高考数学必背公式总结
高考数学必背公式大全

高考数学必背公式大全由于高中数学公式很多,同学们复习的时候不方便查阅,下面是给大家带来的高考必背数学公式,希望能帮助到大家!高考必背数学公式1两角和公式sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosacos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinbtan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatan b)ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga) 倍角公式tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2)cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2)tan(a/2)=√((1-cosa)/((1+cosa))tan(a/2)=-√((1-cosa)/((1+cosa)) ctg(a/2)=√((1+cosa)/((1-cosa))ctg(a/2)=-√((1+cosa)/((1-cosa)) 高考必背数学公式2和差化积1、2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)2、2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)3、sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b) /2)4、tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosb5、ctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb等差数列1、等差数列的通项公式为:an=a1+(n-1)d (1)2、前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0.在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar 为Am,An的等差中项.,且任意两项am,an的关系为:an=am+(n-m)d它可以看作等差数列广义的通项公式.3、从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}若m,n,p,q∈N_,且m+n=p+q,则有am+an=ap+aqSm-1=(2n-1)an,S2n+1=(2n+1)an+1Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等.和=(首项+末项)_项数÷2项数=(末项-首项)÷公差+1首项=2和÷项数-末项末项=2和÷项数-首项项数=(末项-首项)/公差+1等比数列1、等比数列的通项公式是:An=A1_q^(n-1)2、前n项和公式是:Sn=[A1(1-q^n)]/(1-q)且任意两项am,an的关系为an=am·q^(n-m)3、从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}4、若m,n,p,q∈N_,则有:ap·aq=am·an,等比中项:aq·ap=2ar ar则为ap,aq等比中项.记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项。
高考数学必考公式归纳

高考数学必考公式归纳高考数学必考公式归纳如下:1. 三角函数公式:sin30°=1/2,sin45°=√2/2,sin60°=√3/2cos30°=√3/2,cos45°=√2/2,cos60°=1/2tan30°=√3/3,tan45°=1,tan60°=√3cot30°=√3,cot45°=1,cot60°=√3/3sin15°=(√6-√2)/4,sin75°=(√6+√2)/4cos15°=(√6+√2)/4,cos75°=(√6-√2)/4sin18°=(√5-1)/4(这个值在高中竞赛和自招中会比较有用,即黄金分割的一半)2. 正弦定理:在△abc中,a/sina=b/sinb=c/sinc=2r(其中,r为△abc的外接圆的半径。
)3. 直线过焦点公式:必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。
x为分离比,必须大于1。
注:上述公式适合一切圆锥曲线。
如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。
4. 函数的周期性问题:若f(x)=-f(x+k),则T=2k;若f(x)=m/(x+k)(m不为0),则T=2k;若f(x)=f(x+k)+f(x-k),则T=6k。
5. 周期函数加周期函数未必是周期函数,如:y=sinx与y=sinπx相加不是周期函数。
