初中三角函数专项练习试题和答案解析
三角函数综合检测试题(含解析)
三角函数综合检测第Ⅰ部分(选择题,共60分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.1.已知点(tan ,cos )P αα在第三象限,则角α在第几象限( )A .第一象限B .第二象限C .第三象限D .第四象限 2.函数2sin6x y π=,x ∈R 的最小正周期是( ) A .12 B .6 C .12πD .6π 3.下列函数中,既是奇函数又在区间()1,1-上是增函数的是( )A .1y x =B .tan y x =C .sin y x =-D .cos y x =4.《九章算术》成书于公元一世纪,是中国古代乃至东方的第一部自成体系的数学专著.书中记载这样一个问题“今有宛田,下周三十步,径十六步.问为田几何?”(一步=1.5米)意思是现有扇形田,弧长为45米,直径为24米,那么扇形田的面积为( )A .135平方米B .270平方米C .540平方米D .1080平方米5.已知cos α=,()sin αβ-=,α、β0,2π⎛⎫∈ ⎪⎝⎭,则cos β的值为( )A BC D .12 6.已知函数()sin(2)()2f x x x R π=-∈下列结论错误的是( )A .函数()f x 的最小正周期为πB .函数()f x 是偶函数C .函数()f x 的图象关于直线4x π=对称 D .函数()f x 在区间[0,]2π上是增函数7.函数y =2x sin2x 的图象可能是A .B .C .D .8.函数()sin()f x A x ωϕ=+ (0,0,2A πωϕ>><)的部分图象如图所示,若12,,63x x ππ⎛⎫∈- ⎪⎝⎭,且()()12f x f x =,则12()f x x +=( )A .1B .12C .22D .32二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求. 全部选对的得5分,部分选对的得3分,有选错的得0分.9.设函数()sin 2cos 244f x x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,则()f x ( ) A .是偶函数 B .在区间0,2π⎛⎫ ⎪⎝⎭上单调递增 C .最大值为2 D .其图象关于点,04π⎛⎫ ⎪⎝⎭对称 10.定义:角θ与ϕ都是任意角,若满足2πθϕ+=,则称θ与ϕ“广义互余”.已知1sin()4πα+=-,则下列角β中,可能与角α“广义互余”的是( )A .15sin β=B .1cos()4πβ+=C .tan 15β=D .15tan β= 11.关于函数f (x )=sin|x |+|sin x |的叙述正确的是( )A .f (x )是偶函数B .f (x )在区间,2ππ⎛⎫ ⎪⎝⎭单调递增 C .f (x )在[-π,π]有4个零点D .f (x )的最大值为212.下图是函数y = sin(ωx +φ)的部分图像,则sin(ωx +φ)= ( )A .πsin(3x +) B .πsin(2)3x - C .πcos(26x +) D .5πcos(2)6x - 第Ⅱ部分(选择题,共90分)三、填空题:本题共4小题,每小题5分,共20分13.若2sin 3x =-,则cos2x =__________. 14.函数()sin cos f x ax ax =的最小正周期是π,则实数a =________ 15.函数cos y x π=的单调减区间为__________.16.在平面直角坐标系xOy 中,角α与角β均以x 轴的非负半轴为始边,它们的终边关于x 轴对称.若1sin 3α=,则sin β=__________,cos 2β=__________. 四、解答题:本小题共6小题,共70分。
九年级数学下册《三角函数》专题提优练习(含答案解析)
《三角函数》专题提优练习1.如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F、G分别在边AB、AD上,则cos∠EFG值为()A.B.C.D.2.如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为()A.B.1C.D.3.如图,已知点E是矩形ABCD的对角线AC上的一动点,正方形EFGH的顶点G、H都在边AD上,若AB=3,BC=4,则tan∠AFE的值()A.等于B.等于C.等于D.随点E位置的变化而变化4.如图是由边长相同的小正方形组成的网格,A,B,P,Q四点均在正方形网格的格点上,线段AB,PQ相交于点M,则图中∠QMB的正切值是()A.B.1C.D.25.如图,已知第一象限内的点A在反比例函数y=的图象上,第二象限的点B在反比例函数y=的图象上,且OA⊥OB,tan A=,则k的值为()A.﹣3B.﹣4C.﹣6D.﹣26.如图,在矩形ABCD中,点E是CD的中点,点F是BC上一点,且FC=2BF,连接AE,EF.若AB=2,AD=3,则cos∠AEF的值是.7.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则tan∠BOD的值等于.8.如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tan∠AOD=.9.如图,在矩形ABCD中,AB=6,BC=10,将矩形ABCD沿BE折叠,点A落在A'处,若EA'的延长线恰好过点C,则sin∠ABE的值为.10.如图,在菱形ABCD中,AB=2,∠B是锐角,AE⊥BC于点E,M是AB的中点,连结MD,ME.若∠EMD=90°,则cos B的值为.11.如图,∠AOB是放置在正方形网格中的一个角,则cos∠AOB的值是.12.网格中的每个小正方形的边长都是1,△ABC每个顶点都在网格的交点处,则sin A =.13.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM 上,BE=DB,作EF⊥DE,并截取EF=DE,连接AF并延长交射线BM于点C,设BE=x,BC=y,则y关于x的函数解析式为.参考答案与试题解析一.选择题(共5小题)1.如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F、G分别在边AB、AD上,则cos∠EFG值为()A.B.C.D.【分析】作GN⊥AB于N,作EM⊥AD于M,连接BE,BD.在Rt△DME,Rt△GME,Rt△AGN,Rt△EFB中,根据勾股定理可求DM,ME,AN,EF的长,即可求FN的长,即可得cos∠EFG值.【解答】解:如图:作GN⊥AB于N,作EM⊥AD于M,连接BE,BD∵四边形ABCD是菱形,AB=2∴CD=AD=AB=2,AB∥DC∵AB∥CD∴∠A=∠MDC=60°∵E是CD中点∴DE=1∵ME⊥AD,∠DMC=60°∴∠MED=30°,且ME⊥AD∴DM=,ME=DM=∵折叠∴AG=GE,∠AFG=∠EFG在Rt△GME中,GE2=GM2+ME2.∴GE2=(2﹣GE+)2+∴GE=在Rt△AGN中,∠A=60°,GN⊥AB∴AG=2AN∴AN=∴GN=∵BC=CD=2,∠C=60°∴△BCD是等边三角形∵E点是CD中点∴BE⊥CD,DE=1,∠BDC=60°∴BE=∵AB∥DC∴∠ABE=90°在Rt△EFB中,EF2=BE2+BF2.∴EF2=3+(2﹣EF)2.∴EF=∴AF=∵NF=AF﹣AN∴NF=在Rt△GNF中,GF==∴cos∠EFG=cos∠GFN==故选:C.【点评】本题考查了折叠问题,菱形的性质,勾股定理,添加恰当的辅助线构造直角三角形是本题的关键.2.如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为()A.B.1C.D.【分析】连接BC,由网格求出AB,BC,AC的长,利用勾股定理的逆定理得到△ABC 为等腰直角三角形,即可求出所求.【解答】解:连接BC,由网格可得AB=BC=,AC=,即AB2+BC2=AC2,∴△ABC为等腰直角三角形,∴∠BAC=45°,则tan∠BAC=1,故选:B.【点评】此题考查了锐角三角函数的定义,解直角三角形,以及勾股定理,熟练掌握勾股定理是解本题的关键.3.如图,已知点E是矩形ABCD的对角线AC上的一动点,正方形EFGH的顶点G、H都在边AD上,若AB=3,BC=4,则tan∠AFE的值()A.等于B.等于C.等于D.随点E位置的变化而变化【分析】根据题意推知EF∥AD,由该平行线的性质推知△AEH∽△ACD,结合该相似三角形的对应边成比例和锐角三角函数的定义解答.【解答】解:∵EH∥CD,∴△AEH∽△ACD,∴==.设EH=3x,AH=4x,∴HG=GF=3x,∵EF∥AD,∴∠AFE=∠F AG,∴tan∠AFE=tan∠F AG===.故选:A.【点评】考查了正方形的性质,矩形的性质以及解直角三角形,此题将求∠AFE的正切值转化为求∠F AG的正切值来解答的.4.如图是由边长相同的小正方形组成的网格,A,B,P,Q四点均在正方形网格的格点上,线段AB,PQ相交于点M,则图中∠QMB的正切值是()A.B.1C.D.2【分析】根据题意平移AB使A点与P点重合,进而得出,△QPB′是直角三角形,再利用tan∠QMB=tan∠P=,进而求出答案.【解答】解:如图所示:平移AB使A点与P点重合,连接B′Q,可得∠QMB=∠P,∵PB′=2,PQ=2,B′Q=4,∴PB′2+QB′2=PQ2,∴△QPB′是直角三角形,∴tan∠QMB=tan∠P===2.故选:D.【点评】此题主要考查了勾股定理以及锐角三角函数关系,正确得出△QPB′是直角三角形是解题关键.5.如图,已知第一象限内的点A在反比例函数y=的图象上,第二象限的点B在反比例函数y=的图象上,且OA⊥OB,tan A=,则k的值为()A.﹣3B.﹣4C.﹣6D.﹣2【分析】作BC⊥x轴于C,AD⊥x轴于D,如图,利用反比例函数系数的机会意义得到S△AOD=1,再根据正切的意义得到tan A==,则OB=OA,接着证明Rt△AOD ∽Rt△OBC,利用相似三角形的性质得S△OBC=2S△AOD=2,所以•|k|=2,然后根据反比例函数的性质确定k的值.【解答】解:作BC⊥x轴于C,AD⊥x轴于D,如图,则S△AOD=×2=1,在Rt△AOB中,tan A==,∴OB=2OA,∵∠AOD+∠BOC=90°,∠AOD+∠OAD=90°,∴∠BOC=∠OAD,∴Rt△AOD∽Rt△OBC,∴=()2=2,∴S△OBC=2S△AOD=2,∴•|k|=2,而k<0,∴k=﹣4.故选:B.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k ≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了相似三角形的判定与性质.二.填空题(共8小题)6.如图,在矩形ABCD中,点E是CD的中点,点F是BC上一点,且FC=2BF,连接AE,EF.若AB=2,AD=3,则cos∠AEF的值是.【分析】接AF,由矩形的性质得出∠B=∠C=90°,CD=AB=2,BC=AD=3,证出AB=FC,BF=CE,由SAS证明△ABF≌△FCE,得出∠BAF=∠CFE,AF=FE,证△AEF是等腰直角三角形,得出∠AEF=45°,即可得出答案.【解答】解:连接AF,如图所示:∵四边形ABCD是矩形,∴∠B=∠C=90°,CD=AB=2,BC=AD=3,∵FC=2BF,∴BF=1,FC=2,∴AB=FC,∵E是CD的中点,∴CE=CD=1,∴BF=CE,在△ABF和△FCE中,,∴△ABF≌△FCE(SAS),∴∠BAF=∠CFE,AF=FE,∵∠BAF+∠AFB=90°,∴∠CFE+∠AFB=90°,∴∠AFE=180°﹣90°=90°,∴△AEF是等腰直角三角形,∴∠AEF=45°,∴cos∠AEF=;故答案为:.【点评】本题考查了矩形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、三角函数等知识;熟练掌握矩形的性质,证明三角形全等是解决问题的关键.7.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则tan∠BOD的值等于3.【分析】根据平移的性质和锐角三角函数以及勾股定理,通过转化的数学思想可以求得tan∠BOD的值,本题得以解决.【解答】解:方法一:平移CD到C′D′交AB于O′,如右图所示,则∠BO′D′=∠BOD,∴tan∠BOD=tan∠BO′D′,设每个小正方形的边长为a,则O′B=,O′D′=,BD′=3a,作BE⊥O′D′于点E,则BE=,∴O′E==,∴tan BO′E=,∴tan∠BOD=3,故答案为:3.方法二:连接AM、NL,在△CAH中,AC=AH,则AM⊥CH,同理,在△MNH中,NM=NH,则NL⊥MH,∴∠AMO=∠NLO=90°,∵∠AOM=∠NOL,∴△AOM∽△NOL,∴,设图中每个小正方形的边长为a,则AM=2a,NL=a,∴=2,∴,∴,∵NL=LM,∴,∴tan∠BOD=tan∠NOL==3,故答案为:3.