勾股定理毕达哥拉斯定理及各种证明方法
勾股定理的发现与证明
勾股定理的发现与证明勾股定理是数学中最著名的定理之一,也是数学发展史上的里程碑。
它的发现和证明为几何学和代数学的发展带来了重要的推动力。
本文将介绍勾股定理的发现过程以及多种证明方法,以展示这个定理的重要性和深远影响。
一、勾股定理的发现过程勾股定理最早的发现可以追溯到古希腊时期的毕达哥拉斯学派。
毕达哥拉斯学派的创始人毕达哥拉斯(Pythagoras)及其学生们研究了三角形的性质,并发现了勾股定理。
然而,勾股定理的具体发现过程并无确凿记载,只有一些古籍中有对该定理的描述。
其中最著名的传说是关于毕达哥拉斯自己的故事。
据传,毕达哥拉斯在观察牛角时发现了勾股定理。
当他发现一只角正好是直角时,他意识到了勾股定理的存在。
虽然勾股定理的具体发现过程不能确证,但它的应用和证明方法却为后来的数学家们奠定了基础。
二、勾股定理的证明方法1. 几何证明:几何证明是最早被使用的勾股定理证明方法之一。
其中最著名的是毕达哥拉斯的证明。
他使用了剪纸、移位等技巧来证明勾股定理的几何性质,这使得定理的证明更加直观且易于理解。
2. 代数证明:代数证明是后来发展起来的一种证明方法。
其基本思路是通过代数方程和数学运算来证明定理的成立。
这种方法更加形式化,利用了代数学的基本原理和运算规则。
例如,可以使用平方和公式将勾股定理转化为等式的形式进行证明。
3. 解析几何证明:解析几何证明结合了几何和代数的方法,通过点和向量的坐标来进行证明。
利用坐标系的性质和距离公式,可以推导出勾股定理。
这种方法尤其适用于证明多维情形下的勾股定理。
4. 数学归纳法证明:数学归纳法是一种简洁而有效的证明方法,在证明勾股定理时也得到了广泛应用。
数学归纳法通过递归的方式证明勾股定理对所有正整数解都成立。
通过以上几种方法的不断改进和发展,勾股定理的证明变得更加完善和严谨,得到了广泛的认可和应用。
三、勾股定理的应用勾股定理是解决几何问题的基本工具,它在数学和实际应用中有着广泛的应用。
勾股定理(毕达哥拉斯定理)及各种证明方法
勾股定理(毕达哥拉斯定理) 是一个,是人类早期发现并证明的重要数学定理之一,用思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
是的一个特例。
约有400种证明方法,是数学定理中证明方法最多的之一。
“”是勾股定理最基本的公式。
勾股数组方程a 2+b 2=c 2的正整数组(a ,b ,c )。
(3,4,5)就是。
也就是说,设直角三角形两直角边为a 和b ,斜边为c ,那么a 2+b 2=c 2,即直角三角形两直角边的平方和等于斜边的平方。
勾股定理命题1如果的两条直角边长分别为a ,b ,斜边长为c ,那么。
勾股定理的逆定理命题2如果的三边长a ,b ,c 满足,那么这个三角形是直角三角形。
【证法1】(赵爽证明)以a 、b 为直角边(b>a ),以c 为斜边作四个全等的直角三角形,则每个直角三角形的面积等于21ab.把这四个直角三角形拼成如图所示形状. ∵RtΔDAH≌RtΔABE,∴∠HDA=∠EAB.∵∠HAD+∠HAD=90o,∴∠EAB+∠HAD=90o,∴ABCD 是一个边长为c 的正方形,它的面积等于c2.∵EF=FG=GH=HE=b―a,∠HEF=90o.∴EFGH 是一个边长为b―a 的正方形,它的面积等于.∴∴.【证法2】(课本的证明) 做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a+b ,所以面积相等.即,整理得.【证法3】(1876年美国总统Garfield 证明)以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于.把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上. ∵RtΔEAD≌RtΔCBE,∴∠ADE=∠BEC.∵∠AED+∠ADE=90o,∴∠AED+∠BEC=90o.∴∠DEC=180o―90o=90o.∴ΔDEC 是一个等腰直角三角形,它的面积等于.又∵∠DAE=90o,∠EBC=90o,∴AD∥BC.∴ABCD 是一个直角梯形,它的面积等于 ∴.∴.【趣闻】:在1876年一个周末的傍晚,在美国华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。
勾股定理的推导和证明方法
勾股定理的推导和证明方法勾股定理是数学中的一个重要定理,它描述了直角三角形边长之间的关系。
这个定理被广泛应用于各个领域,包括物理学、工程学等。
本文将介绍勾股定理的推导和证明方法。
勾股定理的推导始于古希腊,最著名的是毕达哥拉斯定理,即a²+b²=c²,其中a、b为直角三角形的两条直角边,c为斜边。
以下是勾股定理的推导和证明方法的详细解析。
1. 推导过程:假设存在一个直角三角形,其中直角边分别为a和b,斜边为c。
用几何方法进行推导如下:首先,假设一个正方形,边长为a+b,将其平分成两个等腰直角三角形。
如下图所示:(图)根据正方形的性质,两个等腰直角三角形的面积相等。
因此,每个等腰直角三角形的面积为(a+b)²/4。
接下来,我们将这个正方形旋转,并将两个等腰直角三角形组合在一起,形成一个更大的正方形,边长为c。
如下图所示:(图)根据旋转后的正方形的性质,其面积为c²。
而这个正方形由两个等腰直角三角形组成,因此其面积为2*(a²/2)=(a²+b²)。
综上所述,我们可以得到等式(a+b)²/4=c²,即推导出了勾股定理。
