x 恒成立,则m 的范围为【知识要点】1、集合定义:某些指定的对象集在一起成为集合。
初升高衔接课数学教案及答案(总共8讲)
初升高衔接课数学教案(总共8讲)初高一衔接课:基本运算问题初高一衔接课:基本运算问题(一)绝对值一、知识梳理:⑴ 数轴上,一个数所对应的点与原点的距离叫做该数的绝对值.⑵ 数的绝对值是他本身,负数的绝对值是他的相反数,0的绝对值是0,即(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩.⑶ 个负数比较大小,绝对值大的反而小.⑷ 个绝对值不等式:||(0)x a a a x a <>⇔-<<; ||(0)x a a x a >>⇔<-或x a >. ⑸ 两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离.二、例题讲解:例1 解不等式:13x x -+->4.解法一:由01=-x ,得1=x ;由30x -=,得3x =; ①若1<x ,不等式可变为(1)(3)4x x ---->, 即24x -+>4,解得x <0, 又x <1, ∴x <0;②若12x ≤<,不等式可变为(1)(3)4x x --->, 即1>4,∴不存在满足条件的x ;③若3x ≥,不等式可变为(1)(3)4x x -+->, 即24x ->4, 解得x >4. 又x ≥3, ∴x >4.综上所述,原不等式的解为 x <0,或x >4.解法二:如图1.1-1,1-x 表示x 轴上坐标为x 的点P 到坐标为1的点A 之间的距离|PA |,即|PA |=|x -1|;|x -3|表示x 轴上点P 到坐标为2的点B 之间的距离|PB |,即|PB |=|x -3|.所以,不等式13x x -+->4的几何意义即为 |PA |+|PB |>4. 由|AB |=2,可知点P 在点C (坐标为0)的左侧、或点P 在点D (坐标为4)的右侧. x <0,或x >4.三、强化练习1.填空:(1)若5=x ,则x =_________;若4-=x ,则x =_________.(2)如果5=+b a ,且1-=a ,则b =________;若21=-c ,则c =________. 2.选择题:下列叙述正确的是 ( ) (A )若a b =,则a b = (B )若a b >,则a b > (C )若a b <,则a b < (D )若a b =,则a b =±13A B x0 4C D xP |x -1||x -3| 图1.1-1x原式=(+说明:本题若先从方程7∴-x x=⨯364∴+x x13此例可以看出,常数项为正数时,应分解为两个同号因数,它们的符号与一次项系数的符号相同.∴+x x5-=15∴-x x2此例可以看出,常数项为负数时,应分解为两个异号的因数,其中绝对值较大的因数与一次项系数的符答案:1.222(3)(39),(2)(42),(23)(469),a a a m m m x x x +-+-++-++2.2222()(),()(),nx x y y xy x x x y x xy y +-+-++ 22432(1)(4321)y x x x x x --+++ 3.(2)(1)x x --,(9)(3)x x -+, (5)()m n m n -+4.3(2)(8)ax x x -- ;(3)(2)na ab a b +- ;2(3)(1)(23)x x x x -+-+;(2)(415),x y x y -+(772)(1)a b a b +++-5.2()(3),(21)(21),(3)(52)x y a y x x x x y -++--+;(12)(12),x y x y -++-23333()(),(1)(1),()(1)ab a b a b x y x y x x y x y +----+-++.6.2837.5354(2)(1)(1)(2)n n n n n n n n -+=--++8.322322()()a a c b c abc b a ab b a b c ++-+=-+++初高一衔接课:基本运算问题初高一衔接课:基本运算问题(四)根式一、知识梳理:二次根式的性质(1)一般地,形如(0)a a ≥的代数式叫做二次根式.根号下含有字母、且不能够开得尽方的式子称为无理式. 例如 232a a b b +++,22a b +等是无理式,而22212x x ++,222x xy y ++,2a 等是有理式. (2)二次根式2a 的意义2a a ==,0,,0.a a a a ≥⎧⎨-<⎩(3)二次根式的化简与运算二次根式的乘法:ab b a =),(0≥0≥b a ;二次根式的除法:先把除法写成分式的形式,然后通过分母有理化进行运算; 二次根式的加减法:合并同类二次根式. (4)其性质如下:(五)分式一、知识梳理:当分式A B 的分子、分母中至少有一个是分式时,AB就叫做繁分式,繁分式的化简常用以下两种方法:(1) 利用除法法则;(2) 利用分式的基本性质.二、例题讲解:【例1】化简11xx x x x-+-解法一:原式=222(1)11(1)1(1)(1)11x x x x x xx x x x x x x x x x x x x x x x x x x++=====--⋅+-+-+++--+解法一:原式=22(1)1(1)(1)111()x x x x x x x x x x x x x x x x x x x x x x x++====-⋅-+--+++--⋅ 说明:解法一的运算方法是从最内部的分式入手,采取通分的方式逐步脱掉繁分式,解法二则是利用分式的基本性质A A mB B m⨯=⨯进行化简.一般根据题目特点综合使用两种方法. 【例2】化简222396162279x x x x x x x x++-+-+--=61x -.【解法二】原式=22(1)(1)(1)(1)x x x x x x +-+-++ =33(1)(1)x x +-=61x -.例2 已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值. 【解】 2222()2()8a b c a b c ab bc ac ++=++-++=. 例3 解不等式:13x x -+->4.【解法一】由01=-x ,得1=x ;由30x -=,得3x =;①若1<x ,不等式可变为(1)(3)4x x ---->, 即24x -+>4,解得x <0,又x <1,∴x <0; ②若12x ≤<,不等式可变为(1)(3)4x x --->, 即1>4,∴不存在满足条件的x ;③若3x ≥,不等式可变为(1)(3)4x x -+->, 即24x ->4, 解得x >4. 又3x ≥,∴x >4.综上所述,原不等式的解为 x <0,或x >4.【解法二】如图1-1,1-x 表示x 轴上坐标为x 的点P 到坐标为1的点A 之间的距离|PA |,即|PA |=|x -1|;|x -3|表示x 轴上点P 到坐标为2的点B 之间的距离|PB |,即|PB |=|x -3|.所以,不等式13x x -+->4的几何意义即为 |PA |+|PB |>4. 由|AB |=2,可知点P 在点C (坐标为0)的左侧、或点P 在点D (坐标为4)的右侧.∴x <0,或x >4.例4 分解因式:(1)x 2-3x +2; (2)x 2+4x -12; (3)22()x a b xy aby -++; (4)1xy x y -+-.【解】(1)如图1.2-1,将二次项x 2分解成图中的两个x 的积,再将常数项2分解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x ,就是x 2-3x +2中的一次项,所以,有x 2-3x +2=(x -1)(x -2).今后在分解与本例类似的二次三项式时,可以直接将图1.2-1中的两个x 用1来表示(如图1.2-2所示).13A B x4C D xP |x -1||x -3|图1-1-1 -2 x x 图1.2-1 -1 -2 1 1 图1.2-2-2 6 1 1 图1.2-3 -ay -by x x 图1.2-4(2)由图1.2-3,得x 2+4x -12=(x -2)(x +6). (3)由图1.2-4,得22()x a b xy aby -++=()()x ay x by -- (4)1xy x y -+-=xy +(x -y )-1=(x -1) (y+1) (如图1.2-5所示).例5 分解因式:(1)32933x x x +++; (2)222456x xy y x y +--+-. 【解】(1)32933x x x +++=32(3)(39)x x x +++=2(3)3(3)x x x +++ =2(3)(3)x x ++.或 32933x x x +++=32(331)8x x x ++++=3(1)8x ++=33(1)2x ++提 示熟练进行分解因式运算是高中数学的基本要求.=22[(1)2][(1)(1)22]x x x +++-+⨯+ =2(3)(3)x x ++.(2)222456x xy y x y +--+-=222(4)56x y x y y +--+-=22(4)(2)(3)x y x y y +----=(22)(3)x y x y -++-. 或 222456x xy y x y +--+-=22(2)(45)6x xy y x y +----=(2)()(45)6x y x y x y -+--- =(22)(3)x y x y -++-.例6 试比较下列各组数的大小:(1)1211-和1110-; (2)264+和226-. 【解】 (1)∵1211(1211)(1211)11211112111211--+-===++,1110(1110)(1110)11110111101110--+-===++, 又12111110+>+, ∴1211-<1110-.-1 1x y图1.2-5910+⨯(1)n n ++1910+⨯(910-1(1)n n ++(4n n -是正整数,(1)n n ++513.计算:1111132435911++++⨯⨯⨯⨯.4.试证:对任意的正整数n ,有111123234(1)(2)n n n +++⨯⨯⨯⨯++<14 .答案 A 组 1.(1)2x <-或4x > (2)-4<x <3 (3)x <-3,或x >3 2.1 3.(1)23- (2)11a -≤≤ (3)61- B 组1.(1)37 (2)52,或-15 2.4.C 组1.(1)C (2)C 2.121,22x x == 3.36554.提示:1111[](1)(2)2(1)(1)(2)n n n n n n n =-+++++.一次函数和反比例函数初高一衔接课:(一)一次函数和反比例函数一、基础知识梳理1、平面直角坐标系(1)在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系.水平的数轴叫做x 轴或横轴,铅直的数轴叫做y 轴或纵轴,x 轴与y 轴统称坐标轴,他们的公共原点O 称为直角坐标系的原点. (2)点的坐标和象限.