以上信息仅供参考,具体考试内容以实际为准。
2024年数学高考必备详细公式

在2024年的数学高考中,学生需要记忆和熟练运用的数学公式非常多。
以下是一些数学高考必备的详细公式。
1.代数公式:- 二次方程公式:若ax²+bx+c=0,其中a≠0,那么它的解为x=(-b±√(b²-4ac))/(2a)。
-勾股定理:在直角三角形中,a²+b²=c²,其中a、b为直角边,c为斜边。
-平方差公式:(a+b)(a-b)=a²-b²。
- 一次函数的解析式:y=kx+b,其中k为斜率,b为y轴截距。
-等差数列求和公式:Sn=(n/2)(a₁+an),其中Sn为前n项和,a₁为首项,an为末项。
-高斯公式:1+2+3+...+n=n(n+1)/2- 二项式定理:(a+b)^n=C(n,0)a^n + C(n,1)a^(n-1)b +C(n,2)a^(n-2)b² + ... + C(n,n-1)ab^(n-1) + C(n,n)b^n,其中C(n,k)表示从n个元素中选择k个元素的组合数。
2.几何公式:-两点间距离公式:设平面上有两点A(x₁,y₁)和B(x₂,y₂),则AB的距离为√((x₂-x₁)²+(y₂-y₁)²)。
-直线的斜率公式:设直线上有两点A(x₁,y₁)和B(x₂,y₂),则该直线的斜率为k=(y₂-y₁)/(x₂-x₁)。
-直线方程:(x-x₁)/(x₂-x₁)=(y-y₁)/(y₂-y₁)。
-圆的面积公式:A=πr²,其中A表示圆的面积,r表示半径。
-梯形面积公式:A=(上底+下底)×高/2,其中A表示梯形的面积,上底和下底分别为两个平行边的长度,高为两平行边的距离。
- 三角形的面积公式:设三角形的底边为a,高为h,则三角形的面积A=ah/2-正多边形的内角和公式:内角和=(n-2)×180°,其中n为正多边形的边数。
高考数学必背必记公式

高考数学必背必记公式1、有限集合子集个数:子集个数:2n 个,真子集个数:12n −个;2、集合里面重要结论:①A B A A B ⋂=⇒⊆;②A B A B A ⋃=⇒⊆;③A B A B ⇒⇔⊆ ④A B A B ⇔⇔=3、同时满足求交集,分类讨论求并集4、集合元素个数公式:()()()()n A B n A n B n A B =+−U I5、几个近似值:2 1.414,3 1.732,5 2.236, 3.142, 2.718e π≈≈≈≈≈6、分数指数幂公式:n m n ma a = 7、对数换底公式:log 1log ;log log log c a a c b b b b a a ==8、单调性的快速法:①.增+增→增;增—减→增;②.减+减→减;减—增→减;③.乘正加常,单调不变: ④.乘负取倒,单调不变:9、奇偶性的快速法:①.奇±奇→奇;偶±偶→偶;②.奇()⨯÷奇→偶;偶()⨯÷偶→偶;奇()⨯÷偶→奇;10、函数的切线方程:000()()y y f x x x '−=−11、函数有零点min max ()0()0f x f x ≤⎧⇔⎨≥⎩第一章 集合第二章 函数12、函数无零点max min ()0()0f x f x ⇔≤≥或13、函数周期性:()()f a x f b x +=+的周期Tb a =−; 14、函数对称性:()()f a x f b x +=−的对称轴2a bx +=; 15、抽象函数对数型:若()()()f xy f x f y =+,则()log a f x x =; 16、抽象函数指数型:若()()()f x y f x f y +=,则()x f x a =; 17、抽象函数正比型:若()()()f x y f x f y +=+,则()f x kx =; 18、抽象函数一次型:若()f x c '=,则()f x cx b =+; 19、抽象函数导数型:若()()f x f x '=,则()x f x ke =或()0f x =;20、两个重要不等式:1ln(1)1(0)ln 1x x e x x x e x x x ⎧≥+⇒+≤≤−==⎨≤−⎩当且仅当时“”成立21、洛必达法则:()()()()limlim x ax a f x f x g x g x →→'='(当()0()0f x g x ∞→∞或时使用) 22、恒成立问题:max min(1)()()(2)()()a f x a f x a f x a f x ≥⇔≥<⇔<23、证明()()f x g x >思路:思路1:(1)()()()()0h x f x g x h x =−⇔>(常规首选方法)思路2:min max ()()f x g x >(思路1无法完成)24、等差数列通项公式:1(1)n a a n d =+− 25、等差数列通项公式:11()(1)22n n n a a n n S na d +−==+ 26、等比数列通项公式:11n n a a q −=27、等比数列通项公式:11(1)11n n n a a qa q S q q+−==−−第三章 数列28、等差数列的性质:若m n p q +=+,则m n p q a a a a +=+ 29、等比数列的性质:若m n p q +=+,则m n p q a a a a = 30、等差中项:若,,a A b 成等差数列,则2A a b =+ 31、等比中项:若,,a G b 成等比数列,则2G ab = 32、裂项相消法1:若111(1)1n n nn −++=,则有1111n n T n n =−=++ 33、裂项相消法2:若1111(2)22n n n n −++⎛⎫= ⎪⎝⎭,则有1111(1)2212n T n n =+−−++ 34、裂项相消法3:若111111n nnn a a d a a ++=−⎛⎫⎪⎝⎭,则有11111()nn T d a a +=− 35、裂项相消法4:若1111(21)(21)22121n n n n −+−−+⎛⎫= ⎪⎝⎭,则有11(1)221n T n =−+ 36、错位相减法求和通式:1112()1(1)1n n n n dq b b a b q a b T q q q −=+−−−−37、三角函数的定义:正弦:sin y r α=;余弦:cos x r α=;正切:tan yxα=;其中:22r x y =+38、诱导公式:π倍加减名不变,符号只需看象限;半π加减名要变,符号还是看象限。
高考数学知识点总结及公式大全

高考数学知识点总结及公式大全《高考数学知识点总结及公式大全》一、函数与方程1. 一次函数- 方程:y = ax + b- 直线的斜率公式:a = Δy / Δx- 直线的截距公式:b = y - ax2. 二次函数- 方程:y = ax^2 + bx + c- 抛物线的顶点坐标公式:(h, k) = (-b / (2a), c - b^2 / (4a))3. 三角函数- 正弦函数:y = sin(x)- 余弦函数:y = cos(x)- 正切函数:y = tan(x)- 三角函数间的关系:sin^2(x) + cos^2(x) = 14. 指数函数与对数函数- 指数函数:y = a^x- 对数函数:y = loga(x)- 对数运算法则:loga(m * n) = loga(m) + loga(n)5. 不等式- 线性不等式:ax + b > 0- 二次不等式:ax^2 + bx + c > 0二、解析几何1. 直线与曲线- 一次函数的图像是一条直线- 二次函数的图像是一个抛物线2. 二维坐标系- 直角坐标系:以x轴和y轴为基准构建的坐标系- 极坐标系:以原点O和角度θ为基准构建的坐标系3. 几何图形- 圆:由所有与一个点的距离相等的点所组成的图形- 圆柱体:由一个圆沿着一条平行于其平面的直线旋转一周形成的立体图形三、概率与统计1. 概率- 事件的概率:P(A) = n(A) / n(S)- 互斥事件:P(A ∩ B) = 0- 独立事件:P(A ∩ B) = P(A)P(B)2. 统计- 平均数:A = (x1 + x2 + ... + xn) / n- 方差:Var(X) = (x1^2 + x2^2 + ... + xn^2) / n - (A)^2- 标准差:σ = √[ (x1 - A)^2 + (x2 - A)^2 + ... + (xn - A)^2 / n ]四、解题技巧1. 代入法:将未知数用已知条件中的数进行代入,并求解方程。
高考数学必背公式整理

高考数学必背公式整理一、平面几何公式1. 直线的一般方程:Ax + By + C = 02. 两点间的距离公式:AB = √[(x2 - x1)² + (y2 - y1)²]3. 点到直线的距离公式:d = |Ax0 + By0 + C| / √(A² + B²)4. 两直线夹角的余弦公式:cosθ = (A₁A₂ + B₁B₂) / (√(A₁² + B₁²) √(A₂² + B₂²))5. 两直线平行的条件:A₁ / A₂ = B₁ / B₂ ≠ C₁ / C₂6. 两直线垂直的条件:A₁A₂ + B₁B₂ = 07. 两直线交点的坐标:x = (B₁C₂ - B₂C₁) / (A₁B₂ - A₂B₁),y = (A₂C₁ - A₁C₂) / (A₁B₂ - A₂B₁)二、立体几何公式1. 体积公式:长方体的体积 V = lwh,正方体的体积V = a³,圆柱的体积V = πr²h,圆锥的体积V = (1/3)πr²h,球体的体积 V = (4/3)πr³2. 表面积公式:长方体的表面积 S = 2lw + 2lh + 2wh,正方体的表面积 S = 6a²,圆柱的表面积S = 2πrh + 2πr²,圆锥的表面积S = πrl + πr²,球体的表面积S = 4πr²三、三角函数公式1. 余弦定理:c² = a² + b² - 2abcosC2. 正弦定理:a / sinA = b / sinB = c / sinC3. 三角恒等式:sin²θ + cos²θ = 1,1 + tan²θ = sec²θ,1 + cot²θ = csc²θ四、导数公式1. 基本导数:(xⁿ)' = nxⁿ⁻¹,(sinx)' = cosx,(cosx)' = -sinx,(tanx)' = sec²x,(cotx)' = -csc²x,(lnx)' = 1/x,(ex)' = ex2. 乘法法则:(uv)' = u'v + uv'3. 