2. 证明方法:除了几何方法外,还有代数方法用于证明勾股定理。
下面我们将介绍一种基于几何方法的证明。
首先,我们假设一个直角三角形,其中直角边分别为a和b,斜边为c。
我们可以构造一个以c为直径的圆,如下图所示:(图)根据圆的性质,半径为c/2的圆的面积为π(c/2)²=πc²/4。
另一方面,根据直角三角形的面积公式,可以得到三角形的面积为ab/2。
现在我们将这个圆分成四个相等的部分,并按下图进行排列:(图)由于四个部分的面积相等,我们可以得到每个部分的面积为πc²/16。
将三角形面积和圆的四个部分的面积相比较,可以得到ab/2=πc²/16。
进一步化简可得a²+b²=c²。
勾股定理的几种证明方法
勾股定理的证明方法勾股定理是初等几何中的一个基本定理。
这个定理有十分悠久的历史,两千多年来,人们对勾股定理的证明颇感兴趣,因为这个定理太贴近人们的生活实际,以至于古往今来,下至平民百姓,上至帝王总统都愿意探讨和研究它的证明.下面结合几种图形来进行证明。
一、传说中毕达哥拉斯的证法(图1)左边的正方形是由1个边长为的正方形和1个边长为的正方形以及4个直角边分别为、,斜边为的直角三角形拼成的。
右边的正方形是由1个边长为的正方形和4个直角边分别为、,斜边为的直角三角形拼成的。
因为这两个正方形的面积相等(边长都是),所以可以列出等式,化简得。
在西方,人们认为是毕达哥拉斯最早发现并证明这一定理的,但遗憾的是,他的证明方法已经失传,这是传说中的证明方法,这种证明方法简单、直观、易懂。
二、赵爽弦图的证法(图2)第一种方法:外围正方形可以看作是边长为的正方形和由4个直角边分别为、,斜边为的直角三角形围在外面形成的。
因为边长为的正方形面积加上4个直角三角形的面积等于外围正方形的面积,所以可以列出等式,化简得:。
第二种方法:内部边长为的正方形可以看作是由4个直角边分别为、,斜边为的三角形拼接形成的(虚线表示),不过中间缺出一个边长为的正方形“小洞”。
因为边长为的正方形面积等于4个直角三角形的面积加上正方形“小洞”的面积,所以化简得。
可以列出等式,这种证明方法很简明,很直观,它表现了我国古代数学家赵爽高超的证题思想和对数学的钻研精神,是我们中华民族的骄傲。
三、美国第20任总统茄菲尔德的证法(图3)这个直角梯形是由2个直角边分别为、,斜边为的直角三角形和1个直角边为的等腰直角三角形拼成的。
因为3个直角三角形的面积之和等于梯形的面积,所以可以列出等式,化简得。
这种证明方法由于用了梯形面积公式和三角形面积公式,从而使证明更加简洁,它在数学史上被传为佳话。
勾股定理(毕达哥拉斯定理)及各种证明方法
勾股定理(毕达哥拉斯定理)勾股定理是一个初等几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
勾股定理是余弦定理的一个特例。
勾股定理约有400种证明方法,是数学定理中证明方法最多的定理之一。
“勾三股四弦五”是勾股定理最基本的公式。
勾股数组方程a ² + b ²= c ²的正整数组(a ,b ,c )。
(3,4,5)就是勾股数。
也就是说,设直角三角形两直角边为a 和b ,斜边为c ,那么a ²+b ²=c ² ,即直角三角形两直角边的平方和等于斜边的平方。
勾股定理命题1 如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么。
勾股定理的逆定理命题2 如果三角形的三边长a ,b ,c 满足,那么这个三角形是直角三角形。
【证法1】(赵爽证明)以a 、b 为直角边(b>a ), 以c 为斜边作四个全等的直角三角形,则每个直角三角形的面积等于21ab. 把这四个直角三角形拼成如图所示形状. ∵ RtΔDAH ≌ RtΔABE,∴ ∠HDA = ∠EAB.∵ ∠HAD + ∠HAD = 90º,∴ ∠EAB + ∠HAD = 90º, ∴ ABCD 是一个边长为c 的正方形,它的面积等于c2. ∵ EF = FG =GH =HE = b―a ,∠HEF = 90º. ∴ EFGH 是一个边长为b―a 的正方形,它的面积等于.∴ ∴.【证法2】(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等.即, 整理得 .【证法3】(1876年美国总统Garfield证明)以a、b 为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于. 把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上.∵ RtΔEAD ≌ RtΔCBE,∴ ∠ADE = ∠BEC.∵ ∠AED + ∠ADE = 90º,∴ ∠AED + ∠BEC = 90º.∴ ∠DEC = 180º―90º= 90º.∴ ΔDEC是一个等腰直角三角形,它的面积等于.又∵ ∠DAE = 90º, ∠EBC = 90º,∴AD∥BC.∴ABCD是一个直角梯形,它的面积等于∴ .∴.【趣闻】:在1876年一个周末的傍晚,在美国华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。
10种勾股定理的证明方法
10种勾股定理的证明方法1什么是勾股定理勾股定理,又称勾股论,是基督教神学家和物理学家第乌里希(Pythagoras)在公元前6世纪提出的一个名言:在给定一个直角三角形中,直角两边的平法相加,等于直角边的平方。
也就是说,在一个直角三角形中,腰边的平方等于两个斜边的平方和。
2勾股定理的表示形式勾股定理可以用一下式子表示:a²+b²=c²,其中a和b是直角三角形的两个斜边,c是这个直角三角形的直角腰边。