方法三:连接AE、EF,如右图所示,则AE∥CD,∴∠F AE=∠BOD,设每个小正方形的边长为a,则AE=,AF=,EF=a,∵,∴△F AE是直角三角形,∠FEA=90°,∴tan∠F AE=,即tan∠BOD=3,故答案为:3.【点评】本题考查解直角三角形,解答本题的关键是明确题意,作出合适的辅助线,利用勾股定理和等积法解答.8.如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tan∠AOD=2.【分析】首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:2,在Rt△OBF中,即可求得tan∠BOF的值,继而求得答案.【解答】解:如图,连接BE,∵四边形BCEK是正方形,∴KF=CF=CK,BF=BE,CK=BE,BE⊥CK,∴BF=CF,根据题意得:AC∥BK,∴△ACO∽△BKO,∴KO:CO=BK:AC=1:3,∴KO:KF=1:2,∴KO=OF=CF=BF,在Rt△OBF中,tan∠BOF==2,∵∠AOD=∠BOF,∴tan∠AOD=2.故答案为:2【点评】此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.9.如图,在矩形ABCD中,AB=6,BC=10,将矩形ABCD沿BE折叠,点A落在A'处,若EA'的延长线恰好过点C,则sin∠ABE的值为.【分析】先利用勾股定理求出A'C,进而利用勾股定理建立方程求出AE,即可求出BE,最后用三角函数即可得出结论.【解答】解:由折叠知,A'E=AE,A'B=AB=6,∠BA'E=90°,∴∠BA'C=90°,在Rt△A'CB中,A'C==8,设AE=x,则A'E=x,∴DE=10﹣x,CE=A'C+A'E=8+x,在Rt△CDE中,根据勾股定理得,(10﹣x)2+36=(8+x)2,∴x=2,∴AE=2,在Rt△ABE中,根据勾股定理得,BE==2,∴sin∠ABE==,故答案为:.【点评】此题主要考查了折叠的性质,勾股定理,锐角三角函数,充分利用勾股定理求出线段AE是解本题的关键.10.如图,在菱形ABCD中,AB=2,∠B是锐角,AE⊥BC于点E,M是AB的中点,连结MD,ME.若∠EMD=90°,则cos B的值为.【分析】延长DM交CB的延长线于点H.首先证明DE=EH,设BE=x,利用勾股定理构建方程求出x即可解决问题.【解答】解:延长DM交CB的延长线于点H.∵四边形ABCD是菱形,∴AB=BC=AD=2,AD∥CH,∴∠ADM=∠H,∵AM=BM,∠AMD=∠HMB,∴△ADM≌△BHM,∴AD=HB=2,∵EM⊥DH,∴EH=ED,设BE=x,∵AE⊥BC,∴AE⊥AD,∴∠AEB=∠EAD=90°∵AE2=AB2﹣BE2=DE2﹣AD2,∴22﹣x2=(2+x)2﹣22,∴x=﹣1或﹣﹣1(舍弃),∴cos B==,故答案为.【点评】本题考查菱形的性质、勾股定理、线段的垂直平分线的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.11.如图,∠AOB是放置在正方形网格中的一个角,则cos∠AOB的值是.【分析】首先连接AB,由勾股定理易求得OA2=12+32=10,AB2=12+32=10,OB2=22+42=20,然后由勾股定理的逆定理,可证得△AOB是等腰直角三角形,继而可求得cos∠AOB的值.【解答】解:连接AB,∵OA2=12+32=10,AB2=12+32=10,OB2=22+42=20,∴OA2+AB2=OB2,OA=AB,∴△AOB是等腰直角三角形,即∠OAB=90°,∴∠AOB=45°,∴cos∠AOB=cos45°=.故答案为:.【点评】此题考查了锐角三角函数的定义、勾股定理以及勾股定理的逆定理.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.12.网格中的每个小正方形的边长都是1,△ABC每个顶点都在网格的交点处,则sin A=.【分析】根据各边长得知△ABC为等腰三角形,作出BC、AB边的高AD及CE,根据面积相等求出CE,根据正弦是角的对边比斜边,可得答案.【解答】解:如图,作AD⊥BC于D,CE⊥AB于E,由勾股定理得AB=AC=2,BC=2,AD=3,可以得知△ABC是等腰三角形,由面积相等可得,BC•AD=AB•CE,即CE==,sin A===,故答案为:.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.13.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM 上,BE=DB,作EF⊥DE,并截取EF=DE,连接AF并延长交射线BM于点C,设BE=x,BC=y,则y关于x的函数解析式为y=(0<x≤2).【分析】作FM⊥BC于M.由△DBE≌△EMF,推出FM=BE=x,EM=BD=2BE=2x,由FM∥AB,推出=,即=,由此即可解决问题.【解答】解:作FM⊥BC于M.∵∠DBE=∠DEF=∠EMF=90°,∴∠DEB+∠BDE=90°,∠DEB+∠FEM=90°,∴∠BDE=∠FEM.在△DBE和△EMF中,,∴△DBE≌△EMF,∴FM=BE=x,EM=BD=2BE=2x,∵FM∥AB,∴=,∴=,∴y=(0<x≤2).【点评】本题考查全等三角形的判定和性质、平行线分线段成比例定理等知识,解题的关键是灵活应用所学知识解决问题,属于中考常考题型.。
初中三角函数练习题及答案初中三角函数知识训练
初中三角函数练习题及答案初中三角函数知识训练初中三角函数练习题及答案初中三角函数知识训练三角函数是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。
下面是为大家的初中三角函数练习题及答案,欢迎阅读!希望对大家有所帮助!初中三角函数练习题及答案一、选择题1.探索如图所呈现的规律,判断2013至2014箭头的方向是( )图1-2-3【解析】观察题图可知0到3为一个周期,则从2013到2014对应着1到2到3.【答案】 B2.-330°是( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角【解析】 -330°=30°+(-1)?360°,则-330°是第一象限角.【答案】 A3.把-1485°转化为α+k?360°(0°≤αA.45°-4×360°B.-45°-4×360°C.-45°-5×360°D.315°-5×360°【解析】 -1485°=-5×360°+315°,故选D.【答案】 D4.(xx?济南高一检测)若α是第四象限的角,则180°-α是( )A.第一象限的角B.第二象限的角C.第三象限的角D.第四象限的角【解析】∵α是第四象限的角,∴k?360°-90°<α<k?360°,k∈z,< p="">∴-k?360°+180°<180°-α<-k?360°+270°,k∈Z,∴180°-α是第三象限的角.【答案】 C5.在直角坐标系中,若α与β的终边互相垂直,则α与β的关系为( )A.β=α+90°B.β=α±90°C.β=α+90°-k?360°D.β=α±90°+k?360°【解析】∵α与β的终边互相垂直,故β-α=±90°+k?360°,k∈Z,∴β=α±90°+k?360°,k∈Z.【答案】 D二、填空题6.α,β两角的终边互为反向延长线,且α=-120°,则β=________.【解析】依题意知,β的终边与60°角终边相同,∴β=k?360°+60°,k∈Z.【答案】k?360°+60°,k∈Z7.θ是第三象限角,则θ2是第________象限角.【解析】∵k?360°+180°<θ<k?360°+270°,k∈z< p="">∴k?180°+90°<θ2<k?180°+135°,k∈z< p="">当k=2n(n∈Z)时,n?360°+90°<θ2<n?360°+135°,k∈z,θ2是第二象限角,< p="">当k=2n+1(n∈Z)时,n?360°+270°<θ2<n?360°+315°,n∈z<p="">θ2是第四象限角.【答案】二或四8.与610°角终边相同的角表示为________.【解析】与610°角终边相同的角为n?360°+610°=n?360°+360°+250°=(n+1)?360°+250°=k?360°+2 50°(k∈Z,n∈Z).【答案】k?360°+250°(k∈Z)三、解答题9.若一弹簧振子相对平衡位置的位移x(cm)与时间t(s)的函数关系如图所示,图1-2-4(1)求该函数的周期;(2)求t=10.5s时该弹簧振子相对平衡位置的位移.【解】 (1)由题图可知,该函数的周期为4s.(2)设本题中位移与时间的函数关系为x=f(t),由函数的周期为4s,可知f(10.5)=f(2.5+2×4)=f(2.5)=-8(cm),故t=10.5s时弹簧振子相对平衡位置的位移为-8cm.图1-2-510.如图所示,试表示终边落在阴影区域的角.【解】在0°~360°范围中,终边落在指定区域的角是0≤α≤45°或315°≤α≤360°,转化为-360°~360°范围内,终边落在指定区域的角是-45°≤α≤45°,故满足条件的角的集合为{α|-45°+k?360°≤α≤45°+k?360°,k∈Z}.11.在与530°终边相同的角中,求满足下列条件的角.(1)最大的负角;(2)最小的正角;(3)-720°到-360°的角.【解】与530°终边相同的角为k?360°+530°,k∈Z.(1)由-360°<k?360°+530°< p="">(2)由0°<k?360°+530°< p="">故所求的最小正角为170°.(3)由-720°≤k?360°+530°≤-360°且k∈Z得k=-3,故所求的角为-550°.</k?360°+530°<></k?360°+530°<></n?360°+315°,n∈z<></n?360°+135°,k∈z,θ2是第二象限角,<></k?180°+135°,k∈z<></k?360°+270°,k∈z<></k?360°,k∈z,<>。
三角函数题练习题初三
三角函数题练习题初三正文:1. 已知一直角三角形,其斜边长为10cm,其中一个锐角的正弦值为0.6,求该锐角的余弦值。
解析:设这个锐角为θ,则根据正弦的定义有sinθ = 对边/斜边,代入已知条件可得对边/10 = 0.6,解得对边长为6cm。
再根据余弦的定义有cosθ = 邻边/斜边,将已知条件代入可得cosθ = 对边/10 = 6/10 = 0.6。
答案:0.62. 已知正弦函数y = sin x 的图像在区间[0, 2π]上有两个最大值点,一个最小值点和一个零点。
求解方程sin x = -0.5 的所有解。
解析:根据正弦函数的图像特点,sin x = -0.5 对应的是函数在负半个周期内的一个最小值点。
根据正弦函数的周期性,在区间[0, 2π]内可以找到一个最小值点,即π + arcsin(-0.5)。
由于正弦函数是一个周期函数,所以在[0, 2π]内,还可以找到一个位于第三象限的解,即2π - arcsin(-0.5)。
所以方程sin x = -0.5 的所有解为x = π + arcsin(-0.5) 和 x = 2π - arcsin(-0.5)。
答案:x = π + arc sin(-0.5) 和x = 2π - arcsin(-0.5)3. 在直角三角形中,已知一条直角边的长度为12cm,另一条直角边的长度为5cm。
求解该三角形斜边与这两条直角边的夹角的正切值。
解析:设斜边与较长直角边的夹角为θ,则根据正切的定义有tanθ = 对边/邻边,代入已知条件可得对边/5 = 12/5,解得对边长为12cm。
所以tanθ = 12/5。
答案:12/54. 已知角A与角B都是锐角,且满足sinA = cosB = 0.8,求解角A 与角B的大小。
解析:根据正弦与余弦的定义可得 sinA = 对边/斜边,cosB = 邻边/斜边。
设三角形的斜边长度为x,根据已知条件可得对边/x = 0.8,邻边/x = 0.8。
三角函数练习题及解析
