(完整版)《实变函数与泛函分析基础》试卷及答案要点

合集下载

实变函数与泛函分析报告答案

实变函数与泛函分析报告答案

试卷一 (参考答案及评分标准)一、1. C 2 D 3. B 4. A 5. D二、1.∅ 2、[]0,1; ∅ ; []0,1 3、***()()m T m T E m T CE =⋂+⋂4、充要5、11|()()|n i i i f x f x -=⎧⎫-⎨⎬⎩⎭∑成一有界数集。

三、1.错误……………………………………………………2分例如:设E 是[]0,1上有理点全体,则E 和CE 都在[]0,1中稠密 ………………………..5分2.错误…………………………………………………………2分 例如:设E 是Cantor 集,则0mE =,但E =c , 故其为不可数集……………………….5分3.错误…………………………………………………………2分例如:设E 是[],a b 上的不可测集,[],;(),,;x x E f x x x a b E ∈⎧⎪=⎨-∈-⎪⎩则|()|f x 是[],a b 上的可测函数,但()f x 不是[],a b 上的可测函数………………………………………………………………..5分4.错误…………………………………………………………2分0mE =时,对E 上任意的实函数()f x 都有()0Ef x dx =⎰…5分四、1.()f x 在[]0,1上不是R -可积的,因为()f x 仅在1x =处连续,即不连续点为正测度集………………………………………..3分因为()f x 是有界可测函数,()f x 在[]0,1上是L -可积的…6分 因为()f x 与2x ..a e 相等,进一步,[]120,101()3f x dx x dx ==⎰⎰…8分 2.解:设ln()()cos x n x n f x e x n-+=,则易知当n →∞时,()0n f x → …………………………..2分 又因'2ln 1ln 0t t t t -⎛⎫=< ⎪⎝⎭,(3t ≥),所以当3,0n x ≥≥时,ln()ln()ln 3ln 3(1)33x n n x x n n x x n n x n n ++++=≤≤++………………4分 从而使得ln 3|()|(1)3x n f x x e -≤+…………………………………6分 但是不等式右边的函数,在[)0,+∞上是L 可积的,故有 00lim ()lim ()0n n n n f x dx f x dx ∞∞==⎰⎰…………………………………8分 五、1.设[0,1],E =,\().A E Q B E E Q =⋂=⋂B M B ∴∃⊂Q 是无限集,可数子集 …………………………2分 .A A M M ∴⋃Q :是可数集, ……………………………….3分 (\),(\),()(\),(\),B M B M E A B A M B M A M B M M B M φφ=⋃=⋃=⋃⋃⋃⋂=⋂=Q 且…………..5分 ,.E B B c ∴∴=:………………………………………………6分 2.,{},lim n n n x E E x x x →∞'∀∈=则存在中的互异点列使……….2分 ,()n n x E f x a ∈∴≥Q ………………………………………….3分 ()()lim ()n n f x x f x f x a →∞∴=≥Q 在点连续, x E ∴∈…………………………………………………………5分 E ∴是闭集.…………………………………………………….6分 3.对1ε=,0δ∃〉,使对任意互不相交的有限个(,)(,)i i a b a b ⊂ 当1()n i i i b a δ=-<∑时,有1()()1ni i i f b f a =-<∑………………2分 将[,]a b m 等分,使11ni i i x x δ-=-<∑,对:T ∀101i x z z -=<k i z x <<=L ,有11()()1k i i i f z f z -=-<∑,所以()f x 在1[,]i i x x -上是有界变差函数……………………………….5分所以1()1,i i x x f V -≤从而()b af m V ≤,因此,()f x 是[,]a b 上的有界变差函数…………………………………………………………..6分4、()f x 在E 上可积lim (||)(||)0n mE f n mE f →∞⇒≥==+∞=……2分 据积分的绝对连续性,0,0,,e E me εδδ∀>∃>∀⊂<,有|()|ef x dx ε<⎰………………………………………………….4分 对上述0,,,(||)k n k mE f n δδ>∃∀>≥<,从而|()|n n e n me f x dx ε⋅≤<⎰,即lim 0n n n me ⋅=…………………6分5.,n N ∀∈存在闭集()1,,()2n n n F E m E F f x ⊂-<在nF 连续………………………………………………………………2分令1n k n k F F ∞∞===UI ,则,,,()n n n kx F k x F n k x F f x ∞=∀∈⇒∃∈⋂∀≥∈⇒在F 连续…………………………………………………………4分 又对任意k ,()[()][()]n n n k n k m E F m E F m E F ∞∞==-≤-⋂=⋃-1()2n k n km E F ∞=≤-<∑…………………………………………….6分 故()0,()m E F f x -=在F E ⊂连续…………………………..8分 又()0,m E F -=所以()f x 是E F -上的可测函数,从而是E 上的 可测函数………………………………………………………..10分。

泛函分析基础试卷参考答案

泛函分析基础试卷参考答案
所以T有界,且|| T ||M.(2分)
又对en{0,, 0, 1, 0,, }X, || en||1,
|| T ||sup|| x ||1|| T x |||| T en|||| {0,, 0, an, 0,} || = | an|(5分)
所以|| T ||supn| an|M.
所以|| T ||M.(3分)
所以2A x, y0x, yH
所以A x0xH
所以A0.(5分)
4.证明无穷维赋范线性空间X的共轭空间X '也是无穷空间.
证设{ x1, x2,}是X中线性无关向量,
由Hnha-Banach定理
存在f1X ', f1(x1)0,
存在f2X ', f2(x2)0, f2(x1)0
存在f3X ', f3(x3)0, f3(x1)f3(x2)0
所以(T), (5分)
对[0, 1],定义线性算子T : XX,对xC [0, 1]
(T x) (t) x (t)t[0, 1]
由|| T x ||maxt[ 0, 1]| x (t) |
maxt[ 0, 1]| x (t) |
|| x ||
所以T有界.且
T (AI)(AI) TI
所以(A),
所以(A)[0, 1]. (5分)
令SB1A1B (XX),则
S TB1A1ABI, A B B1A1I (2分)
所以ST1,所以T是正则算子. (1分)
二.以下各题每题15分,共75分
1.设X是度量空间, {xn}是X中Cauchy列,证明若存在{xn}的收敛子列{xn k},则{xn}收敛.
证设xX, xn kx (k)
对任何> 0,存在K, k > K时,

实变函数论与泛函分析课后答案

实变函数论与泛函分析课后答案

第一章习题参考解答3.等式)()(C B A C B A --=⋃-成立的的充要条件是什么?解: 若)()(C B A C B A --=⋃-,则 A C B A C B A C ⊂--=⋃-⊂)()(. 即,A C ⊂.反过来, 假设A C ⊂, 因为B C B ⊂-. 所以, )(C B A B A --⊂-. 故,C B A ⋃-)(⊂)(C B A --.最后证,C B A C B A ⋃-⊂--)()(事实上,)(C B A x --∈∀, 则A x ∈且C B x -∉。