3关于勾股定理的10种证明方法1.构造法:构造带有两个相等斜边a和b的两个直角三角形,以证明a²+b²=c²。
2.投影定理:利用投影定理将这些斜边投影,使两个三角形等同,从而证明勾股定理。
3.物理四边形法:采用正方形,梯形和菱形将这三角形组合成一个完整的四边形,证明了勾股定理。
4.三角不等式:根据直角三角形的三角不等式来证明a²+b²>c²。
5.毕达哥拉斯定理:该定理指出,在给定一个直角三角形时,斜边的平方和等于两个斜边相乘再乘以直角边的任何一个数字。
6.幂法:将a²+b²和c²都改写成几次幂的形式,然后将两个完整的当作可以对等的数字比较,从而证明勾股定理。
7.等差数列法:分别建立一个等差数列和一个等比数列,将它们相加,可以得到勾股定理的完整证明。
8.泰勒公式:根据勾股定理,a²+b²=c²,用泰勒公式解析勾股定理,就能得出正确的结论。
9.三角函数法:将勾股定理表示为正弦、余弦和正切的函数关系,根据不同的三角函数的关系证明勾股定理。
10.几何图表法:将斜边a、b、c绘制成一个两个直角三角形的示意图,并且两个三角形的直角边的和是刚好相等的,可以读出完整的证明。
4结论勾股定理是一个经典的定理,已被证明是绝对正确的,而证明它的方法也分多种。
从上面这10种证明方法中,我们可以看出,勾股定理可以通过计算、构造、投影和其它几何变换理论来证明。
勾股定理500种证明方法
勾股定理500种证明方法勾股定理是数学中一条非常重要的定理,它以毕达哥拉斯学派的希腊数学家毕达哥拉斯的名字命名。
勾股定理的数学表达式为a²+b²=c²,其中a、b、c分别代表一个直角三角形的两个短边和斜边的长度。
然而,勾股定理有许多不同的证明方法,超过500种的说法是不准确的。
这里我会介绍一些著名的证明方法,希望能给你一个对这个定理的全面认识。
1.几何证明法:通过利用几何图形中的属性和关系,可以推导出勾股定理。
其中最著名的几何证明方法是欧几里得的证明,他使用了面积相等和相似三角形的概念。
2.代数证明法:通过代数运算和方程的推导,可以证明勾股定理。
其中一种代数证明方法是使用平方差公式展开等式,然后化简并比较系数。
3.三角函数证明法:通过三角函数的性质和恒等式,可以得到勾股定理。
其中一种三角函数证明方法是使用正余弦函数的定义,将斜边的平方表示为两个边的平方和。
4.拆分法:通过将直角三角形拆分成若干个子三角形,然后通过这些子三角形的边长关系来推导勾股定理。
这种证明方法的关键是找到合适的子三角形。
5.向量证明法:通过向量的定义和运算,可以证明勾股定理。
其中一种向量证明方法是使用点乘和模的关系,将勾股定理转化为向量的相等关系。
还有许多其他的证明方法,如数学归纳法、复数证明法、递推证明法等等。
每一种证明方法都有其独特的思路和技巧,它们都可以用来证明勾股定理。
尽管有许多不同的证明方法,但它们都可以追溯到同一个基本的原理,即三角形的几何属性和数学关系。
通过不同的角度和方法来证明这个定理,可以加深我们对这个定理的理解,并且展示数学的多样性和美妙之处。
总结起来,勾股定理是一个有着丰富证明方法的重要定理。
尽管不存在500种证明方法,但每一种证明方法都是通过不同的思路和工具来推导这个定理。
通过学习这些证明方法,我们可以更加深入地理解和欣赏数学。
勾股定理(毕达哥拉斯定理)及各种证明方法
勾股定理(毕达哥拉斯定理) 是一个,是人类早期发现并证明的重要数学定理之一,用思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
是的一个特例。
约有400种证明方法,是数学定理中证明方法最多的之一。
“”是勾股定理最基本的公式。
勾股数组方程a ² + b ²= c ²的正整数组(a ,b ,c )。
(3,4,5)就是。
也就是说,设直角三角形两直角边为a 和b ,斜边为c ,那么a ²+b ²=c ² ,即直角三角形两直角边的平方和等于斜边的平方。
勾股定理命题1 如果的两条直角边长分别为a ,b ,斜边长为c ,那么。
勾股定理的逆定理命题2 如果的三边长a ,b ,c 满足,那么这个三角形是直角三角形。
【证法1】(赵爽证明)以a 、b 为直角边(b>a ), 以c 为斜边作四个全等的直角三角形,则每个直角三角形的面积等于21ab. 把这四个直角三角形拼成如图所示形状. ∵ RtΔDAH ≌ RtΔABE,∴ ∠HDA = ∠EAB.∵ ∠HAD + ∠HAD = 90º,∴ ∠EAB + ∠HAD = 90º,∴ ABCD 是一个边长为c 的正方形,它的面积等于c2.∵ EF = FG =GH =HE = b―a ,∠HEF = 90º.∴ EFGH 是一个边长为b―a 的正方形,它的面积等于.∴∴ .【证法2】(课本的证明) 做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等.即, 整理得 .【证法3】(1876年美国总统Garfield 证明)以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于. 把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上.∵ RtΔEAD ≌ RtΔCBE,∴ ∠ADE = ∠BEC.∵ ∠AED + ∠ADE = 90º,∴ ∠AED + ∠BEC = 90º.∴ ∠DEC = 180º―90º= 90º.∴ ΔDEC是一个等腰直角三角形,它的面积等于.又∵ ∠DAE = 90º, ∠EBC = 90º,∴AD∥BC.∴ABCD是一个直角梯形,它的面积等于∴ .∴.【趣闻】:在1876年一个周末的傍晚,在美国华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。
