生物质热裂解

合集下载

生物质热裂解过程及产物

生物质热裂解过程及产物

木材干馏热解应用最早出现,后来出现了煤炭的干馏热解(炼焦)。

在很长一段时期内,人们认为只用煤、木材才能干馏热解,而草本植物不可能干馏。

八十年代初,南方先生首先提出了草本植物进行热解与木材热解将有相似的结果,九十年代初被试验所证实。

当时对20多种草本植物进行了干馏热解试验,如蒿草、一支黄花草、芦苇草、玉米秸秆、麦秸干、豆秸、稻草、稻壳、玉米芯、甘蔗渣、花生壳、椰子壳、棕榈籽壳、树枝、树叶等。

对这些物质进行干馏热解所得到的产品,与木材干馏热解所得到的产品及其相似,都产生木质炭、木焦油、木煤气、木醋液,这一试验的成功为秸秆干馏热解开拓了广阔的前景。

几种植物的元素组成植物名称碳C% 氢H%栎树49.4 6.1水青冈树48.5 6.3桦树48.6 6.4光榆树50.2 6.4白蜡树49.4 6.1椴树49.4 6.9白杨树49.7 6.3松树49.6 6.4玉米秸42.2 5.5高梁秸41.9 5.3棉花秸43.5 5.4豆秸44.8 5.8小麦秸41.3 5.3稻草38.3 5.1谷秸41.4 5.2杂草41 5.2从该表可以看出,木本植物和草本植物在热分解范畴中基本是一样的,没有本质的区别,而只是在含碳氢量上有15%的差异,从而影响其发热值有 15%的差异,一般草本植物的低位发热值在3500~3800大卡/kg范围,木本植物的低位发热值在4100~4400大卡/kg范围。

由于这种差异,在热解产品的含量上有所差异。

例如:木材热解得到的炭产品的量要高于秸秆热解炭品产量;木材热解的木煤气热值要高于秸秆热解木煤气的热值。

秸秆热解后木醋液的产量明显高于木材热解的木醋液产量。

秸秆木醋液中的轻质化学物质也明显的偏多,在某种意义上说,秸秆木醋液更具有价值。

秸秆刚加热不久,在150℃以前排出的都是水蒸气,这个过程就是热解的干燥过程,含水份越多的物料,这个过程就越长,消耗的能源就越多。

因为只有把水份蒸干了才能开始热解。

另外在实际生产中,这部分汽不是排空的,而是随木煤气进入后续设备中,最终被冷凝到木醋液中,降低木醋液浓度,增加木醋液的回收负荷。

7,第四章(1)生物质热裂解

7,第四章(1)生物质热裂解
生物质热化学转化技术概述 生物质气化 生物质热裂解(热解) 生物质热裂解(热解) 生物质直接液化 生物质热裂解炭化
1.生物质热化学转化技术概述
定义:生物质热化学转化是指在加热条件下,用 化学手段将生物质转换成燃料物质的技术。 分类:生物质热化学转化可进一步分为气化、热 裂解(热解)、液化三种技术;各技术产生各自 的产品。
生物质气化原理:还原反应
③甲烷生成反应 C+2H2 →CH4;△H= -752.400kJ/mol CO+3H2→CH4+H2O(g); △H= -2035.66kJ/mol CO2+4H2 →CH4+2H2O(g); △H= -827.514kJ/mol 碳加氢直接合成甲烷是强烈的放热反应,甲烷是稳定化合 物,当温度高于600 ℃时,甲烷就不再是热稳定状态,反 应将向反方向进行,析出炭黑。常压气化时温度一般控制 在800 ℃。 以上反应均为体积缩小的反应,加压有利于反应向右进行。 气化同时伴有下列反应 2C+4H2O →CH4+CO2; △H= -677.286kJ/mol
2.3.生物质气化分类
根据气化介质的不同可分为干馏气化、 空气气化、水蒸气气化、氧气气化、氢 气以及这些气体混合物的气化。
生物质气化分类
(1) 空气气化 空气气化是以空气作为气化介质的气化过程, 是所有气化技术中最简单、最经济的一种技术, 气化过程不需要额外提供热量。空气中的氮气 一般不参与反应,在空气气化的生物质燃料中, 氮气含量可高达50%,其大量存在稀释了可燃 气中的可燃成份,降低了燃气热值。空气气化 的燃气热值一般为5MJ/m3,属低热值燃气,不 适于采用管道进行长距离输送,但用于近距离 燃烧或发电时,空气气化仍是最佳的选择。