三角函数练习题及解析一、单选题1. 已知直角三角形ABC,角A的对边BC=5,斜边AC=13,则角B 的邻边AB等于:A) 5B) 12C) 4D) 3解析:根据勾股定理,$AB=\sqrt{AC^2-BC^2}=\sqrt{13^2-5^2}=\sqrt{144}=12$,因此选项B) 12.2. 在单位圆上,点A的坐标为$(\frac{\sqrt{3}}{2}, \frac{1}{2})$,则角A的度数为:A) 45°B) 60°C) 90°D) 120°解析:单位圆上的点A的坐标$(\frac{\sqrt{3}}{2}, \frac{1}{2})$对应的角A的度数为$60^\circ$,因此选项B) 60°.3. $\sin^2 30^\circ + \cos^2 60^\circ$的值等于:A) 0B) 1C) $\frac{3}{4}$D) $\frac{1}{2}$解析:$\sin^2 30^\circ = (\frac{1}{2})^2 = \frac{1}{4}$,$\cos^2 60^\circ = (\frac{1}{2})^2 = \frac{1}{4}$,因此$\sin^2 30^\circ + \cos^2 60^\circ = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$,因此选项D)$\frac{1}{2}$.二、填空题4. 对于任意角θ,$\sin(90^\circ - \theta)$的值等于 __________。
答案:$\cos \theta$解析:根据“余角公式”,$\sin (90^\circ - \theta) = \cos \theta$.5. $\cos(\frac{3\pi}{4})$的值等于 __________。
答案:$-\frac{\sqrt{2}}{2}$解析:根据单位圆上角度为 $\frac{3\pi}{4}$ 的点坐标为 $(\frac{-\sqrt{2}}{2}, \frac{\sqrt{2}}{2})$,因此 $\cos(\frac{3\pi}{4}) = \frac{-\sqrt{2}}{2}$.三、解答题6. 解方程 $\sin x = \frac{1}{2}$,其中 $0 \leq x < 2\pi$。
三角函数10道大题(带答案解析)
三角函数1.已知函数()4cos sin()16f x x x π=+-.(Ⅰ)求 ()f x 的最小正周期; (Ⅱ)求()f x 在区间[,]64ππ-上的最大值和最小值.2、已知函数.,1cos 2)32sin()32sin()(2R x x x x x f ∈-+-++=ππ(Ⅰ)求函数)(x f 的最小正周期; (Ⅱ)求函数)(x f 在区间]4,4[ππ-上的最大值和最小值.3、已知函数()tan(2),4f x x =+π(Ⅰ)求()f x 的定义域与最小正周期;(II )设0,4⎛⎫∈ ⎪⎝⎭πα,若()2cos 2,2f =αα求α的大小4、已知函数xxx x x f sin 2sin )cos (sin )(-=.(1)求)(x f 的定义域及最小正周期; (2)求)(x f 的单调递减区间.5、 设函数2()cos(2)sin 24f x x x π=++. (I )求函数()f x 的最小正周期;(II )设函数()g x 对任意x R ∈,有()()2g x g x π+=,且当[0,]2x π∈时, 1()()2g x f x =-,求函数()g x 在[,0]π-上的解析式.6、函数()sin()16f x A x πω=-+(0,0A ω>>)的最大值为3, 其图像相邻两条对称轴之间的距离为2π, (1)求函数()f x 的解析式; (2)设(0,)2πα∈,则()22f α=,求α的值. 7、设426f (x )cos(x )sin x cos x π=ω-ω+ω,其中.0>ω (Ⅰ)求函数y f (x )= 的值域(Ⅱ)若y f (x )=在区间322,ππ⎡⎤-⎢⎥⎣⎦上为增函数,求 ω的最大值.8、函数2()6cos 3(0)2xf x x ωωω=->在一个周期内的图象如图所示,A 为图象的最高点,B 、C 为图象与x 轴的交点,且ABC ∆为正三角形.(Ⅰ)求ω的值及函数()f x 的值域;(Ⅱ)若0()5f x =,且0102(,)33x ∈-,求0(1)f x +的值.9、已知,,a b c 分别为ABC ∆三个内角,,A B C 的对边,cos sin 0a C C b c --= (1)求A ; (2)若2a =,ABC ∆的面积为3;求,b c .10、在∆ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A =23,sin B C .(Ⅰ)求tan C 的值; (Ⅱ)若a ∆ABC 的面积.答案1、【思路点拨】先利用和角公式展开,再利用降幂公式、化一公式转化为正弦型函数,最后求周期及闭区间上的最值.【精讲精析】(Ⅰ)因为()4cos sin()16f x x x π=+-14cos (sin cos )122x x x =+-222cos 1x x =+-2cos 22sin(2)6x x x π=+=+, 所以()f x 的最小正周期为π.(Ⅱ)因为64x ππ-≤≤,所以22663x πππ-≤+≤.于是,当262x ππ+=,即6x π=时,()f x 取得最大值2;当266x ππ+=-,即6x π=-时,()f x 取得最小值-1.2、【解析】 (1)2()=sin (2+)+sin(2)+2cos 133f x x x x ππ--2sin 2coscos 2)34x x x ππ=+=+ 函数()f x 的最小正周期为22T ππ==(2)32sin(2)11()4444424x x x f x ππππππ-≤≤⇒-≤+≤⇒-≤+≤⇔-≤≤当2()428x x πππ+==时,()m a xf x ,当2()444x x πππ+=-=-时,m i n ()1f x =-【点评】该试题关键在于将已知的函数表达式化为=sin (+)y A x ωϕ的数学模型,再根据此三角模型的图像与性质进行解题即可.3、【思路点拨】1、根据正切函数的有关概念和性质;2、根据三角函数的有关公式进行变换、化简求值.【精讲精析】(I )【解析】由2,42+≠+∈x k k Z πππ, 得,82≠+∈k x k Z ππ. 所以()f x 的定义域为{|,}82∈≠+∈k x R x k Z ππ,()f x 的最小正周期为.2π (II )【解析】由()2cos 2,2f =αα得tan()2cos 2,4+=παα22sin()42(cos sin ),cos()4+=-+παααπα 整理得sin cos 2(cos sin )(cos sin ).cos sin +=+--αααααααα因为(0,)4∈πα,所以sin cos 0.+≠αα因此211(cos sin ),sin 2.22-==ααα即 由(0,)4∈πα,得2(0,)2∈πα.所以2,.612==ππαα即4、解(1):si n 0()x x k k Z π≠⇔≠∈得:函数()f x 的定义域为{,}x x k k Z π≠∈(sin cos )sin 2()(sin cos )2cos sin x x xf x x x xx-==-⨯sin 2(1cos 2))14x x x π=-+=--得:)(x f 的最小正周期为22T ππ==;(2)函数sin y x =的单调递增区间为[2,2]()22k k k Z ππππ-+∈ 则322224288k x k k x k πππππππππ-≤-≤+⇔-≤≤+得:)(x f 的单调递增区间为3[,),(,]()88k k k k k Z ππππππ-+∈5、本题考查两角和与差的三角函数公式、二倍角公式、三角函数的周期等性质、分段函数解析式等基础知识,考查分类讨论思想和运算求解能力. 【解析】211()co242f x x π=++11sin222x =-, (I )函数()f x 的最小正周期22T ππ== (II )当[0,]2x π∈时,11()()sin 222g x f x x =-=当[,0]2x π∈-时,()[0,]22x ππ+∈ 11()()sin 2()sin 22222g x g x x x ππ=+=+=- 当[,)2x ππ∈--时,()[0,)2x ππ+∈ 11()()sin 2()sin 222g x g x x x ππ=+=+=得函数()g x 在[,0]π-上的解析式为1sin 2(0)22()1sin 2()22x x g x x x πππ⎧--≤≤⎪⎪=⎨⎪-≤<⎪⎩.6、【解析】(1)∵函数()f x 的最大值是3,∴13A +=,即2A =.∵函数图像的相邻两条对称轴之间的距离为2π,∴最小正周期T π=,∴2ω=. 故函数()f x 的解析式为()2sin(2)16f x x π=-+.(2)∵()2f α2sin()126πα=-+=,即1sin()62πα-=,∵02πα<<,∴663πππα-<-<,∴66ππα-=,故3πα=.7、解:(1)()14sin sin cos 22f x x x x x ωωωω⎫=++⎪⎪⎝⎭222cos 2sin cos sin x x x x x ωωωωω=++-21x ω=+因1sin 21x ω-≤≤,所以函数()y f x =的值域为1⎡+⎣(2)因sin y x =在每个闭区间()2,222k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上为增函数,故()21f x x ω=+()0ω>在每个闭区间(),44k k k Z ππππωωωω⎡⎤-+∈⎢⎥⎣⎦上为增函数. 依题意知3,22ππ⎡⎤-⊆⎢⎥⎣⎦,44k k ππππωωωω⎡⎤-+⎢⎥⎣⎦对某个k Z ∈成立,此时必有0k =,于是 32424ππωππω⎧-≥-⎪⎪⎨⎪≤⎪⎩,解得16ω≤,故ω的最大值为16. 8. 本题主要考查三角函数的图像与性质、同角三角函数的关系、两角和差公式,倍角公式等基础知识,考查基本运算能力,以及数形结合思想,化归与转化思想. [解析](Ⅰ)由已知可得:2()6cos3(0)2xf x x ωωω=->=3cosωx+)3sin(32sin 3πωω+=x x又由于正三角形ABC 的高为23,则BC=4 所以,函数482824)(πωωπ===⨯=,得,即的周期T x f所以,函数]32,32[)(-的值域为x f .……………………6分(Ⅱ)因为,由538)(0=x f (Ⅰ)有 ,538)34(sin 32)(00=+=ππx x f 54)34(sin 0=+ππx 即 由x 0)2,2()34x (323100ππππ-∈+-∈),得,( 所以,53)54(1)34(cos 20=-=+ππx 即 故=+)1(0x f =++)344(sin 320πππx ]4)34(sin[320πππ++x)22532254(324sin)34cos(4cos )34([sin 3200⨯+⨯=+++=ππππππx x567=………………………………………………………12分 9..解:(1)由正弦定理得:cos sin 0sin cos sin sin sin a C C b c A C A C B C --=⇔=+sin cos sin sin()sin 1cos 1sin(30)2303060A C A C a C CA A A A A ︒︒︒︒⇔=++⇔-=⇔-=⇔-=⇔=(2)1sin 42S bc A bc ==⇔=, 2222cos 4a b c bc A b c =+-⇔+= 10. 本题主要考查三角恒等变换,正弦定理,余弦定理及三角形面积求法等知识点.(Ⅰ)∵cos A =23>0,∴sin A=cos C =sin B =sin(A +C )=sin A cos C +sin C cos Acos C +23sin C .整理得:tan C(Ⅱ)由图辅助三角形知:sin C=.又由正弦定理知:sin sin a cA C =,故c = (1)对角A 运用余弦定理:cos A =222223b c a bc +-=. (2)解(1) (2)得:b=or b舍去).∴∆ABC的面积为:S.。
初中三角函数练习试题和答案解析
围内是受这次台风影响的区域。
问A城是否会受到这次台风的影响?为什么?
若A城受到这次台风的影响,那么A城遭受这次台风影响的时间有多长?
学习指导参考
WORD格式整理版
0.7346如图,山上有一座铁塔,山脚下有一矩形建筑物ABCD,且建筑物周围没有开阔平
以内会受噪声影响,那么,学校是否会受到噪声影响?如果不受影响,请说明理由;如果
受影响,会受影响几分钟?
N
PAQ
M
.
15、如图,在某建筑物AC上,挂着“多彩云南”的宣传条幅BC,小明站在点F处,
看条幅顶端B,测的仰角为30,再往条幅方向前行20米到达点E处,看到
条幅顶端B,测的仰角为60,求宣传条幅BC的长,(小明的身高不计,结
0
6、在Rt△ABC中,∠C=90
,则下列式子成立的是()
A、sinA=sinBB、sinA=cosBC、tanA=tanBD、cosA=tanB
7.已知Rt△ABC中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是()
2223
A.sinB=
3B.cosB=3C.tanB=3D.tanB=2
(2)除(1)的测量方案外,请你再设计一种测量江宽的方案,并在图②中画出图形.
B
20某学校体育场看台的侧面如图阴影部分所示,看台有四级高度相等的小台阶.已知看台
图①图②
C
高为l.6米,现要做一个不锈钢的扶手AB及两根与FG垂直且长为l米的不锈钢架杆AD和
BC(杆子的底端分别为D,C),且∠DAB=66. 5°.