若C x ∈,则C B A x ⋃-∈)(;若C x ∉,则B x ∉,故C B A B A x ⋃-⊂-∈)(. 从而, C B A C B A ⋃-⊂--)()(.A A CB AC B A C =∅-⊂--=⋃-⊂)()(. 即 A C ⊂.反过来,若A C ⊂,则 因为B C B ⊂-所以)(C B A B A --⊂- 又因为A C ⊂,所以)(C B A C --⊂故 )()(C B A C B A --⊂⋃-另一方面,A x C B A x ∈⇒--∈∀)(且C B x -∉,如果C x ∈则 C B A x )(-∈;如果,C x ∉因为C B x -∉,所以B x ∉故B A x -∈. 则 C B A x ⋃-∈)(. 从而C B A C B A ⋃-⊂--)()(于是,)()(C B A C B A --=⋃-4.对于集合A ,定义A 的特征函数为⎩⎨⎧∉∈=Ax Ax x A ,0,1)(χ, 假设 n A A A ,,,21是一集列 ,证明:(i ))(inflim )(inf lim x x nnA nnA χχ=(ii ))(sup lim )(sup lim x x n nA nnA χχ=证明:(i ))(inf lim n nm N n n nA A x ≥∈⋂⋃=∈∀,N ∈∃0n ,0n m ≥∀时,m A x ∈.所以1)(=x m A χ,所以1)(inf=≥x mA n m χ故1)(inf sup )(inf lim ==≥∈x x mnA nm N b A nχχN n A x n n∈∀⇒∉∀inf lim ,有n k A x n n nm ≥∃⇒⋂∉≥有0)(inf0=⇒=⇒∉≥x A x mnk m A nm A k χχ,故0)(i n f s u p =≥∈x mA nm N b χ ,即)(in f l i m x nA nχ=0 ,从而)(inflim )(inf lim x x nnA nnA χχ=5.设}{n A 为集列,11A B =,)1(11>⋃-=-=i A A B j i j i i 证明(i )}{n B 互相正交(ii )i ni i ni B A N n 11,===∈∀证明:(i )m n N m n ≠∈∀,,;不妨设n>m ,因为m n i n i n n A A A A B -⊂-=-=11,又因为m m A B ⊂,所以m n m n n B A A A B -⊂-⊂,故 ∅=m n B B ,从而 {∞=1}n n B 相互正交.(ii )因为)1(n i i ≤≤∀,有i i A B ⊂,所以i n i i n i A B 11==⋃⊂⋃,现在来证:i ni i n i B A 11==⋃⊂⋃当n=1时,11B A =;当1≥n 时,有:i ni i ni B A 11===则)()()()()(11111111111i ni n i n i i n i n i n i n i n i i n i B B B A A A A A A =+==++=+=+=-=-==事实上,i ni A x 1=⋃∈∀,则)1(n i i ≤≤∃使得i A x ∈,令}{ni A x i i i ≤≤∈=1|m in 0且则 i ni i i i i i B B A A x 111000=-=⊂=-∈ ,其中,当10=i 时,∅=-=i i i A 110 ,从而, i ni i n i B A 11===6.设)(x f 是定义于E 上的实函数,a 为常数,证明: (i )})(|{a x f x E >=}1)({1n a x f n +≥∞=(ii)})(|{a x f x E ≥=}1)({1na x f n ->∞=证明:(i )})(|{a x f x E x >∈∀E x ∈⇒且a x f >)(}1)(|{1)(,na x f x E x E x a n a x f N n +≥∈⇒∈>+≥∈∃⇒且使得 ∈⇒x ⊂>⇒+≥∞=})(|{}1)(|{1a x f x E n a x f x E n }1)(|{1na x f x E n +≥∞=反过来,{N n n a x f x x E x n ∈∃+≥∈∀∞=},1)(|{1 ,使}1)(|{n a x f x E x +≥∈即E x a na x f ∈>+≥且1)( 故})(|{a x f x E x >∈ 所以 })(|{}1)(|{1a x f x E na x f x E n >⊂+≥⋃∞= 故}1)(|{})(|{1n a x f x E a x f x E n +≥>∞=7.设)}({x f n 是E 上的实函数列,具有极限)(x f ,证明对任意常数a 都有:}1)(|{inf lim }1)(|{inf lim })(|{11k a x f x E k a x f x E a x f x E n n k n n k +<=+≤=≤∞=∞=证明:N ∈∀≤∈∀k a x f x E x },)(|{,即k a a x f 1)(+≤≤,且E x ∈ 因为N n x f x f n n ∈∃=∞→,)()(lim ,使n m ≥∀,有ka x f n 1)(+≤,故,)}(1)(|{n m k a x f x E x m ≥∀+≤∈ 所以∈x }1)(|{ka x f x E m n m +≤≥ }1)(|{k a x f x E x m n m N n +≤∈≥∈ = }1)(|{inf lim ka x f x E m n +≤,由k 的任意性:}1)(|{inf lim 1k a x f x E x n n k +≤∈∞= ,反过来,对于}1)(|{inf lim 1ka x f x E x n n k +≤∈∀∞= ,N k ∈∀,有 }1)(|{inf lim k a x f x E x m n +≤∈= }1)(|{ka x f x E m n m N n +≤≥∈ ,即n m N n ≥∀∈∃,时,有:k a x f m 1)(+≤且E x ∈,所以,ka x f x f m m 1)()(lim +≤≤且E x ∈.∞→k 又令,故 E x a x f ∈≤且)( 从而})(|{a x f x E x ≤∈故 })(|{a x f x E ≤=}1)(|{inf lim 1ka x f x E n n k +≤∞=8. 设)}({x f n 是区间(a ,b )上的单调递增的序列,即≤≤≤≤)()()(21x f x f x f n若)(x f n 有极限函数)(x f ,证明:R a ∈∀,})({})({1a x f E a x f E n n >⋃=>∞=证明: })({a x f E x >∈∀,即:E x ∈且a x f >)(,因为)()(lim x f x f n n =∞→所以00,n n N n ≥∀∈∃,恒有:E )(∈>x a x f n 且,从而,})({0a x f E x n >∈})({1a x f E n n >⊂∞=反过来,N n a x f E x n n ∈∃>∈∀∞=01},)({ ,使})({0a x f E x n >∈,故0n n ≥∀,因此,a x f x f x f n n n >≥=∞→)()()(lim 0且E x ∈,即,})({a x f E x >∈,从而,})({})({1a x f E a x f E n n >=>∞=10.证明:3R 中坐标为有理数的点是不可数的。

实变函数与泛函分析基础 习题答案

实变函数与泛函分析基础 习题答案

n=0
n=0
xn+p ln
1 x

0,
1 xp 1

0
1 − x ln x dx = −
n=0
1 0
xn+p ln xdx
=
∞ n=0
(n +
1 p+
1)2
=
∞ n=1
1 (n + p)2 .
ßÎ 15. { fn} E
¨
¹ Ö lim
n→∞
fn(x)
=
f (x)a.e.
E,
¿ f (x) Î ¡ Æà ¶¸²³
E −
ǯ± ¡
ÝÌ [0, 1] ÙÄß ℄Ï ¨
¤¤ f
(x)
=
1, 0,
x x
[0,1] [0,1]
· ¨, ¨.
´
¨ ÙÄ n, [0,1]
¿ max 1≤i≤n
mEin
=
1 n

0(n

∞).
¾
Ó Dn = {Ein},
Ein =
i−1 n
,
i n
, i = 1, 2, · · · , n − 1, Enn =
0.
¨ª
mE[| f |= ∞] = 0.
1
¶¹ | f(x) | Î ¶ ¾ Ê´
´¹Ü° ¾ Ö ǫ > 0, δ > 0, e ⊂ E me < δ
´ ¾ ¡ δ > 0,
N,
n>N
| f (x) | dx < ǫ.
e
men < δ,
n · men ≤ | f (x) | dx < ǫ.

实变函数与泛函分析概要答案

实变函数与泛函分析概要答案

实变函数与泛函分析概要答案以下是十道实变函数与泛函分析的概要试题及答案:1.试题:定义实变函数及其特点。

答案:实变函数是以实数为自变量的函数,其特点是定义域和值域均为实数集合,并且满足函数的基本运算法则。

2.试题:定义实变函数的连续性。

答案:实变函数在其中一点连续,意味着在这一点的函数值与自变量趋近这一点时的函数值趋近于相同的值。

3.试题:什么是函数的一致连续性?答案:函数的一致连续性是指函数在整个定义域上均满足连续性的性质,即对于任意给定的正数ε,存在对应的正数δ,使得函数在任意两个自变量间的距离小于δ时,函数值的差的绝对值小于ε。

4.试题:定义函数的导数。

答案:函数在其中一点的导数表示了函数在这一点的变化率,即函数值的变化对应于自变量的变化。

5.试题:什么是函数的凸性?答案:函数的凸性是指函数的导函数是递增的性质,即函数的曲线在任意两点之间的斜率是递增的。

6.试题:定义泛函。

答案:泛函是一类以函数为自变量的函数,其值为实数或复数。

泛函可以看作函数的函数,用来描述函数集合的性质。

7.试题:什么是泛函空间?答案:泛函空间是指一组满足一定运算性质的泛函所构成的向量空间。

8.试题:定义泛函的线性性质。

答案:泛函的线性性质指泛函满足线性运算法则,即对于任意给定的两个函数f和g以及标量α和β,有泛函T(αf+βg)=αT(f)+βT(g)。

9.试题:什么是极小值和极大值?答案:函数在其中一点的极小值是指在这一点的函数值小于或等于附近的其他函数值,而极大值则相反。

10.试题:定义泛函的变分。

答案:泛函的变分是指泛函在给定函数上的微小变化,用来研究泛函的极值性质。

实变函数与泛函分析基础第4章习题答案

实变函数与泛函分析基础第4章习题答案

δ > 0,
Í «Þ ­» ¡ m(E − Eδ) < δ, f(x) E a.e.
Eδ ⊂ E
¨ Á ¡Í E)
<
1 n
.
Å∞ E0 = E − En, n=1
¦ « Å ∞
n, mE0 = m(E −
En)

m(E
− En)
<
1 n
.
n → ∞,
n=1


ÙE
[ lim
n→∞
fn
>
lim fn]
n→∞
¼ 6, lim fn(x) n→∞
Ò ¬¯ Â Ò ¯ ¡¨ fn
lim
n→∞
fn(x)
E
E
[ lim
n→∞
fn
=
−∞]
­» ¡Ý E[ lim fn = +∞]
Â Ò ¯ n→∞
fn
−∞
Â Ò ¯ fn(x) E
E

F [ lim
n→∞
fn
=
+∞]

{fn(x)}
E
¬¤­ ­ ¥ ǫ0 > 0,
mE[| fnk − f |≥ η0] > ǫ0 > 0.
(1)
E
» Ã ¬ ¾ {fnk}
­ ¨ a.e.
f,
mE < +∞,
­ f(x) ª ¦¶
» á ℄« Æ» à ǰ¡ E fnkj ⇒ f(x),
{fnkj } (1)
¾ 13. mE < ∞, ­ ¼ f(x) g(x), È¢
¬ ­ ¡¨