勾股定理的10种证明
5.《周髀算经》中勾股定理的公式与证明
“故折矩①,以为勾广三,股修四,径隅五。”:开始做图——选择一个 勾三(圆周率三)、股四(四方) 的矩,矩的两条边终点的连线应为5(径隅五)。
“②既方之,外半其一矩,环而共盘,得成三四五。”:这就是关键的证明过程——以矩的两条边画正方形(勾方、股方),根据矩的弦外面再画一个矩(曲尺,实际上用作直角三角),将“外半其一矩”得到的三角形剪下环绕复制形成一个大正方形,可看到其中有 边长三勾方、边长四股方、边长五弦方 三个正方形。
7.希腊人的方法
作四个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c.把它们拼成如图那样的一个多边形,使D、E、F在一条直线上。过点C作AC的延长线交DF于点P.于是便不难得出
8.欧几里德(Euclid)射影定理证法
Rt△ABC中,∠ABC=90°,BD是斜边AC上的高
通过证明三角形相似则有射影定理如下:
由△CAD∽△BAC可得AC2=AD×AB。②
我们发现,把①、②两式相加可得
BC2+AC2=AB(AD+BD),
而AD+BD=AB,
因此有BC2+AC2=AB2,这就是a2+b2=c2。
4.课本方法:画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。
勾股定理的证明方法十种过程
勾股定理的证明方法十种过程全文共四篇示例,供读者参考第一篇示例:勾股定理,又称毕达哥拉斯定理,是几何学中最基础的定理之一。
它表明在直角三角形中,直角的两边的平方和等于斜边的平方。
勾股定理的证明方法有很多种,下面我将介绍十种常用的证明过程。
一、几何证明法1. 利用相似三角形的性质,构造辅助线,将直角三角形分割成两个直角三角形,再利用勾股定理的定义证明斜边的平方等于直角两边的平方和。
2. 利用平行线的性质,构造辅助线,形成四边形,再利用四边形的性质推导出勾股定理。
二、代数证明法1. 利用代数方法将直角三角形的三边长度表示成a,b,c,利用勾股定理的定义列出等式a^2 + b^2 = c^2,再进行变形推导得到结论。
2. 利用向量法,将三角形的三个顶点表示成二维向量,用向量的性质证明直角三角形满足勾股定理。
三、三角函数证明法1. 利用正弦、余弦、正切等三角函数的关系,将直角三角形的三条边长和角度联系起来,通过三角函数的计算推导出勾股定理。
2. 利用三角函数的定义,将角度和边长关系转换成三角函数的等式,再通过化简和运算得到勾股定理。
五、解析几何证明法1. 利用直角三角形在坐标平面上的表示,用坐标的差和平方和表达斜边和直角两边之间的关系,进行运算保证两边相等。
2. 利用解析几何的方法,利用两直线间的距离公式和直线的斜率关系,推导出勾股定理成立的条件。
七、数学归纳法证明法1. 从一个特殊的直角三角形出发,比如3-4-5直角三角形,验证勾股定理成立。
然后假设勾股定理对于n=1的情况成立,推导出n=k+1的情况也成立,利用数学归纳法证明定理的普遍性。
2. 从勾股数列的性质入手,证明勾股定理的普遍性。
十、几何变换证明法1. 利用几何变换,比如平移、旋转等,将直角三角形变换成其他几何形状,再通过形状不变性证明勾股定理。
2. 利用相似性和对称性的变换,将直角三角形转化成其他几何形状,结合几何形状的性质证明勾股定理的成立。
勾股定理(毕达哥拉斯定理)及各种证明方法
勾股定理(毕达哥拉斯定理)及各种证明方法勾股定理(毕达哥拉斯定理)勾股定理是一个初等几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
勾股定理是余弦定理的一个特例。
勾股定理约有400种证明方法,是数学定理中证明方法最多的定理之一。
“勾三股四弦五”是勾股定理最基本的公式。
勾股数组方程a² + b²= c ²的正整数组(a,b,c)。
(3,4,5)就是勾股数。
也就是说,设直角三角形两直角边为a和b,斜边为c,那么a²+b²=c²,即直角三角形两直角边的平方和等于斜边的平方。
勾股定理命题1 如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么。
勾股定理的逆定理命题2 如果三角形的三边长a,b,c满足,那么这个三角形是直角三角形。
为a、b、c的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b,所以面积相等.即,整理得.【证法3】(1876年美国总统Garfield证明)以a、b 为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于. 把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上.∵ RtΔEAD ≌ RtΔCBE,∴ ∠ADE = ∠BEC.∵ ∠AED + ∠ADE = 90º,∴ ∠AED + ∠BEC = 90º.∴ ∠DEC = 180º―90º= 90º.∴ ΔDEC是一个等腰直角三角形,它的面积等于.又∵ ∠DAE = 90º, ∠EBC= 90º,∴AD∥BC.∴ABCD是一个直角梯形,它的面积等于∴ .∴.【趣闻】:在1876年一个周末的傍晚,在美国华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。