7060943270603322
分析:(1)由图可知ABO是直角三角形,于是由勾股定理可求。
三角函数专项(有答案)
三角函数专项一、化简求值 1、若02πα<<,02πβ-<<,1cos()43πα+=,cos()423πβ-=,则cos()2βα+=A.3B.3-C.9D.9-【答案】C 2、已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos 2θ=(A ) 45- (B )35-(C )35(D )45【答案】B 3、设sin 1+=43πθ(),则sin 2θ=(A )79- (B )19-(C )19(D )79【答案】A4、函数sin()cos()26y x x ππ=+-的最大值为 。
【答案】24+5、已知1sin cos 2α=+α,且0,2π⎛⎫α∈ ⎪⎝⎭,则cos 2sin 4πα⎛⎫α- ⎪⎝⎭的值为__________【答案】2-6、已知a ∈(2π,π),5tan2α=【答案】43-7、已知,2)4tan(=+πx 则xx 2tan tan 的值为__________【答案】948、若tan α=3,则2sin 2cos aα的值等于 A .2B .3C .4D .6【答案】D二、三角函数图像 9、函数2sin 2x y x =-的图象大致是【答案】C10、已知函数)(x f =A tan (ωx +ϕ)(2||,0πϕω<>),y =)(x f 的部分图像如下图,则=)24(πf .10、函数ϕϕ,,(),sin()(w A wx A x f +=是常数,)0,0>>w A 的 部分图象如图所示,则f (0)= 【答案】2611、设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于A .13B .3C .6D .9三、三角函数性质12、若函数()sin f x x ω= (ω>0)在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω= A .3 B .2 C .32D .23【答案】C13、已知函数()cos ,f x x x x R =-∈,若()1f x ≥,则x 的取值范围为A .|,3x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭ B .|22,3x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭C .5{|,}66x k x k k Z ππππ+≤≤+∈D .5{|22,}66x k x k k Z ππππ+≤≤+∈【答案】B14、设函数()s i n ()c o s (f x x x ωϕωϕ=+++(0,||)2πωϕ><的最小正周期为π,且()()f x f x -=则(A )()y f x =在(0,)2π单调递减 (B )()y f x =在3(,)44ππ单调递减(C )()y f x =在(0,)2π单调递增 (D )()y f x =在3(,)44ππ单调递增【答案】A15、已知函数()sin(2)f x x ϕ=+,其中ϕ为实数,若()()6f x f π≤对x R ∈恒成立,且()()2f f ππ>,则()f x 的单调递增区间是(A ),()36k k k Z ππππ⎧⎫-+∈⎨⎬⎩⎭(B ),()2k k k Z πππ⎧⎫+∈⎨⎬⎩⎭(C )2,()63k k k Z ππππ⎧⎫++∈⎨⎬⎩⎭ (D ),()2k k k Z πππ⎧⎫-∈⎨⎬⎩⎭【答案】C四、正余弦定理16、若△ABC 的内角A 、B 、C 所对的边a 、b 、c 满足22a b 4c +-=(),且C=60°,则ab 的值为A .43B.8-C . 1D .23【答案】A17、如图,在△ABC 中,D 是边A C上的点,且,2,2AB C D AB BC BD ===,则sin C 的值为 A.3 B.6C 3D 6【答案】D18、在∆ABC 中.222sin sin sin sin sin A B C B C ≤+-.则A 的取值范围是A .(0,6π]B .[ 6π,π)C .(0,3π]D .[ 3π,π)【答案】C【解析】由题意正弦定理22222222211cos 023b c aa b c bc b c a bc A A bcπ+-≤+-⇒+-≥⇒≥⇒≥⇒<≤【答案】C19、△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =a 2,则=a b(A ) (B ) (C (D【答案】D20、在相距2千米的A .B 两点处测量目标C ,若0075,60C AB C BA ∠=∠=,则A .C两点之间的距离是 千米。
三角函数经典题目(带答案)
三角函数经典题目练习1.已知α1231、已知角2、P (x ,5则sin 1、已知2、函数(f3、已知 象限1. 已知π22.设0≤α是 .sin αtan x 若<0___.53sin +-=m m θ,524cos +-=m m θ(πθπ<<2),则=θ________.1tan tan αα,是关于x 的方程2230x kx k -+-=的个实根,且παπ273<<,则ααsin cos +的值 .0)13(22=++-m x x 的两根为()πθθθ2,0,cos ,sin ∈,求(1)m =_______(2)θθθθtan 1cos cot 1sin -+-=________.α )415tan(325cos ππ-+= . θθθθcos sin cos sin -+=2,则sin(θ-5π)·sin ⎪⎭⎫⎝⎛-θπ23= α终边上P (-4,3),)29sin()211cos()sin()2cos(απαπαπαπ+---+= .已知锐角α终边上一点P 的坐标是(2sin2,-2cos2),α= . sin163°·sin223°+sin253°·sin313°= . =-+θθtan 1tan 1_________tan 20tan 4020tan 40︒+︒︒⋅︒= α∈(0,2π),若sin α=53,则2cos(α+4π)= . 336cos =⎪⎭⎫ ⎝⎛-απ,则⎪⎭⎫ ⎝⎛+απ65cos =______,)65απ--=_____..【知二求多】1、已知cos ⎪⎭⎫ ⎝⎛-2βα= -54,sin ⎪⎭⎫ ⎝⎛-2αβ=135,且0<β<2π<α<π,则cos 2βα+=____.2已知tan α=43,cos(α+β)=-1411, α、β为锐角,则cos β=______.【方法套路】1、设21sin sin =+βα,31cos cos =+βα,则)cos(βα-=___ .2.已知ββαcos 5)2cos(8++=0,则αβαtan )tan(+= .3,41)sin(,31)sin(=-=+βαβα则___tan tan =βα【给值求角】1tan α=71,tan β=31,α,β均为锐角,则α+2β= .2、若sinA=55,sinB=1010,且A,B 均为钝角, 则A+B= .【半角公式】1α是第三象限,2524sin -=α,则tan 2α= . 2、已知01342=+++a ax x (a >1)的两根为αtan ,βtan ,且α,∈β ⎝⎛-2π,⎪⎭⎫2π,则2tan βα+=______3若cos 22π2sin 4αα=-⎛⎫- ⎪⎝⎭,则cos sin αα+= . 4、若⎥⎦⎤⎢⎣⎡∈27,25ππα,则ααsin 1sin 1-++=5x 是第三象限角xx xx x x x x cos sin 1cos sin 1cos sin 1cos sin 1-++++++-+=______ 【公式链】1=+++ 89sin 3sin 2sin 1sin 2222_______ 2sin10o sin30o sin50o sin70o=_______ 3(1+tan1o )(1+tan2o )…(1+tan45o )=_______六、给值求角 已知31sin -=x ,写出满足下列关系x 取值集合 ]3,5[)3()2(]2,0[)1(πππ--∈∈∈x R x x七、函数性质 【定义域问题】 1. x x y sin 162+-=定义域为_________2、1)32tan(--=πx y 定义域为_________【值域】1、函数y =2sin ⎝⎛⎭⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为__________2、若函数g (x )=2a sin x +b 的最大值和最小值分别为6和2,则|a |+b 的值为________3、函数x xy sin 2sin 1+-=的值域4、函数xxy cos 1sin 21+-=的值域5、函数x x y sin 2cos -=的值域【解析式】1、已知函数f (x )=3sin 2ωx -cos 2ωx 的图象关于直线x =π3对称,其中ω∈⎝⎛⎭⎫-12,52.函数f (x )的解析式为________.2、已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的图象在y 轴上的截距为1,在相邻两最值点(x 0,2),⎝⎛⎭⎫x 0+32,-2(x 0>0)上f (x )分别取得最大值和最小值.则所得图像的函数解析式是________ 3.将函数sin y x =的图像上所有的点右移10π个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是___________4、()()sin f x A x h ωϕ=++(0,0,)2A πωϕ>>< 的图象如图所示,求函数)(x f 的解析式;【性质】1、已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π递减,则ω的取值范围是( )A.⎣⎡⎦⎤12,54B.⎣⎡⎦⎤12,34C.⎝⎛⎦⎤0,12 D.(0,2] 2、若函数()sin (0)f x x ωω=>在区间π0,3⎡⎤⎢⎥⎣⎦递增,在区间ππ,32⎡⎤⎢⎥⎣⎦上单调递减,则ω=3、sin(2)3y x π=+图像的对称轴方程可能是A .6x π=- B .12x π=- C .6x π= D .4、已知函数x a x x f 2cos 2sin )(+=关于x 称,则a =_______5.()2sin()f x x ωϕ=++m 对任意x 有()6f x f π+=若()6f π=3,则m=________【图象】1、为了得到函数sin(2)3y x π=-sin(2)6y x π=+的图像向____移动____2、为了得到函数sin(2)3y x π=-y=cos2x 图像向____移动____个长度单位 3.将函数sin(2)y x ϕ=+的图象沿x 个单位后,得到一个偶函数的图象,则ϕ取值为 (A)34π (B) 4π(C)0 (D) 4π-【综合练习】1、已知定义在R 上的函数f (x )满足:当sin x f (x )=cos x ,当sin x >cos x 时,f (x )=sin x .下结论:①f (x )是周期函数;②f (x )③当且仅当x =2k π(k ∈Z)时,f (x )当且仅当2k π-π2<x <(2k +1)π(k ∈Z)时,f (⑤f (x )的图象上相邻两个最低点的距离是正确的结论序号是________.f(x)=sin(2x+x x 2cos 2)62sin()6+-+ππ)求f(x)的最小值及单调减区间; )求使f(x)=3的x 的取值集合。
初中三角函数练习试题和答案解析
.初中三角函数练习题及答案(一)精心选一选1、在直角三角形中,各边都扩大2 倍,则锐角 A 的正弦值与余弦值都()A 、缩小 2倍B 、扩大 2倍C 、不变D 、不能确定412、在 Rt △ ABC 中,∠ C=900, BC=4, sinA= 5,则 AC=() A 、3B 、4C 、5D 、613、若∠ A 是锐角,且 sinA= 3,则()A 、00<∠ A<300B 、300<∠ A<450C 、450<∠ A<600D 、600<∠ A<90013 sin A tan A4、若 cosA= 3,则4 sin A2 tan A =()411A 、7B 、 3C、 2D、 05、在△ ABC 中,∠ A :∠ B :∠ C=1: 1: 2,则 a : b : c= ()2A 、1: 1:2B 、 1:1:2 C、1: 1:3D 、 1:1:26、在 Rt △ ABC 中,∠ C=900,则下列式子成立的是( )A 、sinA=sinBB、sinA=cosBC、tanA=tanB D 、 cosA=tanB7.已知 Rt △ ABC 中,∠ C=90°, AC=2, BC=3,那么下列各式中,正确的是()2223A . sinB= 3B. cosB= 3C. tanB= 3D. tanB= 28.点( -sin60 °, cos60 °)关于 y 轴对称的点的坐标是()313131 1 3A .(2,2)B .(- 2,2 )C .(- 2,-2) D .(- 2,- 2)9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.? 某同学站在离旗杆 12 米远的地方, 当国旗升起到旗杆顶时,他测得视线的仰角为30°, ? 若这位同 学的目高 1.6 米,则旗杆的高度约为()A .6.9 米B .8.5 米C .10.3 米D .12.0 米10.王英同学从 A 地沿北偏西 60o 方向走 100m 到 B 地,再从B 地向正南方向走 200m到 C 地,此时王英同学离A 地 ()( A )50 3m ( B ) 100 m( C ) 150m (D )100 3m11、如图 1,在高楼前D 点测得楼顶的仰角为30 ,3045ADC B.图1.向高楼前进 60 米到C点,又测得仰角为45,则该高楼的高度大约为()A.82 米B.163米C.52米D.70米12、一艘轮船由海平面上 A 地出发向南偏西40o的方向行驶 40 海里到达 B 地,再由B 地向北偏西10o的方向行驶 40 海里到达C 地,则 A、 C两地相距().(A)30 海里(B) 40 海里( C)50 海里(D) 60 海里(二)细心填一填1.在 Rt △ ABC中,∠ C=90°, AB=5, AC=3,则 sinB=_____ .2.在△ ABC中,若 BC=2,AB=7, AC=3,则 cosA=________.3.在△ ABC中, AB=2,AC= 2,∠ B=30°,则∠ BAC的度数是 ______.4.如图,如果△ APB绕点 B 按逆时针方向旋转30°后得到△ A'P'B,且 BP=2,那么 PP'62的长为 ____________ . ( 不取近似值 . 以下数据供解题使用: sin15 °=4,62cos15°=4)5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.北y乙A北B第4题图甲Ox第5题图第 6题图6.如图,机器人从 A 点,沿着西南方向,行了个 4 2单位,到达 B 点后观察到原点O在它的南偏东60°的方向上,则原来 A 的坐标为 ___________结果保留根号).7.求值: sin 260° +cos 260° =___________ .8.在直角三角形ABC中,∠A=900, BC=13, AB=12,那么tan B___________ .9.根据图中所给的数据,求得避雷针CD的长约为 _______m(结果精确的到0.01m).(可用计算器求,也可用下列参考数据求:sin43°≈ 0.6802 , sin40 °≈ 0.6428, cos43 °≈0.7341 , cos40 °≈ 0.7660 , tan43 °≈ 0.9325, tan40 °≈ 0.8391 )10.如图,自动扶梯AB段的长度为20 米,倾斜角 A 为α,高度BC为 ___________ 米(结果用含α的三角比表示)...DCB 43°40°AB52m第9题图A第 10题图C(1)(2)11.如图 2 所示,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角, ? 这时测得大树在地面上的影子约为10 米,则大树的高约为________米.( ? 保留两个有效数字,2≈1.41 ,3≈1.73)三、认真答一答1,计算:sin 30cos60 cot 45 tan60tan30分析:可利用特殊角的三角函数值代入直接计算;2 计算: 2 (2cos45 sin 90 ) ( 4 4 ) ( 2 1)1分析:利用特殊角的三角函数值和零指数及负整数次幂的知识求解。