(完整)《实变函数与泛函分析基础》试卷及答案,推荐文档

(完整)《实变函数与泛函分析基础》试卷及答案,推荐文档

试卷一:一、单项选择题(3分×5=15分)1、1、下列各式正确的是( )(A ); (B );1lim n k n n k n A A ∞∞→∞===⋃⋂1lim n k n k n n A A ∞∞==→∞=⋂⋃(C ); (D );1lim n k n n k n A A ∞∞→∞===⋂⋃1lim n k n k n n A A ∞∞==→∞=⋂⋂2、设P 为Cantor 集,则下列各式不成立的是( )(A ) c (B) (C) (D) =P 0mP =P P ='PP = 3、下列说法不正确的是( )(A) 凡外侧度为零的集合都可测(B )可测集的任何子集都可测(C) 开集和闭集都是波雷耳集 (D )波雷耳集都可测4、设是上的有限的可测函数列,则下面不成立的是( ){}()n f x E ..a e (A )若, 则 (B) 是可测函数()()n f x f x ⇒()()n f x f x →{}sup ()n nf x (C )是可测函数;(D )若,则可测{}inf ()n n f x ()()n f x f x ⇒()f x 5、设f(x)是上有界变差函数,则下面不成立的是( )],[b a (A) 在上有界 (B) 在上几乎处处存在导数)(x f ],[b a )(x f ],[b a (C )在上L 可积 (D) )('x f ],[b a ⎰-=ba a fb f dx x f )()()('二. 填空题(3分×5=15分)1、_________()(())s s C A C B A A B ⋃⋂--=2、设是上有理点全体,则=______,=______,=______.E []0,1'E o E E 3、设是中点集,如果对任一点集都有E n R T _________________________________,则称是可测的E L 得 分得 分4、可测的________条件是它可以表成一列简单函数的极限函数. )(x f (填“充分”,“必要”,“充要”)5、设为上的有限函数,如果对于的一切分划,使()f x [],a b [],a b _____________________________________________________,则称为 ()f x 上的有界变差函数。

实变函数与泛函分析基础

实变函数与泛函分析基础

实变函数与泛函分析知识点与模拟试卷(含答案)实变函数与泛函分析概要第一章集合基本要求:1、理解集合的包含、子集、相等的概念和包含的性质。

2、掌握集合的并集、交集、差集、余集的概念及其运算性质。

3、会求已知集合的并、交、差、余集。

4、了解对等的概念及性质。

5、掌握可数集合的概念和性质。

6、会判断己知集合是否是可数集。

7、理解基数、不可数集合、连续基数的概念。

8、了解半序集和Zorn引理。

第二章点集基本要求:1、理解n维欧氏空间中的邻域、区间、开区间、闭区间、体积的概念。

2、掌握内点、聚点的概念、理解外点、界点、孤立点的概念。

掌握聚点的性质。

3、掌握开核、导集、闭区间的概念及其性质。

4、会求己知集合的开集和导集。

5、掌握开核、闭集、完备集的概念及其性质,掌握一批例子。

6、会判断一个集合是非是开(闭)集,完备集。

7、了解Peano曲线概念。

主要知识点:一、基本结论:1、聚点性质§2 中T1聚点原则:P0是E的聚点⇔ P0的任一邻域内,至少含有一个属于E而异于P0的点⇔存在E中互异的点列{Pn},使Pn→P0 (n→∞)2、开集、导集、闭集的性质§2 中T2、T3T2:设A⊂B,则A⊂B,·A⊂·B,-A⊂-B。

T3:(A∪B)′=A′∪B′.3、开(闭)集性质(§3中T1、2、3、4、5)T1:对任何E⊂Rⁿ,Ė是开集,E´和―E都是闭集。

(Ė称为开核,―E称为闭包的理由也在于此)T2:(开集与闭集的对偶性)设E是开集,则CE是闭集;设E是闭集,则CE是开集。

T3:任意多个开集之和仍是开集,有限多个开集之交仍是开集。

T4:任意多个闭集之交仍是闭集,有限个闭集之和仍是闭集。

T5:(Heine-Borel有限覆盖定理)设F是一个有界闭集,ℳ是一开集族{Ui}iєI它覆盖了F(即Fс∪iєIUi),则ℳ中一定存在有限多个开集U1,U2…Um,它们同样覆盖了F(即F⊂m∪ Ui)(iєI)4、开(闭)集类、完备集类。

实变函数与泛函分析基础第四章习题答案

实变函数与泛函分析基础第四章习题答案

f (x)
¡∞

En = E[fn > g]. mE0 = 0, mEn = 0.m( En) ≤ mEn = 0.
n=0
n=0

E − En fni (x) ≤ g(x),fni (x)
¯À¡n=0 f (x) ≤ g(x) E
¾
 ҥ f(x),
f (x) = lim fni (x) ≤ g(x)
f (x)a.e.
mE[| f |= ∞] = 0.
¬ Í ¼ ∞ E[| f |≥ n] = E[| f |= ∞], E[| f |≥ n] ⊃ E[| f |≥ n + 1] E[| f |≥ 1] ⊂ E, mE[| Ò¥ n=0 f |≥ 1] ≤ mE < ∞,
mE[| f |= ∞] = lim mE[| f |≥ n] = 0.
¿§ £ ­ È E ”

f (x),
{fn}a.e.
³ ¨Ù ¿§ £ ­ Ò¥ ¦ ­ fn(x) E ”

± £ ­ ¬  Eδ ⊂ E, m(E − Eδ) < δ fn Eδ
Õ ¦ ¨Ù Â Ò¥ Å δ, E0 ⊂ E − Eδ(
Eδ fn
Ò¥ ­ ¬©«« Ö mE0 = 0.
k→∞
n
E0 = E2[sup | fn |≤ k0], c = k0. E0
n
k0
Å mE2 − mE2[sup | fn |≤ k0] < ǫ.
¦ ±n n, | fn(x) |≤ c,
m(E − E0) = m(E − E2) + m(E2 − E0) < ǫ.
6. f (x) (−∞, ∞)

实变函数与泛函分析基础第四章习题答案

实变函数与泛函分析基础第四章习题答案

k→∞
n
E0 = E2[sup | fn |≤ k0], c = k0. E0
n
k0
Å mE2 − mE2[sup | fn |≤ k0] < ǫ.
¦ ±n n, | fn(x) |≤ c,
m(E − E0) = m(E − E2) + m(E2 − E0) < ǫ.
6. f (x) (−∞, ∞)
¯À¡

E − En
n=0
Í ¾ 10. « ­ fn(x)
E fn(x) ⇒ f (x), f (x).
fn(x) ≤ fn+1(x)
¯À n = 1, 2, · · · ,
¾
³ ¬¨Ù ¡ ¨ fni(x)
fn(x) ⇒ f (x), f (x)
{fni} ⊂ {fn}, fni (x) E a.e. En = E[fn < fn+1], mE0 = 0, mEn = 0.
n=1
» Ã ¤­ 9.
{fn} E
¾ ¯À¡ f(x) ≤ g(x) E
­ Í ­ f , fn(x) ≤ g(x)a.e. E,n = 1, 2, · · · .
³ ¨Ù fn(x) ⇒ f(x),
 {fni } ⊂ {fn}, fni(x) E a.e.
f (x). E0
¬ Â fni(x)
4. E [0, 1]
Ù ¢ E[ lim fn n→∞
=
+∞]

E[ lim
n→∞
fn
=
−∞]

E[ lim
n→∞
fn
>
lim
n→∞
fn]

实变函数论及泛函分析课后答案

实变函数论及泛函分析课后答案

第一章习题参考解答3.等式)()(C B A C B A --=⋃-成立的的充要条件是什么?解: 若)()(C B A C B A --=⋃-,则 A C B A C B A C ⊂--=⋃-⊂)()(. 即,A C ⊂.反过来, 假设A C ⊂, 因为B C B ⊂-. 所以, )(C B A B A --⊂-. 故,C B A ⋃-)(⊂)(C B A --.最后证,C B A C B A ⋃-⊂--)()(事实上,)(C B A x --∈∀, 则A x ∈且C B x -∉。