生物质燃料的化学成分和热值

生物质燃料的化学成分和热值

生物质燃料的化学成分和热值生物质燃料被广泛应用于能源行业中,它们是利用自然过程中形成的有机物质,将其转化为可用于燃烧的固态、液态或气态燃料。

而生物质燃料的化学成分和热值则是影响其能量利用效率和环境影响的两个重要因素。

一、生物质燃料化学成分生物质燃料的化学成分主要包括碳、氢、氮、氧等元素,其中碳和氢元素是其主要成分。

木材、秸秆等固态生物质燃料的化学成分中,碳含量占65-70%,氢含量则占5-6%。

而沼气等气态生物质燃料的化学成分中,甲烷(CH4)含量占50-70%,二氧化碳(CO2)含量占30-50%。

液态生物质燃料则包括乙醇、生物柴油等,其化学成分与固态燃料比较相近。

燃烧生物质燃料时,会发生不同的化学反应。

整个反应过程中,主要有以下几个阶段:1. 热裂解阶段:在高温下,生物质中的大分子有机物质被分解成小分子有机物质,同时释放出热量。

2. 燃烧阶段:在氧气存在下,生物质燃料中的有机物质与氧气反应,产生二氧化碳、水和热量。

3. 潜热阶段:燃料中的水分开始蒸发,再加上燃烧产生的热量,燃料会发生升温。

4. 灰化阶段:生物质燃料中的杂质和不燃材料在高温下氧化,产生灰分,导致燃料重量减少。

二、生物质燃料热值生物质燃料的热值也是燃料选择和使用中的重要参考指标。

热值是指每单位质量燃料燃烧时释放出的热量,通常以MJ/kg或BTU/lb为单位。

不同种类的生物质燃料其热值各不相同,且同一种类的生物质燃料在不同燃烧条件下其热值也不同。

木材、秸秆等固态生物质燃料的热值通常在15-20MJ/kg左右,而沼气等气态生物质燃料的热值则比较低,一般在30MJ/m3左右。

生物柴油的热值一般在35-40MJ/kg左右,比较高。

燃料的热值不同,燃烧产生的热量也不同,最终影响燃料的利用效率。

同时,也需要考虑燃烧产生的废气排放对环境的影响。

其中,二氧化碳排放是目前燃烧生物质燃料时需要重视的问题之一。

三、生物质燃料的能源利用和发展生物质燃料的能源利用已经成为了世界各地进行环保和能源替代的热点之一。

生物质的热裂解

生物质的热裂解
M a 2 08 v 0
5 月
文 章编号 :10 — 8 2 0 )0 — 0 6 0 0 7 93 1( 0 8 3 0 5 — 5
生 物质 的热 裂解
杨海 明 ,韩成利 ,吴也平 ,毕野 ,殷广 明
( . 山县林 业局 ,黑龙 江 齐齐 哈尔 1 10 ;2 齐齐 哈尔 大学 化 学与 化学 工程学 院 ,黑 龙江 齐齐 哈尔 110 ) 1克 6 60 . 60 6
生物质通常是木材、竹材 、灌木 、野草、秸秆等植物纤维来源的天然有机材料 ( 也包括甲壳素等动物
来源的天然有机材料 ) 的统称 ,其主要化学成分是纤维素 、半纤维素和木质素 , 此外尚含有少量品种繁多 的其它有机和无机物质“ .我国每年产生大量 的木材加工和营林剩余物和约 7 t 亿 的秸秆 J ,可见生物质是
“ 水纤 维素 ”+ 脱 水
炭 + + 0 c0 水 c + :
经 一些 有 序 的竞争 反应
纤 维素
焦油 ( 主要是右旋葡萄糖)
图 1 纤维素 热分 解反 应 途径模 式
由图 1 可见 ,低的加热速率倾向于延长纤维素在 20 20C 0 8  ̄范围所用的时间 ,焦油减少 , 加速成炭. 首先 ,纤维素经脱水作用生成脱水纤维素 ,然后进一步分解产生大多数的碳和一些挥发物 ,与脱水纤 维素高温下的竞争反应是一系列纤维素解聚反应生成左旋葡萄糖 ( , 脱水一 — 16 d D呋喃葡糖 ) 焦油.根据 实验条件 , 左旋葡萄糖焦油的二次反应或者生成炭、焦油和气体 ,或者主要生成焦油和气体.例如 ,纤维
5 7
木质素隔绝空气高温分解 可得到木炭 、焦油 、木醋酸和气体产物.产品的得率取决于木质素的化学组
成、 反应最终温度、加热速度和设备结构等.木质素的稳定性较高 ,热分解温度是 30 4 0C,而木材开 5 — 5 ̄ 始强烈热分解的温度是 2 0 9  ̄.木质素热分解时形成的主要气体成分为 :C 2 . 8 20C 0 6 C . 9 %, O5 9 0 %,甲烷 3. 7 %,乙烯和其它饱 和碳氢化合物 2 %. 5 . 0 纤维素是多数生物质最主要 的组成物 ( 在木材中平均占 4 %)同时组成相对简单 ,因此 ,纤维素被广 3 泛用作生物质热裂解基础研究的实验原料.最广泛接受的纤维素热分解反应途径模式见 图 1 :

生物质三组分热裂解技术的研究进展

生物质三组分热裂解技术的研究进展

生物质三组分热裂解技术的研究进展摘要:在热天平上对比研究了生物质中的纤维素、半纤维素和木质素三种主要组分的热失重规律。

结果表明,作为半纤维素模型化合物的木聚糖热稳定性差,217℃-390℃发生明显分解;纤维素热裂解起始温度最高,且主要失重发生在较窄温度区域,固体残留物仅为6.5%;木质素表现出较宽的失重温度区域,最终固体残留物高达42%。