初中数学三角函数专题练习答案
初中数学三角函数专题练习答案在初中数学的学习中,三角函数是一个重要且具有一定难度的知识点。
为了帮助同学们更好地掌握这部分内容,我们进行了一系列的专题练习。
下面将为大家详细呈现这些练习的答案及解析。
一、选择题1、在直角三角形中,若一个锐角为 30°,斜边为 2,则直角边的长度为()A 1B √3C 2√3D √3/2答案:B解析:在直角三角形中,30°角所对的直角边等于斜边的一半。
已知斜边为 2,所以 30°角所对的直角边为 1。
根据勾股定理,另一条直角边的长度为√(2² 1²) =√3 。
2、已知 sinA = 1/2 ,且∠A 为锐角,则∠A 的度数为()A 30°B 45°C 60°D 90°答案:A解析:因为 sin30°= 1/2 ,且∠A 为锐角,所以∠A = 30°。
3、若tanα =√3 ,则α的度数为()A 30°B 45°C 60°D 90°答案:C解析:因为 tan60°=√3 ,所以α = 60°。
二、填空题1、计算:sin45°=____答案:√2/2解析:sin45°的值是固定的,为√2/2 。
2、已知 cosA = 1/2 ,且 0°<∠A < 90°,则∠A =____答案:60°解析:因为 cos60°= 1/2 ,且 0°<∠A < 90°,所以∠A = 60°。
3、若tanθ = 1,则θ =____答案:45°解析:因为 tan45°= 1 ,所以θ = 45°。
三、解答题1、已知在 Rt△ABC 中,∠C = 90°,∠A = 60°,AB = 4,求AC 和 BC 的长度。
三角函数专题练习(含答案)
三角函数1.已知函数()2sin 2x f x x =-. (Ⅰ)求()f x 的最小正周期; (Ⅱ)求()f x 在区间20,3π⎡⎤⎢⎥⎣⎦上的最小值.【答案】(1)2π;(2)考点:倍角公式、两角和的正弦公式、三角函数的周期、三角函数的最值. 2.已知. 求的值;求的值.【答案】(1);(2).考点:1、两角和的正切公式;2、特殊角的三角函数值;3、二倍角的正、余弦公式;4、同角三角函数的基本关系.3.已知函数 (1)求最小正周期;(2)求在区间上的最大值和最小值.【答案】(1) ;(2)最大值为2()(sin cos )cos 2f x x x x =++()f x ()f x [0,]2ππ1+考点:1.三角函数的性质;2.三角函数的最值. 4.(15年福建文科)若,且为第四象限角,则的值等于( ) A .B .C .D . 【答案】D 【解析】试题分析:由,且为第四象限角,则,则,故选D . 考点:同角三角函数基本关系式.5sin 13α=-αtan α125125-512512-5sin 13α=-α12cos 13α==sin tan cos ααα=512=-5.已知函数. (Ⅰ)求函数的最小正周期; (Ⅱ)将函数的图象向右平移个单位长度,再向下平移()个单位长度后得到函数的图象,且函数的最大值为2. (ⅰ)求函数的解析式;(ⅱ)证明:存在无穷多个互不相同的正整数,使得. 【答案】(Ⅰ);(Ⅱ)(ⅰ);(ⅱ)详见解析. 【解析】试题分析:(Ⅰ)首先利用证明二倍角公式和余弦降幂公式将化为,然后利用求周期;(Ⅱ)由函数的解析式中给减,再将所得解析式整体减去得的解析式为,当取1的时,取最大值,列方程求得,从而的解析式可求;欲证明存在无穷多个互不相同的正整数,使得,可解不等式,只需解集的长度大于1,此时解集中一定含有整数,由周期性可得,必存在无穷多个互不相同的正整数.试题解析:(I )因为.所以函数的最小正周期.()2cos 10cos 222x x x f x =+()f x ()f x 6πa 0a >()g x ()g x ()g x 0x ()00g x >2π()10sin 8g x x =-()f x ()10sin 56f x x π⎛⎫=++ ⎪⎝⎭2T πω=()f x x6πa ()g x ()10sin 5g x x a =+-sin x ()g x 105a +-13a =()g x 0x ()00g x >()00g x >0x ()2cos 10cos 222x x xf x =+5cos 5x x =++10sin 56x π⎛⎫=++ ⎪⎝⎭()f x 2πT =(II )(i )将的图象向右平移个单位长度后得到的图象,再向下平移()个单位长度后得到的图象. 又已知函数的最大值为,所以,解得. 所以.(ii )要证明存在无穷多个互不相同的正整数,使得,就是要证明存在无穷多个互不相同的正整数,使得,即. 由知,存在,使得. 由正弦函数的性质可知,当时,均有. 因为的周期为,所以当()时,均有. 因为对任意的整数,,所以对任意的正整数,都存在正整数,使得. 亦即存在无穷多个互不相同的正整数,使得. 考点:1、三角函数的图像与性质;2、三角不等式.6.如图,某港口一天6时到18时的谁深变化曲线近似满足函数y =3sin (x +Φ)+k ,据此函数可知,这段时间水深(单位:m )的最大值为____________.()f x 6π10sin 5y x =+a 0a >()10sin 5g x x a =+-()g x 21052a +-=13a =()10sin 8g x x =-0x ()00g x >0x 010sin 80x ->04sin 5x>45<003πα<<04sin 5α=()00,x απα∈-4sin 5x >sin y x =2π()002,2x k k παππα∈++-k ∈Z 4sin 5x >k ()()00022213k k πππαπαπα+--+=->>k ()002,2k x k k παππα∈++-4sin 5k x >0x ()00g x >6π【答案】8 【解析】试题分析:由图像得,当时,求得,当时,,故答案为8.考点:三角函数的图像和性质. 7.已知函数()()sin cos 0,,f x x x x ωωω=+>∈R 若函数()f x 在区间(),ωω-内单调递增,且函数()f x 的图像关于直线x ω=对称,则ω的值为 .【解析】试题分析:由()f x 在区间(),ωω-内单调递增,且()f x 的图像关于直线x ω=对称,可得π2ωω≤,且()222πsin cos sin 14f ωωωω⎛⎫=+=⇒+= ⎪⎝⎭,所以2ππ42ωω+=⇒= 考点:三角函数的性质.8.已知tan 2α=-,()1tan 7αβ+=,则tan β的值为_______. 【答案】3 【解析】sin()16x π+Φ=-min 2y =5k =sin()16x π+Φ=max 3158y =⨯+=试题分析:12tan()tan 7tan tan() 3.21tan()tan 17αβαβαβααβα++-=+-===++- 考点:两角差正切公式9.在ABC ∆中,已知60,3,2===A AC AB .(1)求BC 的长; (2)求C 2sin 的值. 【答案】(12【解析】考点:余弦定理,二倍角公式。
三角函数10道大题(带答案解析)
三角函数10道大题(带答案解析)1. 题目:已知sinA = 3/5,且A为锐角,求cosA的值。
答案解析:由sinA = 3/5可知,对边与斜边的比值为3/5。
根据勾股定理,我们可以求出邻边的长度,进而求出cosA的值。
设斜边长度为5,对边长度为3,则邻边长度为4。
因此,cosA = 4/5。
2. 题目:已知tanB = 2/3,且B为钝角,求sinB的值。
答案解析:由tanB = 2/3可知,对边与邻边的比值为2/3。
由于B为钝角,我们可以利用tanB = sinB/cosB的关系,结合勾股定理,求出sinB的值。
设邻边长度为3,对边长度为2(因为B为钝角,对边为负值),则斜边长度为根号13。
因此,sinB = 2/根号13。
3. 题目:已知cosC = 1/2,且C为锐角,求tanC的值。
答案解析:由cosC = 1/2可知,邻边与斜边的比值为1/2。
根据勾股定理,我们可以求出对边的长度,进而求出tanC的值。
设斜边长度为2,邻边长度为1,则对边长度为根号3。
因此,tanC = 根号3/1。
4. 题目:已知sinD = 1/2,且D为钝角,求cosD的值。
答案解析:由sinD = 1/2可知,对边与斜边的比值为1/2。
由于D为钝角,我们可以利用sinD = cos(90° D)的关系,结合勾股定理,求出cosD的值。
设斜边长度为2,对边长度为1(因为D为钝角,对边为负值),则邻边长度为根号3。
因此,cosD = 根号3/2。
5. 题目:已知tanE = 1,且E为锐角,求sinE的值。
答案解析:由tanE = 1可知,对边与邻边的比值为1。
根据勾股定理,我们可以求出斜边的长度,进而求出sinE的值。
设邻边长度为1,对边长度为1,则斜边长度为根号2。
因此,sinE = 1/根号2。
6. 题目:已知cosF = 1/2,且F为钝角,求tanF的值。
答案解析:由cosF = 1/2可知,邻边与斜边的比值为1/2。
三角函数大题专项(含答案解析)
三角函数专项训练1.在△ABC中,角A、B、C对应边a、b、c,外接圆半径为1,已知2(sin2A﹣sin2C)=(a﹣b)sin B.(1)证明a2+b2﹣c2=ab;(2)求角C和边c.2.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b sin A=a cos(B﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.3.已知α,β为锐角,tanα=,cos(α+β)=﹣.(1)求cos2α的值;(2)求tan(α﹣β)的值.4.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.5.已知函数f(x)=sin2x+sin x cos x.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,求m的最小值.6.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a sin A=4b sin B,ac=(a2﹣b2﹣c2)(Ⅰ)求cos A的值;(Ⅱ)求sin(2B﹣A)的值7.设函数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0<ω<3,已知f()=0.(Ⅰ)求ω;(Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在[﹣,]上的最小值.8.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a>b,a=5,c=6,sin B =.(Ⅰ)求b和sin A的值;(Ⅱ)求sin(2A+)的值.9.△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sin B sin C;(2)若6cos B cos C=1,a=3,求△ABC的周长.10.△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cos B;(2)若a+c=6,△ABC的面积为2,求b.11.已知函数f(x)=cos(2x﹣)﹣2sin x cos x.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.12.已知向量=(cos x,sin x),=(3,﹣),x∈[0,π].(1)若,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.13.在△ABC中,∠A=60°,c=a.(1)求sin C的值;(2)若a=7,求△ABC的面积.14.已知函数f(x)=2sinωx cosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值;(2)求f(x)的单调递增区间.15.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2a cos B.(1)证明:A=2B;(2)若cos B=,求cos C的值.16.设f(x)=2sin(π﹣x)sin x﹣(sin x﹣cos x)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.17.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a sin2B=b sin A.