五年级数学公式:盈亏问题_公式总结

合集下载

必备的小学生数学盈亏问题公式-最新学习文档

必备的小学生数学盈亏问题公式-最新学习文档

必备的小学生数学盈亏问题公式怎样掌握好每门课程这个问题被很多学生频繁的问起,小编特地为大家整理了小学生数学盈亏问题公式,希望对大家学习公式有所帮助。

盈亏问题公式:(1)一次有余(盈),一次不够(亏),可用公式:(盈+亏)÷(两次每人分配数的差)=人数。

例如,“小朋友分桃子,每人10个少9个,每人8个多7个。

问:有多少个小朋友和多少个桃子?”解(7+9)÷(10-8)=16÷2=8(个)……人数10×8-9=80-9=71(个)……桃子或8×8+7=64+7=71(个)(答略)(2)两次都有余(盈),可用公式:(大盈-小盈)÷(两次每人分配数的差)=人数。

例如,“士兵背子弹作行军训练,每人背45发,多680发;若每人背50发,则还多200发。

问:有士兵多少人?有子弹多少发?”解(680-200)÷(50-45)=480÷5=96(人)45×96+680=5000(发)或50×96+200=5000(发)(答略)(3)两次都不够(亏),可用公式:(大亏-小亏)÷(两次每人分配数的差)=人数。

例如,“将一批本子发给学生,每人发10本,差90本;若每人发8本,则仍差8本。

有多少学生和多少本本子?”解(90-8)÷(10-8)=82÷2=41(人)10×41-90=320(本)(答略)(4)一次不够(亏),另一次刚好分完,可用公式:亏÷(两次每人分配数的差)=人数。

(例略)(5)一次有余(盈),另一次刚好分完,可用公式:盈÷(两次每人分配数的差)=人数。

(例略)以上就是查字典数学网为大家整理的小学生数学盈亏问题公式,怎么样,大家还满意吗?希望对大家的学习有所帮助,同时也祝大家学习进步,考试顺利!。

盈亏问题公式

盈亏问题公式

【盈亏问题公式】(1)一次有余(盈),一次不够(亏),可用公式:(盈+亏)÷(两次每人分配数的差)=人数.(2)两次都有余(盈),可用公式:(大盈-小盈)÷(两次每人分配数的差)=人数.(3)两次都不够(亏),可用公式:(大亏-小亏)÷(两次每人分配数的差)=人数.(4)一次不够(亏),另一次刚好分完,可用公式:亏÷(两次每人分配数的差)=人数.(5)一次有余(盈),另一次刚好分完,可用公式:盈÷(两次每人分配数的差)盈亏问题的关系式:1、(盈+亏)÷两次分配的差=份数2、(大盈-小盈)÷两次分配的差=份数3、(大亏-小亏)÷两次分配的差=份数每次分的数量×份数+盈=总数量,每次分的数量×份数-亏=总数量,1、幼儿园中(1)班的小朋友分橘子,若每人分4个橘子就多出10个,若每人分6个橘子,就少6个橘子,请问该班有多少个小朋友?橘子有多少个?2、五(4)班同学春游去划船,如果少租一条船,每条船上正好坐9个人,如果多租一条船,每条船上正好坐6个人,五(4)班有学生多少人?3、学校将一批钢笔奖给三好学生,若每人奖8支就缺11支;若每人奖7支就缺7支.问:这批钢笔有多少只?三好学生有多少人?4、同学们打羽毛球,若没组分6个羽毛球,则少10个球;若每组分4个羽毛球,则少2个球.问:共有多少个学生打球?有多少个羽毛球?5、饲养员分桃子给小猴,如果每只小猴分10个桃子,则有两个小猴没有;如果每只小猴分7个桃子,则还会剩下10个桃子.请问:桃子有多少个?小猴有多少只?6、甲、乙两个工程队同时抢修两短距离同样长的铁路,开工12天后,乙队完成了任务,甲队还需再修300米才能完成任务.问:两条铁路全长多少米?7、同学们修补图书,若每人修5本,还剩5本,若其中两人各修4本,其余人就要各修6本,正好修完,这里有多少名同学?多少本书?8、工人们修公路,如果每天修200米,那么修完全程就得延期10天;如果每天修220米,那么修完全程就得延期5天.问:这条路全长多少米?9、幼儿园某班学生做游戏,如果每个学生分得的子弹一样多,弹子就多12颗,如果再增加12颗子弹,那么每人正好分的12颗.问:这个班有多少学生?有多少颗子弹?10李娟从家去学校,如果每分钟走60米,那么要迟到5分钟;如果每分钟走90米,那么能提前4分钟到.请问:李娟的家到学校的距离是多少米?c巧汧7H棜t 2014-11-061、老师拿来一批树苗,分给一些同学去栽,每人每次分给一棵,一轮一轮往下分,当分剩下12棵时不够每人分一棵了,如果再拿来8棵,那么每个同学正好栽10棵。