若C x ∈,则C B A x ⋃-∈)(;若C x ∉,则B x ∉,故C B A B A x ⋃-⊂-∈)(. 从而, C B A C B A ⋃-⊂--)()(.A A CB AC B A C =∅-⊂--=⋃-⊂)()(. 即 A C ⊂.反过来,若A C ⊂,则 因为B C B ⊂-所以)(C B A B A --⊂- 又因为A C ⊂,所以)(C B A C --⊂故 )()(C B A C B A --⊂⋃-另一方面,A x C B A x ∈⇒--∈∀)(且C B x -∉,如果C x ∈则 C B A x )(-∈;如果,C x ∉因为C B x -∉,所以B x ∉故B A x -∈. 则 C B A x ⋃-∈)(. 从而C B A C B A ⋃-⊂--)()(于是,)()(C B A C B A --=⋃-4.对于集合A ,定义A 的特征函数为⎩⎨⎧∉∈=A x A x x A ,0,1)(χ, 假设 n A A A ,,,21是一集列 ,证明:(i ))(inflim )(inf lim x x nnA nnA χχ=(ii ))(sup lim )(sup lim x x n nA nnA χχ=证明:(i ))(inf lim n nm N n n nA A x ≥∈⋂⋃=∈∀,N ∈∃0n ,0n m ≥∀时,m A x ∈.所以1)(=x m A χ,所以1)(inf=≥x mA n m χ故1)(inf sup )(inf lim ==≥∈x x mnA nm N b A nχχN n A x n n∈∀⇒∉∀inf lim ,有n k A x n n nm ≥∃⇒⋂∉≥有0)(inf0=⇒=⇒∉≥x A x mnk m A nm A k χχ,故0)(i n f s u p =≥∈x mA nm N b χ ,即)(in f l i m x nA nχ=0 ,从而)(inflim )(inf lim x x nnA nnA χχ=5.设}{n A 为集列,11A B =,)1(11>⋃-=-=i A A B j i j i i 证明(i )}{n B 互相正交(ii )i ni i ni B A N n 11,===∈∀证明:(i )m n N m n ≠∈∀,,;不妨设n>m ,因为m n i n i n n A A A A B -⊂-=-=11,又因为m m A B ⊂,所以m n m n n B A A A B -⊂-⊂,故 ∅=m n B B ,从而 {∞=1}n n B 相互正交.(ii )因为)1(n i i ≤≤∀,有i i A B ⊂,所以i n i i n i A B 11==⋃⊂⋃,现在来证:i ni i n i B A 11==⋃⊂⋃当n=1时,11B A =;当1≥n 时,有:i ni i ni B A 11===则)()()()()(11111111111i ni n i n i i n i n i n i n i n i i n i B B B A A A A A A =+==++=+=+=-=-==事实上,i ni A x 1=⋃∈∀,则)1(n i i ≤≤∃使得i A x ∈,令}{ni A x i i i ≤≤∈=1|m in 0且则 i ni i i i i i B B A A x 111000=-=⊂=-∈ ,其中,当10=i 时,∅=-=i i i A 110 ,从而, i ni i n i B A 11===6.设)(x f 是定义于E 上的实函数,a 为常数,证明: (i )})(|{a x f x E >=}1)({1n a x f n +≥∞=(ii)})(|{a x f x E ≥=}1)({1na x f n ->∞=证明:(i )})(|{a x f x E x >∈∀E x ∈⇒且a x f >)(}1)(|{1)(,na x f x E x E x a n a x f N n +≥∈⇒∈>+≥∈∃⇒且使得 ∈⇒x ⊂>⇒+≥∞=})(|{}1)(|{1a x f x E n a x f x E n }1)(|{1n a x f x E n +≥∞=反过来,{N n n a x f x x E x n ∈∃+≥∈∀∞=},1)(|{1,使}1)(|{na x f x E x +≥∈即E x a na x f ∈>+≥且1)( 故})(|{a x f x E x >∈ 所以 })(|{}1)(|{1a x f x E na x f x E n >⊂+≥⋃∞= 故}1)(|{})(|{1n a x f x E a x f x E n +≥>∞=7.设)}({x f n 是E 上的实函数列,具有极限)(x f ,证明对任意常数a 都有:}1)(|{inf lim }1)(|{inf lim })(|{11k a x f x E k a x f x E a x f x E n n k n n k +<=+≤=≤∞=∞=证明:N ∈∀≤∈∀k a x f x E x },)(|{,即k a a x f 1)(+≤≤,且E x ∈ 因为N n x f x f n n ∈∃=∞→,)()(lim ,使n m ≥∀,有ka x f n 1)(+≤,故,)}(1)(|{n m k a x f x E x m ≥∀+≤∈ 所以∈x }1)(|{ka x f x E m n m +≤≥ }1)(|{k a x f x E x m n m N n +≤∈≥∈ = }1)(|{inf lim ka x f x E m n +≤,由k 的任意性:}1)(|{inf lim 1k a x f x E x n n k +≤∈∞= ,反过来,对于}1)(|{inf lim 1ka x f x E x n n k +≤∈∀∞= ,N k ∈∀,有 }1)(|{inf lim k a x f x E x m n +≤∈= }1)(|{ka x f x E m n m N n +≤≥∈ ,即n m N n ≥∀∈∃,时,有:k a x f m 1)(+≤且E x ∈,所以,ka x f x f m m 1)()(lim +≤≤且E x ∈.∞→k 又令,故 E x a x f ∈≤且)( 从而})(|{a x f x E x ≤∈故 })(|{a x f x E ≤=}1)(|{inf lim 1ka x f x E n n k +≤∞=8. 设)}({x f n 是区间(a ,b )上的单调递增的序列,即≤≤≤≤)()()(21x f x f x f n若)(x f n 有极限函数)(x f ,证明:R a ∈∀,})({})({1a x f E a x f E n n >⋃=>∞=证明: })({a x f E x >∈∀,即:E x ∈且a x f >)(,因为)()(lim x f x f n n =∞→所以00,n n N n ≥∀∈∃,恒有:E )(∈>x a x f n 且,从而,})({0a x f E x n >∈})({1a x f E n n >⊂∞=反过来,N n a x f E x n n ∈∃>∈∀∞=01},)({ ,使})({0a x f E x n >∈,故0n n ≥∀,因此,a x f x f x f n n n >≥=∞→)()()(lim 0且E x ∈,即,})({a x f E x >∈,从而,})({})({1a x f E a x f E n n >=>∞=10.证明:3R 中坐标为有理数的点是不可数的。

实变函数与泛函分析课后习题答案

实变函数与泛函分析课后习题答案

实变函数与泛函分析课后习题答案。

1.设f(x) = x^2 - 2x + 1,求f(x)的最小值。

解:要求f(x)的最小值,可以通过求导来找到极小值点。

首先对f(x)求导得到f'(x) = 2x - 2。

令f'(x) = 0,可以得到2x - 2 = 0,解得x = 1。

再对f(x)求二阶导数得到f''(x) = 2,由于f''(x)大于0,所以x = 1是f(x)的极小值点。

将x = 1代入f(x)得到f(1) = 1^2 - 2(1) + 1 = 0。

所以f(x)的最小值为0。

2.设f(x) = e^x,求f(x)的泰勒级数展开式。

解:泰勒级数展开式可以表示函数在某一点附近的近似值。

对于函数f(x) = e^x,可以通过求导得到其各阶导数。

首先求f(x)的一阶导数:f'(x) = e^x。

再求f(x)的二阶导数:f''(x) = e^x。

依次求得f(x)的各阶导数为:f'(x) = e^x,f''(x) = e^x,f'''(x) =e^x。

通过观察可以发现,f(x)的各阶导数都等于e^x,所以f(x)的泰勒级数展开式为:f(x) = f(0) + f'(0)x + f''(0)(x^2/2!) + f'''(0)(x^3/3!) + 。

代入f(x) = e^x的导数值可以得到:f(x) = e^0 + e^0x + e^0(x^2/2!) + e^0(x^3/3!) + 。

化简得到:f(x) = 1 + x + x^2/2! + x^3/3! + 。

所以f(x)的泰勒级数展开式为1 + x + x^2/2! + x^3/3! + 。

3.证明函数f(x) = x^2在区间[-1, 1]上是连续的。

解:要证明函数f(x) = x^2在区间[-1, 1]上是连续的,需要证明对于任意给定的ε > 0,存在δ > 0,使得当|x - x0| < δ时,|f(x) - f(x0)| < ε。