(1)求B;(2)已知cos A=,求sin C的值.18.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2a cos B.(Ⅰ)证明:A=2B;(Ⅱ)若△ABC的面积S=,求角A的大小.19.在△ABC中,角A,B,C所对的边分别是a,b,c,且+=.(Ⅰ)证明:sin A sin B=sin C;(Ⅱ)若b2+c2﹣a2=bc,求tan B.20.在△ABC中,AC=6,cos B=,C=.(1)求AB的长;(2)求cos(A﹣)的值.21.已知函数f(x)=4tan x sin(﹣x)cos(x﹣)﹣.(1)求f(x)的定义域与最小正周期;(2)讨论f(x)在区间[﹣,]上的单调性.22.△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.参考答案1.在△ABC中,角A、B、C对应边a、b、c,外接圆半径为1,已知2(sin2A﹣sin2C)=(a﹣b)sin B.(1)证明a2+b2﹣c2=ab;(2)求角C和边c.【解答】证明:(1)∵在△ABC中,角A、B、C对应边a、b、c,外接圆半径为1,∴由正弦定理得:=2R=2,∴sin A=,sin B=,sin C=,∵2(sin2A﹣sin2C)=(a﹣b)sin B,∴2()=(a﹣b)•,化简,得:a2+b2﹣c2=ab,故a2+b2﹣c2=ab.解:(2)∵a2+b2﹣c2=ab,∴cos C===,解得C=,∴c=2sin C=2•=.2.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b sin A=a cos(B﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.【解答】解:(Ⅰ)在△ABC中,由正弦定理得,得b sin A=a sin B,又b sin A=a cos(B﹣).∴a sin B=a cos(B﹣),即sin B=cos(B﹣)=cos B cos+sin B sin=cos B+,∴tan B=,又B∈(0,π),∴B=.(Ⅱ)在△ABC中,a=2,c=3,B=,由余弦定理得b==,由b sin A=a cos(B﹣),得sin A=,∵a<c,∴cos A=,∴sin2A=2sin A cos A=,cos2A=2cos2A﹣1=,∴sin(2A﹣B)=sin2A cos B﹣cos2A sin B==.3.已知α,β为锐角,tanα=,cos(α+β)=﹣.(1)求cos2α的值;(2)求tan(α﹣β)的值.【解答】解:(1)由,解得,∴cos2α=;(2)由(1)得,sin2,则tan2α=.∵α,β∈(0,),∴α+β∈(0,π),∴sin(α+β)==.则tan(α+β)=.∴tan(α﹣β)=tan[2α﹣(α+β)]==.4.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:=,即=,∴sin∠ADB==,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB==.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB=,∵DC=2,∴BC===5.5.已知函数f(x)=sin2x+sin x cos x.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,求m的最小值.【解答】解:(I)函数f(x)=sin2x+sin x cos x=+sin2x =sin(2x﹣)+,f(x)的最小正周期为T==π;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,可得2x﹣∈[﹣,2m﹣],即有2m﹣≥,解得m≥,则m的最小值为.6.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a sin A=4b sin B,ac=(a2﹣b2﹣c2)(Ⅰ)求cos A的值;(Ⅱ)求sin(2B﹣A)的值【解答】(Ⅰ)解:由,得a sin B=b sin A,又a sin A=4b sin B,得4b sin B=a sin A,两式作比得:,∴a=2b.由,得,由余弦定理,得;(Ⅱ)解:由(Ⅰ),可得,代入a sin A=4b sin B,得.由(Ⅰ)知,A为钝角,则B为锐角,∴.于是,,故.7.设函数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0<ω<3,已知f()=0.(Ⅰ)求ω;(Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在[﹣,]上的最小值.【解答】解:(Ⅰ)函数f(x)=sin(ωx﹣)+sin(ωx﹣)=sinωx cos﹣cosωx sin﹣sin(﹣ωx)=sinωx﹣cosωx=sin(ωx﹣),又f()=sin(ω﹣)=0,∴ω﹣=kπ,k∈Z,解得ω=6k+2,又0<ω<3,∴ω=2;(Ⅱ)由(Ⅰ)知,f(x)=sin(2x﹣),将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),得到函数y =sin(x﹣)的图象;再将得到的图象向左平移个单位,得到y=sin(x+﹣)的图象,∴函数y=g(x)=sin(x﹣);当x∈[﹣,]时,x﹣∈[﹣,],∴sin(x﹣)∈[﹣,1],∴当x=﹣时,g(x)取得最小值是﹣×=﹣.8.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a>b,a=5,c=6,sin B =.(Ⅰ)求b和sin A的值;(Ⅱ)求sin(2A+)的值.【解答】解:(Ⅰ)在△ABC中,∵a>b,故由sin B=,可得cos B=.由已知及余弦定理,有=13,∴b=.由正弦定理,得sin A=.∴b=,sin A=;(Ⅱ)由(Ⅰ)及a<c,得cos A=,∴sin2A=2sin A cos A=,cos2A=1﹣2sin2A=﹣.故sin(2A+)==.9.△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sin B sin C;(2)若6cos B cos C=1,a=3,求△ABC的周长.【解答】解:(1)由三角形的面积公式可得S△ABC=ac sin B=,∴3c sin B sin A=2a,由正弦定理可得3sin C sin B sin A=2sin A,∵sin A≠0,∴sin B sin C=;(2)∵6cos B cos C=1,∴cos B cos C=,∴cos B cos C﹣sin B sin C=﹣=﹣,∴cos(B+C)=﹣,∴cos A=,∵0<A<π,∴A=,∵===2R==2,∴sin B sin C=•===,∴bc=8,∵a2=b2+c2﹣2bc cos A,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c=∴周长a+b+c=3+.10.△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cos B;(2)若a+c=6,△ABC的面积为2,求b.【解答】解:(1)sin(A+C)=8sin2,∴sin B=4(1﹣cos B),∵sin2B+cos2B=1,∴16(1﹣cos B)2+cos2B=1,∴16(1﹣cos B)2+cos2B﹣1=0,∴16(cos B﹣1)2+(cos B﹣1)(cos B+1)=0,∴(17cos B﹣15)(cos B﹣1)=0,∴cos B=;(2)由(1)可知sin B=,∵S△ABC=ac•sin B=2,∴ac=,∴b2=a2+c2﹣2ac cos B=a2+c2﹣2××=a2+c2﹣15=(a+c)2﹣2ac﹣15=36﹣17﹣15=4,∴b=2.11.已知函数f(x)=cos(2x﹣)﹣2sin x cos x.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.【解答】解:(Ⅰ)f(x)=cos(2x﹣)﹣2sin x cos x,=(co2x+sin2x)﹣sin2x,=cos2x+sin2x,=sin(2x+),∴T==π,∴f(x)的最小正周期为π,(Ⅱ)∵x∈[﹣,],∴2x+∈[﹣,],∴﹣≤sin(2x+)≤1,∴f(x)≥﹣12.已知向量=(cos x,sin x),=(3,﹣),x∈[0,π].(1)若,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.【解答】解:(1)∵=(cos x,sin x),=(3,﹣),∥,∴﹣cos x=3sin x,当cos x=0时,sin x=1,不合题意,当cos x≠0时,tan x=﹣,∵x∈[0,π],∴x=,(2)f(x)==3cos x﹣sin x=2(cos x﹣sin x)=2cos(x+),∵x∈[0,π],∴x+∈[,],∴﹣1≤cos(x+)≤,当x=0时,f(x)有最大值,最大值3,当x=时,f(x)有最小值,最小值﹣2.13.在△ABC中,∠A=60°,c=a.(1)求sin C的值;(2)若a=7,求△ABC的面积.【解答】解:(1)∠A=60°,c=a,由正弦定理可得sin C=sin A=×=,(2)a=7,则c=3,∴C<A,∵sin2C+cos2C=1,又由(1)可得cos C=,∴sin B=sin(A+C)=sin A cos C+cos A sin C=×+×=,∴S△ABC=ac sin B=×7×3×=6.14.已知函数f(x)=2sinωx cosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值;(2)求f(x)的单调递增区间.【解答】解:f(x)=2sinωx cosωx+cos2ωx,=sin2ωx+cos2ωx,=,由于函数的最小正周期为π,则:T=,解得:ω=1.(2)由(1)得:函数f(x)=,令(k∈Z),解得:(k∈Z),所以函数的单调递增区间为:[](k∈Z).15.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2a cos B.(1)证明:A=2B;(2)若cos B=,求cos C的值.【解答】(1)证明:∵b+c=2a cos B,∴sin B+sin C=2sin A cos B,∵sin C=sin(A+B)=sin A cos B+cos A sin B,∴sin B=sin A cos B﹣cos A sin B=sin(A﹣B),由A,B∈(0,π),∴0<A﹣B<π,∴B=A﹣B,或B=π﹣(A﹣B),化为A=2B,或A=π(舍去).∴A=2B.(II)解:cos B=,∴sin B==.cos A=cos2B=2cos2B﹣1=,sin A==.∴cos C=﹣cos(A+B)=﹣cos A cos B+sin A sin B=+×=.16.设f(x)=2sin(π﹣x)sin x﹣(sin x﹣cos x)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.【解答】解:(Ⅰ)∵f(x)=2sin(π﹣x)sin x﹣(sin x﹣cos x)2 =2sin2x﹣1+sin2x=2•﹣1+sin2x=sin2x﹣cos2x+﹣1=2sin(2x﹣)+﹣1,令2kπ﹣≤2x﹣≤2kπ+,求得kπ﹣≤x≤kπ+,可得函数的增区间为[kπ﹣,kπ+],k∈Z.(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得y=2sin(x﹣)+﹣1的图象;再把得到的图象向左平移个单位,得到函数y=g(x)=2sin x+﹣1的图象,∴g()=2sin+﹣1=.17.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a sin2B=b sin A.(1)求B;(2)已知cos A=,求sin C的值.【解答】解:(1)∵a sin2B=b sin A,∴2sin A sin B cos B=sin B sin A,∴cos B=,∴B=.(2)∵cos A=,∴sin A=,∴sin C=sin(A+B)=sin A cos B+cos A sin B==.18.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2a cos B.(Ⅰ)证明:A=2B;(Ⅱ)若△ABC的面积S=,求角A的大小.【解答】(Ⅰ)证明:∵b+c=2a cos B,∴sin B+sin C=2sin A cos B,∴sin B+sin(A+B)=2sin A cos B∴sin B+sin A cos B+cos A sin B=2sin A cos B∴sin B=sin A cos B﹣cos A sin B=sin(A﹣B)∵A,B是三角形中的角,∴B=A﹣B,∴A=2B;(Ⅱ)解:∵△ABC的面积S=,∴bc sin A=,∴2bc sin A=a2,∴2sin B sin C=sin A=sin2B,∴sin C=cos B,∴B+C=90°,或C=B+90°,∴A=90°或A=45°.19.在△ABC中,角A,B,C所对的边分别是a,b,c,且+=.(Ⅰ)证明:sin A sin B=sin C;(Ⅱ)若b2+c2﹣a2=bc,求tan B.【解答】(Ⅰ)证明:在△ABC中,∵+=,∴由正弦定理得:,∴=,∵sin(A+B)=sin C.∴整理可得:sin A sin B=sin C,(Ⅱ)解:b2+c2﹣a2=bc,由余弦定理可得cos A=.sin A=,=+==1,=,tan B=4.20.在△ABC中,AC=6,cos B=,C=.(1)求AB的长;(2)求cos(A﹣)的值.【解答】解:(1)∵△ABC中,cos B=,B∈(0,π),∴sin B=,∵,∴AB==5;(2)cos A═﹣cos(π﹣A)=﹣cos(C+B)=sin B sin C﹣cos B cos C=﹣.∵A为三角形的内角,∴sin A=,∴cos(A﹣)=cos A+sin A=.21.已知函数f(x)=4tan x sin(﹣x)cos(x﹣)﹣.(1)求f(x)的定义域与最小正周期;(2)讨论f(x)在区间[﹣,]上的单调性.【解答】解:(1)∵f(x)=4tan x sin(﹣x)cos(x﹣)﹣.∴x≠kπ+,即函数的定义域为{x|x≠kπ+,k∈Z},则f(x)=4tan x cos x•(cos x+sin x)﹣=4sin x(cos x+sin x)﹣=2sin x cos x+2sin2x﹣=sin2x+(1﹣cos2x)﹣=sin2x﹣cos2x=2sin(2x﹣),则函数的周期T=;(2)由2kπ﹣<2x﹣<2kπ+,k∈Z,得kπ﹣<x<kπ+,k∈Z,即函数的增区间为(kπ﹣,kπ+),k∈Z,当k=0时,增区间为(﹣,),k∈Z,∵x∈[﹣,],∴此时x∈(﹣,],由2kπ+<2x﹣<2kπ+,k∈Z,得kπ+<x<kπ+,k∈Z,即函数的减区间为(kπ+,kπ+),k∈Z,当k=﹣1时,减区间为(﹣,﹣),k∈Z,∵x∈[﹣,],∴此时x∈[﹣,﹣),即在区间[﹣,]上,函数的减区间为∈[﹣,﹣),增区间为(﹣,].22.△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.【解答】解:(Ⅰ)∵在△ABC中,0<C<π,∴sin C≠0已知等式利用正弦定理化简得:2cos C(sin A cos B+sin B cos A)=sin C,整理得:2cos C sin(A+B)=sin C,即2cos C sin(π﹣(A+B))=sin C2cos C sin C=sin C∴cos C=,∴C=;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S=ab sin C=ab=,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5+.。