小学生必备数学公式盈亏问题公式

小学生必备数学公式盈亏问题公式

小学生必备数学公式盈亏问题公式
小学生必备数学公式——盈亏问题公式
随着社会的发展、科学的进步,在今后2l世纪的信息社会,人人都需要数学。

这篇小学生必备数学公式盈亏问题公式,希望可以加强你的基础。

小学数学公式大全盈亏问题公式
(1)一次有余(盈),一次不够(亏),可用公式:
(盈+亏)(两次每人分配数的差)=人数。

例如,小朋友分桃子,每人10个少9个,每人8个多7个。

问:有多少个小朋友和多少个桃子?
解(7+9)(10-8)=162
=8(个)人数
108-9=80-9=71(个)桃子
或88+7=64+7=71(个)(答略)
(2)两次都有余(盈),可用公式:
(大盈-小盈)(两次每人分配数的差)=人数。

例如,士兵背子弹作行军训练,每人背45发,多680发;若每人背50发,则还多200发。

问:有士兵多少人?有子弹多少发?
解(680-200)(50-45)=4805
=96(人)
4596+680=5000(发)
或5096+200=5000(发)(答略)。

小学数学盈亏问题

小学数学盈亏问题

小学数学盈亏问题专题一、盈亏问题公式:〔盈+亏)÷两次分配量之差=参加分配的份数盈亏问题有两个不变..的量:被分配的量的总数和参加分配的量的总数是不变的.同样多的"物"平均分给同样多的"人",由于两次分配的方法不同,两次分配的结果就产生一个总差额,每个人在两次分配的数量也不同,即两次分配数的差,则:总差额(盈﹢亏;大盈-小盈;大亏-小亏)÷(一个人)分配数的差=共有多少人(参加分配的份数).理解:所有(人)的差或和÷一个(人)的差=共有多少(人注:每个人在两次分配的差都相等.二、数学运算:盈亏问题计算公式教育专家建议考生应重点掌握盈亏问题的根本公式,在掌握根本公式的根底上熟悉直接计算型问题、条件转换型盈亏问题、关系互换型盈亏问题。

把假设干物体平均分给一定数量的对象,并不是每次都能正好分完。

如果物体还有剩余,就叫盈;如果物体不够分,就叫亏。

但凡研究盈和亏这一类算法的应用题就叫盈亏问题。

盈亏问题的常见题型为给出*物体的两种分配标准和结果,来求物体数量和参与分配的对象数量。

由于每次分配都可能出现刚好分完、多余或缺乏这三种情况,则就会有多种结果的组合,这里以一道典型的盈亏问题对三种情况的几种组合加以说明。

一、根底盈亏问题1. 一盈一亏如果每人分 9 个苹果,就剩下 10 个苹果;如果每人分 12 个苹果,就少 20 个苹果。

2. 两次皆盈如果每人分 8 个苹果,就剩下 20 个苹果;如果每人分 7 个苹果,就剩下 30 个苹果。

3. 两次皆亏如果每人分 11 个苹果,就少 10 个苹果;如果每人分 13 个苹果,就少 30 个苹果。

4. 一盈一尽如果每人分 6 个苹果,就剩下 40 个苹果;如果每人分 10 个苹果,就刚好分完。

5. 一亏一尽如果每人分 14 个苹果,就少 40 个苹果;如果每人分 10 个苹果,就刚好分完。

经历分享:我想跟大家说的是自己在整个考试的过程中的经历的以及自己能够成功的考上的捷径。

小学数学“盈亏问题”总结+解题思路+例题整理(经典应用题8收藏!)

小学数学“盈亏问题”总结+解题思路+例题整理(经典应用题8收藏!)