实变函数试题库参考答案

实变函数试题库参考答案

《实变函数》试题库及参考答案(完整版)选择题1,下列对象不能组成集合的是:( )A 、全部自然数B 、0,1 之间的实数全部C 、[0, 1]上的实函数全部D 、全部大个子二、下列对象不能组成集合的是:( )A 、{全部实数}B 、{全部整数}C 、{全部小个子}D 、{x :x>1}3、下列对象不能组成集合的是:( )A 、{全部实数}B 、{全部整数}C 、{x :x>1}D 、{全部胖子}4、下列对象不能组成集合的是:( )A 、{全部实数}B 、{全部整数}C 、{x :x>1}D 、{全部瘦子}五、下列对象不能组成集合的是:( )A 、{全部小孩子}B 、{全部整数}C 、{x :x>1}D 、{全部实数}六、下列对象不能组成集合的是:( )A 、{全部实数}B 、{全部大人}C 、{x :x>1}D 、{全部整数}7、设}1:{ααα≤<-=x x A , I 为全部实数, 则ααA I∈⋃= ( ) A 、(-1, 1) B 、(-1, 0) C 、(-∞, +∞) D 、(1, +∞) 八、设}1111:{ix i x A i -≤≤+-=, N i ∈, 则i i A ∞=⋃1= ( )A 、(-1, 1)B 、(-1, 0)C 、[0, 1]D 、[-1, 1] 九、设}110:{ix x A i +≤≤=, N i ∈, 则i i A ∞=⋂1= ( ) A 、(0, 1) B 、[0, 1] C 、[0, 1] D 、(0, +∞)10、设}1211:{ix i x A i +<<-=, N i ∈, 则i i A ∞=⋃1= ( ) A 、[1, 2] B 、(1, 2) C 、 (0, 3) D 、(1, 2)1一、设}23:{+≤≤=i x i x A i , N i ∈, 则i i A ∞=⋂1= ( ) A 、(-1, 1) B 、[0, 1] C 、Φ D 、{0}1二、设}11:{ix i x A i <<-=, N i ∈, 则i i A ∞=⋂1= ( ) A 、(-1, 1) B 、[0, 1] C 、Φ D 、{0}13、设]1212,0[12--=-n A n , ]211,0[2nA n +=, N n ∈,则=∞→n n A lim ( )A 、[0, 2]B 、[0, 2]C 、[0, 1]D 、[0, 1]14、设]1212,0[12--=-n A n , ]211,0[2nA n +=, N n ∈, 则=∞→n n A lim ( ) A 、[0, 2]B 、[0, 2]C 、[0, 1]D 、[0, 1] 1五、设),0(n A n =, N n ∈, 则=∞→n n A lim ( )A 、ΦB 、[0, n]C 、RD 、(0, ∞)1六、设)1,0(nA n =, N n ∈, 则=∞→n n A lim ( )A 、(0, 1)B 、(0, n1) C 、{0} D 、Φ 17、设)1,0(12nA n =-, ),0(2n A n =, N n ∈, 则=∞→n n A lim ( )A 、ΦB 、(0, n1) C 、(0, n) D 、(0, ∞) 1八、设)1,0(12nA n =-, ),0(2n A n =, N n ∈, 则=∞→n n A lim ( ) A 、ΦB 、(0, n1) C 、(0, n) D 、(0, ∞) 1九、设A 、B 、C 是三个集合, 则A-(A-B)= ( )A 、B B 、AC 、A ⋂BD 、A ⋃B20、设A 、B 、C 是三个集合, 则A-(B ⋃C)= ( )A 、(A-B)⋂(A-C)B 、(A-B)⋃(A-C)C 、A ⋂BD 、A ⋂C 2一、设A 、B 、C 是三个集合, 则A-(B ⋂C)= ( )A 、(A-B)⋂(A-C)B 、(A-B)⋃(A-C)C 、A ⋂BD 、A ⋂C 2二、设A 、B 、S 是三个集合, 且S A ⊂, S B ⊂, 则)(B A C s -= ( )A 、BC A C s s ⋃ B 、B C A C s s ⋂ C 、B A C s ⋃D 、B A C s ⋂23、设A 、B 、S 是三个集合, 且S A ⊂, S B ⊂, 则)(B A C s ⋃= ( )A 、BC A C s s ⋃ B 、B C A C s s ⋂ C 、B A C s ⋃D 、B C A s ⋃24、设A 、B 、C 是三个集合, 则A-(B-C) = ( )A 、 A ⋃C-B B 、 A-B-C C 、 (A-B)⋃(A ⋂C)D 、 C-(B-A)2五、集合E 的全部内点所成的集合称为E 的 ( )A 、开核B 、边界C 、导集D 、闭包2六、集合E 的全部聚点所成的集合称为E 的 ( )A 、开核B 、边界C 、导集D 、闭包27、集合E 的全部边界点和内点所成的集合是E 的 ( )A 、开核B 、边界C 、导集D 、闭包2八、E-E '所成的集合是 ( )A 、开核B 、边界C 、外点D 、{E 的全部孤立点}2九、E 的全部边界点所成的集合称为E 的 ( )A 、开核B 、边界C 、导集D 、闭包30、设点P 是集合E 的边界点, 则 ( )A 、P 是E 的聚点B 、P 是E 的孤立点C 、P 是E 的内点D 、P 是CE 的边界点3一、设)3,2()1,0(⋃=G , 则下列那一个是G 的组成区间: ( )A 、(0, 1)B 、(21, 1) C 、[0, 1] D 、(0, 2) 3二、设)1,0(1=G , )2,21()0,1(2⋃-=G 21G G G ⋃=, 则下列那一个是G 的组成区间: ( )A 、(0, 1)B 、(0, 2)C 、(-1, 21) D 、(-1, 2) 33、设)4,0(1=G , )4,3()1,0(2⋃=G 21G G G ⋃=, 则下列那一个是G 的组成区间: ( )A 、(0, 1)B 、(3, 4)C 、(0, 4)D 、 (1, 4)34、设)1,0(1=G , )4,3()2,1(2⋃=G 21G G G ⋃=, 则下列那一个是G 的组成区间: ( )A 、(0, 1)B 、(0, 3)C 、(0, 4)D 、(1, 4)3五、设)2,0(1=G , )4,3()2,1(2⋃=G 21G G G ⋃=, 则下列那一个是G 的组成区间: ( )A 、(0, 1)B 、(0, 2)C 、(1, 2)D 、(1, 4)3六、设)2,1()1,0(1⋃=G , )23,21()0,1(2⋃-=G 21G G G ⋃=, 则下列那一个是G 的组成区间: ( )A 、(21, 23) B 、(1, 2) C 、(0, 1) D 、(-1, 0) 37、若B A ⊂ ,则下列命题错误的是: ( )A 、B A ⊂ B 、A '⊂B 'C 、B A ∂⊂∂D 、B A ⊂3八、若C B A =⋃, 则下列命题正确的是:( )A 、 CB A =⋃ B 、 A '⋃B '=C ' C 、C B A ∂=∂⋃∂D 、{A 的孤立点}⋃{B 的孤立点}={C 的孤立点}3九、若C B A =⋂, 则下列命题错误的是:( )A 、 CB A =⋂ B 、C '⊂ A '⋂B ' C 、C B A =⋂D 、{A 的孤立点}⋂{B 的孤立点}={C 的孤立点}40、设CA 是A 的余集,则下列命题正确的是:( )A 、 )()(CA A C =B 、)(CA A ∂=∂C 、C(A ')=(CA )'D 、CA A C =)( 4一、设A -B=C, 则下列命题正确的是:( )A 、CB A ∂=∂-∂ B 、C B A =- C 、A '-B '=C 'D 、{A 的孤立点}-{B 的孤立点}={C 的孤立点}4二、 (2-4-1-2) 下列命题错误的是:( )A 、A 是闭集B 、A '是闭集C 、A ∂是闭集D 、 A 是闭集43、若A 是闭集,B 是开集,则A -B 是:( )A 、开集B 、闭集C 、既非开集又非闭集D 、无法判断44、若A 是开集,B 是闭集,则A -B 是:( )A 、开集B 、闭集C 、既非开集又非闭集D 、无法判断 4五、若}{n A 是一开集列,则n n A ∞=⋃1是:( ) A 、开集 B 、闭集 C 、既非开集又非闭集 D 、无法判断 4六、若}{n A 是一开集列,则n n A ∞=⋂1是:( ) A 、开集 B 、闭集 C 、既非开集又非闭集 D 、无法判断47、若}{n A 是一闭集列,则n n A ∞=⋃1是:( ) A 、开集 B 、闭集 C 、既非开集又非闭集 D 、无法判断 4八、若}{n A 是一闭集列,则n n A ∞=⋂1是:( ) A 、开集 B 、闭集 C 、既非开集又非闭集 D 、无法判断 4九、若]1,0[ Q E =,则=mE ( )A 、0B 、1C 、2D 、350、下述结论( )正确.A 、E m E m **>B 、E m E m *≥*C 、E m E m **<D 、E m E m **≤ 5一、下列说法正确的是( )A 、x x f 1)(=在(0,1)有限B 、x x f 1)(=在)1,21(无界C 、⎪⎩⎨=∞+=0,)(x x x f ,在[0,1]有限 D 、⎪⎩⎪⎨⎧=∈=0,1]1,0(,1)(x x x x f ,在[0,1]有界 5二、函数列n n x x f =)(在[0,1]上( )于0.A 、a ,e 一致收敛B 、收敛C 、一致收敛D 、大体上一致收敛53、设E 是[0,1]中的不可测集,⎩⎨⎧-∈-∈=E x E x x f ]1,0[,1,1)( 则下列函数在[0,1]上可测的是( ).A 、)(x fB 、)(x f +C 、|)(|x fD 、)(x f -54、若)(x f 可测,则它必是( ).A 、持续函数B 、单调函数C 、简单函数D 、简单函数列的极限 5五、若QE -=]1,0[,则=mE ( )A 、0B 、1C 、2D 、35六、下列说法不正确的是( )A 、E 的测度有限,则E 必有界B 、E 的测度无穷,则E 必无界C 、有界点集的测度有限D 、n R 的测度无穷57、(4-4-2-1)下述论断正确的是( )A 、x x f tg )(=在)4,0(π无界 B 、⎪⎩⎪⎨⎧=∞+∈=2,)2,0[,tg )(ππx x x x f 在]2,0[π有限C 、⎪⎩⎪⎨==2,12)(πx x f 在]2,0[π有界 D 、x x f tg )(=在)2,0(π有限5八、函数列n n x x f )21()(=在[0, 2]上( )于0. A 、收敛 B 、一致收敛 C 、大体上一致收敛 D 、a.e.