三角函数大题精选(含答案解析)
1.已知()tan sin 2f x x x π⎛⎫=-⎪⎝⎭cos 3x π⎛⎫- ⎪⎝⎭ABC ∆的内角,,A B C 的对边分别为,,a b c ,B 为锐角,且()f B =(1)求角B 的大小;(2)若3b =,2a c =,求ABC ∆的面积. 【详解】(1)函数()4tan sin 2f x x x π⎛⎫=-⎪⎝⎭cos 3x π⎛⎫-- ⎪⎝⎭4tan cos cos 3x x x π⎛⎫=⋅⋅-= ⎪⎝⎭4sin cos 3x x π⎛⎫- ⎪⎝⎭22sin cos x x x =+=1cos 2sin 22xx -+sin 22x x =2sin 23x π⎛⎫=- ⎪⎝⎭,由()f B =sin 23B π⎛⎫-= ⎪⎝⎭, B 为锐角, 22,333B πππ⎛⎫∴-∈- ⎪⎝⎭, 233B ππ∴-=3B π∴=;(2)由余弦定理有2222cos b a c ac B =+-,3b =,2a c =,3B π=,()222924cos 3c c c π∴=+-,23c ∴=,1sin 2ABC S ac B ∆∴=2sin 2c B ==.2.在ABC 中,内角,,A B C 的对边分别为,,a b c ,已知πb 2acos C 3⎛⎫=-⎪⎝⎭. ()1求A ; ()2若b =,且ABC 面积a 的值.【详解】 解:(1)∵23b cos C a π⎛⎫=- ⎪⎝⎭,∵b=2a (cosCcosπ3+sinCsin π3),可得:,由正弦定理可得:sinAsinC ,可得:sin (A+C ),可得:,可得: ∵A∵(0,π),∵A=π6(2)∵b =,且∵ABC 面积12bcsinA=12⨯12,∵解得:c=2,∵由余弦定理可得:a 2=b 2+c 2-2bccosA=48+4-2×2=28,解得:3.已知函数2()sin(2)sin(2)2cos 166f x x x x a ππ=++-++-. (1)若()f x 的最小值是2,求a ;(2)把函数()y f x =图像向右平移6π个单位长度,得到函数()y g x =图像,若a =求使()0g x 成立的x 的取值集合. 详解:解:(1)∵()2cos22sin(2)6f x x x a x a π=++=++∵min ()22f x a =-+=,∵4a =(2)∵()()2sin(2)66g x f x x ππ=-=- 由()0g x 知3sin(2)6x π-, ∵2222,363k x k k πππππ+-+∈Z 解得,5,412k x k k ππππ++∈Z ∵满足()0g x 的x 取值的集合为5,412x k x k k ππππ⎧⎫++∈⎨⎬⎩⎭Z .4.设ABC ∆的内角,,A B C 的对边分别为,,a b c ,且3cos sin 34a Bb A ==. (1)求边长a 的值;(2)若ABC ∆的面积10S =,求ABC ∆的周长L . 详解: 解:解:(1)3cos sin 34a Bb A ==sin 4b A ∴=过C 作CD AB ⊥于D ,则由sin 4CD b A ==,cos 3BD a B ==∴在Rt BCD ∆中,5a BC ==(2)由面积公式得1141022S AB CD AB =⨯⨯=⨯⨯=得5AB =,又cos 3a B =,得3cos 5B =,由余弦定理得:b == ABC ∆的周长5510l =+++5.已知函数()2f x sinx cosx x 2=-⋅-. (∵)求函数()f x 的单调递增区间;(∵)若()03f x 5=,0πx 0,2⎡⎤∈⎢⎥⎣⎦,求0cos2x 的值.【详解】:(1)()f x = 2sin 23x π⎛⎫+⎪⎝⎭ 函数()f x 的单调递增区间为: ()7,1212k k k Z ππππ⎡⎤--∈⎢⎥⎣⎦(2)()0023sin 235f x x π⎛⎫=+= ⎪⎝⎭,00,2x π⎡⎤∈⎢⎥⎣⎦, 024cos 235x π⎛⎫∴+=- ⎪⎝⎭,0022413cos2cos 233525x x ππ⎡⎤⎛⎫⎛⎫⎛⎫∴=+-=-⨯-+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦6.在平面四边形ABCD 中,3ABC π∠=,2ADC π∠=,2BC =.(1)若ABC ∆AC ;(2)若AD =3ACB ACD π∠=∠+,求tan ACD ∠.【详解】(1)在ABC ∆中,因为2BC =,3ABC π∠=,1··sin 2ABC S AB BC ABC ∆=∠=,AB =3AB =. 在ABC ∆中,由余弦定理得:2222?cos 7AC AB BC AB BC ABC =+-∠=所以AC =(2)设ACD α∠=,则33ACB ACD ππα∠=∠+=+如图,在Rt ACD ∆中,因为AD =sin AD AC α==在ABC ∆中,3BAC ACB ABC ππα∠=-∠-∠=-,由正弦定理,得sin sin BC AC BAC ABC =∠∠,即2sin 3πα=⎛⎫- ⎪⎝⎭所以2sin sin 3παα⎛⎫-= ⎪⎝⎭所以12sin sin 2ααα⎫-=⎪⎪⎝⎭2sin αα=所以tan α=,即tan ACD ∠=7.在ABC △中,角、、A B C 所对的边分别为a b c 、、,2sin cos sin 2sin b C A a A c B +=;(1)证明:ABC △为等腰三角形;(2)若D 为BC 边上的点,2BD DC =,且2ADB ACD ∠=∠,3a =,求b 的值.【详解】 (1)2sin cos sin 2sin b C A a A c B +=,由正弦定理得:22cos 2bc A a cb +=,由余弦定理得:2222222b c a bc a bc bc+-⋅+=;化简得:222b c bc +=,所以()20b c -=即b c =, 故ABC 为等腰三角形. (2)如图,由已知得2BD =,1DC =,2,ADB ACD ACD DAC ∠=∠=∠+∠ACD DAC ∴∠=∠, 1AD CD ∴==,又cos cos ADB ADC ∠=-∠,22222222AD BD AB AD CD AC AD BD AD CD +-+-∴=-⋅⋅, 即2222221211221211c b +-+-=-⨯⨯⨯⨯,得2229b c +=,由(1)可知b c =,得b =解法二:取BC 的中点E ,连接AE .由(1)知,AB AC AE BC =∴⊥, 由已知得31,1,22EC DC ED ===,2,ADB ACD ACD DAC ∠=∠=∠+∠ACD DAC ∴∠=∠,2AE ∴===,b AC ∴====解法三:由已知可得113CD a ==,由(1)知,,AB AC B C =∴∠=∠, 又2DAC ADB C C C C ∠=∠-∠=∠-∠=∠,CAB CDA ∴∽,即CB CA CA CD =,即31bb =,b ∴=8.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,设2sin()cos 22BA C +=. (1)求sinB ;(2)若ABC 的周长为8,求ABC 的面积的取值范围. 【详解】(1)23sin()cos 22BA C +=且sin()sin A CB +=22sin cos cos 222B B BB ==,又022B π<<,sin 0cos 222B B B∴>=tansin 2263B B B B ππ∴==∴=∴=(2)由题意知:8()b a c =-+2226416()21cos 222a c b a c ac B ac ac +--++-∴===36416()64ac a c ∴=-++≥-+,36408)0ac ∴-≥∴≥83≤8≥(舍)649ac∴≤1sin2ABCS ac B∆∴==≤a c=时取“=”)综上,ABC的面积的取值范围为0,9⎛⎝⎦9.,,a b c分别为ABC△的内角,,A B C的对边.已知()sin4sin8sina A B A+=.(1)若1,6b Aπ==,求sin B;(2)已知3Cπ=,当ABC△的面积取得最大值时,求ABC△的周长.【详解】(1)由()sin4sin8sina A B A+=,得()48a ab a+=,即48a b+=.因为1b=,所以4a=.由41sinsin6B=π,得1sin8B=.(2)因为48a b+=≥=,所以4ab≤,当且仅当44a b==时,等号成立.因为ABC△的面积11sin4sin223S ab Cπ=≤⨯⨯=所以当44a b==时,ABC△的面积取得最大值,此时22241241cos133cπ=+-⨯⨯⨯=,则c=,所以ABC△的周长为5+10.在ABC∆中,设角,,A B C的对边分别为,,a b c,已知222cos sin cos sin sinA B C A B=++.(1)求角C的大小;(2)若c=ABC∆周长的取值范围.【详解】(1)由题意知2221sin sin 1sin sin sin A B C A B -=+-+, 即222sin sin sin sin sin A B C A B +-=-, 由正弦定理得222a b c ab +-=-由余弦定理得2221cos 222a b c ab C ab ab +--===-,又20,3C C ππ<<∴=. (2)2,2sin ,2sin 2sin sin sin sin3a b c a A b BA B Cπ====∴==,则ABC ∆的周长()2sin sin 2sin sin 2sin 33L a b c A B A A A ππ⎡⎤⎛⎫⎛⎫=++=++=+-+=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦20,,sin 1333323A A A πππππ⎛⎫<<∴<+<<+≤ ⎪⎝⎭, 2sin 23A π⎛⎫∴<+≤+ ⎪⎝⎭ABC ∴∆周长的取值范围是(2.11.已知ABC ∆的内角,,A B C 的对边分别为,,a b c ,若21cos 222A bc=+. (1)求角C ;(2)BM 平分角B 交AC 于点M ,且1,6BM c ==,求cos ABM ∠. 【详解】 (1)由题1cos 1cos 222A b bA c c+=+∴= cos sin sin sin()sin cos cos sin A C B A C A C A C ∴==+=+sin cos 0A C ∴=又(0,)sin 0cos 02A A C C ππ∈∴≠∴=∴=(2)记ABM α∠=,则MBC α∠=,在Rt MCB ∆中,cos CB α=,在Rt ACB ∆中,cos BC ABC AB ∠=,即cos cos 26αα=即2cos 2cos 16αα-=3cos 4α∴=或23-(舍)3cos 4ABM ∴∠=.12.已知ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,()sin A B A +=,5b =,3AC MC =,2ABM CBM ∠=∠.(1)求ABC ∠的大小;(2)求ABC ∆的面积. 【详解】(1)因为3AC MC =,所以点M 在线段AC 上,且2AM CM =,故12BMC BMA S CM S AM ∆∆==,①记CBM θ∠=,则1sin 2BMC S BC BM θ∆=⋅⋅,1sin 22BMA S AB BM θ∆=⋅⋅. 因为()sin A B A +=,即sin C A =,即AB =,结合①式,得12BMCBMA S S ∆∆===,可得cos θ=. 因为()0,θπ∈,所以4πθ=,所以334ABC πθ∠==; (2)在ABC ∆中,由余弦定理可得2222cos b a c ac ABC =+-∠,即))222522a a =++⋅⋅,解得a =故1135sin sin 2242ABC S ac ABC a π∆=∠=⋅⋅=.13.函数π()sin()(0,0,||)2f x A x A ωϕωϕ=+>><部分图象如图所示: (1)求()f x 的最小正周期及解析式;(2)设()()cos 2g x f x x =-,求函数()g x 在区间π[0,]2x ∈上的最大值和最小值.【解析】(1)由图可得1A =,2πππ2362T =-=,所以πT =,所以2ω=, 当π6x =时,()1f x =,可得πsin(2)16ϕ⋅+=, 因为π||2ϕ<,所以π6ϕ=,所以()f x 的解析式为π()sin(2)6f x x =+. (2)πππ()()cos 2sin(2)cos 2sin 2cos cos 2sin cos 2666g x f x x x x x x x =-=+-=+-1π2cos 2sin(2)226x x x =-=-, 因为π02x ≤≤,所以ππ5π2666x -≤-≤, 当ππ262x -=,即π3x =时,()g x 有最大值,最大值为1; 当ππ266x -=-,即0x =时,()g x 有最小值,最小值为12-.。