研究了三组分热裂解产物随温度的变化规律。

三组分热裂解生物油产量随温度变化先升后降。

纤维素生物油产量在峰值上最高,但纤维素生物油热稳定性差,高温时挥发分的二次分解最明显;木聚糖和木质素生物油产量较低,表现出较好的热稳定性。

三组分热裂解焦炭产量随温度升高而降低,最终纤维素热裂解焦炭产量为1.5%,而木聚糖和木质素分别为22%和26%。

三组分热裂解气体产物随温度升高而增长,但在气体组成分布上因三组分的结构上的差异而不同。

对三组分热裂解机理进行了研究。

关键词:生物质;热裂解;生物油Abstract:The thermal weight loss of cellulose,hemicellulose and lignin in three main components of biomass were studied in a thermal balance. The results showed that the as model compounds of hemicellulose xylan poor thermal stability,217 - 390 ℃occurred obviously decompose; cellulose pyrolysis initiation temperature was the highest, and the main weight loss occurred in a narrow temperature region, solid residues is only 6. 5%; lignin showed a wide temperature region of weight loss, the final solid residues up to 42%. The variation of thermal cracking products with temperature in the three groups was studied. The yield of three component pyrolysis bio oil decreased with the temperature change. Cellulose bio oil yield in peak on the highest, but the cellulose bio oil heat stability, high temperature volatile secondary decomposition of the most obvious; xylan and lignin lower lignin bio oil yield showed good thermal stability. The yield of pyrolysis coke decreased with the increase of temperature, and the yield of cellulose pyrolysis coke was 1.5%, while the yield of three and lignin were 22% and 26% respectively. The pyrolysis gas products of the three groups increase with the temperature, but the difference of the structure of the three components is different. The pyrolysis mechanism of the three groups wasstudied.Key words:biomass; pyrolysis; bio-oil引言生物质是能源领域常用的一个术语。

生物质热裂解生物油性质的研究进展

生物质热裂解生物油性质的研究进展

生物质热裂解生物油性质的研究进展摘要:生物质热裂解生物油是生物质在隔绝空气的条件下,快速加热裂解,裂解蒸汽经快速冷却制得的棕褐色液体产物。

生物油的物理化学性质显示了其在商业上的应用潜力,已引起了国内外的广泛关注。

为此,从组成成分、含水量、含氧量、固体颗粒、灰分、酸性、腐蚀性和粘度等方面详细叙述了生物油的物理化学性质,提出了应用生物油的发展方向和推广应用生物油必须解决的问题。

引言随着经济的不断增长,人们对能源的需求越来越大。

据统计,按照2003年的开采量计算,地球上蕴藏的煤、石油、天然气等化石能源将分别在192年、41年和67年内耗竭,而且化石燃料的长期使用,对环境造成严重的负面影响,引起了温室效应和环境污染等问题。

因此,开发可替代化石燃料的环境友好型可再生能源已成为当今世界研究的热点。

生物质能作为众多可再生能源中的一种,在利用中具有SO2和NOX产出少及CO2零排放的优点。

据统计,世界每年生物质产量约1460亿t,占世界能源总能耗的14%,其中发达国家占3%,发展中国家占43%,是当今世界第4大能源。

无论从环境还是从资源方面考虑,研究生物质能源转化与利用都是一项迫在眉睫的重大课题。

生物质热裂解被认为是生物质能源转化技术中一项最具有广阔发展前景的前沿技术,是指生物质在完全没有氧或缺氧条件下,最终生成液体产物、木炭和可燃气体的过程。

3种产物的产量和比例取决于生物质热裂解工艺条件及反应参数(温度、加热速率、气相停留时间和流化风速)。

生物质快速热裂解技术是高效率的生物质热裂解油转化技术,是在隔绝空气或少量空气、常压、中温(500°~650℃)、高加热速率(104~105℃/s)和极短气体停留时间(小于2s)的条件下,将生物质直接热裂解,产物经快速冷却,可使中间液体产物分子在进一步断裂生成气体之前冷凝,从而得到高产量的生物质液体油,其产率可达(60~95)wt%。

生物质热裂解产生的液体油是一种深褐色的能够自由流动的黏性化合物,通常被称为生物油,也称为热裂解油、热裂解液体、生物原油或生物质热解油等。

生物质热裂解过程的节能与优化

生物质热裂解过程的节能与优化

( 1 . F o o d e n i g n e e r i n g b r a n c h o f J i l i n I n d u s t r y a n d c o m m e r c e c 0 U e g e , C h a n g C h u n 1 3 0 0 6 2 , C h i n a ;
Th e En e r g y— - s a v i n g a n d Op t i mi z a t i o n o f Bi o ma s s P y r o l y s i s Pr o c e s s
W ANG Xi a o—y i n g , W ANG Y u—g u a n g 2 LI U Yi n g 2 GU X i n—c h u n ,
第3 1 卷, 总第 1 7 9期 2 0 1 3年 5月 , 第 3期

《节 能 技 术 》
ENERGY CONS ERVATI ON TECHNOL OGY
Vo 1 . 31, Su m.No .1 7 9 Ma y . 2 01 3, No . 3
生物质 热裂解过程的节能与优 化
f u r a n d n i  ̄o g e n,mi n o r e n v i r o n me n t a l p o l l u t i o n e t c .Bi o ma s s p y r o l y s i s i s a u s e p a t t e r n s w h i c h h a s p o m- r i s i n g f u t u r e .T h e a r t i c l e s i mp l y i n t r o d u c e d t h e p oc r e s s o f p y r o l y s i s nd a es r e a r c h r e v i e w o n p i n c h t e c h n o l o — y , g p y ol r y s i s t h e r ma l c y c l e p oc r e s s nd a l f sh a p y r o l y s i s mo v i n g b e d p r o c e s s . S o me s u g g e s i t o n s o n d e v e l o p — me n t d i r e c i t o n o f e n e r y —s g a v i n g a n d o p t i mi z a i t o n o f b i o ma s s p y ol r y s i s p r o c e s s we r e p u t f o r w a r d .