(3)平面直角坐标系内的对称点:设11(,)M x y ,22(,)M x y '是直角坐标系内的两点.① 若M 和'M 关于y 轴对称,则有1212x x y y =-⎧⎨=⎩.② 若M 和'M 关于x 轴对称,则有1212x x y y =⎧⎨=-⎩.③ 若M 和'M 关于原点对称,则有1212x x y y =-⎧⎨=-⎩.所以,22x =-,13y =-,则()2,3A -、()2,3B --. (3)因为A 、B 关于原点对称,它们的横纵坐标都互为相反数, 所以22x =-,13y =,则()2,3A 、()2,3B --.例2已知一次函数y =kx +2的图象过第一、二、三象限且与x 、y 轴分别交于A 、B 两点,O 为原点,若ΔAOB 的面积为2,求此一次函数的表达式.【解】∵B 是直线2+=kx y 与y 轴交点,∴B (0,2),∴OB =2, 1222AOB S AO BO AO ∆=⋅=∴=又, 2y kx =+又,过第二象限,(20)A ∴-,1120212x y y kx k y x =-==+=∴=+把,代入中得,例3反比例函数xk y 1-=与一次函数)1(+=x k y 只可能是( )(A ) (B ) (C ) (D )【解】因直线)1(+=x k y 必过点()0,1-,所以选择(C )、(D )一定错误.又直线)1(+=x k y 与y 轴的交点为()k ,0,所以当1>k ,双曲线xk y 1-=必在第一、三象限. 故选(A )例4 如图,反比例函数ky x=的图象与一次函数y mx b =+的图象交于(13)A ,,(1)B n -,两点.(1)求反比例函数与一次函数的解析式;(2)根据图象回答:当x 取何值时,反比例函数的值大于一次函数的值. 【解】(1)(13)A ,在ky x=的图象上, 3k ∴=,3y x∴=又(1)B n -,在3y x =的图象上,3n ∴=-,即(31)B --,,313m bm b =+⎧⎨-=-+⎩,解得:1m =,2b =,反比例函数的解析式为3y x=,一次函数的解析式为2y x =+,(2)从图象上可知,当3x <-或01x <<时,反比例函数图象在一次函数图象的上方,所以反比例函数的值大于一次函数的值.例5 如图,正比例函数x y 3=的图象与反比例函数xky =)>,>(00x k 的图象交于点A .过A 作AB ⊥x 轴于B 点.若k 取1,2,3,…,20时,对应的Rt △AOB 的面积分别 为1S ,2S ,3S ,…,20S ,则1S +2S +3S +…+20S =_ .【解】过正比例函数与反比例函数的交点作x 轴的垂线.x 轴、正比例函数图象及垂线所围成的三角形的面积是k 的 一半.于是 1S +2S +3S +…+20S =22020121×)+(×=105.例6 已知反比例函数xky 2=和一次函数12-=x y ,其中一次函数的图象经过()b a ,、()k b a ++,1两点. (1)求反比例函数的解析式;(2)若点A 坐标是()1,1,请问,在x 轴上是否存在点P ,使AOP ∆为等腰三角形?若存在,把符合条件的点P 的坐标都求出来,若不存在,请说明理由. 【解】 (1)根据题意,得()⎩⎨⎧-+=+-=.112,12a k b a by xA OB图(12)ABOxy两式相减,得2=k .所以所求的反比例函数的解析式是xy 1=. (2)由勾股定理,得21122=+=OA ,OA 与x 轴所夹的角为︒45.①当OA 为AOP ∆的腰时,由OP OA =,得()0,21P ,()0,22-P ;由AP OA =,得()0,23P .②当OA 为AOP ∆的底时,得()0,14P . 所以,这样的点有4个,分别是()0,2、()0,2-、()0,2、()0,1.例7已知一次函数y ax b =+的图象经过点()3,32A +,()1,3B -,()2,C c -.求222a b c ab bc ca++---的值.【解】 由点点()3,32A +,()1,3B -,()2,C c -在次函数y ax b =+的图象上,于是有233+=+b a ,3=+b a ,c b a =+2,解得31,231,1a b c =-=-=,3,232,23a b b c c a ∴-=--=--=-.222a b c ab bc ca ++---=()()()2221136 3.2a b b c c a ⎡⎤-+-+-=-⎣⎦例8如图,点A 、C 在反比例函数()30y x x=<的图象上,B 、D 在x 轴上,△OAB ,△BCD 均为正三角形,则点C 的坐标是 .【解】 作AE ⊥OB 于E ,CF ⊥BD 于F ,易求OE =EB =1, 设BF =m ,则(2,3)C m m ---,代入3y x= 得2222210,2m m m -±+-==.D CB AOyx又0,12m m >∴=-+,∴点C 的坐标为 ()12,36---.四、课后巩固练习 A 组1.函数y kx m =+与(0)my m x=≠在同一坐标系内的图象可以是( )2.如图,平行四边形ABCD 中,A 在坐标原点,D 在第一象限角平分线上,又知6AB =,22AD =,求,,B C D 点的坐标.3.如图,已知直线12y x =与双曲线(0)ky k x=>交于A B ,两点,且点A 的横坐标为4.(1)求k 的值;(2)过原点O 的另一条直线l 交双曲线(0)ky k x=>于P Q ,两点(P 点在第一象限),若由点P 为顶点组成的四边形面积为24,求点P 的坐标.B 组1.选择题如图是三个反比例函数y =1k x ,y =2kx ,y =3k x在x 轴上方的图象,由此观察得到k 1、k 2、k 3∴的大小关 系为( )A .k 1>k 2>k 3B .k 3>k 2>k 1C .k 2>k 3>k 1D .k 3>k 1>k 2 2.选择题xyO A . xyO B .xyO C . xyO D .OxAyByxO第2题 第3题yxCB AO yx图 1 OA B DC P4 9图 2如图,正比例函数kx y =和()0>=a ax y 的图象 与反比例函数()0>=k xky 的图象分别相交于A 点和 C 点.若AOB Rt ∆和COD Rt ∆的面积分别为1S 和2S ,则1S 与2S 的关系是( )(A )1S >2S (B )1S =2S (C )1S <2S (D )不能确定3.如图,已知Rt △ABC 的锐角顶点A 在反比例函数y =m x的 图象上,且△AOB 的面积为3,OB =3. (1)求点A 的坐标; (2)求函数y =mx的解析式; (3)若直线AC 的函数关系式为y =27x +87, 求△ABC 的面积.4.如图1,在矩形ABCD 中,动点P 从点B 出发, 沿BC ,CD ,DA 运动至点A 停止.设点P 运动 的路程为x ,△ABP 的面积为y ,如果y 关于x 的 函数图象如图2所示,则△ABC 的面积是( )A .10B .16C .18D .20C 组1.如图,如果x x >,且0<kp ,那么,在自变量x 的取值范围内,正比例函数kx y =和反比例函数xpy =在同一直角坐标系中的图象示意图正确的是( )(A ) (B ) (C ) (D )2.已知反比例函数xmy 21-=的图象上两点()()2211,,,y x B y x A ,当210x x <<时,有21y y <,则m 的取值范围是___ __.3.已知点()a P ,1在反比例函数()0≠=k xky 的图象上,其中322++=m m a (m 为实数),则这个函数的图象在第_____象限.4.已知3=b ,且反比例函数x b y +=1的图象在每个象限内,y 随x 的增大而增大,如果点()3,a 在双曲线xby +=1上,则_____=a .5.如果不等式0<+n mx 的解集是4>x ,点()n ,1在双曲线xy 2=上,那么一次函数 ()m x n y 21+-=的图象不经过第___象限.6.已知直线b kx y +=经过反比例函数xy 8-=的图象上两点()1,2y A 与()2,2x B ,则.______=kb五、参考答案与解析A 组 1. B2. D(2,2)、C(8,2)、B(6,0).3.(1)8k =.(2)点P 的坐标是(24)P ,或(81)P ,.B 组 1.B2.B 解析:设()()2211,,,y x C y x A .则根据题意,k y x y x ==2211. 所以k y x AB OB S 212121111==×=, k y x CD OC S 212121222==×=.根据题意,把()4,2-A 、()2,4-B 两点的坐标代入直线b kx y +=中,得 ⎩⎨⎧=+--=+.24,42b k b k 解得⎩⎨⎧-=-=.2,1b k故()2121-=-=-k b .二次函数初高一衔接课:(二)二次函数一、基础知识梳理1、二次函数的图像与性质(1)二次函数y =ax 2+bx +c (a ≠0)的图象由于y =ax 2+bx +c =a (x 2+b x a )+c =a (x 2+bx a+224b a )+c -24b a224()24b b aca x a a-=++, 所以,y =ax 2+bx +c (a ≠0)的图象可以看作是将函数y =ax 2的图象作左右平移、上下平移得到的.其图像为①当a >0时,函数y =ax 2+bx +c 图象是开口向上的抛物线,顶点坐标为24(,)24b ac b a a--,对称轴为直线x =-2ba;②当a <0时,函数y =ax 2+bx +c 图象是开口向下的抛物线,顶点坐标为24(,)24b ac b a a--,对称轴为直线x =-2ba; (2)二次函数y =ax 2+bx +c (a ≠0)的性质(1); (2).【解】 由于函数和的自变量x 的取值范围是全体实数,所以只要确定它们的图象有最高点或最低点,就可以确定函数有最大值或最小值. (1)因为二次函数中的二次项系数2>0, 所以抛物线有最低点,即函数有最小值.因为=,所以当时,函数有最小值是. (2)因为二次函数中的二次项系数-1<0, 所以抛物线有最高点,即函数有最大值. 因为=, 所以当时,函数有最大值.例3 (1)当12x ≤≤时,求函数21y x x =--+的最大值和最小值. (2)当0x ≥时,求函数(2)y x x =--的取值范围. 【解】 (1)作出函数21y x x =--+的图像(如右图),当1x =时,=max y -1,当2x =时,=min y -5. (2)作出函数2(2)2y x x x x =--=-在0x ≥内的 图像(如右图),可以看出:当1x =时,min 1y =-,无最大值. 所以,当0x ≥时,函数的取值范围是1y ≥-.例4 某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m (件)与每件的销售价x (元)满足一次函数1623,3054m x x =-≤≤.5322--=x x y 432+--=x x y 5322--=x x y 432+--=x x y 5322--=x x y 5322--=x x y 5322--=x x y 849)43(22--x 43=x 5322--=x x y 849-432+--=x x y 432+--=x x y 432+--=x x y 425)23(2++-x 23-=x 432+--=x x y 425A.B.C.D.于是可设二次函数为y =a (x +1)2+2,或y =a (x +1)2-2,由于函数图象过点(1,0),∴0=a (1+1)2+2,或0=a (1+1)2-=-12,或a =12. 2.∴a所以,所求的函数为y =-12(x +二次2,或y =12(x +1)21)2+-2.(3)设该二次函数为y =ax 2+bx +c (a ≠0).由函数图象过点(-1,-22),(0,-8),(2,8),可得 228842a b c c a b c -=-+⎧⎪-=⎨⎪=++⎩,解得 a =-2,b =12,c =-8.故所求的二次函数为y =-2x 2+12x -8.例6二次函数bx ax y +=2和反比例函数by x=在同一坐标系中的图象大致是( )。