小学数学“盈亏问题”总结+解题思路+例题整理盈亏问题【含义】根据一定的人数,分配一定的物品,在两次分配中,一次有余(盈),一次不足(亏),或两次都有余,或两次都不足,求人数或物品数,这类应用题叫做盈亏问题。

【数量关系】一般地说,在两次分配中,如果一次盈,一次亏,则有:参加分配总人数=(盈+亏)÷分配差如果两次都盈或都亏,则有:参加分配总人数=(大盈-小盈)÷分配差参加分配总人数=(大亏-小亏)÷分配差【解题思路和方法】大多数情况可以直接利用数量关系的公式。

例1给幼儿园小朋友分苹果,若每人分3个就余11个;若每人分4个就少1个。

问有多少小朋友?有多少个苹果?解:按照“参加分配的总人数=(盈+亏)÷分配差”的数量关系:(1)有小朋友多少人?(11+1)÷(4-3)=12(人)(2)有多少个苹果?3×12+11=47(个)答:有小朋友12人,有47个苹果。

例2修一条公路,如果每天修260米,修完全长就得延长8天;如果每天修300米,修完全长仍得延长4天。

这条路全长多少米?解:题中原定完成任务的天数,就相当于“参加分配的总人数”,按照“参加分配的总人数=(大亏-小亏)÷分配差”的数量关系,可以得知原定完成任务的天数为(260×8-300×4)÷(300-260)=22(天)这条路全长为300×(22+4)=7800(米)答:这条路全长7800米。

例3学校组织春游,如果每辆车坐40人,就余下30人;如果每辆车坐45人,就刚好坐完。

问有多少车?多少人?解:本题中的车辆数就相当于“参加分配的总人数”,于是就有(1)有多少车?(30-0)÷(45-40)=6(辆)(2)有多少人?40×6+30=270(人)答:有6辆车,有270人。

小学数学复习必备公式大全盈亏问题

小学数学复习必备公式大全盈亏问题

小学数学复习必备公式大全:盈亏问题
盈亏问题:
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
口诀:
全盈全亏,大的减去小的;
一盈一亏,盈亏加在一起。

除以分配的差,结果就是分配的东西或者是人。

例题:
例1、小朋友分桃子,每人10个少9个;每人8个多7个。

求有多少小朋友多少桃子?
解:一盈一亏,则公式为:(9+7)÷(10-8)=8(人),
相应桃子为8X10-9=71(个)
例2、给幼儿园小朋友分苹果,若每人分3个就余11个;若每人分4个就少1个。

问有多少小朋友?有多少个苹果?
解:按照“参加分配的总人数=(盈+亏)÷分配差”的数量关系:
(1)有小朋友多少人?(11+1)÷(4-3)=12(人)
(2)有多少个苹果?3×12+11=47(个)
答:有小朋友12人,有47个苹果。

小学奥数教程:盈亏问题5种公式

小学奥数教程:盈亏问题5种公式

小学奥数教程:盈亏问题5种公式
公式1.一次有余(盈),一次不够(亏),盈亏问题公式为:(盈+亏)÷(两次每人分配数的差)=人数。

例如,“小朋友分桃子,每人10个少9个,每人8个多7个。

问:有多少个小朋友和多少个桃子?”
解(7+9)÷(10-8)=16÷2
=8(个)………………人数
10×8-9=80-9=71(个)………………………桃子
或8×8+7=64+7=71(个)
公式2.两次都有余(盈),盈亏问题公式为:(大盈-小盈)÷(两次每人分配数的差)=人数。

例如,“士兵背子弹作行军训练,每人背45发,多680发;若每人背50发,则还多200发。

问:有士兵多少人?有子弹多少发?”
解(680-200)÷(50-45)=480÷5
=96(人)
45×96+680=5000(发)
或50×96+200=5000(发)
公式3.两次都不够(亏),盈亏问题公式为:(大亏-小亏)÷(两次每人分配数的差)=人数。

例如,“将一批本子发给学生,每人发10本,差90本;若每人发8本,则仍差8本。

有多少学生和多少本本子?”
解(90-8)÷(10-8)=82÷2
=41(人)
10×41-90=320(本)
公式4.一次不够(亏),另一次刚好分完,盈亏问题公式为:亏÷(两次每人分配数的差)=人数。

公式5.一次有余(盈),另一次刚好分完,盈亏问题公式为:盈÷(两次每人分配数的差)=人数。

盈亏问题计算公式+例题分析(打印版)