一致收敛5九、设⎩⎨⎧-∈-∈=Ex x E x x x f ]1,0[,,)(其中E 是[0,1]的不可测集,则下列函数在[0, 1]可测的是( ).A 、|)(|x fB 、)(x fC 、)(x f +D 、)(x f -60、一个函数在其概念域中的( )点处都是持续的.A 、边界点B 、内点C 、聚点D 、孤立点.6一、0P 是康托尔(cantor )集,则=0mP ( )A 、0B 、1C 、2D 、36二、设A 是B 的真子集,则( )A 、B m A m **< B 、B m A m **≤C 、B m A m **>D 、B m A m **≥63、下列说法正确的是( )A 、x x f ctg )(=在)2,4(ππ无界 B 、⎪⎩⎪⎨⎧=∞+∈=0,]2,0(ctg )(x x x x f π在]2,0[π有限 C 、⎪⎩⎪⎨⎧=∈=0,1]2,0(ctg )(x x x x f π在]2,0[π有界 D 、x x f ctg )(=在)2,0(π有限64、函数列n n n x x f 2)(=在]21,0[上( )于0. A 、收敛 B 、一致收敛、 C 、大体上一致收敛 D 、a. e.一致收敛6五、设E 是[0, 1]上的不可测集,⎩⎨⎧-∈-∈=Ex xE x x x f ]1,0[)(22则下列函数在[0, 1]可测的是( ). A 、)(x f B 、)(x f + C 、|)(|x f D 、)(x f -6六、设E 为可测集,则下列结论中正确的是( )A 、若)}({x f n 在E 上a , e 收敛于一个a , e 有限的可测函数)(x f ,则)(x f n 一致收敛于)(x fB 、若)}({x f n 在E 上a , e 收敛于一个a , e 有限的可测函数)(x f ,则)(x f n 大体上一致收敛于)(x fC 、若)}({x f n 在E 上a , e 收敛于一个a , e 有限的可测函数)(x f ,则)(x f n ⇒)(x fD 、若)}({x f n 在E 上大体上一致收敛于)(x f ,则)(x f n a , e 收敛于)(x f67、G 表示康托尔(cantor )集在[0,1]中的余集,则mG=( )A 、0B 、1C 、2D 、36八、设21,S S 都可测,则21S S ( )A 、可测B 、不可测C 、可能可测也可能不可测D 、以上都不对 6九、下列说法正确的是( )A 、x x f sec )(=在)4,0(π上无界 B 、x x f sec )(=在)4,0(π上有限C 、⎪⎩⎪⎨⎧=∞+∈=2)2,0[sec )(ππx x x x f 在]2,0[π上有限 D 、⎪⎩⎪⎨⎧=∈=21)2,0[sec )(ππx x x x f 在]2,0[π上有界 70、函数列n n n x x f 3)(=在]31,0[上( )于0 A 、收敛 B 、一致收敛 C 、大体上一致收敛 D 、a. e.一致收敛7一、设⎩⎨⎧-∈∈-=Ex x E x x x f ]1,0[,,)(33,其中E 是[0, 1]上的不可测集,则( )在[0, 1]可测.A 、)(x f 、B 、)(x f +C 、)(x f -D 、|)(|x f7二、关于持续函数与可测函数,下列论述中正确的是( )A 、它们是同一概念B 、a , e 有限的可测函数是持续函数C 、a , e 有限的可测函数是大体上持续的函数D 、a , e 有限的可测函数是a , e 持续的函数73、()=-)2,1()1,0( m ( )A 、一、B 、2C 、3D 、474、A 可测,B 是A 的真子集,则( )A 、mB mA ≥ B 、B m mA *≥C 、B m mA *=D 、以上都不对 7五、下列说法正确的是( )A 、21)(x x f =在(0, 1)有限、B 、21)(x x f =在]1,21[无界 C 、⎪⎩⎪⎨⎧=∞+∈=0,]1,0(,1)(2x x x x f 在[0, 1]有限 D 、⎪⎩⎪⎨⎧=∈=1,1]1,0(,1)(2x x x x f 在[0, 1]有界7六、函数列x x f n n sin )(=在]2,0[π上( )于0.A 、收敛B 、大体上一致收敛C 、一致收敛D 、a. e.一致收敛77、设⎩⎨⎧-∈∈-=E x x E x x x f ]1,0[,,)(22其中E 是[0, 1]上的不可测集,则( )在[0, 1]上是可测的.A 、|)(|x fB 、)(x fC 、)(x f +D 、)(x f -7八、关于简单函数与可测函数下述结论不正确的是( )A 、简单函数必然是可测函数B 、简单函数列的极限是可测函数C 、简单函数与可测函数是同一概念D 、简单函数列的极限与可测函数是同一概念7九、()=-]3,2()1,1[ m ( )A 、1B 、2C 、3D 、480、L 可测集类,对运算( )不封锁.A 、可数和B 、有限交C 、单集结列的极限D 、任意和.8一、下列说法正确的是( )A 、31)(x x f =在)1,21(无界B 、31)(xx f =在)1,0(有限C 、⎪⎩⎪⎨⎧=∞+∈=0]1,0(1)(3x x x x f 在[0, 1]有限D 、⎪⎩⎪⎨⎧=∈=01]1,0(1)(3x x x x f 在[0, 1]有界8二、函数列x x f n n cos )(=在]2,0[π上( )于0.A 、大体一致收敛B 、收敛C 、一致收敛D 、a. e.一致收敛83、设E 是]2,0[π中的不可测集,⎪⎩⎪⎨⎧-∈-∈=E x x E x x x f ]2,0[,sin ,sin )(π 则下列函数在]2,0[π上可测的是( ).A 、)(x fB 、|)(|x fC 、)(x f +D 、)(x f -84、关于依测度收敛,下列说法中不正确的是( )A 、依测度收敛不必然一致收敛B 、依测度收敛不必然收敛C 、若)}({x f n 在E 上 a.e.收敛于 a.e.有限的可测函数)(x f ,则)()(x f x f n ⇒D 、若)()(x f x f n ⇒,则存在子列)}({x f i n a. e.收敛于)(x f8五、设)(x f 是可测集E 上的非负可测函数,则)(x f ( )A 、必可积B 、必几乎处处有限C 、必积分肯定D 、不必然积分肯定8六、设)(x f 在可测集E 上可积,则在E 上( )A 、)(x f +与)(x f -只有一个可积B 、)(x f +与)(x f -皆可积C 、)(x f +与)(x f -不必然可积D 、)(x f +与)(x f -至少有一个不可积87、设0=mE (Φ≠E ),)(x f 是E 上的实函数,则下面叙述正确的是( )A 、)(x f 在E 上不必然可测B 、)(x f 在E 上可测但不必然可积C 、)(x f 在E 上可积且积分值为0D 、)(x f 在E 上不可积8八、)(x f 在可测集E 上)(L 可积的必要条件是,)(x f 为( )A 、持续函数B 、几乎处处持续函数C 、单调函数D 、几乎处处有限的可测函数8九、设)(x D 为狄立克雷函数,则⎰=10)()(dx x D L ( ) A 、 0 B 、 1 C 、1/2 D 、不存在90、设)(x f 为Cantor 集的特征函数,则⎰=10)()(dx x f L ( ) A 、 0 B 、 1/3 C 、2/3 D 、 1填空题一、设A 为一集合,B 是A 的所有子集组成的集合;若A =n, 则B =二、设A 为一集合,B 是A 的所有子集组成的集合;若A 是一可数集, 则B =3、若c A =, c B =, 则=⋃B A4、若c A =, B 是一可数集, 则=⋃B A五、若c A =, n B =, 则=⋃B A六、若}{n A 是一集合列, 且c A n =, =⋃∞=n n A 1 7、若I A ∈αα}{是任意集族, 其中I 是指标集, 则ααA I∈⋂= 八、若I A ∈αα}{是任意集族, 其中I 是指标集, 则ααA I∈⋃= 九、若I A ∈αα}{是任意集族, 其中I 是指标集, S 是一集合, 则)(ααA C IS ∈⋂= 10、若I A ∈αα}{是任意集族, 其中I 是指标集, S 是一集合, 则)(ααA C IS ∈⋃= 1一、若}{n A 是任意一个集合列, 则=∞→n n A lim1二、若}{n A 是任意一个集合列, 则=∞→n n A lim13、欧氏空间n R 中, 任意两点),,(21n x x x x =, ),,(21n y y y y =的距离d(x, y)=14、C[a, b]空间中,任意两元素x(t), y(t) 的距离 d(x, y)= 1五、2l 空间中, 任意两元素 ),,,(21 n x x x x =, ),,(21 n y y y y =的距离 d(x, y)=1六、欧氏空间2R 中, 任意两点),(21x x x =, ),(21y y y =的距离 d(x, y)=17、欧氏空间3R 中, 任意两点),,(321x x x x =, ),,(321y y y y =的距离d(x, y)= 1八、欧氏空间4R 中, 任意两点),,,(4321x x x x x =, ),,,(4321y y y y y =的距离d(x,y)=1九、设2R X =,}1:),{(22<+=y x y x E ,则E =20、设3R X =, }1:),,{(222<++=z y x z y x E , 则E = 2一、设2R X =,}1:),{(22<+=y x y x E ,则E ∂=2二、设2R X =,}1:),{(22<+=y x y x E ,则E '=23、设3R X =, }1:),,{(222<++=z y x z y x E , 则 E ∂=24、设3R X =, }1:),,{(222<++=z y x z y x E , 则E '= 2五、设A= [0, 1] , B = [3, 4] , 则 d(A, B) =2六、设C 是康托完备集, G= [0, 1]-C , 则d (C, G) =27、设C 是康托完备集, 则C 的半径)(C δ=2八、两个非空集合A, B 距离的概念为 d (A, B ) = 2九、一个非空集合A 的直径的概念为)(A δ=30、设A = [0, 1] ⋂Q, 则)(A δ=3一、n R E ⊂,对每一列覆盖E 的开区间 ∞=⊃1i i E I ,概念=E m *________。