初高中衔接班数学教案
初高中衔接班数学教案
教学目标:
1. 让学生从初中数学的知识基础出发,逐步过渡到高中数学的学习内容,为顺利适应高中数学课程做好准备。
2. 帮助学生建立数学思维和解题能力,培养他们的数学学习兴趣和自信心。
教学内容:
1. 复习初中数学基础知识,包括代数、几何、函数等方面的内容。
2. 引入和探讨高中数学的一些基本概念和方法,如集合与映射、函数的基本性质、解析几何等。
3. 练习高中数学的典型题目,培养学生的解题能力和运用知识的能力。
教学过程:
1. 复习初中数学知识,通过课堂练习和作业,夯实基础。
2. 导入高中数学内容,引导学生理解新概念和方法。
3. 组织学生分组讨论,解决一些高难度数学问题,培养合作精神和解题方法。
4. 布置课外作业,巩固和拓展学生所学内容。
5. 定期组织模拟考试,检测学生学习效果。
教学资源:
1. 《新课标数学》教材及配套辅导书。
2. 数学练习册和习题集。
3. 电子教学资源和多媒体教学手段。
评价方式:
1. 经常性的小测验和作业评定,评价学生对知识的掌握情况。
2. 定期组织模拟考试,评价学生的解题能力和应试能力。
3. 考察学生在课堂讨论和小组合作中的表现情况。
教学心得:
通过组织系统的初高中衔接班数学教学,可以有效帮助学生顺利过渡到高中数学学习阶段,并且提高他们的数学学习能力和解题能力。
同时也可以培养学生的合作意识和团队精神,
为其未来的学习和发展奠定良好的基础。
初高中数学衔接知识教案
初高中数学衔接知识教案教学目标:1. 知识技能:学生理解和掌握初中数学和高中数学之间的衔接知识,能够运用这些知识解决实际问题。
2. 过程方法:通过教师讲解、学生互动讨论和练习演练等方式,引导学生逐步掌握数学衔接知识。
3. 情感态度:培养学生对数学的兴趣和自信心,激发学生学习数学的积极性和主动性。
教学内容:1. 平面直角坐标系:引导学生理解平面直角坐标系的概念,掌握坐标系中点的坐标计算方法。
2. 直线方程:讲解一元一次方程的求解方法,引导学生理解直线的斜率和截距,能够根据斜率截距式写出直线方程。
3. 多项式的加减乘除:通过应用实际例题,让学生掌握多项式的加减乘除运算规则和方法。
4. 函数的概念与性质:解释函数的概念,培养学生对函数的理解能力,讲解函数的性质和分类。
教学步骤:1. 引入:通过生动的例题引入,激发学生的学习兴趣。
2. 讲解:教师讲解相关知识点,引导学生逐步理解和掌握。
3. 练习:学生进行练习和讨论,巩固所学知识。
4. 拓展:通过拓展性的练习,帮助学生加深对知识的理解和应用。
5. 总结:对本节课所学内容进行总结,巩固学生的学习成果。
教学资源:1. 课件资源:使用电子课件展示相关知识点,方便学生理解和记忆。
2. 练习资源:准备相关练习题,让学生进行巩固和提高。
评价方式:1. 学生表现:通过课堂练习和讨论,观察学生对数学衔接知识的理解和掌握情况。
2. 学习态度:在课后作业中,观察学生的学习态度和作业完成情况,对学生进行评价和鼓励。
扩展拓展:教师可以设计一些拓展性的问题和练习,引导学生进行深入思考和探究,拓展数学衔接知识在实际问题中的应用。
同时,鼓励学生积极参加数学竞赛和活动,进一步提高数学学习的兴趣和水平。
初高中数学衔接课教案
初高中数学衔接课教案我们需要明确衔接课程的目标。
衔接课程的核心目的是使学生对高中数学的基本概念有一个初步的了解和认识,减少学习上的断层感。
因此,教案的设计应当注重基础知识的铺垫,以及初中与高中知识点的连接。
我们来具体设计教案的内容。
教案可以分为几个部分:回顾与复习、新知引入、知识链接、实际应用和总结提升。
1. 回顾与复习在这一部分,教师应该带领学生回顾初中阶段的重要数学概念和公式,如一次函数、二次函数、比例关系等。
通过举例和练习题的方式,帮助学生巩固旧知识,为新知识的学习打下坚实的基础。
2. 新知引入这一环节是引导学生进入高中数学的关键。
教师可以通过具体的实例或者问题,引出高中数学的新概念,比如集合的概念、函数的概念扩展等。
在介绍新知识时,要注意用生动的语言和形象的例子,让学生能够快速抓住新知识的核心。
3. 知识链接在学生对新知识有了初步了解之后,教师需要做的是搭建起初中知识和高中知识之间的桥梁。
例如,可以通过对比分析,展示初中所学的二次函数如何在高中被推广到更一般的函数概念。
通过这样的链接,学生不仅能够看到数学知识的连贯性,还能激发他们对数学深层次探索的兴趣。
4. 实际应用理论知识的学习需要通过实践来巩固。
在教案中,应设计一些实际问题的解决环节,让学生将学到的知识应用到实际问题的解决中。
这不仅能够检验学生的学习效果,还能培养学生的问题解决能力。
5. 总结提升在课程的教师应引导学生进行总结,梳理本次课程的学习内容,明确学习的重难点。
同时,教师可以根据学生的学习情况,提供一些拓展资料或建议,帮助学生在课后进行深入学习。
初高中数学衔接教案(含答案)
第一讲 数与式1.1 数与式的运算1.1.1.绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. 两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离. 例1 解不等式:13x x -+->4.解法一:由01=-x ,得1=x ;由30x -=,得3x =; ①若1<x ,不等式可变为(1)(3)4x x ---->, 即24x -+>4,解得x <0, 又x <1, ∴x <0;②若12x ≤<,不等式可变为(1)(3)4x x --->, 即1>4,∴不存在满足条件的x ;③若3x ≥,不等式可变为(1)(3)4x x -+->, 即24x ->4, 解得x >4. 又x ≥3, ∴x >4.综上所述,原不等式的解为 x <0,或x >4.解法二:如图1.1-1,1-x 表示x 轴上坐标为x 的点P 到坐标为1的点A 之间的距离|P A |,即|P A |=|x -1|;|x -3|表示x 轴上点P 到坐标为2的点B 之间的距离|PB |,即|PB |=|x -3|.所以,不等式13x x -+->4的几何意义即为 |P A |+|PB |>4. 由|AB |=2,可知点P 在点C (坐标为0)的左侧、或点P 在点D (坐标为4)的右侧.x <0,或x >4. 练 习 1.填空:(1)若5=x ,则x =_________;若4-=x ,则x =_________.(2)如果5=+b a ,且1-=a ,则b =________;若21=-c ,则c =________. 2.选择题:下列叙述正确的是 ( )(A )若a b =,则a b = (B )若a b >,则a b > (C )若a b <,则a b < (D )若a b =,则a b =± 3.化简:|x -5|-|2x -13|(x >5).1A 0 C |x -1||x -3|图1.1-11.1.2. 乘法公式我们在初中已经学习过了下列一些乘法公式: (1)平方差公式 22()()a b a b a b +-=-; (2)完全平方公式 222()2a b a ab b ±=±+. 我们还可以通过证明得到下列一些乘法公式:(1)立方和公式 2233()()a b a ab b a b +-+=+; (2)立方差公式 2233()()a b a ab b a b -++=-;(3)三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++; (4)两数和立方公式 33223()33a b a a b ab b +=+++; (5)两数差立方公式 33223()33a b a a b ab b -=-+-. 对上面列出的五个公式,有兴趣的同学可以自己去证明. 例1 计算:22(1)(1)(1)(1)x x x x x x +--+++.解法一:原式=2222(1)(1)x x x ⎡⎤-+-⎣⎦=242(1)(1)x x x -++ =61x -.解法二:原式=22(1)(1)(1)(1)x x x x x x +-+-++ =33(1)(1)x x +- =61x -.例2 已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值. 解: 2222()2()8a b c a b c ab bc ac ++=++-++=.练 习 1.填空:(1)221111()9423a b b a -=+( ); (2)(4m + 22)164(m m =++ );(3 ) 2222(2)4(a b c a b c +-=+++ ).2.选择题:(1)若212x mx k ++是一个完全平方式,则k 等于 ( ) (A )2m (B )214m (C )213m (D )2116m(2)不论a ,b 为何实数,22248a b a b +--+的值 ( )(A )总是正数 (B )总是负数(C )可以是零 (D )可以是正数也可以是负数1.1.3.二次根式一般地,形如0)a ≥的代数式叫做二次根式.根号下含有字母、且不能够开得尽方的式子称为无理式. 例如 32a b 212x ++,22x y ++是有理式.1.分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式,,等等. 一般地,,与b 与b 互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,运算中要运用公式0,0)a b =≥≥;而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式.2a ==,0,,0.a a a a ≥⎧⎨-<⎩例1将下列式子化为最简二次根式:(1 (20)a ≥; (30)x <.解: (1=(20)a ==≥;(3220)xx x ==-<.例2 (3-.解法一:(3-=393-=1)6=12.解法二: (3-例3 试比较下列各组数的大小:(1 (2解: (11===,===,>(2)∵=== 又 4>22,∴6+4>6+22,例4 化简:20042005⋅-.