勾股定理的国内外历史及证明方法
勾股定理的国内外历史及证明方法勾股定理是指在直角三角形中,直角边的平方和等于斜边的平方。
它是数学中最著名的定理之一,历史悠久,证明方法繁多。
以下是关于勾股定理的50条历史及证明方法的详细描述。
一、中国古代证明方法:1.《周髀算经》:《周髀算经》是中国数学古籍之一,书中使用了勾股数(即满足勾股定理的整数三元组)进行了一些计算和推理,但未给出具体的证明方法。
2. 秦九韶算法:秦九韶算法是中国古代算术的一种运算方法,其中包含了勾股定理的运用,但没有给出详细的证明过程。
3. 宋元学派:宋元学派是中国古代数学发展的重要学派,其中许多数学家致力于勾股定理的研究,并提出了一些新的证明方法。
其中以秦九韶的《数书九章》和杨辉的《详解九章算术》为代表。
4. 程大位的证明:程大位是唐代数学家,他在《数书精行补遗》中给出了一种用面积比较推导勾股定理的方法。
5. 刘徽的证明:刘徽是北魏时期的数学家,他在《九章算术注》中给出了几种勾股定理的证明方法,其中包括将直角三角形拆分为小三角形进行计算和证明的方法。
二、希腊古代证明方法:1. 毕达哥拉斯的证明:毕达哥拉斯是公元前6世纪的希腊数学家,他提出了勾股定理,并给出了一种证明方法。
他的证明是以面积比较为基础,通过构造一系列等面积的几何图形,最终推导出勾股定理。
2. 欧几里得的证明:欧几里得是古希腊数学家,他在《几何原本》中给出了多种证明勾股定理的方法,其中包括利用相似三角形、使用平行线、利用等腰直角三角形等方法。
三、其他国家的证明方法:1. 美国证明方法:美国数学家海赛斯(Elisha S. Loomis)提出了一种利用向量的证明方法,通过向量的几何性质推导出勾股定理。
2. 俄罗斯证明方法:俄罗斯数学家齐契科夫(Pavel AlekseevichShekhotakov)提出了一种精确计算勾股定理的方法,通过将三角形划分为许多小三角形,利用面积比较进行证明。
3. 法国证明方法:法国数学家毕修思(Jacques Philippe Marie Binet)利用代数方法,通过求解方程组来证明勾股定理。
勾股定理的九种证明方法(附图)
勾股定理的九种证明方法(附图)勾股定理的证明方法一、传说中毕达哥拉斯的证法(图1)左边的正方形是由1个边长为的正方形和1个边长为的正方形以及4个直角边分别为、,斜边为的直角三角形拼成的。
右边的正方形是由1个边长为的正方形和4个直角边分别为、,斜边为的直角三角形拼成的。
因为这两个正方形的面积相等(边长都是),所以可以列出等式,化简得。
二、美国第20任总统茄菲尔德的证法(图3)这个直角梯形是由2个直角边分别为、,斜边为 的直角三角形和1个直角边为的等腰直角三角形拼成的。
因为3个直角三角形的面积之和等于梯形的面积,所以可以列出等式,化简得。
三、相似三角形的证法:4.相似三角形的方法:在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个三直角角形与原三角形相似。
CAD∴ BCPM是一个矩形,即∠MBC = 90°.∵∠QBM + ∠MBA = ∠QBA =90 °,∠ABC + ∠MBA = ∠MBC = 90°,∴∠QBM = ∠ABC,又∵∠BMP = 90°,∠BCA = 90°,BQ = BA = c,∴ RtΔBMQ ≌ RtΔBCA.同理可证RtΔQNF ≌ RtΔAEF.即a^2+b^2=c^2六、欧几里德射影定理证法:如图,Rt△ABC中,∠ABC=90°,AD是斜边BC上的高,通过证明三角形相似则有射影定理如下:1)(BD)^2;=AD·DC,(2)(AB)^2;=AD·AC ,(3)(BC)^2;=CD·AC 。
由公式(2)+(3)得:(AB)^2;+(BC)^2;=AD·AC+CD·AC =(AD+CD)·AC=(AC)^2;,即(AB)^2;+(BC)^2;=(AC)^2七、杨作玫证法:做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形. 过A作AF⊥AC,AF交GT于F,AF交DT于R. 过B作BP⊥AF,垂足为P. 过D 作DE与CB的延长线垂直,垂足为E,DE交AF于H.∵∠BAD = 90º,∠PAC = 90º,∴∠DAH = ∠BAC.又∵∠DHA = 90º,∠BCA = 90º,AD = AB = c,∴RtΔDHA ≌RtΔBCA.∴DH = BC = a,AH = AC = b.由作法可知,PBCA 是一个矩形,所以RtΔAPB ≌RtΔBCA. 即PB = CA = b,AP= a,从而PH = b―a.987654321PQR HG Dabcaccc∵ Rt ΔDGT ≌ Rt ΔBCA , Rt ΔDHA ≌ Rt ΔBCA. ∴ Rt ΔDGT ≌ Rt ΔDHA .∴ DH = DG = a ,∠GDT = ∠HDA . 又∵ ∠DGT = 90º,∠DHF = 90º,∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 90º, ∴ DGFH 是一个边长为a 的正方形.∴ GF = FH = a . TF ⊥AF ,TF = GT ―GF = b ―a . ∴ TFPB 是一个直角梯形,上底TF=b ―a ,下底BP= b ,高FP=a +(b ―a ). 