盈亏问题计算公式+例题分析(打印版)

数学运算:盈亏问题计算公式把若干物体平均分给一定数量得对象,并不就是每次都能正好分完。

如果物体还有剩余,就叫盈;如果物体不够分,就叫亏。

凡就是研究盈与亏这一类算法得应用题就叫盈亏问题。

盈亏问题得常见题型为给出某物体得两种分配标准与结果,来求物体数量与参与分配得对象数量。

由于每次分配都可能出现刚好分完、多余或不足这三种情况,那么就会有多种结果得组合,这里以一道典型得盈亏问题对三种情况得几种组合加以说明。

注意:公司中两次每人分配数得差也就就是大分减小分一、基础盈亏问题1、一盈一亏(不够)【一次有余(盈),一次不够(亏)】可用公式:(盈+亏)÷(两次每人分配数得差)=人数。

例如,“小朋友分桃子,每人10个少9个,每人8个多7个。

问:有多少个小朋友与多少个桃子?”解:(7+9)÷(10-8)=16÷2=8(个)………………人数10×8-9=80-9=71(个)………………………桃子或8×8+7=64+7=71(个)(答略)测试:如果每人分9 个苹果,就剩下10 个苹果;如果每人分12 个苹果,就少20 个苹果。

2、两次皆盈(余),可用公式:(大盈-小盈)÷(两次每人分配数得差)=人数。

例如,“士兵背子弹作行军训练,每人背45发,多680发;若每人背50发,则还多200发。

问:有士兵多少人?有子弹多少发?”解:(680-200)÷(50-45)=480÷5=96(人)45×96+680=5000(发)或50×96+200=5000(发)(答略)测试:如果每人分8 个苹果,就剩下20 个苹果;如果每人分7 个苹果,就剩下30 个苹果。

3、两次皆亏(不够),可用公式:(大亏-小亏)÷(两次每人分配数得差)=人数。

例如,“将一批本子发给学生,每人发10本,差90本;若每人发8本,则仍差8本。

有多少学生与多少本本子?”解:(90-8)÷(10-8)=82÷2=41(人)10×41-90=320(本)(答略)测试:如果每人分11 个苹果,就少10 个苹果;如果每人分13 个苹果,就少30 个苹果。

盈亏问题公式及例题

盈亏问题公式及例题

盈亏问题公式及例题
【实用版】
目录
1.盈亏问题的基本概念
2.盈亏问题的公式推导
3.盈亏问题的例题解析
4.盈亏问题的实际应用
正文
一、盈亏问题的基本概念
盈亏问题,又称为利润问题,是数学中的一个基本问题。

它主要研究的是,在成本、售价和数量之间如何取得最大利润或者最小亏损。

在实际生活和工作中,盈亏问题有着广泛的应用,比如商家定价、成本控制、投资决策等。

二、盈亏问题的公式推导
盈亏问题的核心公式是:总利润=销售数量×(售价 - 成本)。

其中,销售数量是商品销售的数量,售价是商品的售价,成本是商品的生产或采购成本。

根据这个公式,我们可以进一步推导出其他相关的公式,如:最大利润、最小亏损等。

三、盈亏问题的例题解析
例题:一个商家采购一批商品,成本为 100 元/件,售价为 150 元/件,如果商家希望获得最大利润,应该销售多少件商品?
解:根据盈亏问题的公式,总利润=销售数量×(售价 - 成本),代入数据得:总利润=销售数量×(150-100)=销售数量×50。

显然,销售数量越多,总利润越大。

因此,商家应该尽可能多地销售商品,以获得最大利润。

四、盈亏问题的实际应用
盈亏问题在实际生活中的应用非常广泛,比如商家定价、成本控制、投资决策等。

盈亏问题计算公式+例题分析(打印版)

盈亏问题计算公式+例题分析(打印版)

数学运算:盈亏问题计算公式把若干物体平均分给一定数量的对象,并不是每次都能正好分完。

如果物体还有剩余,就叫盈;如果物体不够分,就叫亏。

凡是研究盈和亏这一类算法的应用题就叫盈亏问题。

盈亏问题的常见题型为给出某物体的两种分配标准和结果,来求物体数量和参与分配的对象数量。

由于每次分配都可能出现刚好分完、多余或不足这三种情况,那么就会有多种结果的组合,这里以一道典型的盈亏问题对三种情况的几种组合加以说明。

注意:公司中两次每人分配数的差也就是大分减小分一、基础盈亏问题1. 一盈一亏(不够)【一次有余(盈),一次不够(亏)】可用公式:(盈+亏)÷(两次每人分配数的差)=人数。