解:20042005⋅-=20042004⋅-⋅=2004⎡⎤⋅-⋅⎣⎦=20041⋅-例 5 化简:(1; (21)x <<.解:(1)原式===2=2=.(2)原式1x x=-, ∵01x <<,∴11x x>>, 所以,原式=1x x -.例 6 已知x y ==22353x xy y -+的值 .解: ∵2210x y +==+=,1xy ==,∴22223533()1131011289x xy y x y xy -+=+-=⨯-=.练 习 1.填空: (1=__ ___;(2(x =-x 的取值范围是_ _ ___; (3)=__ ___; (4)若x ==______ __. 2.选择题:=( ) (A )2x ≠ (B )0x > (C )2x > (D )02x <<3.若b =,求a b +的值.4.比较大小:2-4(填“>”,或“<”).1.1.4.分式1.分式的意义形如A B 的式子,若B 中含有字母,且0B ≠,则称A B 为分式.当M ≠0时,分式AB 具有下列性质: A A MB B M⨯=⨯; A A MB B M÷=÷. 上述性质被称为分式的基本性质. 2.繁分式像ab c d+,2m n pm n p +++这样,分子或分母中又含有分式的分式叫做繁分式.例1 若54(2)2x A Bx x x x +=+++,求常数,A B 的值.解: ∵(2)()2542(2)(2)(2)A B A x Bx A B x A x x x x x x x x x ++++++===++++,∴5,24,A B A +=⎧⎨=⎩解得 2,3A B ==.例2 (1)试证:111(1)1n n n n =-++(其中n 是正整数);(2)计算:1111223910+++⨯⨯⨯; (3)证明:对任意大于1的正整数n , 有11112334(1)2n n +++<⨯⨯+. (1)证明:∵11(1)11(1)(1)n n n n n n n n +--==+++,∴111(1)1n n n n =-++(其中n 是正整数)成立.(2)解:由(1)可知1111223910+++⨯⨯⨯ 11111(1)()()223910=-+-++-1110=-=910.(3)证明:∵1112334(1)n n +++⨯⨯+ =111111()()()23341n n -+-++-+=1121n -+,又n ≥2,且n 是正整数,∴1n +1 一定为正数,∴1112334(1)n n +++⨯⨯+<12.例3 设ce a=,且e >1,2c 2-5ac +2a 2=0,求e 的值. 解:在2c 2-5ac +2a 2=0两边同除以a 2,得 2e 2-5e +2=0, ∴(2e -1)(e -2)=0,∴e =12<1,舍去;或e =2.∴e =2. 练 习1.填空题:对任意的正整数n ,1(2)n n =+ (112n n -+);2.选择题:若223x y x y -=+,则xy= ( ) (A )1 (B )54 (C )45 (D )653.正数,x y 满足222x y xy -=,求x yx y-+的值. 4.计算1111 (12233499100)++++⨯⨯⨯⨯.习题1.1 A 组1.解不等式:(1) 13x ->; (2) 327x x ++-< ; (3) 116x x -++>.2.已知1x y +=,求333x y xy ++的值. 3.填空:(1)1819(2(2+=________;(22=,则a 的取值范围是________; (3=________.B 组1.填空:(1)12a =,13b =,则2223352a ab a ab b -=+-____ ____; (2)若2220x xy y +-=,则22223x xy y x y++=+__ __;2.已知:11,23x y ==的值. C 组1.选择题:(1= ( )(A )a b < (B )a b > (C )0a b << (D )0b a <<(2)计算 ( )(A (B (C ) (D )2.解方程22112()3()10x x x x +-+-=.3.计算:1111132435911++++⨯⨯⨯⨯. 4.试证:对任意的正整数n ,有111123234(1)(2)n n n +++⨯⨯⨯⨯++<14.1.2 分解因式因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法例1 分解因式:(1)x 2-3x +2; (2)x 2+4x -12; (3)22()x a b xy aby -++; (4)1xy x y -+-.解:(1)如图1.2-1,将二次项x 2分解成图中的两个x 的积,再将常数项2分解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x ,就是x 2-3x +2中的一次项,所以,有x 2-3x +2=(x -1)(x -2).说明:今后在分解与本例类似的二次三项式时,可以直接将图1.2-1中的两个x 用1来表示(如图1.2-2所示).(2)由图1.2-3,得x 2+4x -12=(x -2)(x +6). (3)由图1.2-4,得22()x a b xy aby -++=()()x ay x by -- (4)1xy x y -+-=xy +(x -y )-1=(x -1) (y+1) (如图1.2-5所示). 2.提取公因式法与分组分解法 例2 分解因式:(1)32933x x x +++; (2)222456x xy y x y +--+-. 解: (1)32933x x x +++=32(3)(39)x x x +++=2(3)3(3)x x x +++=2(3)(3)x x ++. 或32933x x x +++=32(331)8x x x ++++=3(1)8x ++=33(1)2x ++=22[(1)2][(1)(1)22]x x x +++-+⨯+=2(3)(3)x x ++.(2)222456x xy y x y +--+-=222(4)56x y x y y +--+- =22(4)(2)(3)x y x y y +----=(22)(3)x y x y -++-.-1 -2 x x 图1.2-1 -1 -2 1 1 图1.2-2-2 6 1 1 图1.2-3 -ay -by x x 图1.2-4 -1 1x y图1.2-5或222456x xy y x y +--+-=22(2)(45)6x xy y x y +----=(2)()(45)6x y x y x y -+--- =(22)(3)x y x y -++-.3.关于x 的二次三项式ax 2+bx +c (a ≠0)的因式分解.若关于x 的方程20(0)ax bx c a ++=≠的两个实数根是1x 、2x ,则二次三项式2(0)ax bx c a ++≠就可分解为12()()a x x x x --.例3 把下列关于x 的二次多项式分解因式:(1)221x x +-; (2)2244x xy y +-.解: (1)令221x x +-=0,则解得11x =-21x =-,∴221x x +-=(1(1x x ⎡⎤⎡⎤--+--⎣⎦⎣⎦=(11x x +-++.(2)令2244x xy y +-=0,则解得1(2x y =-+,1(2x y =--,∴2244x xy y +-=[2(1][2(1]x y x y +++.练 习 1.选择题:多项式22215x xy y --的一个因式为 ( ) (A )25x y - (B )3x y - (C )3x y + (D )5x y - 2.分解因式:(1)x 2+6x +8; (2)8a 3-b 3;(3)x 2-2x -1; (4)4(1)(2)x y y y x -++-.习题1.21.分解因式:(1) 31a +; (2)424139x x -+;(3)22222b c ab ac bc ++++; (4)2235294x xy y x y +-++-.2.在实数范围内因式分解:(1)253x x -+ ; (2)23x --;(3)2234x xy y +-; (4)222(2)7(2)12x x x x ---+. 3.ABC ∆三边a ,b ,c 满足222a b c ab bc ca ++=++,试判定ABC ∆的形状. 4.分解因式:x 2+x -(a 2-a ).第二讲 函数与方程2.1 一元二次方程2.1.1根的判别式我们知道,对于一元二次方程ax 2+bx +c =0(a ≠0),用配方法可以将其变形为2224()24b b acx a a -+=. ① 因为a ≠0,所以,4a 2>0.于是(1)当b 2-4ac >0时,方程①的右端是一个正数,因此,原方程有两个不相等的实数根x 1,2(2)当b 2-4ac =0时,方程①的右端为零,因此,原方程有两个等的实数根 x 1=x 2=-2b a; (3)当b 2-4ac <0时,方程①的右端是一个负数,而方程①的左边2()2b x a+一定大于或等于零,因此,原方程没有实数根.由此可知,一元二次方程ax 2+bx +c =0(a ≠0)的根的情况可以由b 2-4ac 来判定,我们把b 2-4ac 叫做一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式,通常用符号“Δ”来表示.综上所述,对于一元二次方程ax 2+bx +c =0(a ≠0),有 (1) 当Δ>0时,方程有两个不相等的实数根x 1,2(2)当Δ=0时,方程有两个相等的实数根 x 1=x 2=-2b a; (3)当Δ<0时,方程没有实数根.例1 判定下列关于x 的方程的根的情况(其中a 为常数),如果方程有实数根,写出方程的实数根. (1)x 2-3x +3=0; (2)x 2-ax -1=0; (3) x 2-ax +(a -1)=0; (4)x 2-2x +a =0. 解:(1)∵Δ=32-4×1×3=-3<0,∴方程没有实数根. (2)该方程的根的判别式Δ=a 2-4×1×(-1)=a 2+4>0,所以方程一定有两个不等的实数根1x =, 2x =(3)由于该方程的根的判别式为Δ=a 2-4×1×(a -1)=a 2-4a +4=(a -2)2,所以, ①当a =2时,Δ=0,所以方程有两个相等的实数根 x 1=x 2=1; ②当a ≠2时,Δ>0, 所以方程有两个不相等的实数根 x 1=1,x 2=a -1.(3)由于该方程的根的判别式为Δ=22-4×1×a =4-4a =4(1-a ), 所以①当Δ>0,即4(1-a ) >0,即a <1时,方程有两个不相等的实数根11x = 21x =②当Δ=0,即a =1时,方程有两个相等的实数根x 1=x 2=1; ③当Δ<0,即a >1时,方程没有实数根.说明:在第3,4小题中,方程的根的判别式的符号随着a 的取值的变化而变化,于是,在解题过程中,需要对a 的取值情况进行讨论,这一方法叫做分类讨论.