用数字表示面积的编号(如图),则以c 为边长的正方形的面积为 543212S S S S S c ++++= ① ∵()[]()[]a b a a b b S S S -+•-+=++21438 =ab b 212-, 985S S S +=,∴ 824321S ab b S S --=+=812SS b -- . ② 把②代入①,得98812212S S S S b S S c ++--++== 922S S b ++ = 22a b +. ∴ 222c b a =+.八、陈杰证法:设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c. 做两个边长分别为a 、b 的正方形(b>a ),把它们拼成如图所示形状,使E 、H 、M 三点在一条直线上. 用数字表示面积的编号(如图).在EH = b 上截取ED = a ,连结DA 、DC , 则 AD = c. ∵ EM = EH + HM = b + a , ED = a , ∴ DM = EM ―ED = ()a b +―a = b. 又∵ ∠CMD = 90º,CM = a , ∠AED = 90º, AE = b , ∴ Rt ΔAED ≌ Rt ΔDMC. ∴ ∠EAD = ∠MDC ,DC = AD = c.∵ ∠ADE + ∠ADC+ ∠MDC =180º, ∠ADE + ∠MDC = ∠ADE + ∠EAD = 90º, ∴ ∠ADC = 90º.∴ 作AB ∥DC ,CB ∥DA ,则ABCD 是一个边长为c 的正方形. ∵ ∠BAF + ∠FAD = ∠DAE + ∠FAD = 90º, ∴ ∠BAF=∠DAE.连结FB ,在ΔABF 和ΔADE 中,∵ AB =AD = c ,AE = AF = b ,∠BAF=∠DAE , ∴ ΔABF ≌ ΔADE.BD F Gab ca b cac a b c 1234567∴ ∠AFB = ∠AED = 90º,BF = DE = a. ∴ 点B 、F 、G 、H 在一条直线上. 在Rt ΔABF 和Rt ΔBCG 中, ∵ AB = BC = c ,BF = CG = a , ∴ Rt ΔABF ≌ Rt ΔBCG.∵ 54322S S S S c +++=, 6212S S S b ++=, 732S S a +=, 76451S S S S S +===, ∴6217322S S S S S b a ++++=+ =()76132S S S S S ++++=5432S S S S +++=2c ∴ 222c b a =+.九、辛卜松证法:设直角三角形两直角边的长分别为a 、b ,斜边的长为c. 作边长是a+b 的正方形ABCD. 把正方形ABCD 划分成上方左图所示的几个部分,则正方形ABCD 的面积为 ()ab b a b a 2222++=+;把正方形ABCD 划分成上方右图所示的几个部分,则正方形ABCD 的面积为 ()22214c ab b a +⨯=+ =22c ab +.∴ 22222c ab ab b a +=++,∴ 222c b a =+.ab 21ab 21ab 21ab 212c 2b 2aAD B Bab aba bb a ccccb a ab ab ba b a。
勾股定理500种证明方法
勾股定理500种证明方法
勾股定理,又称毕达哥拉斯定理,是数学几何中最著名的定理之一、它表明,在一个直角三角形中,直角边的平方之和等于斜边的平方,即$a^2+b^2=c^2$。
据说有许多不同的证明方法,至少有500种不同的证明方法。
下面将简单介绍几种常见的证明方法:
1.欧几里得的证明:这是最早的证明方法之一,通过构造相似三角形和利用平行线的性质,证明三角形的内角和为180度。
由此可以得到
$a^2+b^2=c^2$。
2.利用面积的证明:可以将直角三角形划分成两个直角三角形,然后利用面积的性质证明等式的成立。
3.利用复数的证明:可以利用复数的平方模等于平方和的性质,将直角三角形的顶点表示为复数,然后利用复数运算的性质进行计算,最终得到$a^2+b^2=c^2$。
4.利用向量的证明:将三边向量化,将向量的长度平方与向量的点积进行计算,最终得到$a^2+b^2=c^2$。
5.利用相似三角形的证明:通过构造相似的三角形,可以通过比较对应边长的比例关系,推导出$a^2+b^2=c^2$。
这只是其中几种比较常见的证明方法,实际上还有很多其他的证明方法,包括利用解析几何、三角函数、几何画法等等。
每一种证明方法都有自己的特点和逻辑,通过研究和理解这些不同的证明方法,可以更好地理解勾股定理的本质和几何背后的原理。
证明勾股定理的16种方法
勾股定理证明十六种方法方法一:赵爽弦图证法
方法二:毕达哥拉斯证法
方法三:书本证明方法
法四:利用三角形相似推导
方法五:切割线定理证明
方法六:托勒密定理证明
方法七:利用切线长定理
方法八:总统证法
方法九:八法变式
方法十和方法十一:
总结:上述方法是非常常见的方法,当然同学们可以总结出,用到最多的还是面积法,对于面积法无论证明方法如何变化,图形如何变化,方法都有一种熟悉感。
同时,还有很多其它与圆相关的定理应用,要理解它们,同学们要掌握更多的相关知识。
以下方法,只展示图片,同学们可以自行感悟。
方法十二:
方法十三:面积法
方法十四:拼接法1
方法十五:拼接法2
方法十六:射影定理。
勾股定理(毕达哥拉斯定理)及各种证明方法
勾股定理(毕达哥拉斯定理)勾股定理是一个初等几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
勾股定理是余弦定理的一个特例。
勾股定理约有400种证明方法,是数学定理中证明方法最多的定理之一。
“勾三股四弦五”是勾股定理最基本的公式。
勾股数组方程a ² + b ²= c ²的正整数组(a ,b ,c )。