除法法则:(u/v)' = (u'v - uv') / v²4. 链式法则:(f(g(x)))' = f'(g(x)) * g'(x)五、积分公式1. 基本积分:∫xⁿdx = (xⁿ⁺¹) / (n⁺¹),∫sinxdx = -cosx,∫cosxdx = sinx,∫sec²xdx = tanx,∫csc²xdx = -cotx,∫1/xdx = ln|x|,∫exdx = ex2. 乘法法则:∫uvdx = ∫u'vdx + ∫uv'dx3. 替换法则:∫f(g(x))g'(x)dx = ∫f(u)du六、概率统计公式1. 排列公式:Aₙₙ = n! / (n - m)!2. 组合公式:Cₙₙ = n! / (m!(n - m)!)3. 二项式定理:(a + b)ⁿ = Cⁿ₀aⁿb⁰ + Cⁿ₁aⁿ⁻¹b¹ + ... + Cⁿₙa⁰bⁿ4. 期望公式:E(X) = Σ(xP(x))5. 方差公式:Var(X) = Σ(x²P(x)) - [E(X)]²以上是高考数学中常用的必背公式。
高考必记数学公式汇总

高考必记数学公式汇总1. 一元一次方程:ax + b = 0-解的公式:x=-b/a2. 一元二次方程:ax^2 + bx + c = 0- 解的公式:x = (-b ± √(b^2 - 4ac)) / (2a)3.三角函数:- 正弦定理:a/sinA = b/sinB = c/sinC- 余弦定理:c^2 = a^2 + b^2 - 2abcosC- 正切定理:tanA = a/b4.平面几何:-点到直线的距离:d=,Ax+By+C,/√(A^2+B^2)-平行线的性质:两条直线的斜率相等-垂直线的性质:两条直线的斜率的乘积等于-15.统计与概率:-高斯分布:P(x)=(1/(√(2π)σ))*e^(-((x-μ)^2/(2σ^2))) - 期望值计算:E(x) = ∑(xi * P(xi))- 方差计算:Var(x) = ∑((xi - E(x))^2 * P(xi))6.矩阵:-矩阵乘法:若A是一个mxn的矩阵,B是一个nxp的矩阵,那么它们的乘积C是一个mxp的矩阵,其中C的第i行第j列元素为A的第i行与B的第j列的乘积之和。
7.三角函数补充:- 反正弦函数:sin^(-1)(x)- 反余弦函数:cos^(-1)(x)- 反正切函数:tan^(-1)(x)8.指数与对数函数:-指数函数的性质:a^m*a^n=a^(m+n)- 对数函数的性质:log(a) * log(b) = log(a*b)9.数列与数学归纳法:-等差数列通项公式:an = a1 + (n-1)d-等差数列求和公式:Sn = (n/2)(a1 + an)-等比数列通项公式:an = a1 * r^(n-1)-等比数列求和公式:Sn=a1*(1-r^n)/(1-r)10.导数与微分:- 基本导数公式:(常数)' = 0,(x^n)' = nx^(n-1),(e^x)' = e^x,(sinx)' = cosx,(cosx)' = -sinx-链式法则:(f(g(x)))'=f'(g(x))*g'(x)11.不等式与绝对值:-绝对值不等式性质:,a*b,=,a,*,b,a+b,≤,a,+,b- 一次不等式:ax + b > 0 (a ≠ 0)- 二次不等式:ax^2 + bx + c > 0 (a ≠ 0)这些是高考中常见的一些数学公式,掌握并熟练运用它们可以帮助你在数学考试中提高得分。
高考数学公式总结归纳

高考数学公式总结归纳一圆的公式1、圆体积=4/3(pi)(r^3)2、面积=(pi)(r^2)3、周长=2(pi)r4、圆的标准方程(x-a)2+(y-b)2=r2【(a,b)是圆心坐标】5、圆的一般方程x2+y2+dx+ey+f=0【d2+e2-4f>0】椭圆公式1、椭圆周长公式:l=2πb+4(a-b)2、椭圆周长定理:椭圆的周长等于该椭圆短半轴,长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差.3、椭圆面积公式:s=πab4、椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
以上椭圆周长、面积公式中虽然没有出现椭圆周率t,但这两个公式都是通过椭圆周率t推导演变而来。
高考数学公式总结归纳二乘法与因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)三角不等式|a+b||a|+|b||a-b||a|+|b||a|b=-bab|a-b||a|-|b|-|a|a|a|一元二次方程的解-b+(b2-4ac)/2a-b-(b2-4ac)/2a根与系数的关系x1+x2=-b/ax1_2=c/a注:韦达定理判别式b2-4ac=0注:方程有两个相等的实根b2-4ac0注:方程有两个不等的实根b2-4ac0注:方程没有实根,有共轭复数根三角函数公式两角和公式sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosacos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinbtan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)倍角公式tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(a/2)=((1-cosa)/2)sin(a/2)=-((1-cosa)/2)cos(a/2)=((1+cosa)/2)cos(a/2)=-((1+cosa)/2)tan(a/2)=((1-cosa)/((1+cosa))tan(a/2)=-((1-cosa)/((1+cosa))ctg(a/2)=((1+cosa)/((1-cosa))ctg(a/2)=-((1+cosa)/((1-cosa))和差化积2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2)tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosbctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb某些数列前n项和1+2+3+4+5+6+7+8+9++n=n(n+1)/21+3+5+7+9+11+13+15++(2n-1)=n22+4+6+8+10+12+14++(2n)=n(n+1)12+22+32+42+52+62+72+82++n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+n3=n2(n+1)2/41_+2_+3_+4_+5_+6_++n(n+1)=n(n+1)(n+2)/3 正弦定理a/sina=b/sinb=c/sinc=2r注:其中r表示三角形的外接圆半径余弦定理b2=a2+c2-2accosb注:角b是边a和边c的夹角圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标圆的一般方程x2+y2+dx+ey+f=0注:d2+e2-4f0抛物线标准方程y2=2pxy2=-2p_2=2pyx2=-2py直棱柱侧面积s=c_斜棱柱侧面积s=c_正棱锥侧面积s=1/2c_正棱台侧面积s=1/2(c+c)h圆台侧面积s=1/2(c+c)l=pi(r+r)l球的表面积s=4pi_2圆柱侧面积s=c_=2pi_圆锥侧面积s=1/2__=pi__弧长公式l=a_a是圆心角的弧度数r0扇形面积公式s=1/2__锥体体积公式v=1/3__圆锥体体积公式v=1/3_i_2h斜棱柱体积v=sl注:其中,s是直截面面积,l是侧棱长柱体体积公式v=s_圆柱体v=pi_2h高考数学公式总结归纳三抛物线公式y = ax^2+bx+c 就是y等于ax的平方加上ba > 0时开口向上a < 0时开口向下c = 0时抛物线经过原点b = 0时抛物线对称轴为y轴抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0)准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2pxx^2=2py x^2=-2py面积公式圆的体积公式 4/3(pi)(r^3)圆的面积公式 (pi)(r^2)圆的周长公式 2(pi)r正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中R表示三角形的外接圆半径余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积 S=c_ 斜棱柱侧面积 S=c'_正棱锥侧面积 S=1/2c_' 正棱台侧面积 S=1/2(c+c')h'圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi_2圆柱侧面积 S=c_=2pi_ 圆锥侧面积 S=1/2__=pi__弧长公式 l=a_ a是圆心角的弧度数r>0 扇形面积公式 s=1/2__锥体体积公式 V=1/3__ 圆锥体体积公式V=1/3_i_2h斜棱柱体积 V=S'L 注:其中S'是直截面面积L是侧棱长柱体体积公式 V=s_ 圆柱体V=pi_2h高考数学公式总结归纳四高中数学公式顺口溜一、《集合与函数》内容子交并补集,还有幂指对函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考公式大总结
根式
当n 为奇数时,a a n n =;
当n 为偶数时,⎩⎨⎧<-≥==0,0,a a a a a a n
n .
正数的正(负)分数指数幂:
1.n m n
m a a =1,,0(*>∈>n N n m a ,且)
2.n
m n m
a
a
1
=
-1,,0(*>∈>n N n m a ,且).
整数指数幂的运算性质:
(1)();,,0Q s r a a a a s
r s
r
∈>=+
(2)()
()Q s r a a a rs s
r
∈>=,,0;
(3)()()Q r b a b a ab r
r r
∈>>=,0,0.