例如,“小朋友分桃子,每人10个少9个,每人8个多7个.问:有多少个小朋友和多少个桃子?”解:(7+9)÷(10-8)=16÷2=8(个)………………人数10×8-9=80-9=71(个)………………………桃子或8×8+7=64+7=71(个)(答略)测试:如果每人分9 个苹果,就剩下10 个苹果;如果每人分12 个苹果,就少20 个苹果。

2. 两次皆盈(余),可用公式:(大盈—小盈)÷(两次每人分配数的差)=人数。

例如,“士兵背子弹作行军训练,每人背45发,多680发;若每人背50发,则还多200发.问:有士兵多少人?有子弹多少发?”解:(680—200)÷(50-45)=480÷5=96(人)45×96+680=5000(发)或50×96+200=5000(发)(答略)测试:如果每人分8 个苹果,就剩下20 个苹果;如果每人分7 个苹果,就剩下30 个苹果。

3. 两次皆亏(不够),可用公式:(大亏—小亏)÷(两次每人分配数的差)=人数。

例如,“将一批本子发给学生,每人发10本,差90本;若每人发8本,则仍差8本。

有多少学生和多少本本子?”解:(90-8)÷(10—8)=82÷2=41(人)10×41—90=320(本)(答略)测试:如果每人分11 个苹果,就少10 个苹果;如果每人分13 个苹果,就少30 个苹果。

小学数学盈亏问题公式大全

小学数学盈亏问题公式大全

小学数学盈亏问题公式大全
盈亏问题公式大全
(1)一次有余(盈),一次不够(亏),可用公式:
(盈+亏)(两次每人分配数的差)=人数。

例如,小朋友分桃子,每人10个少9个,每人8个多7个。

问:有多少个小朋友和多少个桃子?
解(7+9)(10-8)=162
=8(个)人数
108-9=80-9=71(个)桃子
或88+7=64+7=71(个)(答略)
(2)两次都有余(盈),可用公式:
小学数学盈亏问题公式大全:(大盈-小盈)(两次每人分配数的差)=人数。

例如,士兵背子弹作行军训练,每人背45发,多680发;若每人背50发,则还多200发。

问:有士兵多少人?有子弹多少发?
解(680-200)(50-45)=4805
=96(人)
4596+680=5000(发)
或5096+200=5000(发)(答略)
(3)两次都不够(亏),可用公式:
(大亏-小亏)(两次每人分配数的差)=人数。

例如,将一批本子发给学生,每人发10本,差90本;若每人发8本,则仍差8本。

有多少学生和多少本本子?
解(90-8)(10-8)=822
=41(人)
1041-90=320(本)(答略)
(4)一次不够(亏),另一次刚好分完,可用公式:
亏(两次每人分配数的差)=人数。

(例略)
(5)一次有余(盈),另一次刚好分完,可用公式:
盈(两次每人分配数的差)=人数。

(例略)。

盈亏问题计算公式+例题分析(打印版)

盈亏问题计算公式+例题分析(打印版)

数学运算:盈亏问题计算公式把若干物体平均分给一定数量的对象,并不是每次都能正好分完。

如果物体还有剩余,就叫盈;如果物体不够分,就叫亏。

凡是研究盈和亏这一类算法的应用题就叫盈亏问题。

盈亏问题的常见题型为给出某物体的两种分配标准和结果,来求物体数量和参与分配的对象数量。

由于每次分配都可能出现刚好分完、多余或不足这三种情况,那么就会有多种结果的组合,这里以一道典型的盈亏问题对三种情况的几种组合加以说明。

注意:公司中两次每人分配数的差也就是大分减小分一、基础盈亏问题1. 一盈一亏(不够)【一次有余(盈),一次不够(亏)】可用公式:(盈+亏)÷(两次每人分配数的差)=人数。

例如,“小朋友分桃子,每人10个少9个,每人8个多7个。

问:有多少个小朋友和多少个桃子?”解:(7+9)÷(10—8)=16÷2=8(个)………………人数10×8—9=80-9=71(个)………………………桃子或8×8+7=64+7=71(个)(答略)测试:如果每人分9 个苹果,就剩下10 个苹果;如果每人分12 个苹果,就少20 个苹果.2。