生物质热裂解技术现状及发展

生物质热裂解技术现状及发展

生物质热裂解技术现状及发展摘要:介绍了我国生物质资源化现状及以生物质为原料热裂解技术的研究成果及进展,评述了生物质热裂解技术的环境效益和经济效益,对我国生物质资源利用提供参考。

1我国生物质资源化现状我国生物质资源十分丰富,主要有各种农业废弃物、林业废弃物、畜禽粪便等,年产量约合4亿t石油当量。

因此,研究将生物质资源高效转化为高品位的清洁能源,既是大规模利用生物质能的必然趋势,更是增加农民收入、降低粮食价格、缩小与国际市场差距的有效途径。

我国是一个农业大国,每年农林废弃物约14亿t,其中玉米、水稻、小麦等大宗作物的秸秆高达7亿t。

秸秆是一种宝贵的可再生资源,是自然界中数量极大且具有多种用途的可再生生物质资源。

目前我国秸秆利用率约为33%,其中大部分未加处理,经过技术处理后利用的仅占2.6%。

随着石化资源的日趋枯竭和秸秆焚烧污染环境问题的日益突出,提高农作物秸秆的综合利用水平,实现深层次、多途径综合利用方式是人们对可持续发展、保护环境和循环经济的追求。

综合利用农作物秸秆资源对于节约资源、保护环境、增加农民收入、促进农业的可持续发展都具有重要的现实意义。

农作物秸秆是指去除籽果实的农作物茎、叶、秆及根等部分,包括各种粮食作物、经济作物、油料作物和纤维类作物的秸秆,如玉米秸秆、小麦秸秆、水稻秸秆、高粱秸秆、烟草秸秆、向日葵杆、棉花秸秆、豆类作物秸秆和芦苇等。

还包括农作物加工后的剩余物,比如稻壳、花生壳、甘蔗渣、薯渣、薯液等;包括果蔬加工副产物,如辣椒秆、茄子秆、莴苣皮、豆荚、果皮、果渣等。

据统计,我国农业加工副产物有5.8亿t,而综合利用率平均不到40%,60%以上被随意堆放、丢弃或用作生活燃料,或者作为肥料还田,这相当于0.47hm2土地的投入产出和6000亿元的收入被白白损失掉。

我国每年森林采伐、木材加工及育林剪枝等林业废弃物约3.5亿t,折合成标煤,平均为9422万t。

我国生物炭研究特别是产业化应用在国际上已经处于领先地位,生物炭产业化也非常成熟。

近5年世界发达国家生物质热裂解技术的实例。

近5年世界发达国家生物质热裂解技术的实例。

近5年世界发达国家生物质热裂解技术的实例。

【近5年世界发达国家生物质热裂解技术的实例】在过去的近5年里,世界各发达国家在生物质热裂解技术方面取得了令人瞩目的进展。

从美国到德国,从日本到加拿大,这些国家的科研机构和企业都在生物质热裂解领域进行了大量的研究和实践,推动着这一技术的发展和应用。

本文将对近5年世界发达国家生物质热裂解技术的实例进行全面评估,探讨其深度和广度,并给出个人观点和理解。

一、美国在美国,生物质热裂解技术得到了广泛的关注和支持。

美国能源部投资了大量资金用于生物质热裂解技术的研发和商业化应用。

位于爱荷华州的一家领先的生物质热裂解公司成功开发出了一种先进的生物质热裂解工艺,将农业废弃物和林业废弃物转化为高附加值的生物燃料和化学品,取得了显著的经济和环境效益。

二、德国作为环境保护和可持续发展的先行者,德国在生物质热裂解技术方面也取得了重要的进展。

德国政府出台了一系列支持生物质能源利用的政策,鼓励企业和研究机构开展生物质热裂解技术的研究和应用。

某研究所近年来开发出了一种高效的生物质热裂解反应器,能够将农林废弃物在高温条件下迅速转化为生物柴油和生物天然气,为德国能源转型注入了新动力。

三、日本日本作为科技创新的重要力量,对生物质热裂解技术的研究也不遗余力。

近年来,日本一家知名企业成功研发出了一种具有自主知识产权的生物质热裂解装置,能够在高效、低排放的条件下将生物质废弃物转化为生物燃料和生物化工原料,为日本的能源安全和环境保护贡献了力量。

四、加拿大加拿大的生物质资源丰富,因此在生物质热裂解技术方面也有着得天独厚的优势。

近年来,加拿大某大学的研究团队在生物质热裂解催化剂的设计和制备方面取得了重要突破,使生物质能够更高效地转化为清洁能源和生物化学品,为加拿大的碳减排目标提供了重要支持。