三角函数50题精选题附答案
1. 已知方程(a 为大于1的常数)的两根为,,且、,则的值是_________________.解析:属于易错题,由于限定了角的范围,所以最终答案只有一个,1>a ∴a 4tan tan -=+βα0<,o a >+=⋅13tan tan βα∴βαtan ,tan 是方程01342=+++a ax x 的两个负根 又⎪⎭⎫ ⎝⎛-∈2,2,ππβα ⎪⎭⎫⎝⎛-∈∴0,2,πβα 即⎪⎭⎫ ⎝⎛-∈+0,22πβα由tan ()βα+=βαβαtan tan 1tan tan ⋅-+=()1314+--a a =34可得.22tan -=+βα2.函数f(x)=的值域为______________。
解析:易错题,错因:令x x t cos sin +=后忽视1-≠t ,从而121)(-≠-=t t g ,得到错解:⎥⎦⎤⎢⎣⎡---2122,2122 正解:⎥⎦⎤ ⎝⎛--⋃⎪⎪⎭⎫⎢⎣⎡---2122,11,2122 3.在△ABC 中,2sinA+cosB=2,sinB+2cosA=,则∠C 的大小应为( )A .B .C .或D .或解析:遇到这类型题,首先排除两个答案,因为给定条件就是让我们去排除4.已知tana tanb 是方程x 2+3x+4=0的两根,若a ,b ∈(-),则a+b=( )A .B .或-C .-或D .-解析:tana .tanb=4;tana +tanb=-3,所以tana tanb 均为负,即a ,b 都属于四象限 5.在中,,则的大小为( )A. B. C.D.解析:由3s i n 463c o s 41A B A B +=+=⎧⎨⎩c o s s i n 平方相加得115sin()sin 2266A B C C ππ+=∴=∴=或若C =56π, 则A B +=π6113cos 4sin 0cos 3A B A -=>∴<又1312<5366A C C πππ∴>∴≠∴= ∴选A ,实际上首先排除两个答案的6.函数为增函数的区间是……………… ( ) A.B.C.D.解析:注意x 前面系数为负7.已知且,这下列各式中成立的是( ) A.B.C.D.解析:解法1sin β>-cos α=sin (3π/2-α),因为β、(3π/2-α)都在二象限,sinx 二象限为减函数,所以β<(3π/2-α)解法2:首先排除AC(为什么),由特殊值法排除B8.△ABC中,已知cosA=,sinB=,则cosC的值为()A、 B、 C、或 D、9.设cos1000=k,则tan800是()A、 B、 C、 D、10.函数的单调减区间是()A、()B、C、 D、11.在△ABC中,则∠C的大小为()A、30°B、150°C、30°或150°D、60°或150°12.若,且,则_______________.13、设ω>0,函数f(x)=2sinωx在上为增函数,那么ω的取值范围是_____14已知奇函数单调减函数,又α,β为锐角三角形内角,则()A、f(cosα)> f(cosβ)B、f(sinα)> f(sinβ)C、f(sinα)<f(cosβ)D、f(sinα)> f(cosβ)15.函数的值域是.16.若,α是第二象限角,则=__________17.已知定义在区间[-p,]上的函数y=f(x)的图象关于直线x= -对称,当xÎ[-,]时,函数f(x)=Asin(wx+j)(A>0, w>0,-<j<),其图象如图所示。
(完整版)三角函数公式练习(答案)
三角函数公式练习题(答案)1.1.( )29sin6π=A .B .C .D 12-12【答案】【解析】C试题分析:由题可知,;2165sin )654sin(629sin ==+=ππππ考点:任意角的三角函数2.已知,,( )10274(sin =-πα257cos2=α=αsin A .B .C .D .5454-53-53【答案】D 【解析】试题分析:由①,7sin()sin cos 45πααα-=⇒-= 2277cos2cos sin 2525ααα=⇒-=所以②,由①②可得 ③,()()7cos sin cos sin 25αααα-+=1cos sin 5αα+=-由①③得, ,故选D3sin 5α=考点:本题考查两角和与差的三角函数,二倍角公式点评:解决本题的关键是熟练掌握两角和与差的三角函数,二倍角公式3.( )cos 690= A .B .C .D .2121-2323-【答案】C 【解析】试题分析:由,故选C ()()cos 690cos 236030cos 30cos30=⨯-=-==考点:本题考查三角函数的诱导公式点评:解决本题的关键是熟练掌握三角函数的诱导公式以及特殊角的三角函数值4.的值为π316tanA. B. C. D.33-3333-【答案】 C 【解析】试题分析tanπ=tan(6π﹣)=﹣tan=.考点:三角函数的求值,诱导公式.点评:本题考查诱导公式的应用,三角函数的化简求值.5.若,,202παβπ<<<<-1cos()43πα+=cos()42πβ-=cos()2βα+=A .B .C .D .3333-93596-【答案】C.【解析】试题分析:因为,,所以,且202παβπ<<<<-1cos()43πα+=4344παππ<+<;又因为,所以322)4sin(=+απcos(42πβ-=02<<-βπ,且.又因为,所以2244πβππ<-<3624sin(=-βπ24()4(2βπαπβα--+=+)24sin()4sin(24cos()4cos()]24()4cos[(2cos(βπαπβπαπβπαπβα-++-+=--+=+.故应选C .935363223331=⨯+⨯=考点:1、同角三角函数的基本关系;2、两角差的余弦公式.6.若角α的终边在第二象限且经过点(P -,则等于sin αA ..12- D .12【答案】A 【解析】试题分析:由已知,故选A .23sin 2,3,1==⇒=∴=-=r y r y x α考点:三角函数的概念.7.sin70Cos370- sin830Cos530的值为( )A . B . C . D .21-212323-【答案】A 【解析】试题分析:sin70Cos370- sin830Cos530()()3790sin 790cos 37cos 7sin ---=()()2130sin 377sin 37sin 7cos 37cos 7sin -=-=-=-= 考点:三角恒等变换及诱导公式;8.已知,那么=( )53)4cos(=-x πsin 2x (A ) (B ) (C ) (D )25182524±257-257【答案】C 【解析】试题分析:sin2x =cos (-2x )=2cos 2(-x )-1=2×2π4π237(1525-=-考点:二倍角公式,三角函数恒等变形9.已知,那么 ( ) 51sin()25πα+=cos α=A . B . C . D .25-15-1525【答案】C 【解析】试题分析:由=,所以选C .51sin()25πα+=sin()cos 2a a π+=考点:三角函数诱导公式的应用10.已知,则的值为( )31)2sin(=+a πa 2cos A . B . C . D .3131-9797-【答案】D 【解析】试题分析:由已知得,从而,故选D.31cos =α971921cos 22cos 2-=-=-=αα考点:诱导公式及余弦倍角公式.11.已知点()在第三象限,则角在 ( ) P ααcos ,tan αA .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】B 【解析】试题分析:由已知得,,故角在第二象限.tan 0,cos 0αα<⎧⎨<⎩α考点:三角函数的符号.12.已知是第四象限角,,则( )α125tan -=α=αsin A . B . C . D .5151-135135-【答案】D 【解析】试题分析:利用切化弦以及求解即可.,1cos sin 22=+αα125cos sin tan -==ααα又是第四象限角,,故,16925sin 1cos sin 222=∴=+αααα135sin ,0sin -=<αα选:D.考点:任意角的三角函数的定义 ωπω2sin ==T x y .13.化简得到( )2cos (4πα--2sin ()4πα-A .α2sin B .α2sin - C .α2cos D .α2cos -【答案】A 【解析】试题分析:απαπαπαπααππα2sin )22cos()4(2cos 4(sin )4(cos )4(sin )4(cos 2222=-=-=---=---考点:三角函数的诱导公式和倍角公式.14.已知,则3cos ,05ααπ=<<tan 4πα⎛⎫+= ⎪⎝⎭A.B. C. D.15171-7-【答案】D 【解析】试题分析:由可知,因此,053cos ,0>=<<απα20πα<<54sin =α,由和角公式可知,故答案34tan =α713411344tan tan 14tantan )4tan(-=⨯-+=⋅-+=+παπαπα为D 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数专题训练
1. 甲、乙两楼相距45米,从甲楼顶部观测乙楼顶部的俯角为30°,观测乙楼的底部的俯角为45°,试求两楼的高. ^
2. 从A 处观测铁塔顶部的仰角是30°,向前走100米到达B 处,观测铁塔的顶部的仰角是 45°,求铁塔高.
3、如图,在某建筑物AC 上,挂着“多彩云南”的宣传条幅BC ,小明站在点F 处,看条幅顶端B ,测的仰角为︒30,再往条幅方向前行20米到达点E 处,看到条幅顶端B ,测的仰角为︒60,求宣传条幅BC 的长,(小明的身高不计,结果精确到米)
[
300
450
D
#
300
450
A
r E D B
C
4、一艘轮船自西向东航行,在A 处测得东偏北°方向有一座小岛C ,继续向东航行60海里到达B 处,测得小岛C 此时在轮船的东偏北°方向上.之后,轮船继续向东航行多少海里,距离小岛C 最近
(参考数据:°≈9
25,°≈2
5, °≈9
10,°≈2)
5、如图,一条小船从港口A 出发,沿北偏东40方向航行20海里后到达B 处,然后又沿北偏西30方向航行10海里后到达C 处.问此时小船距港口A 多少海里(结果精确到1海里)友情提示:以下数据可以选用:sin 400.6428≈,
cos 400.7660≈,tan 400.8391≈
1.732.
{
6.海船以5海里/小时的速度向正东方向行驶,在A 处看见灯塔B 在海船的北偏东60°方向,2小时后船行驶到C 处,发现此时灯塔B 在海船的北偏西45方向,求此时灯塔B 到C 处的距离.
A B
C
东
|
P 北
40
30
7.如图所示,A .B 两城市相距100km ,现计划在这两座城市间修建一条高速公路(即线段AB ),经测量,森林保护中心P 在A 城市的北偏东30°和B 城市的北偏西45°的方向上,已知森林保护区的范围在以P 点为圆心,50km 为半径的圆形区域内,请问计划修建的这条高速公路会不会穿越保护区,为什么(参考数据:
3≈1.732,2≈1.414)
8.如图,一艘轮船以每小时20海里的速度沿正北方向航行,在A 处测得灯塔C 在北偏西30°方向,轮船航行2小时后到达B 处,在B 处测得灯塔C 在北偏西60°方向.当轮船到达灯塔C 的正东方向的D 处时,求此时轮船与灯塔C 的距离.(结果保留根号)
9.如图,要在木里县某林场东西方向的两地之间修一条公路MN ,已知C 点周围200米范围内为原始森林保护区,在MN 上的点A 处测得C 在A 的北偏东45°方向上,从A 向东走600米到达B 处,测得C 在点B 的北偏西60°方向上.
C
D
B
;
北
60°
30°
(1)MN
是否穿过原始森林保护区为什么(参考数据: 1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天
10.某校九年级数学兴趣小组的同学开展了测量湘江宽度的活动.如图,他们在河东岸边的A 点测得河西岸边的标志物B 在它的正西方向,然后从A 点出发沿河岸向正北方向行进550米到点C 处,测得B 在点C 的南偏西60°方向上,他
1.414
,
1.732)
11.如图,从热气球C 上测得两建筑物A .B 底部的俯角分别为30°和
60°.如果这时气球的高度CD 为90米.且点A .D .B 在同一直线上,求建筑物A .B 间的距离.
C
B
N
》
A
北 东 西 南
B
>
12.如图,我国的一艘海监船在钓鱼岛A附近沿正东方向航行,船在B点时测得钓鱼岛A在船的北偏东60°方向,船以50海里/时的速度继续航行2小时后到达C点,此时钓鱼岛A在船的北偏东30°方向.求船继续沿正东方向航行与钓鱼岛A的最近距离是多少(结果保留根号);
13.我市某乡镇学校教学楼后面靠近一个山坡,坡面上是一块平地,如图所示,BC∥AD,斜坡AB=40米,坡角∠BAD=60°.
(1)求山坡高度(结果保留根号);
(2)为防夏季因瀑雨引发山体滑坡,保障安全,学校决定对山坡进行改造,经地质人员勘测,当坡角不超过45°时,可确保山体不滑坡,改造时保持坡脚A 不动,从坡顶B沿BC削进到E 处,问BE至少是多少米(结果精确到.参考数
据:2≈,3≈)
…B
C E
14.如图,某大楼顶部有一旗杆AB ,甲乙两人分别在相距6米的C 、D 两处测得B 点和A 点的仰角分别是42°和65°,且C 、D 、E 在一条直线上.如果DE =15米,求旗杆AB 的长大约是多少米(结果保留整数) (参考数据:sin42°≈, tan42°≈, sin65°≈, tan65°≈)
15.如图,一艘核潜艇在海面下500米A 点处测得俯角为30°正前方的海底有黑匣子信号发出,继续在同一深度直线航行4000米后再次在B 点处测得俯角为60°正前方的海底有黑匣子信号发出,求海底黑匣子C 点处距离海面的深度2 1.4143 1.7325 2.236)
"
16.为解决江北学校学生上学过河难的问题,乡政府决定修建一座桥.建桥过程中需测量河的宽度(即两平行河岸AB 与MN 之间的距离).在测量时,选
定河对岸MN 上的点C 处为桥的一端,在河岸点A 处,测得∠CAB = 30°,沿
,
A B
C
D ~
E
65°
30°
60°
B A
D C 海面
河岸AB 前行30米后到达B 处,在B 处测得∠CBA = 60°.请你根据以上测量
数据求出河的宽度.(参考数据: 1.41≈
1.73;结果保留整数)
A B
C
M
N。