两次皆盈(余),可用公式:(大盈-小盈)÷(两次每人分配数的差)=人数。

例如,“士兵背子弹作行军训练,每人背45发,多680发;若每人背50发,则还多200发。

问:有士兵多少人?有子弹多少发?”解:(680—200)÷(50-45)=480÷5=96(人)45×96+680=5000(发) 或50×96+200=5000(发)(答略)测试:如果每人分8 个苹果,就剩下20 个苹果;如果每人分7 个苹果,就剩下30 个苹果。

3。

两次皆亏(不够),可用公式:(大亏-小亏)÷(两次每人分配数的差)=人数。

例如,“将一批本子发给学生,每人发10本,差90本;若每人发8本,则仍差8本。

有多少学生和多少本本子?”解:(90—8)÷(10—8)=82÷2=41(人) 10×41—90=320(本)(答略)测试:如果每人分11 个苹果,就少10 个苹果;如果每人分13 个苹果,就少30 个苹果。

关于盈亏问题的公式

关于盈亏问题的公式

关于盈亏问题的公式一、盈亏问题的基本公式1. (盈 + 亏)÷两次分配量之差 = 参加分配的份数2. (大盈 - 小盈)÷两次分配量之差 = 参加分配的份数3. (大亏 - 小亏)÷两次分配量之差 = 参加分配的份数二、题目及解析题目1幼儿园小朋友分苹果,如果每人分3个就多11个,如果每人分5个还缺5个,问有多少个小朋友?多少个苹果?解析根据公式(盈 + 亏)÷两次分配量之差 = 参加分配的份数。

这里盈是11个,亏是5个,两次分配量之差是5 - 3 = 2个。

小朋友的人数=(11 + 5)÷(5 - 3)=8(个)。

苹果个数 = 3×8+11 = 35(个)。

题目2学校将一批铅笔奖给三好学生。

如果每人奖9支,则缺45支;如果每人奖7支,则缺7支。

三好学生有多少人?铅笔有多少支?解析这里是大亏 - 小亏的情况。

大亏是45支,小亏是7支,两次分配量之差是9 - 7 = 2支。

三好学生人数=(45 - 7)÷(9 - 7)=19(人)。

铅笔支数 = 9×19 - 45 = 126(支)。

题目3有一些少先队员到山上去种一批树。

如果每人种16棵,还有24棵没种;如果每人种19棵,还有6棵没有种。

问有多少名少先队员?有多少棵树?解析属于大亏 - 小亏情况。

大亏是24棵,小亏是6棵,两次分配量之差是19 - 16 = 3棵。

少先队员人数=(24 - 6)÷(19 - 16)=6(名)。

树的棵数 = 16×6+24 = 120(棵)。

题目4学校给新入学的学生分配宿舍。

如果每个房间住12人,则34人没有位置;如果每个房间住14人,则空出4个房间。

求学生宿舍有多少间?住宿学生有多少人?解析先算出如果每个房间住14人时少住的人数,空出4个房间,少住14×4 = 56人,这里是大亏 - 小亏情况。

大亏是34人没位置(相当于少34个床位),小亏是少住56人,两次分配量之差是14 - 12 = 2人。

小学生必备数学公式——盈亏问题公式

小学生必备数学公式——盈亏问题公式

小学生必备数学公式——盈亏问题公式
随着社会的发展、科学的进步,在今后2l世纪的信息社会,人人都需要数学。

这篇小学生必备数学公式盈亏问题公式,希望可以加强你的基础。

小学数学公式大全盈亏问题公式
(1)一次有余(盈),一次不够(亏),可用公式:
(盈+亏)(两次每人分配数的差)=人数。

例如,小朋友分桃子,每人10个少9个,每人8个多7个。

问:有多少个小朋友和多少个桃子
解(7+9)(10-8)=162
=8(个)人数
108-9=80-9=71(个)桃子
或88+7=64+7=71(个)(答略)
(2)两次都有余(盈),可用公式:
(大盈-小盈)(两次每人分配数的差)=人数。