以上就是近5年世界发达国家生物质热裂解技术的部分实例。

这些实例充分展示了生物质热裂解技术在能源替代和环境保护方面的巨大潜力。

生物质热裂解机理试验研究

生物质热裂解机理试验研究

生物质热裂解机理试验研究引言:生物质是一种可再生的能源资源,具有广泛的应用前景。

生物质热裂解是一种重要的转化方式,通过研究其机理有助于优化生物质的利用过程,提高能源转化效率。

本文旨在探讨生物质热裂解的机理,并介绍相关试验研究。

一、生物质热裂解机理的基本原理生物质热裂解是指通过升温将生物质转化为气体、液体和固体产物的过程。

其基本原理包括干馏、热解和炭化等过程。

1. 干馏过程:在干馏过程中,生物质在高温下脱去部分挥发性成分,形成气体和液体产物。

这是因为生物质中的挥发性物质在高温下分解,产生气体和液体化合物,如甲烷、乙烯、苯等。

2. 热解过程:在热解过程中,生物质的主要组分纤维素、半纤维素和木质素被分解为一系列低分子量化合物。

这些化合物包括酚类、醛类、酮类等,可以用作燃料或化工原料。

3. 炭化过程:在炭化过程中,生物质的残留物质被进一步分解为固体炭。

这是因为高温下,生物质中的有机物质经过裂解、聚合和重排等反应,形成具有石墨结构的固体炭。

二、生物质热裂解机理试验研究方法为了深入了解生物质热裂解的机理,许多试验研究被开展。

以下介绍几种常见的试验方法。

1. 热重分析(TGA):热重分析是一种常用的试验方法,通过加热生物质样品,测量其质量随温度变化的情况。

通过观察样品的质量损失和温度变化关系,可以推测出生物质的热裂解特性。

2. 气相色谱质谱(GC-MS):气相色谱质谱是一种用于分析气体和液体产物的方法。

通过将生物质热裂解产物进样到气相色谱质谱仪中,可以分析得到各种化合物的相对含量和结构信息,进而推测出生物质的热裂解机理。

3. X射线衍射(XRD):X射线衍射是一种用于分析固体产物的方法。

通过将生物质热裂解产物进行X射线衍射分析,可以获得其晶体结构和物相组成信息,从而揭示生物质热裂解的炭化机制。

三、生物质热裂解机理试验研究的进展与挑战近年来,生物质热裂解机理试验研究取得了一系列进展。

研究者们通过不同的试验方法,揭示了生物质热裂解的反应途径、产物组成和反应动力学等方面的信息。

生物质热裂解

生物质热裂解
.
2.生物质热裂解反应机理
从生物质组成成分分析 从物质、能量的传递分析 从反应进程分析 从线性分子链分解角度分析
.
从生物质组成成分分析
生物质的三种主要组成物质常常被假设独立地进行热分解,半纤维素主
要在225~350℃分解,纤维素主要在325~375℃分解,木质素在 200~500℃分解。半纤维素和纤维素主要产生挥发性物质,而木质素主要 分解为炭。
.
固体和气相滞留期
Wagannar研究表明,在给定颗粒粒径和反应温度条件下,为 使生物质彻底转换,需要很小的固相滞留期。
生物质物料特性的影响
生物质种类、粒径、形状及粒径分布等特性对生物质热裂解行 为及产物分布有着重要影响。
.
压力
压力的大小影响气相滞留期,从而影响二次裂解,最终影响热裂 解产物产量分布。
一次生物油 二次气体
从反应进程分析
生物质的热裂解过程分为三个阶段: ① 脱水阶段(室温~100℃) 物理变化,主要失去水分 ② 主要热裂解阶段(100~380℃) 生物质在缺氧条件下受热分
解,随着温度的不断升高,各种挥发物相应析出,原料发生 大部分的质量损失。 ③ 炭化阶段(>400℃) 分解非常缓慢,产生质量损失比第二阶 段小得多,该阶段通常被认为是C-C键和C-H键的进一步裂解 所造成的。
.
3.影响生物质热裂解过程 及产物组成的因素
温度
一般地说,低温、长滞留期的慢速热裂解主要用于最大限度地增 加炭的产量;常规热裂解当温度小于600℃时,采用中等反应速 率,其生物油、不可冷凝气体和炭的产率基本相等;闪速裂解 温度在500~650℃范围内,主要用来增加生物油的产量;同样 的闪速热裂解,若温度高于700℃,在非常高的反应速率和极短 的气相滞留期下,主要用于生产气体产物。

生物质热裂解工艺流程

生物质热裂解工艺流程

生物质热裂解技术工艺流程生物质热解液化技术的一般工艺流程由物料的干燥、粉碎、热解、产物炭和灰的分离、气态生物油的冷却和生物油的收集等几个部分组成。

原料干燥和粉碎生物油中的水分会影响油的稳定性、粘度、PH值、腐蚀性以及一些其它特性,而天然的生物质原料中含有较多的自由水,相比从生物油中去除水分,反应前物料的干燥要容易的多,因而在一般的热解工艺中,为了避免将自由水带入产物,物料要求干燥到水份含量低于10%(质量分数)。

快速热解制油工艺要求高的传热速率,除了从反应器的传热方面入手,工艺流程图原料尺寸也是重要的影响因素,通常对原料需要进行粉碎处理,不过随着原料的尺寸变得越小,整个系统的运行成本也会相应提高。

热裂解反应器反应器是热解的主要装置,反应器类型的选择和加热方式是各种技术路线的关键环节。

适合于快速热解的反应器型式是多种多样的,但所有热解制油实用性较强的反应器都具备了三个基本特点:加热速率快,反应温度中等和气相停留时间短。

焦炭和灰的分离在生物质热解制油工艺中,一些细小的焦炭颗粒不可避免地进入到生物油液体当中。

研究表明:液体产物中的焦炭会导致生物油不稳定,加快聚合过程,使生物油的粘度增大,从而影响生物油的品质。

同时,生物质中几乎所有的灰分都保留在焦炭当中,而灰分是影响生物质热解液体产物收率的重要因素,它的存在将大大催化挥发成分的二次分解,所以分离焦炭也会影响分离灰分。

分离焦炭除了采用热蒸汽过滤外,还可以通过液体过滤装置(滤筒或过滤器等)来完成,目前,后者仍处于研究开发阶段。

焦炭的分离虽然很困难,但是对所有的系统而言都是必不可少的。

液体生物油的收集液体的收集一直以来都是整个热解过程中运行最困难的部分,目前几乎所有的收集装置都不能很有效的收集。

这是因为裂解气产物中挥发份在冷却过程中与非冷凝性气体形成了烟雾状的气溶胶形态,是一种由蒸汽、微米级的小颗粒、带有极性分子的水蒸气分子组成的混合物,这种结构给液体的收集带来困难。

生物质热裂解技术

生物质热裂解技术

生物质热裂解技术概述摘要:生物质在慢速热裂解的情形下以得到炭为目的的炭化是一种有几千年历史的工艺,由于化工和能源等领域中新型反应工艺的不断开发,人们发现通过改变热裂解过程的温度、加热速率及停留时间等因素,可分别有效地最大化气体和液体产物产量,并且对所得产物进行相应的改性及优化后可用作其他多种用途。