《实变函数与泛函分析基础》试卷及答案

《实变函数与泛函分析基础》试卷及答案

试卷一:一、单项选择题(3分×5=15分)1、1、下列各式正确的是( )(A )1lim n k n n k n A A ∞∞→∞===⋃⋂; (B )1lim n k n k n n A A ∞∞==→∞=⋂⋃;(C )1lim n k n n k nA A ∞∞→∞===⋂⋃; (D )1lim n k n k nn A A ∞∞==→∞=⋂⋂;2、设P 为Cantor 集,则下列各式不成立的是( ) (A )=P c (B) 0mP = (C) P P ='(D) P P =ο3、下列说法不正确的是( )(A) 凡外侧度为零的集合都可测(B )可测集的任何子集都可测 (C) 开集和闭集都是波雷耳集 (D )波雷耳集都可测4、设{}()n f x 是E 上的..a e 有限的可测函数列,则下面不成立的是( ) (A )若()()n f x f x ⇒, 则()()n f x f x → (B) {}sup ()n nf x 是可测函数(C ){}inf ()n nf x 是可测函数;(D )若()()n f x f x ⇒,则()f x 可测5、设f(x)是],[b a 上有界变差函数,则下面不成立的是( ) (A) )(x f 在],[b a 上有界 (B) )(x f 在],[b a 上几乎处处存在导数 (C ))('x f 在],[b a 上L 可积 (D) ⎰-=b aa fb f dx x f )()()('二. 填空题(3分×5=15分)1、()(())s s C A C B A A B ⋃⋂--=_________2、设E 是[]0,1上有理点全体,则'E =______,oE =______,E =______.3、设E 是n R 中点集,如果对任一点集T 都有_________________________________,则称E 是L 可测的4、)(x f 可测的________条件是它可以表成一列简单函数的极限函数. (填“充分”,“必要”,“充要”)5、设()f x 为[],a b 上的有限函数,如果对于[],a b 的一切分划,使_____________________________________________________,则称()f x 为[],a b 上的有界变差函数。

(完整版)实变函数与泛函分析基础第三版第七章答案

(完整版)实变函数与泛函分析基础第三版第七章答案

习题解答1、设为一度量空间,令 ,(,)X d 00(,){|,(,)}U x x x X d x x εε=∈<00(,){|,(,)}S x x x X d x x εε=∈≤问的闭包是否等于。

0(,)U x ε0(,)S x ε解答:在一般度量空间中不成立,例如:取的度量子空间,则中00(,)(,)U x S x εε=1R [0,1][2,3]X = X 的开球的的闭包是,而(1,1){;(1,)1}U x X d x =∈<[0,1](1,1){;(1,)1}[0,1]{2}S x X d x =∈≤= 2、设是区间上无限次可微函数全体,定义,证[,]C a b ∞[,]a b ()()()()01|()()|(,)max21|()()|r r r r r r a t bf tg t d f g f t g t ∞=≤≤-=+-∑明:按构成度量空间。

[,]C a b ∞(,)d f g 证明:(1)显然且有(,)0d f g ≥(,)0d f g =⇔()()()()1|()()|,max 021|()()|r r r r r a t bf tg t r f t g t ≤≤-∀=+-⇒,[,]r t a b ∀∀∈,特别当时有有。

()()|()()|0r r f t g t -=0,[,]r t a b =∀∈|()()|0f t g t -=⇒[,]t a b ∀∈ ()()f t g t =(2)由函数在上单调增加,从而对有()1t f t t=+[0,)+∞,,[,]f g h C a b ∞∀∈()()()()0()()()()()()()()0()()01|()()|(,)max 21|()()|1|()()()()|=max21|()()()()|1|()()| max2r r r r r r a t br r r r r r r r r a t b r r r r a t b r f t g t d f g f t g t f t h t h t g t f t h t h t g t f t h t ∞=≤≤∞≤≤=∞≤≤=-=+--+-+-+--+≤∑∑∑()()()()()()()()()()()()0()()()()0|()()|1|()()||()()|1|()()|=max21|()()||()()|1|()()|max21|()()|r r r r r r r r r r r r r a t b r r r r r r a t b r h t g t f t h t h t g t f t h t f t h t h t g t h t g t f t h t ∞≤≤=∞≤≤=-+-+--+-+--++-+∑∑()()()()()()()()()()00|()()|1|()()|1|()()|max max 21|()()|21|()()| (,)(,)r r r r r r r r r r r r a t b a t b r r h t g t f t h t h t g t f t h t h t g t d f h d h g ∞∞≤≤≤≤==---≤++-+-=+∑∑即三角不等式成立。

2020年1月浙江自学考试试题及答案解析实变函数与泛函分析初步试卷及答案解析

2020年1月浙江自学考试试题及答案解析实变函数与泛函分析初步试卷及答案解析

1浙江省2018年1月高等教育自学考试实变函数与泛函分析初步试题课程代码:10023一、单项选择题(本大题共4小题,每小题4分,共16分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设Q 是I =[0,1]中有理数的全体,从R 1来看,边界∂Q =( )A.IB.QC.I \QD.φ2.设R 是实数集,P 是Cantor 三分集,x ∈P ,下列叙述正确的是( )A.x 是P 的内点B.x 是P 的外点C.x 是P 的界点D.x 是P 的孤立点 3.设f (x )在闭集E ⊂R n 上R 可积,I 1=(R )⎰E x x f )d (,I 2=(L )⎰E x x f )d (,则有( ) A.I 1<I 2B.I 1=I 2C.I 1>I 2D.不能比较4.设A n (n =1,2,…)是一列递增集合,F =Y ∞=∞→=1lim n n n n A G A ,,则F 与G 的外测度满足( )A.m *F <m *GB.m*F=m*GC.m *F >m *GD.不能比较二、判断题(本大题共6小题,每小题3分,共18分)判断下列各题,正确的在题后括号内打“√”,错的打“×”。

1.完全集是没有邻接余区间的闭集.( )2.Cantor 三分集中必含有内点.( )3.外测度为零的集是可测集.( )4.设f (x )=0 a . e . 于E ,则⎰Ex )x (f d =0.( )5.设f (x )是[a ,b ]上有界变差函数,则f ′(x )在[a ,b ]上可积.( )6.y =f (x )在[a ,b ]满足Lipschitz 条件,则y =f (x )在[a ,b ]能表示为两个增函数之差.( )三、填空题(本大题共10小题,每小题4分,共40分)2 请在每小题的空格中填上正确答案。

错填、不填均无分。

1.设A n (n =1,2,…)是一列集合,则I Y ∞=∞=1n n m m A=_________.2.设A 2n -1=[0,n1], A 2n =[0,n ],n =1,2,…, 则n n A ∞→lim =_________. 3.设S n =(n ,+∞), 则n n mS ∞→lim =_________.4.设f (x )=⎩⎨⎧∈∈Q \R x Q x 01,则∀x ∈R \Q ,f (x )在x 的振幅ω(x ,f ) =_________. 5.设h (x )与g (x )是E 上两个非负实函数,它们分别是某个实函数的正部与负部的充分必要条件是_________.6.设f (x )是E ⊂R n 上实函数,则对任意实数a ,Y ∞=+>1]1[n n a f E =_________. 7.设E 是函数f (x )=⎪⎩⎪⎨⎧=≠0001sin x x x 的图象上的点构成的集合,从R 2来看,闭包E =_________.8.设G n =(-1-n 1,1+n 1),n =1,2,…, 则I ∞=1n n G =_________. 9.设f n (x )=⎪⎩⎪⎨⎧∈∈]11()210[0]121[,,,n n x n n x n Y , 则⎰∞→10n )d (lim x x f n =_________. 10.设I 1,I 2分别是R p ,R q 的区间, E =I 1×I 2, 当x ∉I 1, 则截面E x =_________.四、完成下列各题(本大题共3小题,第1与第2小题各8分,第3小题10分,共26分)1.设f (x )是[a ,b ]上可微函数,证明f ′(x )在[a ,b ]上可测.2.证明⎰∞=+)0(1n 1d )(11lim ,nn t t n t . 3.设f (x )是[0,1]上有界变差函数且在x =0连续,如果对任意的1>ε>0,f (x )在[ε,1]上绝对连续,证明f (x )在[0,1]上绝对连续.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