(3,4,5)就是勾股数。
也就是说,设直角三角形两直角边为a 和b ,斜边为c ,那么a ²+b ²=c ² ,即直角三角形两直角边的平方和等于斜边的平方。
勾股定理命题1 如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么。
勾股定理的逆定理命题2 如果三角形的三边长a ,b ,c 满足,那么这个三角形是直角三角形。
【证法1】(赵爽证明)以a 、b 为直角边(b>a ), 以c 为斜边作四个全等的直角三角形,则每个直角三角形的面积等于21ab. 把这四个直角三角形拼成如图所示形状.∵ Rt ΔDAH ≌ Rt ΔABE,∴ ∠HDA = ∠EAB.∵ ∠HAD + ∠HAD = 90º,∴ ∠EAB + ∠HAD = 90º, ∴ ABCD 是一个边长为c 的正方形,它的面积等于c2. ∵ EF = FG =GH =HE = b―a ,∠HEF = 90º. ∴ EFGH 是一个边长为b―a 的正方形,它的面积等于.∴ ∴.【证法2】(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等.即, 整理得 .【证法3】(1876年美国总统Garfield证明)以a、b 为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于. 把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上.∵ RtΔEAD ≌ RtΔCBE,∴ ∠ADE = ∠BEC.∵ ∠AED + ∠ADE = 90º,∴ ∠AED + ∠BEC = 90º.∴ ∠DEC = 180º―90º= 90º.∴ ΔDEC是一个等腰直角三角形,它的面积等于.又∵ ∠DAE = 90º, ∠EBC = 90º,∴ AD∥BC.∴ABCD是一个直角梯形,它的面积等于∴ .∴.【趣闻】:在1876年一个周末的傍晚,在美国华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。
勾股定理的证明方法简介
勾股定理的证明方法简介勾股定理可神奇啦,那啥是勾股定理呢?简单说就是直角三角形两条直角边的平方和等于斜边的平方。
咱现在就来唠唠它的证明方法哈。
一、毕达哥拉斯证法毕达哥拉斯这人可牛了。
他的证明方法是这样的,假设有一个直角三角形,两条直角边为a和b,斜边为c。
他构造了好多个正方形。
先以直角三角形的三边分别向外作正方形。
然后他通过一些巧妙的面积计算和拼凑。
他发现两个小正方形的面积之和正好等于大正方形的面积。
这就证明了a² + b² = c²。
你看,就这么简单又巧妙,就像搭积木一样,把面积这个东西摆弄摆弄就得出结论了。
二、赵爽弦图证法咱们中国的赵爽也超厉害的。
他画了一个大正方形,这个大正方形是由四个全等的直角三角形和中间一个小正方形组成的。
设直角三角形的两条直角边为a和b(a>b),斜边为c。
那这个大正方形的面积可以用两种方法表示。
一种是直接边长的平方,也就是c²。
另一种呢,是四个直角三角形的面积加上中间小正方形的面积。
四个直角三角形面积就是4×(1/2)ab,小正方形边长是(a - b),那小正方形面积就是(a - b)²。
这样算出来也是a² + b² = c²。
感觉咱们老祖宗的智慧真是无穷啊,用这么个图形就把这定理证得明明白白的。
三、加菲尔德证法这个加菲尔德呢,他构造了一个梯形。
这个梯形的上底是a,下底是b,高是(a + b)。
梯形的面积公式大家都知道吧,就是(上底+下底)×高÷2。
那这个梯形面积就是(a + b)(a + b)/2。
然后这个梯形又是由三个直角三角形组成的,这三个直角三角形的面积之和是(1/2)ab+(1/2)ab+(1/2)c²。
把这两个式子相等起来,化简之后也能得到a² + b² = c²。
勾股定理的证明方法还有好多好多呢,这些不同的证明方法就像不同风格的艺术品一样,各有各的美妙之处,每一种都展现了人类智慧的光辉,是不是超级有趣呢?。
勾股定理的证明(比较全的证明方法)
关于勾股定理的证明,现在人类保存下来的最早的文字资料是欧几里得(公元前300年左右)所著的《几何原本》第一卷中的命题47:“直角三角形斜边上的正方形等于两直角边上的两个正方形之和”.其证明是用面积来进行的. 传说中毕达哥拉斯的证法 已知:如图,以在Rt△ABC中,∠ACB=90°,分别以a、b、c为边向外作正方形. 求证:a2 +b2=c2.
∴S矩形ADNM=2S△ADC. 又∵正方形ACHK和△ABK同底(AK)、等高(即平行线AK和BH间的距离), ∴S正方形ACHK=2S△ABK. ∵AD=AB,AC=AK,∠CAD=∠KAB, ∴△ADC≌△ABK. 由此可得S矩形ADNM=S正方形ACHK . 同理可证S矩形MNEB=S正方形CBFG. ∴S矩形ADNM+S矩形MNEB=S正方形ACHK+S正方形CBFG. 即S正方形ADEB=S正方形ACHK+S正方形CBFG , 也就是 a2+b2=c2.
观察下面的图形,你还能发现什么吗?
勾股定理的证明
汇报人姓名
汇报时间:12月20日
Annual Work Summary Report
1.传说中毕达哥拉斯的证法
2.赵爽弦图的证法
4.美国第20任总统茄菲尔德的证法
3.刘徽的证法
勾股定理的证明
5.其他证法
两千多年来,人们对勾股定理的证明颇感兴趣,因为这个定理太贴近人们的生活实际,以至于古往今来,下至平民百姓,上至帝王总统都愿意探讨和研究它的证明.因此不断出现关于勾股定理的新证法.