本文简单介绍了生物质热裂解技术发展,对生物质热裂解技术的裂解机理、影响因素,以及生物质热裂解过程及产物组成因素进行概述。

关键词:生物质;热裂解;温度;升温速率前言:生物质通常是木材、竹材、灌木、野草、秸秆等植物纤维来源的天然有机材料(也包括甲壳素等动物来源的天然有机材料)的统称,其主要化学成分是纤维素、半纤维素和木质素,此外尚含有少量品种繁多的其它有机和无机物质。

通过生物质能转换技术可高效地利用生物质能源,生产各种清洁能源和化工产品,是一种对环境友好的可以替代化石能源的可再生的能源,可以有效减少有害气体及烟尘排放量和温室气体增加量,维系全球平衡,提高环境质量;较之其他新能源(如太阳能、风能、地热能及潮汐能等)生物质能源的开发转化技术较容易实现,既可利用生物质能的热能效应又可将简单的热效应充分转化为化学能、电能等高品位能源。

生物质热裂解是指生物质在没有氧化剂(空气、氧气、水蒸汽等)存在或只提供有限氧的条件下,加热到500℃,通过热化学反应将物质大分子物质分解成较小分子的燃料物质的热化学转化技术方法,是目前国内外非常关注的新能源生产技术。

1 生物质热裂解技术简介及工艺类型生物质热裂解是指生物质在完全缺氧或有限氧提供条件下利用热能切断生物质大分子中碳氢化合物的化学键,使之转化为小分子物质的热降解,这种热解过程最终生成液体生物油、可燃气体和固体生物质炭三种,产物的比例根据不同的热裂解工艺和反应条件而发生变化。

生物热裂解的燃料能源转化率可达95.5%,最大限度地将生物质能量转化为能源产品,是生物质能利用技术的主要方法之一,且越来越得到重视,这是因为:○1热解技术对于原料的种类没有严格要求,城市固体废弃物(MSW),农业、林业废物都能气化。

生物质的热裂解

生物质的热裂解

生物质的热裂解是一种将生物质转化为燃料和其他化学品的过程。

在这个过程中,生物质被加热到高温(通常在500-800摄氏度之间),使其分解成较小的分子或化合物。

这些小分子或化合物可以进一步加工成燃料或其他化学品,如液体生物燃料、气体生物燃料、生物柴油、生物塑料等。

生物质热裂解是一种环境友好的能源生产方式,因为它可以利用废弃物和农业残留物等生物质资源,减少化石燃料的使用和排放的温室气体。

此外,生物质热裂解还可以产生电力,从而实现能源多元化。

然而,生物质热裂解也存在一些挑战和限制。

例如,高成本、技术难度大、能源转化效率低等问题需要解决。

此外,由于热裂解产物中含有一些有毒有害的物质,如重金属、苯等,因此需要采取相应的安全措施来避免对环境和人体健康的影响。

生物质热裂解技术ppt

生物质热裂解技术ppt

产物的比例根据不同的热裂解工艺和反应条件而变化。
慢速热裂解
按照升温速率和完 全反应时间的不同
快速热裂解 闪速热裂解
热裂解工艺主要运行参数
参数
慢速热裂解
反应温度/oC
300~700
升温速度/(oC/s)
0.1~1
快速热裂解 600~1000 10~20
停留时间/s
>600
0.5~5
物料尺寸/mm
5~50
周期3-5d
白烟 黄烟 青烟 木炭率18-22
操作周期24小时,木炭率15-20
每8小时加料1次,每1小时出料1次,物料停留4-5h,木炭率25-30
生物质热裂解液化工艺的发展
20世纪80年代初,加 1995年左右,目前生 拿大Waterloo大学开 物质热解制油主流设 始了以提高液体产率 备已经普遍完成研发。 为目标的循环流化床 之后,随着试验规模 研究,为现代快速、 的反应装置逐步完善 闪速裂解提供了基础, 化,欧美示范性和商 被公认为本领域中最 业化运行的热裂解项 广泛深入的研究成果。 目不断开发和建造。
2005年后, 国外科研 机构开始 加大力度 研发生物 油的深加 工技术。
1980
1990
纤维素、半纤维素、木质素三种组分常被假设独立进行热分解。
纤维素受热分解阶段:
➢水分的蒸发与干燥(100~150 oC) 化学性质不变,水蒸发
➢葡萄糖基脱水(150~240 oC) 法学性质发生变化,产物为反应水
➢热裂解(240~375oC) 一氧化碳、二氧化碳、醋酸、甲醇、焦油、生物质炭
➢聚合和芳构化(>400 oC) 甲烷、木炭等固液气产物
纤维素通常的热分解温度范围:275~450 oC
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

生物质热裂解制取液体燃料技术的发展摘要:对生物质热裂解技术进行了系统的研究,阐述了其基本技术要求和发展现状,并将现有的生物质热裂解反应器进行分类,分析了相应的优势与不足。

最后评估了生物质热裂解制取液体燃料技术的经济和社会效益,结果表明它具有广泛的应用前景。

关键词:生物质;热裂解;生物油;反应器1生物质热裂解制取液体燃料的意义当今社会面临着环境与发展的双重压力,面对常规能源资源的有限性和人类对能源需求的不断扩大[1],能源格局的更新、新能源的开发和利用越来越值得人们的关注。