试卷一:一、单项选择题(3分×5=15分)1、1、下列各式正确的是( )(A )1lim n k n n k n A A ∞∞→∞===⋃⋂; (B )1lim n k n k n n A A ∞∞==→∞=⋂⋃;(C )1lim n k n n k nA A ∞∞→∞===⋂⋃; (D )1lim n k n k nn A A ∞∞==→∞=⋂⋂;2、设P 为Cantor 集,则下列各式不成立的是( ) (A )=P c (B) 0mP = (C) P P ='(D) P P =3、下列说法不正确的是( )(A) 凡外侧度为零的集合都可测(B )可测集的任何子集都可测 (C) 开集和闭集都是波雷耳集 (D )波雷耳集都可测4、设{}()n f x 是E 上的..a e 有限的可测函数列,则下面不成立的是( ) (A )若()()n f x f x ⇒, 则()()n f x f x → (B) {}sup ()n nf x 是可测函数(C ){}inf ()n nf x 是可测函数;(D )若()()n f x f x ⇒,则()f x 可测5、设f(x)是],[b a 上有界变差函数,则下面不成立的是( ) (A) )(x f 在],[b a 上有界 (B) )(x f 在],[b a 上几乎处处存在导数 (C ))('x f 在],[b a 上L 可积 (D) ⎰-=b aa fb f dx x f )()()('二. 填空题(3分×5=15分)1、()(())s s C A C B A A B ⋃⋂--=_________2、设E 是[]0,1上有理点全体,则'E =______,oE =______,E =______.3、设E 是n R 中点集,如果对任一点集T 都有_________________________________,则称E 是L 可测的4、)(x f 可测的________条件是它可以表成一列简单函数的极限函数. (填“充分”,“必要”,“充要”)5、设()f x 为[],a b 上的有限函数,如果对于[],a b 的一切分划,使_____________________________________________________,则称()f x 为[],a b 上的有界变差函数。

三、下列命题是否成立?若成立,则证明之;若不成立,则举反例说明.(5分×4=20分)1、设1E R ⊂,若E 是稠密集,则CE 是无处稠密集。

2、若0=mE ,则E 一定是可数集.3、若|()|f x 是可测函数,则()f x 必是可测函数。

4.设()f x 在可测集E 上可积分,若,()0x E f x ∀∈>,则()0Ef x >⎰四、解答题(8分×2=16分).1、(8分)设2,()1,x x f x x ⎧=⎨⎩为无理数为有理数 ,则()f x 在[]0,1上是否R -可积,是否L -可积,若可积,求出积分值。

2、(8分)求0ln()lim cos xnx n e xdx n∞-+⎰五、证明题(6分×4+10=34分).1、(6分)证明[]0,1上的全体无理数作成的集其势为c .2、(6分)设()f x 是(),-∞+∞上的实值连续函数,则对于任意常数,{|()}a E x f x a =≥是闭集。

3、(6分)在[],a b 上的任一有界变差函数()f x 都可以表示为两个增函数之差。

4、(6分)设,()mE f x <∞在E 上可积,(||)n e E f n =≥,则lim 0n nn me ⋅=.5、(10分)设()f x 是E 上..a e 有限的函数,若对任意0δ>,存在闭子集F E δ⊂,使()f x 在F δ上连续,且()m E F δδ-<,证明:()f x 是E 上的可测函数。

(鲁津定理的逆定理)试卷一 答案:试卷一 (参考答案及评分标准)一、1. C 2 D 3. B 4. A 5. D二、1.∅ 2、[]0,1; ∅ ; []0,1 3、***()()m T m T E m T CE =⋂+⋂4、充要5、11|()()|n i i i f x f x -=⎧⎫-⎨⎬⎩⎭∑成一有界数集。

三、1.错误……………………………………………………2分例如:设E 是[]0,1上有理点全体,则E 和CE 都在[]0,1中稠密 ………………………..5分2.错误…………………………………………………………2分 例如:设E 是Cantor 集,则0mE =,但E =c , 故其为不可数集 ……………………….5分 3.错误…………………………………………………………2分例如:设E 是[],a b 上的不可测集,[],;(),,;x x E f x x x a b E ∈⎧⎪=⎨-∈-⎪⎩则|()|f x 是[],a b 上的可测函数,但()f x 不是[],a b 上的可测函数………………………………………………………………..5分4.错误…………………………………………………………2分0mE =时,对E 上任意的实函数()f x 都有()0Ef x dx =⎰…5分四、1.()f x 在[]0,1上不是R -可积的,因为()f x 仅在1x =处连续,即不连续点为正测度集………………………………………..3分因为()f x 是有界可测函数,()f x 在[]0,1上是L -可积的…6分 因为()f x 与2x ..a e 相等,进一步,[]120,101()3f x dx x dx ==⎰⎰…8分2.解:设ln()()cos xn x n f x e x n-+=,则易知当n →∞时,()0n f x → …………………………..2分 又因'2ln 1ln 0t t t t -⎛⎫=< ⎪⎝⎭,(3t ≥),所以当3,0n x ≥≥时,ln()ln()ln 3ln 3(1)33x n n x x n n x x n n x n n ++++=≤≤++………………4分 从而使得ln 3|()|(1)3x n f x x e -≤+…………………………………6分但是不等式右边的函数,在[)0,+∞上是L 可积的,故有lim ()lim ()0n n nnf x dx f x dx ∞∞==⎰⎰…………………………………8分五、1.设[0,1],E =,\().A E Q B E E Q =⋂=⋂B M B ∴∃⊂是无限集,可数子集 …………………………2分 .A A MM ∴⋃是可数集, ……………………………….3分(\),(\),()(\),(\),B M B M E A B A M B M A M B M M B M φφ=⋃=⋃=⋃⋃⋃⋂=⋂=且…………..5分,.E B B c ∴∴=………………………………………………6分2.,{},lim n n n x E E x x x →∞'∀∈=则存在中的互异点列使……….2分,()n n x E f x a ∈∴≥………………………………………….3分()()lim ()n n f x x f x f x a →∞∴=≥在点连续,x E ∴∈…………………………………………………………5分E ∴是闭集.…………………………………………………….6分3.对1ε=,0δ∃〉,使对任意互不相交的有限个(,)(,)i i a b a b ⊂当1()ni i i b a δ=-<∑时,有1()()1ni i i f b f a =-<∑………………2分将[,]a b m 等分,使11ni i i x xδ-=-<∑,对:T ∀101i x z z -=<k i z x <<=,有11()()1ki i i f z f z -=-<∑,所以()f x 在1[,]i i x x -上是有界变差函数……………………………….5分 所以1()1,ii x x f V -≤从而()baf mV ≤,因此,()f x 是[,]a b 上的有界变差函数…………………………………………………………..6分 4、()f x 在E 上可积lim (||)(||)0n mE f n mE f →∞⇒≥==+∞=……2分据积分的绝对连续性,0,0,,e E me εδδ∀>∃>∀⊂<,有|()|ef x dx ε<⎰………………………………………………….4分对上述0,,,(||)k n k mE f n δδ>∃∀>≥<,从而|()|nn e n me f x dx ε⋅≤<⎰,即lim 0n nn me ⋅=…………………6分5.,n N ∀∈存在闭集()1,,()2n n nF E m E F f x ⊂-<在nF 连续………………………………………………………………2分 令1nk n kF F ∞∞===,则,,,()n n n kx F k x F n k x F f x ∞=∀∈⇒∃∈⋂∀≥∈⇒在F 连续…………………………………………………………4分 又对任意k ,()[()][()]n n n kn km E F m E F m E F ∞∞==-≤-⋂=⋃-1()2n kn km E F ∞=≤-<∑…………………………………………….6分 故()0,()m E F f x -=在F E ⊂连续…………………………..8分 又()0,m E F -=所以()f x 是E F -上的可测函数,从而是E 上的 可测函数………………………………………………………..10分试卷二:《实变函数》试卷二专业________班级_______姓名学号注 意 事 项1、本试卷共6页。

2、考生答题时必须准确填写专业、班级、学号等栏目,字迹要清楚、工整。

一.单项选择题(3分×5=15分)1.设,M N 是两集合,则 ()M M N --=( ) (A) M (B) N (C) M N ⋂ (D) ∅2. 下列说法不正确的是( )(A) 0P 的任一领域内都有E 中无穷多个点,则0P 是E 的聚点 (B) 0P 的任一领域内至少有一个E 中异于0P 的点,则0P 是E 的聚点 (C) 存在E 中点列{}n P ,使0n P P →,则0P 是E 的聚点(D) 内点必是聚点3. 下列断言( )是正确的。

(A )任意个开集的交是开集;(B) 任意个闭集的交是闭集; (C) 任意个闭集的并是闭集;(D) 以上都不对; 4. 下列断言中( )是错误的。

相关文档
最新文档