美国第二十任总统伽菲尔德
总统巧证勾股定理
a
a
b
b
c
c
A
D
C
B
E
返回
向常春的证明方法 b c b C B c
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
勾股定理(毕达哥拉斯定理) 勾股定理是一个初等几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
勾股定理是余弦定理的一个特例。
勾股定理约有400种证明方法,是数学定理中证明方法最多的定理之一。
“勾三股四弦五”是勾股定理最基本的公式。
勾股数组方程a 2+b 2=c 2的正整数组(a ,b ,c )。
(3,4,5)就是勾股数。
也就是说,设直角三角形两直角边为a 和b ,斜边为c ,那么a 2+b 2=c 2,即直角三角形两直角边的平方和等于斜边的平方。
勾股定理
命题1如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么。
勾股定理的逆定理
命题2如果三角形的三边长a ,b ,c 满足
,那么这个三角形是直角三角形。
【证法1】(赵爽证明)
以a 、b 为直角边(b>a ),以c 为斜边作四个全等的直角三角形,则每
个直角三角形的面积等于2
1ab.把这四个直角三角形拼成如图所示形状. ∵RtΔDAH≌RtΔABE,∴∠HDA=∠EAB.
∵∠HAD+∠HAD=90o,∴∠EAB+∠HAD=90o,
∴ABCD 是一个边长为c 的正方形,它的面积等于c2.
∵EF=FG=GH=HE=b―a,∠HEF=90o.
∴EFGH 是一个边长为b―a 的正方形,它的面积等于.
∴
∴.
【证法2】(课本的证明) 做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a+b ,所以面积相等.
即,整理得.
【证法3】(1876年美国总统Garfield 证明)以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于.把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上. ∵RtΔEAD≌RtΔCBE,∴∠ADE=∠BEC.
∵∠AED+∠ADE=90o,∴∠AED+∠BEC=90o.∴∠DEC=180o―90o=90o.
∴ΔDEC 是一个等腰直角三角形,它的面积等于
.又∵∠DAE=90o,∠EBC=90o,∴AD∥BC.∴
ABCD 是一个直角梯形,它的面积等于
∴.∴.
【趣闻】:在1876年一个周末的傍晚,在美国华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。
他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。
由于好奇心驱使伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。
只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。
于是伽菲尔德便问他们在干什么?只见那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答到:“是5呀。
”小男孩又问道:“如果两条直角边分别
为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不加思索地回答
到:“那斜边的平方一定等于5的平方加上7的平方。
”小男孩又说道:“先生,
你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心理很不是滋味。
于是伽菲尔德不再散步,立即回家,潜心探讨小男孩给他留下的难题。
他经过
反复的思考与演算,终于弄清楚了其中的道理,并给出了简洁的证明方法。
1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证法。
1881年,伽菲尔德就任美国第二十任总统后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统。
”证法。
【证法4】(欧几里得证明)做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使H、C、B 三点在一条直线上,连结BF、CD.过C作CL⊥DE,交AB于点M,交DE于点
L.∵AF=AC,AB=AD,∠FAB=∠G AD,
∴ΔFAB≌ΔGAD,
∵ΔFAB的面积等于,ΔGAD的面积等于矩形ADLM的面积的一半,
∴矩形ADLM的面积=.同理可证,矩形MLEB的面积=.
∵正方形ADEB的面积=矩形ADLM的面积+矩形MLEB的面积
∴,即.
【证法5】(利用相似三角形性质证明)
如图,在RtΔABC中,设直角边AC、BC的长度分别为a、b,斜边AB的长为c,过点C作CD⊥AB,垂足是D.在ΔADC和ΔACB中,
∵∠ADC=∠ACB=90o,∠CAD=∠BAC,∴ΔADC∽ΔACB.
∴AD∶AC=AC∶AB,即.
同理可证,ΔCDB∽ΔACB,
从而有
.∴,即
【证法6】(邹元治证明)
以a、b为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于.把这四个直角三角形拼成如图所示形状,使A、E、B 三点在一条直线上,B、F、C三点在一条直线上,C、G、D三点在一条直线
上.
∵RtΔHAE≌RtΔEBF,∴∠AHE=∠BEF.
∵∠AEH+∠AHE=90o,∴∠AEH+∠BEF=90o.
∴∠HEF=180o―90o=90o.
∴四边形EFGH是一个边长为c的正方形.它的面积等于c2.
∵RtΔGDH≌RtΔHAE,∴∠HGD=∠EHA.
∵∠HGD+∠GHD=90o,∴∠EHA+∠GHD=90o.
又∵∠GHE=90o,∴∠DHA=90o+90o=180o.
∴ABCD是一个边长为a+b的正方形,它的面积等于.
∴.∴.
【证法7】(利用切割线定理证明)
在RtΔABC中,设直角边BC=a,AC=b,斜边AB=c.
如图,以B为圆心a为半径作圆,
交AB及AB的延长线分别于D、E,则BD=BE=BC=a.
因为∠BCA=90o,点C在⊙B上,
所以AC是⊙B的切线.由切割线定理,得
===,
即,∴.
【证法8】(作直角三角形的内切圆证明)
在RtΔABC中,设直角边BC=a,AC=b,斜边AB=c.作RtΔABC的内切圆⊙O,切点分别为D、E、F(如图),设⊙O的半径为r.
∵AE=AF,BF=BD,CD=CE,
∴
==r+r=2r,即,∴.
∴,
即,
∵,
∴,又∵
====,
∴,
∴,
∴,∴.。