例如,士兵背子弹作行军训练,每人背45发,多680发;若每人背50发,则还多200发。

问:有士兵多少人有子弹多少发解(680-200)(50-45)=4805
=96(人)
4596+680=5000(发)
或5096+200=5000(发)(答略)
(3)两次都不够(亏),可用公式:
(大亏-小亏)(两次每人分配数的差)=人数。

例如,将一批本子发给学生,每人发10本,差90本;若每人发8本,则仍差8本。

有多少学生和多少本本子
解(90-8)(10-8)=822
=41(人)
1041-90=320(本)(答略)
(4)一次不够(亏),另一次刚好分完,可用公式:
亏(两次每人分配数的差)=人数。

(例略)
(5)一次有余(盈),另一次刚好分完,可用公式:
盈(两次每人分配数的差)=人数。

(例略)
感谢你阅读小学生必备数学公式盈亏问题公式。

小学生必备数学公式盈亏问题公式

小学生必备数学公式盈亏问题公式

小学生必备数学公式盈亏问题公式随着社会的进展、科学的进步,在今后2l世纪的信息社会,人人都需要数学。

这篇小学生必备数学公式盈亏问题公式,期望能够加强你的基础。

小学数学公式大全盈亏问题公式(1)一次有余(盈),一次不够(亏),可用公式:(盈+亏)(两次每人分配数的差)=人数。

例如,小朋友分桃子,每人10个少9个,每人8个多7个。

问:有多少个小朋友和多少个桃子?解(7+9)(10-8)=162=8(个)人数108-9=80-9=71(个)桃子或88+7=64+7=71(个)(答略)(2)两次都有余(盈),可用公式:(大盈-小盈)(两次每人分配数的差)=人数。

例如,士兵背子弹作行军训练,每人背45发,多680发;若每人背50发,则还多200发。

问:有士兵多少人?有子弹多少发?解(680-200)(50-45)=4805=96(人)4596+680=5000(发)或5096+200=5000(发)(答略)(3)两次都不够(亏),可用公式:(大亏-小亏)(两次每人分配数的差)=人数。

例如,将一批本子发给学生,每人发10本,差90本;若每人发8本,则仍差8本。

有多少学生和多少本本子?解(90-8)(10-8)=822=41(人)1041-90=320(本)(答略)(4)一次不够(亏),另一次刚好分完,可用公式:亏(两次每人分配数的差)=人数。

(例略)(5)一次有余(盈),另一次刚好分完,可用公式:盈(两次每人分配数的差)=人数。

要练说,得练看。

看与说是统一的,看不准就难以说得好。

练看,确实是训练幼儿的观看能力,扩大幼儿的认知范畴,让幼儿在观看事物、观看生活、观看自然的活动中,积存词汇、明白得词义、进展语言。

在运用观看法组织活动时,我着眼观看于观看对象的选择,着力于观看过程的指导,着重于幼儿观看能力和语言表达能力的提高。

(例略)“教书先生”可能是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当如何说也确实是让国人景仰甚或敬畏的一种社会职业。

小学生必知的盈亏问题数学公式_公式总结

小学生必知的盈亏问题数学公式_公式总结

小学生必知的盈亏问题数学公式_公式总结
数学是一门基础学科, 被誉为科学的皇后。

对于我们的广大小学生来说, 数学水平的高低, 直接影响到以后的学习,查字典数学网小学频道特地为大家整理了盈亏问题数学公式,希望对大家有用!
小学生必知的盈亏问题数学公式
(盈+亏)两次分配量之差=参加分配的份数
(大盈-小盈)两次分配量之差=参加分配的份数
(大亏-小亏)两次分配量之差=参加分配的份数
只要大家脚踏实地的复习、一定能够提高数学应用能力!希望提供的盈亏问题数学公式,能帮助大家迅速提高数学成绩!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五年级数学公式:盈亏问题_公式总结
数学是其他学科的学习基础,五年级数学知识点对小朋友们的数学学习非常重要,大家一定要认真掌握,查字典数学网小学频道为大家整理了五年级数学公式:盈亏问题,让我们一起学习,一起进步吧!
盈亏问题
(盈+亏)两次分配量之差=参加分配的份数
(大盈-小盈)两次分配量之差=参加分配的份数
(大亏-小亏)两次分配量之差=参加分配的份数
以上就是五年级数学公式:盈亏问题,同学们,让我们快乐学习,不断积累,努力学习,提高成绩,奋力前行吧!。

相关文档
最新文档