分类讨论这一思想方法是高中数学中一个非常重要的方法,在今后的解题中会经常地运用这一方法来解决问题.2.1.2 根与系数的关系(韦达定理)若一元二次方程ax 2+bx +c =0(a ≠0)有两个实数根12b x a -+=,22b x a-=,则有1222b bx x a a-+===-;221222(4)444b b ac ac cx x a a a--====. 所以,一元二次方程的根与系数之间存在下列关系:如果ax 2+bx +c =0(a ≠0)的两根分别是x 1,x 2,那么x 1+x 2=b a -,x 1·x 2=ca.这一关系也被称为韦达定理.特别地,对于二次项系数为1的一元二次方程x 2+px +q =0,若x 1,x 2是其两根,由韦达定理可知x 1+x 2=-p ,x 1·x 2=q ,即 p =-(x 1+x 2),q =x 1·x 2, 所以,方程x 2+px +q =0可化为 x 2-(x 1+x 2)x +x 1·x 2=0,由于x 1,x 2是一元二次方程x 2+px +q =0的两根,所以,x 1,x 2也是一元二次方程x 2-(x 1+x 2)x +x 1·x 2=0.因此有 以两个数x 1,x 2为根的一元二次方程(二次项系数为1)是x 2-(x 1+x 2)x +x 1·x 2=0. 例2 已知方程2560x kx +-=的一个根是2,求它的另一个根及k 的值.分析:由于已知了方程的一个根,可以直接将这一根代入,求出k 的值,再由方程解出另一个根.但由于我们学习了韦达定理,又可以利用韦达定理来解题,即由于已知了方程的一个根及方程的二次项系数和常数项,于是可以利用两根之积求出方程的另一个根,再由两根之和求出k 的值.解法一:∵2是方程的一个根,∴5×22+k ×2-6=0, ∴k =-7.所以,方程就为5x 2-7x -6=0,解得x 1=2,x 2=-35. 所以,方程的另一个根为-35,k 的值为-7. 解法二:设方程的另一个根为x 1,则 2x 1=-65,∴x 1=-35. 由 (-35)+2=-5k,得 k =-7. 所以,方程的另一个根为-35,k 的值为-7.例3 已知关于x 的方程x 2+2(m -2)x +m 2+4=0有两个实数根,并且这两个实数根的平方和比两个根的积大21,求m 的值.分析: 本题可以利用韦达定理,由实数根的平方和比两个根的积大21得到关于m 的方程,从而解得m 的值.但在解题中需要特别注意的是,由于所给的方程有两个实数根,因此,其根的判别式应大于零.解:设x 1,x 2是方程的两根,由韦达定理,得 x 1+x 2=-2(m -2),x 1·x 2=m 2+4. ∵x 12+x 22-x 1·x 2=21, ∴(x 1+x 2)2-3 x 1·x 2=21,即 [-2(m -2)]2-3(m 2+4)=21, 化简,得 m 2-16m -17=0, 解得 m =-1,或m =17.当m =-1时,方程为x 2+6x +5=0,Δ>0,满足题意; 当m =17时,方程为x 2+30x +293=0,Δ=302-4×1×293<0,不合题意,舍去. 综上,m =17. 说明:(1)在本题的解题过程中,也可以先研究满足方程有两个实数根所对应的m 的范围,然后再由“两个实数根的平方和比两个根的积大21”求出m 的值,取满足条件的m 的值即可.(1)在今后的解题过程中,如果仅仅由韦达定理解题时,还要考虑到根的判别式Δ是否大于或大于零.因为,韦达定理成立的前提是一元二次方程有实数根.例4 已知两个数的和为4,积为-12,求这两个数.分析:我们可以设出这两个数分别为x ,y ,利用二元方程求解出这两个数.也可以利用韦达定理转化出一元二次方程来求解.解法一:设这两个数分别是x ,y , 则 x +y =4, ①xy =-12. ② 由①,得 y =4-x , 代入②,得x (4-x )=-12,即 x 2-4x -12=0, ∴x 1=-2,x 2=6.∴112,6,x y =-⎧⎨=⎩ 或226,2.x y =⎧⎨=-⎩因此,这两个数是-2和6.解法二:由韦达定理可知,这两个数是方程 x 2-4x -12=0 的两个根.解这个方程,得x 1=-2,x 2=6. 所以,这两个数是-2和6. 说明:从上面的两种解法我们不难发现,解法二(直接利用韦达定理来解题)要比解法一简捷. 例5 若x 1和x 2分别是一元二次方程2x 2+5x -3=0的两根. (1)求| x 1-x 2|的值;(2)求221211x x +的值; (3)x 13+x 23.解:∵x 1和x 2分别是一元二次方程2x 2+5x -3=0的两根,∴1252x x +=-,1232x x =-.(1)∵| x 1-x 2|2=x 12+ x 22-2 x 1x 2=(x 1+x 2)2-4 x 1x 2=253()4()22--⨯-=254+6=494,∴| x 1-x 2|=72.(2)22221212122222221212125325()2()3()2113722439()9()24x x x x x x x x x x x x --⨯-+++-+=====⋅-.(3)x 13+x 23=(x 1+x 2)( x 12-x 1x 2+x 22)=(x 1+x 2)[ ( x 1+x 2) 2-3x 1x 2]=(-52)×[(-52)2-3×(32-)]=-2158. 说明:一元二次方程的两根之差的绝对值是一个重要的量,今后我们经常会遇到求这一个量的问题,为了解题简便,我们可以探讨出其一般规律:设x 1和x 2分别是一元二次方程ax 2+bx +c =0(a ≠0),则1x =,2x =,∴| x 1-x 2|=||||a a ==. 于是有下面的结论:若x 1和x 2分别是一元二次方程ax 2+bx +c =0(a ≠0),则| x 1-x 2|=||a (其中Δ=b 2-4ac ). 今后,在求一元二次方程的两根之差的绝对值时,可以直接利用上面的结论. 例6 若关于x 的一元二次方程x 2-x +a -4=0的一根大于零、另一根小于零,求实数a 的取值范围. 解:设x 1,x 2是方程的两根,则x 1x 2=a -4<0, ① 且Δ=(-1)2-4(a -4)>0. ② 由①得 a <4,由②得 a <174.∴a 的取值范围是a <4. 练 习 1.选择题:(1)方程2230x k -+=的根的情况是 ( ) (A )有一个实数根 (B )有两个不相等的实数根(C )有两个相等的实数根 (D )没有实数根(2)若关于x 的方程mx 2+ (2m +1)x +m =0有两个不相等的实数根,则实数m 的取值范围是( ) (A )m <14 (B )m >-14 (C )m <14,且m ≠0 (D )m >-14,且m ≠02.填空:(1)若方程x 2-3x -1=0的两根分别是x 1和x 2,则1211x x += . (2)方程mx 2+x -2m =0(m ≠0)的根的情况是 . (3)以-3和1为根的一元二次方程是 .3|1|0b -=,当k 取何值时,方程kx 2+ax +b =0有两个不相等的实数根? 4.已知方程x 2-3x -1=0的两根为x 1和x 2,求(x 1-3)( x 2-3)的值.习题2.1 A 组1.选择题:(1)已知关于x 的方程x 2+kx -2=0的一个根是1,则它的另一个根是( ) (A )-3 (B )3 (C )-2 (D )2 (2)下列四个说法:①方程x 2+2x -7=0的两根之和为-2,两根之积为-7; ②方程x 2-2x +7=0的两根之和为-2,两根之积为7;③方程3 x 2-7=0的两根之和为0,两根之积为73-; ④方程3 x 2+2x =0的两根之和为-2,两根之积为0.其中正确说法的个数是 ( ) (A )1个 (B )2个 (C )3个 (D )4个(3)关于x 的一元二次方程ax 2-5x +a 2+a =0的一个根是0,则a 的值是( )(A )0 (B )1 (C )-1 (D )0,或-12.填空:(1)方程kx 2+4x -1=0的两根之和为-2,则k = .(2)方程2x 2-x -4=0的两根为α,β,则α2+β2= .(3)已知关于x 的方程x 2-ax -3a =0的一个根是-2,则它的另一个根是 .(4)方程2x 2+2x -1=0的两根为x 1和x 2,则| x 1-x 2|= .3.试判定当m 取何值时,关于x 的一元二次方程m 2x 2-(2m +1) x +1=0有两个不相等的实数根?有两个相等的实数根?没有实数根?4.求一个一元二次方程,使它的两根分别是方程x 2-7x -1=0各根的相反数.B 组1.选择题:若关于x 的方程x 2+(k 2-1) x +k +1=0的两根互为相反数,则k 的值为( )(A )1,或-1 (B )1 (C )-1 (D )0 2.填空:(1)若m ,n 是方程x 2+2005x -1=0的两个实数根,则m 2n +mn 2-mn 的值等于 .(2)如果a ,b 是方程x 2+x -1=0的两个实数根,那么代数式a 3+a 2b +ab 2+b 3的值是 .3.已知关于x 的方程x 2-kx -2=0.(1)求证:方程有两个不相等的实数根;(2)设方程的两根为x 1和x 2,如果2(x 1+x 2)>x 1x 2,求实数k 的取值范围. 4.一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1和x 2.求: (1)| x 1-x 2|和122x x +; (2)x 13+x 23.5.关于x 的方程x 2+4x +m =0的两根为x 1,x 2满足| x 1-x 2|=2,求实数m 的值.C 组1.选择题:(1)已知一个直角三角形的两条直角边长恰好是方程2x 2-8x +7=0的两根,则这个直角三角形的斜边长等于 ( )(A(B )3 (C )6 (D )9 (2)若x 1,x 2是方程2x 2-4x +1=0的两个根,则1221x x x x +的值为 ( ) (A )6 (B )4 (C )3 (D )32(3)如果关于x 的方程x 2-2(1-m )x +m 2=0有两实数根α,β,则α+β的取值范围为( )(A )α+β≥12 (B )α+β≤12(C )α+β≥1 (D )α+β≤1 (4)已知a ,b ,c 是ΔABC 的三边长,那么方程cx 2+(a +b )x +4c=0的根的情况是( )(A )没有实数根 (B )有两个不相等的实数根 (C )有两个相等的实数根 (D )有两个异号实数根 2.填空:若方程x 2-8x +m =0的两根为x 1,x 2,且3x 1+2x 2=18,则m = . 3. 已知x 1,x 2是关于x 的一元二次方程4kx 2-4kx +k +1=0的两个实数根.(1)是否存在实数k ,使(2x 1-x 2)( x 1-2 x 2)=-32成立?若存在,求出k 的值;若不存在,说明理由; (2)求使1221x x x x +-2的值为整数的实数k 的整数值; (3)若k =-2,12xx λ=,试求λ的值.4.已知关于x 的方程22(2)04m x m x ---=. (1)求证:无论m 取什么实数时,这个方程总有两个相异实数根;(2)若这个方程的两个实数根x 1,x 2满足|x 2|=|x 1|+2,求m 的值及相应的x 1,x 2. 