同时石油以其便于运输、加工和利用,且单位热值高和污染相对煤炭少等优点成为常规商业用能中的重要一员,油气在商业用能中的比重在一定程度上也反映出某个国家的能源利用效率水平及环境保护程度。

随着我国经济的迅速发展,油气等高品质能源在我国的消费将逐渐增加,而我国的石油资源人均拥有量却相对很少。

另外随着农村经济发展和农民生活水平的提高,农村对于优质燃料的需求日益迫切,传统能源利用方式已经难以满足农村现代化需求,尤其是对柴油的需求,因此积极开发代用液体燃料是一种行之有效的措施。

化石燃料的过度开采和大量使用导致了环境污染指数的增长,20世纪以来化石燃料燃烧利用过程中排放的大量SO2、NOx和氯氟烃等污染物破坏了生态环境,由于CO2排放造成的“温室效应”也逐渐显露出对气候和生态的负面效应。

生物质是一种清洁的低碳燃料,其含硫和含氮量均较低,同时灰分份额也很小,所以燃烧后SO2、NOx和灰尘排放量比化石燃料要小得多,是一种清洁燃料。

生物质的利用过程中没有增加大气中CO2的含量,这对于缓解日益严重的“温室效应”有着特殊的意义。

为了兼顾经济增长和环境保护,生物质能的开发和利用已越来越受到重视和关注。

生物质能的利用目前在工业化的发达国家仅占能源消耗的3%,广大发展中国家中生物质能占了35%,从而使得生物质能在世界能源消耗中仅占了14%。

联合国环境发展会议指出到2050年,生物质能有潜力可以供给当时世界能源消耗中的50%。

然而目前大部分生物质被直接作为燃料燃烧,利用水平低,浪费严重,且污染环境,所以充分合理开发使用生物质这种资源丰富的能源,改善我国尤其农村的能源利用环境,加大生物质能源的高品位利用具有重要意义。

生物质快速热裂解制取生物油是目前世界上生物质能研究开发的前沿技术,该技术能以连续的工艺和工厂化的生产方式将以木屑等林业加工废弃物为主的生物质转化为高品位的易储存、易运输、能量密度高且使用方便的液体燃料—生物油,其不仅可以直接用于现有锅炉和燃气透平等设备的燃烧,而且可通过进一步加工改性为柴油或汽油而用作动力燃料,此外还可以从中提取具有商业价值的化工产品,目前已经商业化的应用有提取食物添加剂[2],当然通过一些加工还可能提取一些特殊的化学成分用于调药剂和农业化肥等当前石油资源匮乏及油价飞升,而木屑等林业加工废弃物得不到高品位利用,同时速生林培植技术又较为成熟,因此开展生物质快速热裂解制取生物油技术的研究在21世纪具有特别重要的意义。

上世纪末,该技术研究在欧美国家即得到了高度重视,已开发出了不同类型的热裂解技术,而我国由于在该技术领域的研究涉及较少使得这一工作尚处于起步阶段。

2生物质热裂解制取液体燃料的技术2.1生物质热解制油的一般原则生物质热裂解生成的液体产物通常被称为生物油、热裂解油或生物原油,其可分为快速热裂解工艺产生的一次生物油或通过常规热裂解及气化工艺产生的二次油,两者在一些方面存在着重要的差异,后一种方法使得生物质的结构本性在简单分子生成过程中丢失,并且由于试验方法的限制,严重限制了它们的产量和特性及应用,而快速热裂解则提供高产量高品质的液体产物,因此在生物油的制取上现在几乎都通过快速热裂解得到。

为达到最大化液体产量目的,生物质快速热裂解一般需要遵循三个基本原则:高升温速率;约为500℃左右中等反应温度;短气相停留时间。

2.2生物质热解制油的技术要求温度:对于大多数的生物质物料而言,温度在475~525℃这个范围的时候,有机油的产量最大,同时生物油的质量也接近最优化。

温度降低或者升高都将使产量减少,特别在温度比较高的时候,生物油的品质会快速退化,其不仅体现在物理特性方面,而且还在一定程度上影响从生物油中提取的潜在化学制品的含量。

物料的预处理:生物油中较高的水分含量影响到油的稳定性、粘度、pH值、腐蚀性以及其他特性,而通常的方法又无法将这些水分去除,因而生物质热裂解制油技术要求物料的水分含量低于10%,以减小物料本身可能带入的水分含量。

气相停留时间:挥发分的停留时间越短那么液体的产量就会越大,同时焦炭和不可凝气体的量就越小,一般设备考虑的气相停留时间多为小于1s。

气相中焦炭的分离:生物质热裂解过程中产生了一些小颗粒焦炭,它们对挥发分的二次热裂解产生催化作用,而且给可凝结气体的冷凝过程带来一些不稳定的因素,比如说加快了慢速聚合反应过程,这个过程会增加油粘度[2]。

同时生物质中几乎所有的灰分都残留在了焦炭中,因而尽管气相中焦炭的分离相当困难,但对所有的系统而言都是必不可少的步骤。

目前常用的手段除了采用气体过滤外,还可以通过液体过滤来完成。

液体的收集:液体的收集一直以来都是研究者们面临的一个难题。

热解产生的气体与香烟燃烧产生的烟雾有很多相似特性,该产物可以看作是一种由气体、微颗粒以及与水蒸汽分子结合在一起的极性分子的混合物,其特性类似与气溶胶,目前几乎所有的收集装置都不能很有效的收集[2]。

近来静电过滤被认为是较有效的方法,并且已经被许多的研究者采用,但是这种方法也存在着许多的问题,比如气体极性导致的静电过滤器的短路。

作为比较大的反应器则通常采用急冷或者接触较冷液体的方法,其效率相对高一些,但设计时要考虑从分离器出来到液体收集系统的这段管道温度要求不低于350℃以减少气体在冷凝器外的凝固。