5.若关于x 的方程x 2+x +a =0的一个大于1、零一根小于1,求实数a 的取值范围.2.2 二次函数2.2.1 二次函数y =ax 2+bx +c 的图像和性质问题1 函数y =ax 2与y =x 2的图象之间存在怎样的关系?为了研究这一问题,我们可以先画出y =2x 2,y =12x 2,y =-2x 2的图象,通过这些函数图象与函数y =x 2的图象之间的关系,推导出函数y =ax 2与y =x 2的图象之间所存在的关系.先画出函数y =x 2,y =2x 2的图象.的值扩大两倍就可以了.再描点、连线,就分别得到了函数y =x 2,y =2x 2的图象(如图2-1所示),从图2-1我们可以得到这两个函数图象之间的关系:函数y =2x 2的图象可以由函数y =x 2的图象各点的纵坐标变为原来的两倍得到.12x 2,y =-同学们也可以用类似于上面的方法画出函数y =2x 2的图象,并研究这两个函数图象与函数y =x 2的图象之间的关系.通过上面的研究,我们可以得到以下结论:二次函数y =ax 2(a ≠0)的图象可以由y =x 2的图象各点的纵坐标变为原来的a 倍得到.在二次函数y =ax 2(a ≠0)中,二次项系数a 决定了图象的开口方向和在同一个坐标系中的开口的大小.问题2 函数y =a (x +h )2+k 与y =ax 2的图象之间存在怎样的关系?同样地,我们可以利用几个特殊的函数图象之间的关系来研究它们之间的关系.同学们可以作出函数y =2(x +1)2+1与y =2x 2的图象(如图2-2所示),从函数的同学我们不难发现,只要把函数y =2x 2的图象向左平移一个单位,再向上平移一个单位,就可以得到函数y =2(x +1)2+1的图象.这两个函数图象之间具有“形状相同,位置不同”的特点.类似地,还可以通过画函数y =-3x 2,y =-3(x -1)2+1的图象,研究它们图象之间的相互关系. 通过上面的研究,我们可以得到以下结论:二次函数y =a (x +h )2+k (a ≠0)中,a 决定了二次函数图象的开口大小及方向;h 决定了二次函数图象的左右平移,而且“h 正左移,h 负右移”;k 决定了二次函数图象的上下平移,而且“k 正上移,k 负下移”.由上面的结论,我们可以得到研究二次函数y =ax 2+bx +c (a ≠0)的图象的方法:由于y =ax 2+bx +c =a (x 2+b x a )+c =a (x 2+bx a+224b a )+c -24b a224()24b b ac a x a a-=++, 所以,y =ax 2+bx +c (a ≠0)的图象可以看作是将函数y =ax 2的图象作左右平移、上下平移得到的,于是,二次函数y =ax 2+bx +c (a ≠0)具有下列性质:(1)当a >0时,函数y =ax 2+bx +c 图象开口向上;顶点坐标为24(,)24b ac b a a--,对称轴为直线x =-2b a ;当x <2b a -时,y 随着x 的增大而减小;当x >2b a -时,y 随着x 的增大而增大;当x =2b a-时,函数取最小值y =244ac b a-.(2)当a <0时,函数y =ax 2+bx +c 图象开口向下;顶点坐标为24(,)24b ac b a a--,对称轴为直线x =-2b a ;当x <2b a -时,y 随着x 的增大而增大;当x >2ba-时,y 随着x 的增大而减小;当x=2ba-时,函数取最大值y =244ac b a -.上述二次函数的性质可以分别通过图2.2-3和图2.2-4直观地表示出来.因此,在今后解决二次函数问题时,可以借助于函数图像、利用数形结合的思想方法来解决问题.+1对称轴、随x 的增解:∵y =-3x 2-6x +1=-3(x +1)2+4∴函数图象的开口向下;对称轴是直线x =-1;顶点坐标为(-1,4);当x =-1时,函数y 取最大值y =4;图2.2-3当x <-1时,y 随着x 的增大而增大;当x >-1时,y 随着x 的增大而减小; 采用描点法画图,选顶点A (-1,4)),与x 轴交于点B 和C (,与y 轴的交点为D (0,1),过这五点画出图象(如图2-5所示).说明:从这个例题可以看出,根据配方后得到的性质画函数的图象,可以直接选出关键点,减少了选点的盲目性,使画图更简便、图象更精确.例2 某种产品的成本是120元/件,试销阶段每件产品的售价x (元)与产品的日销售量y (件)之多少元?此时每天的销售利润是多少?分析:由于每天的利润=日销售量y ×(销售价x -120),日销售量y 又是销售价x 的一次函数,所以,欲求每天所获得的利润最大值,首先需要求出每天的利润与销售价x 之间的函数关系,然后,再由它们之间的函数关系求出每天利润的最大值.解:由于y 是x 的一次函数,于是,设y =kx +(B ) 将x =130,y =70;x =150,y =50代入方程,有70130,50150,k b k b =+⎧⎨=+⎩ 解得 k =-1,b =200. ∴ y =-x +200.设每天的利润为z (元),则z =(-x +200)(x -120)=-x 2+320x -24000 =-(x -160)2+1600,∴当x =160时,z 取最大值1600.答:当售价为160元/件时,每天的利润最大,为1600元.例3 把二次函数y =x 2+bx +c 的图像向上平移2个单位,再向左平移4个单位,得到函数y =x 2的图像,求b ,c 的值.解法一:y =x 2+bx +c =(x +2b )224bc +-,把它的图像向上平移2个单位,再向左平移4个单位,得到22(4)224b b y x c =+++-+的图像,也就是函数y =x 2的图像,所以,240,220,4bb c ⎧--=⎪⎪⎨⎪-+=⎪⎩ 解得b =-8,c =14. 解法二:把二次函数y =x 2+bx +c 的图像向上平移2个单位,再向左平移4个单位,得到函数y =x 2的图像,等价于把二次函数y =x 2的图像向下平移2个单位,再向右平移4个单位,得到函数y =x 2+bx +c 的图像. 由于把二次函数y =x 2的图像向下平移2个单位,再向右平移4个单位,得到函数y =(x -4)2+2的图像,即为y =x 2-8x +14的图像,∴函数y =x 2-8x +14与函数y =x 2+bx +c 表示同一个函数,∴b =-8,c =14.说明:本例的两种解法都是利用二次函数图像的平移规律来解决问题,所以,同学们要牢固掌握二次函数图像的变换规律.这两种解法反映了两种不同的思维方法:解法一,是直接利用条件进行正向的思维来解决的,其运算量相对较大;而解法二,则是利用逆向思维,将原来的问题等价转化成与之等价的问题来解,具有计算量小的优点.今后,我们在解题时,可以根据题目的具体情况,选择恰当的方法来解决问题.例4 已知函数y =x 2,-2≤x ≤a ,其中a ≥-2,求该函数的最大值与最小值,并求出函数取最大值和最小值时所对应的自变量x 的值.分析:本例中函数自变量的范围是一个变化的范围,需要对a 的取值进行讨论.解:(1)当a =-2时,函数y =x 2的图象仅仅对应着一个点(-2,4),所以,函数的最大值和最小值都是4,此时x =-2;(2)当-2<a <0时,由图2.2-6①可知,当x =-2时,函数取最大值y =4;当x =a 时,函数取最小值y =a 2;(3)当0≤a <2时,由图2.2-6②可知,当x =-2时,函数取最大值y =4;当x =0时,函数取最小值y =0;(4)当a ≥2时,由图2.2-6③可知,当x =a 时,函数取最大值y =a 2;当x =0时,函数取最小值y =0.说明:在本例中,利用了分类讨论的方法,对a 的所有可能情形进行讨论.此外,本例中所研究的二次函数的自变量的取值不是取任意的实数,而是取部分实数来研究,在解决这一类问题时,通常需要借助于函数图象来直观地解决问题. 练 习 1.选择题:(1)下列函数图象中,顶点不在坐标轴上的是 ( ) (A )y =2x 2 (B )y =2x 2-4x +2 (C )y =2x 2-1 (D )y =2x 2-4x(2)函数y =2(x -1)2+2是将函数y =2x 2 ( )(A )向左平移1个单位、再向上平移2个单位得到的 (B )向右平移2个单位、再向上平移1个单位得到的 (C )向下平移2个单位、再向右平移1个单位得到的 (D )向上平移2个单位、再向右平移1个单位得到的 2.填空题(1)二次函数y =2x 2-mx +n 图象的顶点坐标为(1,-2),则m = ,n = .(2)已知二次函数y =x 2+(m -2)x -2m ,当m = 时,函数图象的顶点在y 轴上;当m = 时,函数图象的顶点在x 轴上;当m = 时,函数图象经过原点.(3)函数y =-3(x +2)2+5的图象的开口向 ,对称轴为 ,顶点坐标为 ;当x = 时,函数取最 值y = ;当x 时,y 随着x 的增大而减小. 3.求下列抛物线的开口方向、对称轴、顶点坐标、最大(小)值及y 随x 的变化情况,并画出其图象. (1)y =x 2-2x -3; (2)y =1+6 x -x 2.4.已知函数y =-x 2-2x +3,当自变量x 在下列取值范围内时,分别求函数的最大值或最小值,并求当函数取最大(小)值时所对应的自变量x 的值:(1)x ≤-2;(2)x ≤2;(3)-2≤x ≤1;(4)0≤x ≤3.①图2.2-6②③2.2.2 二次函数的三种表示方式通过上一小节的学习,我们知道,二次函数可以表示成以下两种形式:1.一般式:y=ax2+bx+c(a≠0);2.顶点式:y=a(x+h)2+k (a≠0),其中顶点坐标是(-h,k).除了上述两种表示方法外,它还可以用另一种形式来表示.为了研究另一种表示方式,我们先来研究二次函数y=ax2+bx+c(a≠0)的图象与x轴交点个数.当抛物线y=ax2+bx+c(a≠0)与x轴相交时,其函数值为零,于是有ax2+bx+c=0.①并且方程①的解就是抛物线y=ax2+bx+c(a≠0)与x轴交点的横坐标(纵坐标为零),于是,不难发现,抛物线y=ax2+bx+c(a≠0)与x轴交点个数与方程①的解的个数有关,而方程①的解的个数又与方程①的根的判别式Δ=b2-4ac有关,由此可知,抛物线y=ax2+bx+c(a≠0)与x轴交点个数与根的判别式Δ=b2-4ac存在下列关系:(1)当Δ>0时,抛物线y=ax2+bx+c(a≠0)与x轴有两个交点;反过来,若抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,则Δ>0也成立.(2)当Δ=0时,抛物线y=ax2+bx+c(a≠0)与x轴有一个交点(抛物线的顶点);反过来,若抛物线y=ax2+bx+c(a≠0)与x轴有一个交点,则Δ=0也成立.(3)当Δ<0时,抛物线y=ax2+bx+c(a≠0)与x轴没有交点;反过来,若抛物线y=ax2+bx+c(a≠0)与x轴没有交点,则Δ<0也成立.于是,若抛物线y=ax2+bx+c(a≠0)与x轴有两个交点A(x1,0),B(x2,0),则x1,x2是方程ax2+bx +c=0的两根,所以x1+x2=ba-,x1x2=ca,即ba=-(x1+x2),ca=x1x2.所以,y=ax2+bx+c=a(2b cx xa a++)= a[x2-(x1+x2)x+x1x2]=a(x-x1) (x-x2).由上面的推导过程可以得到下面结论:若抛物线y=ax2+bx+c(a≠0)与x轴交于A(x1,0),B(x2,0)两点,则其函数关系式可以表示为y=a(x -x1) (x-x2) (a≠0).这样,也就得到了表示二次函数的第三种方法:3.交点式:y=a(x-x1) (x-x2) (a≠0),其中x1,x2是二次函数图象与x轴交点的横坐标.今后,在求二次函数的表达式时,我们可以根据题目所提供的条件,选用一般式、顶点式、交点式这三种表达形式中的某一形式来解题.例1 已知某二次函数的最大值为2,图像的顶点在直线y =x +1上,并且图象经过点(3,-1),求二次函数的解析式.分析:在解本例时,要充分利用题目中所给出的条件——最大值、顶点位置,从而可以将二次函数设成顶点式,再由函数图象过定点来求解出系数a .解:∵二次函数的最大值为2,而最大值一定是其顶点的纵坐标,∴顶点的纵坐标为2.又顶点在直线y =x +1上, 所以,2=x +1,∴x =1. ∴顶点坐标是(1,2).设该二次函数的解析式为2(2)1(0)y a x a =-+<, ∵二次函数的图像经过点(3,-1), ∴21(32)1a -=-+,解得a =-2. ∴二次函数的解析式为22(2)1y x =--+,即y =-2x 2+8x -7.说明:在解题时,由最大值确定出顶点的纵坐标,再利用顶点的位置求出顶点坐标,然后设出二次函数的顶点式,最终解决了问题.因此,在解题时,要充分挖掘题目所给的条件,并巧妙地利用条件简捷地解决问题.例2 已知二次函数的图象过点(-3,0),(1,0),且顶点到x 轴的距离等于2,求此二次函数的表达式.分析一:由于题目所给的条件中,二次函数的图象所过的两点实际上就是二次函数的图象与x 轴的交点坐标,于是可以将函数的表达式设成交点式.解法一:∵二次函数的图象过点(-3,0),(1,0), ∴可设二次函数为y =a (x +3) (x -1) (a ≠0), 展开,得 y =ax 2+2ax -3a ,顶点的纵坐标为2212444a a a a--=-, 由于二次函数图象的顶点到x 轴的距离2, ∴|-4a |=2,即a =12±. 所以,二次函数的表达式为y =21322x x +-,或y =-21322x x -+. 分析二:由于二次函数的图象过点(-3,0),(1,0),所以,对称轴为直线x =-1,又由顶点到x 轴的距离为2,可知顶点的纵坐标为2,或-2,于是,又可以将二次函数的表达式设成顶点式来解,然后再利用图象过点(-3,0),或(1,0),就可以求得函数的表达式. 解法二:∵二次函数的图象过点(-3,0),(1,0),∴对称轴为直线x =-1. 又顶点到x 轴的距离为2, ∴顶点的纵坐标为2,或-2.于是可设二次函数为y =a (x +1)2+2,或y =a (x +1)2-2, 由于函数图象过点(1,0),∴0=a (1+1)2+2,或0=a (1+1)2-2.∴a =-12,或a =12. 所以,所求的二次函数为y =-12(x +1)2+2,或y =12(x +1)2-2. 说明:上述两种解法分别从与x 轴的交点坐标及顶点的坐标这两个不同角度,利用交点式和顶点式来解题,在今后的解题过程中,要善于利用条件,选择恰当的方法来解决问题.例3 已知二次函数的图象过点(-1,-22),(0,-8),(2,8),求此二次函数的表达式. 解:设该二次函数为y =ax 2+bx +c (a ≠0).由函数图象过点(-1,-22),(0,-8),(2,8),可得22,8,842,a b c c a b c -=-+⎧⎪-=⎨⎪=++⎩解得 a =-2,b =12,c =-8.所以,所求的二次函数为y =-2x 2+12x -8.通过上面的几道例题,同学们能否归纳出:在什么情况下,分别利用函数的一般式、顶点式、交点式来求二次函数的表达式?练 习 1.选择题:(1)函数y =-x 2+x -1图象与x 轴的交点个数是 ( ) (A )0个 (B )1个 (C )2个 (D )无法确定(2)函数y =-12(x +1)2+2的顶点坐标是 ( )(A )(1,2) (B )(1,-2) (C )(-1,2) (D )(-1,-2) 2.填空:(1)已知二次函数的图象经过与x 轴交于点(-1,0)和(2,0),则该二次函数的解析式可设为y =a(a ≠0) .(2)二次函数y =-x 2+23x +1的函数图象与x 轴两交点之间的距离为 . 3.根据下列条件,求二次函数的解析式.(1)图象经过点(1,-2),(0,-3),(-1,-6); (2)当x =3时,函数有最小值5,且经过点(1,11);(3)函数图象与x 轴交于两点(1-2,0)和(1+2,0),并与y 轴交于(0,-2).2.2.3 二次函数的简单应用一、函数图象的平移变换与对称变换1.平移变换问题1 在把二次函数的图象进行平移时,有什么特点?依据这一特点,可以怎样来研究二次函数的图象平移? 我们不难发现:在对二次函数的图象进行平移时,具有这样的特点——只改变函数图象的位置、不改变其形状,因此,在研究二次函数的图象平移问题时,只需利用二次函数图象的顶点式研究其顶点的位置即可. 例1 求把二次函数y =x 2-4x +3的图象经过下列平移变换后得到的图象所对应的函数解析式: (1)向右平移2个单位,向下平移1个单位; (2)向上平移3个单位,向左平移2个单位. 分析:由于平移变换只改变函数图象的位置而不改变其形状(即不改变二次项系数),所以只改变二次函数图象的顶点位置(即只改变一次项和常数项),所以,首先将二次函数的解析式变形为顶点式,然后,再依据平移变换后的二次函数图象的顶点位置求出平移后函数图像所对应的解析式. 解:二次函数y =2x 2-4x -3的解析式可变为 y =2(x -1)2-1, 其顶点坐标为(1,-1). (1)把函数y =2(x -1)2-1的图象向右平移2个单位,向下平移1个单位后,其函数图象的顶点坐标是(3,-2),所以,平移后所得到的函数图象对应的函数表达式就为 y =2(x -3)2-2. (2)把函数y =2(x -1)2-1的图象向上平移3个单位,向左平移2个单位后,其函数图象的顶点坐标是(-1, 2),所以,平移后所得到的函数图象对应的函数表达式就为 y =2(x +1)2+2.2.对称变换。
初高中衔接课程数学教案
初高中衔接课程数学教案
教案编写人:XXX
教学目标:
1. 弥补初中数学和高中数学之间的知识断裂,帮助学生顺利过渡;
2. 帮助学生建立数学学习的自信心,激发学习兴趣;
3. 培养学生的数学逻辑思维能力和解决问题的能力。
教学内容:
1. 初中数学知识回顾:数与代数、函数与方程、几何、概率与统计等;
2. 高中数学重难点概念介绍:集合、函数、极限、导数、积分等;
3. 实例分析与练习:结合实际例题进行解析和练习,加深理解;
4. 课外拓展:引导学生独立学习,提高自主学习能力。
教学方法:
1. 以引入例题引起学生兴趣,激发学习欲望;
2. 结合生活中的实际问题,启发学生思考和解决问题的能力;
3. 分组讨论、展示、评议等互动方式,培养学生的团队合作精神和表达能力;
4. 通过课堂点拨、讲解、引导,提高学生的数学思维能力。
教学流程:
1. 介绍本节课的主题和目标;
2. 回顾初中数学知识,引入相关高中知识;
3. 解析和讲解高中重难点概念;
4. 提供实例进行练习和应用;
5. 小组讨论、展示和总结;
6. 布置课后作业,鼓励自主学习。
教学评价方法:
1. 日常课堂表现评价;
2. 小组讨论、展示评价;
3. 课后作业评价;
4. 课程末期考试评价。
教学材料和资源:
1. 课本、作业本;
2. 多媒体课件;
3. 实例题目和解析素材;
4. 小组讨论资料。
备注:本教案仅供参考,实际教学中可根据学生实际情况和教学需要进行调整和完善。
愿本教案能够帮助学生更好地适应高中数学学习,顺利实现知识衔接。
初高中衔接基础数学教案
初高中衔接基础数学教案教学目标:1. 熟练掌握初中数学的基础知识和方法;2. 掌握初高中数学之间的衔接,顺利过渡到高中数学学习;3. 提高学生的数学思维能力和解题能力。
教学内容:1. 复习初中数学的基础知识,包括整数运算、代数式、方程与不等式、平面几何等内容;2. 学习初中数学与高中数学之间的衔接知识,包括函数、向量、三角函数等内容;3. 进行一定数量的练习题,巩固基础知识和拓展思维。
教学步骤:1. 复习初中数学知识,包括整数运算、代数式、方程与不等式、平面几何等;2. 介绍初高中数学之间的衔接知识,包括函数、向量、三角函数等;3. 带领学生做相应练习题,巩固基础知识和培养数学思维;4. 引导学生进行思考和讨论,促进学生学习兴趣和积极性。
教学重点和难点:1. 重点:初高中数学知识之间的衔接和过渡;2. 难点:高中数学中复杂问题的解题方法和思路。
教学评估:1. 定期进行小测验,检测学生对基础知识和衔接知识的掌握情况;2. 组织课堂互动和讨论,评估学生的思考能力和解题能力;3. 教师给予学生适当的反馈和指导,及时纠正错误。
教学延伸:1. 鼓励学生进行数学竞赛和活动,提高数学学习兴趣;2. 组织学生进行数学拓展训练,培养学生的数学思维和创新能力;3. 与高中数学老师及时沟通,了解高中数学教学内容和要求,为学生顺利过渡打下基础。
教学资源:1. 教科书及练习册;2. 多媒体课件;3. 数学实验室设备。
教学反思:教师应根据学生的实际情况进行差异化教学,因材施教,激发学生学习兴趣,提高教学效果。
同时,定期对教学过程进行总结和反思,及时调整教学方法和策略,不断提升教学水平。
初高中数学衔接教程教案
初高中数学衔接教程教案
教学目标:
1. 了解初中数学与高中数学的主要差异和联系;
2. 掌握初中数学与高中数学的衔接知识;
3. 提高学生解决数学问题的能力。
教学重点:
1. 初中数学与高中数学的主要差异;
2. 初中数学与高中数学的衔接知识。
教学难点:
1. 如何理解初中数学与高中数学的联系;
2. 如何灵活运用初中数学知识解决高中数学问题。
教学内容:
1. 初中数学与高中数学的主要差异;
2. 线性方程组在初中与高中的应用;
3. 平面向量在初中与高中的应用;
4. 一元二次方程及其应用。
教学过程:
1. 导入环节:导入初中数学知识,引出高中数学衔接;
2. 理论讲解:讲解初中数学与高中数学的主要差异,以及线性方程组、平面向量、一元二次方程的相关概念;
3. 实例演练:通过实例演练,帮助学生理解初中数学与高中数学的联系;
4. 课堂练习:让学生独立解答一些相关问题,巩固所学知识;
5. 提高拓展:让学生尝试解决一些较为复杂的问题,提高解决问题的能力;
6. 总结回顾:总结本节课学习内容,强化学生对初高中数学衔接知识的理解。
教学反思:
通过本节课的教学内容,学生应该能够逐步理解初中数学与高中数学的联系,并能够将初中数学知识灵活运用到高中数学问题中去。