3生物质热裂解技术发展现状国外对生物质的热化学转换尤其是热裂解过程进行了很多的研究,相对而言,亚洲在该技术领域的研究开发活动很少。

浙江大学率先在国内自行开发了流化床生物质闪速热裂解制取液体燃料的装置。

在生物质热裂解的各种工艺中,不同研究者采用了多种不同的试验装置,然而在所有热裂解系统中,反应器都是其主要设备,因为反应器的类型及其加热方式的选择在很大程度上决定了产物的最终分布,所以反应器类型的选择和加热方式的选择是各种技术路线的关键环节。

应用于生物质制取代用液体燃料的实用性较强的反应器具有加热速率快、中等反应温度、气相停留时间短等共同特征。

综合国外现有的反应器,主要可分为如下几类。

3.1机械接触式反应器这类反应器的共同点是通过一灼热的反应器表面直接或间接与生物质接触,从而将热量传递到生物质使其高速升温从而达到快速热裂解,其采用的热量传递方式主要为热传导,常见的有烧蚀热裂解反应器、丝网热裂解反应器、旋转锥反应器等。

涡流反应器是典型的机械接触式反应器,生物质颗粒在高速氮气或过热蒸汽引射流作用下沿切线方向进入反应器管,并由高速离心力作用在高温的反应器壁上烧蚀,从而在反应器壁上留下生物油膜,并迅速蒸发。

未完全转化的生物质颗粒则通过特殊的固体循环回路循环反应。

图1显示了美国可再生能源实验室研制的最新涡流反应器[3],该系统的生物油产量能达到67%左右,但油中氧含量较高。

图1美国可再生能源实验室研制的涡流反应器类似的反应器有Aston大学的烧蚀热裂解反应器及荷兰Twente大学设计的旋转锥生物质热裂解反应器等。

机械接触式反应器的工作原理较为简单,也便于放大应用,但无论直接还是间接接触,都不可避免地引起器壁的磨损,同时运转的机械部件容易在热裂解过程中产生故障,另外,固体颗粒受热的不均匀性及挥发分的顺利析出都是需要重点考虑的环节。

3.2间接式反应器这类反应器的主要特征是由一高温的表面或热源提供生物质热裂解的所需热量,其主要通过热辐射进行热量传递,常见的热天平可归属此类。

热辐射反应器是典型的间接式加热反应器,Chan[4]设计了一用于研究单颗生物质颗粒的热裂解行为的反应器及相关的分析系统,如图2所示。

该反应器的热源是一个1kW的氙灯,其均匀提供约0~25W/cm2的一维高强度热通量给内置在玻璃反应器内套管的试样,氦气流使得颗粒热裂解析出的挥发分快速冷却并将其送到收集器和分析系统,单颗粒生物质的热裂解试验在常压下进行,得到了约40%左右的生物油。

该类反应器中生物质颗粒以及各热裂解产物的辐射吸收特性存在差异,使得温度控制较为困难并对导致生物油二次反应的抑制作用较差,同时需高温热源的提供而使得实际应用受到了限制,通常仅在机理性研究时才采用。

图2Washington大学的热辐射反应器3.3混合式反应器混合式反应器主要是借助热气流或气固多相流对生物质进行快速加热,起主导热量传递的方式主要为对流换热,但热辐射和热传导也不可忽略,常见的有流化床反应器、快速引射床反应器、循环流化床反应器等。

流化床反应器由于其工艺上的日渐成熟,而使得其应用范围非常广泛,其能提供高的加热速率以及相对均匀的反应温度,同时快速流动的载气便于一次产物及时析出,正因为如此,目前国外积极开展生物质在流化床反应器的热裂解的相关研究。

图3Waterloo大学的流化床反应系统图3示出了Waterloo大学[5]的流化床反应系统,生物质热裂解析出的挥发分在经过分离器除去炭后冷却得到生物油,其在500℃左右得到了最高的生物油产量。

在目前所有的热裂解反应器中,针对流化床或类似的反应器而开展的生物质热裂解制油的试验研究是比较丰富的,与流化床工作原理相类似的有Sassari大学的流化床反应器、Ensyn提出的循环流化床反应器和GTRI的快速引射流反应器等。

3.4真空热裂解反应器上述反应器主要运行在常压下,而较低加热速率下进行的真空热裂解也能取得较高的生物油产量,加拿大Laval大学和pyrovac公司先后[6]设计出生物质的真空热裂解反应器图4。

物料干燥和破碎后进入反应器后被送到两个水平的恒温金属板间受热裂解,裂解产生的挥发分依靠反应器的真空状态很快被带出反应器,直接输入到两个冷凝系统,一个收集重油,一个收集轻油和水分。

该系统最大的优点是真空下一次裂解产物能很快脱离反应器从而降低了二次反应的几率,但需要真空泵的正常运转以及反应器极好的密封性来保证,而这在实际应用时将会加大投资成本以及运行难度。

图4pyrovac公司真空热裂解反应器4资源潜力及开发前景4.1资源潜力全世界每年产生的生物质(植物)从能量角度看,约为全球每年能源消费的8倍,美国的OTA估计在21世纪生物质能将会使核能黯然失色并最终与煤等常规燃料竞争而成为主要能源。

然而,目前人类仅利用了每年生物质产量的7%,也就是说每年经过光合作用固定下来的生物质能约是全世界能源消耗的10~20倍,利用率仅为1%~3%。

相关文档
最新文档