教师应该根据学生实际情况灵活调整教学内容和方法,帮助学生更好地掌握数学知识。
初升高数学衔接教案
高中教材,人教B 版,必考内容:必修1,2,3,4,5,选修2-1,2-2, 2-3 选考内容:选修4-1,4-4,4-5 高中内容:重代数轻几何-----要求代数的运算能力 补充初高中衔接材料(一)恒等式变形:1、因式分解 2、配方 3、分式和根式(二)方程与不等式1、一元二次方程的韦达定理 2、一元二次不等式3、分式不等式,绝对值不等式 (三)二次函数补充一:立方和(差)公式 1.公式:(1)()()22b a b a b a -=-+(2)()2222b ab a b a +±=±(3)()()2233bab a b a b a +-+=+ (4)()()2233bab a b a b a ++-=-(5)2222()222a b c a b c ab ac bc ++=+++++(6)()3223333b ab b a a b a +++=+(7)()3223333b ab b a a b a -+-=-例1:计算:(1)()()964322+-+x x x (2)⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-2242412121b b a a b a例2:(1)()()()()42422222+++--+a a a a a a(2)()()()11122++---x x x x x(3)()()211xx x ++-(4)()()3211x x x x +++-例3.因式分解(1)66y x - (2)33662n m n m ++(3)()()()116119222+-+-+x x x(4)4323-+x x例4:已知2,2==+xy y x ,求33y x +的值例5:(1)已知2=+b a ,求336b ab a ++的值。
(2)已知31=-x x ,求331xx -的值。
例6: 化简(1)()()2222y xy x y x +-+(2)()()[]2222zy z y z y ++-(3)⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛-4121412141222x x x x x例7:已知0152=++a a ,试求下列各式的值: (1)a a 1+ (2)221a a + (3)331a a + (4)441aa +例8:已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值.补充二:十字相乘法与分组分解法两个一次二项多项式n mx +与l kx +相乘时,可以把系数分离出来,按如下方式进行演算:即 ()()()nl x nk ml mkx l kx n mx +++=++2把以上演算过程反过来,就可以把二次三项式()nl x nk ml mkx +++2分解因式即()()()l kx n mx nl x nk ml mkx ++=+++2这说明,对于二次三项式()02≠++ac c bx ax ,如果把a 写成c mk ,写成nl 时,b 恰好是nk ml +,那么cbx ax ++2可以分解为()()l kx n mx ++ 例1:分解因式(十字相乘法) (1)x 2-3x +2;(2)x 2+4x -12;(3)22()x a b xy aby -++; (4)1xy x y -+-.(5)81032++x x (6)122++-x x (7)6222++-xy y x (8)22592y xy x --mnk l()n mx +的系数 ()l kx +的系数mk nk ml +nl例2:分解因式(分组分解法) (1)322333y xy y x x -+- (2)63223-+-x x x (3)32933x x x +++例3:分解因式 (1)4324--m m (2)42249374b b a a +- (3)2221b ab a -+- (4)2215x x -- (5)21252x x -- (6)2524x x +- (7)233+-x x (8)=-+2675x x (9)()=++-a x a x 12(10)=+-91242m m 例4:用因式分解法解下列方程:(1) 04432=--x x (2)()()x x x =-+-22112补充三:根式与分式10)a≥叫做二次根式,其性质如下:(1) 2=;(2) =;(3) =;(4) =.2.分式[1]分式的意义形如AB的式子,若B中含有字母,且0B≠,则称AB为分式.当M≠0时,分式AB具有下列性质:(1);(2).[2]繁分式当分式AB的分子、分母中至少有一个是分式时,AB就叫做繁分式,如2m n pmn p+++,说明:繁分式的化简常用以下两种方法:(1) 利用除法法则;(2) 利用分式的基本性质.3、分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程例5 计算(没有特殊说明,本题中出现的字母均为正数):(1)(2)1)x≥(3)(4)(5)例6设x y ==33x y +的值.例7 化简:(1)11xx x x x-+-补充四:一元二次方程的韦达定理对于一元二次方程()002≠=++a c bx ax 用配方法可变形为:224ac b b x -=⎪⎫ ⎛+, 因右边大于0.所以(1) 当042>-=∆ac b 时,方程有根ab x a b x 2,221∆--=∆+-=(2) 当042=-=∆ac b ,方程有根abx x 221-== (3) 当042<-=∆ac b ,方程没有实数根。
数学初高中衔接教材教案
数学初高中衔接教材教案课时安排:每周一次,共计10次教学目标:1. 掌握初中数学的基础知识,并能够灵活运用到高中数学中;2. 培养学生的数学思维能力和解题技巧;3. 提高学生对数学的兴趣和学习动力。
教学内容:1. 初中数学的复习和巩固,包括代数、几何、概率等方面的知识;2. 高中数学的引导学习,主要涉及到初步微积分、三角函数、数列等内容;3. 解题技巧的训练,包括数学问题的分析、归纳、解题方法的选择等。
教学方法:1. 讲解与练习相结合,注重学生的实际操作;2. 引导学生思考,激发他们对数学问题的兴趣和探究欲望;3. 提倡学生之间的互动,鼓励他们相互帮助、合作解题。
教学过程:1. 第一次课:复习初中代数知识,包括方程、不等式、函数等内容;2. 第二次课:复习初中几何知识,包括平面几何和立体几何;3. 第三次课:引导学生了解高中微积分的基本概念,并进行简单的计算;4. 第四次课:介绍高中三角函数的性质和应用,训练学生的计算能力;5. 第五次课:学习数列的基本概念和求和公式,培养学生对数列问题的处理能力;6. 第六至第十次课:综合训练,进行各种类型数学题目的解答,加深学生对数学知识的理解和掌握。
评估方式:1. 每次课后布置一定量的作业,检测学生对所学知识的掌握情况;2. 定期进行小测验,考查学生的解题能力和思维能力;3. 最终进行期末考试,综合评价学生的学习成绩和能力表现。
教学资料:1. 课堂教案、习题册、解题方法指导;2. 教学PPT、教学视频等多媒体资源;3. 学生课堂笔记、作业纸等学习材料。
备注:本教案可根据实际情况进行适当调整和补充。
初高中衔接教案数学
初高中衔接教案数学
教学目标:通过本节课的学习,学生能够掌握初中数学与高中数学的衔接知识,做到知识的平稳过渡,为高中数学学习打下良好的基础。
教学重点:初中数学与高中数学的衔接
教学难点:高中数学概念的深化理解
教学准备:教材、课件、板书
教学过程:
一、导入(5分钟)
老师通过精心设计的导入问题引起学生的兴趣,激发学生对数学学习的热情,并引出本节课的主题。
二、讲解初高中数学衔接的重要性(10分钟)
老师通过简单的例子和解释,说明初中数学与高中数学的衔接对学生数学学习的重要性,为学生的学习之路做好铺垫。
三、讲解初高中数学衔接知识点(20分钟)
老师系统讲解初中数学与高中数学衔接的一些重要知识点,比如函数、方程、不等式等概念的延伸拓展,帮助学生理解初中数学和高中数学之间的联系和衔接。
四、练习与讨论(15分钟)
老师设计一些练习题,让学生进行思考和讨论,纠正学生可能存在的错误或困惑,巩固所学知识。
五、梳理知识点(5分钟)
老师对本节课的知识点进行梳理总结,帮助学生理清思路,加深对知识点的理解。
六、作业布置(5分钟)
老师布置相应的作业,要求学生在家中对本节课所学知识进行复习和巩固。
七、课堂小结(5分钟)
老师对本节课的教学内容进行简要总结,引导学生对所学知识点进行反思和总结。
教学反思:
通过本节课的学习,学生对初中数学与高中数学的衔接有了初步的了解,并掌握了一些重要的知识点。
但需要注意的是,教师在课堂上应注重引导学生主动学习,激发学生的学习兴趣,培养学生的自主学习能力,使学生能够更好地适应高中数学学习的需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式方程与无理方程以及二元方程组
一、 【归纳初中知识】
1、牢记初中阶段所学过解分式方程的关键步骤:
①通过找最简公分母去分母;
①检验增根
2、初中阶段所学习过最直接去根号的方法:平方法
3、初中阶段学习过二元一次方程的基本解法:消元法
二、 【衔接高中知识】
1、学会求解复杂的分式方程;
2、学会求解带根式的无理方程;
3、学会求解二元方程组;
三、 【例题精讲】
例1、解方程:
0)
2(1)2(1422=++---x x x x x
例2:解方程:112)1(31)2(82222=+-+-+x
x x x x x
例3:解方程:1263=-+x x
例4:解方程:1253++=
-x x
例5:解方程:932533222++=++x x x x
例6:解方程:8219533+=
-+-x x x
例7:解方程组:⎩⎨⎧=-+=+01122y x y x 和⎪⎩⎪⎨⎧=+-=+034102222y xy x y x
例8:解方程组:⎪⎩⎪⎨⎧=+-=+--0
1220212y x y x
例9:解方程组:)0()8()2()3()7()1()5(2222222
22>⎪⎩
⎪⎨⎧=--+-=--+-=-+-r r y x r y x r y x
课后习题
1、关于x 的方程2
2144212-+=-++x x x x 的解为__________ 2、若)
2)(1(3221+-+=++-x x x x B x A ,则=-B A _____________ 3、关于x 的方程18)
4(72721)4(=+-+-+x x x x x x 的解为__________________ 4、关于x 的方程33=-+x x 的解为_________________
5、关于x 的方程1345=+-+x x 的解为___________
6、关于x 的方程04222=--+-+x x x x 的解为___________
7、关于x 的方程组:⎪⎩⎪⎨⎧=+-=+0
65202222y xy x y x 的解为_______________ 8、解方程组:⎩
⎨⎧=+=+833y xy x xy。