(4)();,,0Q s r a a
a a s
r s r ∈>=÷-
对数
(1)对数的性质: ① N a
N
a =log ; ② N a N a =log ; ③ a
N
N b b a log log log =
(换底公式);
(2)对数的运算法则:
① ();log log log N M MN a a a +=
② ;log log log N M N
M
a a a -=
③ M n M
a n
a log log =;
错误! M m
n
M
a n
a m log log =
① 常用对数:以10为底的对数叫做常用对
数,并把log 10N 记作_lg 10;
② 自然对数:以_e_为底的对数称为自然对
数,并把loge N 记作ln N .
1.同角三角函数的基本关系
1cos sin 22=+αα
αααtan cos sin =(Z k k ∈+≠,2
ππ
α)
2.诱导公式的规律:
三角函数的诱导公式可概括为:奇变偶不变,符号看
象限.其中“奇变偶不变”中的奇、偶分别是指π
2
的
奇数倍和偶数倍,变与不变是指函数名称的变化.若是奇数倍,则正、余弦互变;若是偶数倍,则函数名称不变.“符号看象限”是把α当锐角时,原三角函数式中的2πα⎛⎫
+ ⎪⎝⎭
所在象限的原三角函数值的符号.
二倍角公式:
αααcos sin 22sin =;
ααα22sin cos 2cos -==1cos 22-α
=α2sin 21-;
α
α
α2
tan 1tan 22tan -=
三角恒等变换
()βαβαβαsin cos cos sin sin ±=±; ()βαβαβαsin sin cos cos cos =±;
()β
αβ
αβαtan tan 1tan tan tan ±=
±;
解三角形
1.正弦定理:
R C
c
B b A a 2sin sin sin === 正弦定理的三种变式:
错误!A R a sin 2=,B R b sin 2=,C R c sin 2=
错误!. R a A 2sin =,R b B 2sin =,R
c C 2sin =. 错误!. C B A c b a sin :sin :sin ::=.
2.余弦定理:
,2cos 2
22bc a c b A -+=
,2cos 2
22ac b c a B -+=
,2cos 2
22ab c b a C -+=
2222b c b A a c cos =+- 2222cos a c b ac B -=+ 2222cosC a b c ab -=+
3.常用公式 ①π=++C B A ②A bc C ab S sin 21
sin 21==
∆ B ac sin 2
1
= ③;cos )cos(,sin )sin(C B A C B A -=+=+ ④;2
cos 2sin ,2sin 2cos B A C B A C +=+=
⑤C B A 、、成等差数列的充要条件是︒=60B ⑥;sin sin B A B A b a >⇔>⇔> 解析几何常用公式
1、两点距离:点1122,),,(()A x y B x y ,则两点之间的
距离A B =
2、点到直线距离:点00(),P x y ,直线l :
0Ax By C ++=,则点P 到直线l 的距
离
d =
ﻩ ﻩ注:直线方程必须是先改写成
一般式才可以用公式
3、两点求斜率:已知直线过点1122,),,(()A x y B x y ,则直线的斜率为12
12
y k x y x --=
4、直线点斜式方程:已知直线过点00(,),x y 斜率为
k ,则直线方程为00()k x y y x --=
5、圆的标准方程:已知圆O (,)a b ,半径为r ,则圆的标准方程为2
2
2
()()y r x b a +--= 数列常用公式:
1、等差数列:
1(1)n a n a d
=+-,
1(1)
2
n n S n n d a +
-= 2、等比数列:1
1n n a a q
-=,1(1)
,(10q )n n a S q
q --=
≠ 3、若A ,B ,C 三个数成等差数列,则2A C B +=,其中B 为等差中项
4、若A,B ,C三个数成等比数列,则2
AC B =,其中B为等比中项
5、11,
1,,2n n
n a n S S a n -=⎧=⎨-≥⎩,此公式可用于任何数
列
扩展:
等差数列的性质:{n a }为等差数列,若i k m n +=+,则i k m n a a a a +=+
等比数列的性质:{n a }为等差数列,若
i k m n +=+,则i k m n a a a a ⋅=⋅
【导数的运算】
基本函数的导数公式 ①()c x f =,则()0'
=x f
;
②()()*
N
n x x f n
∈=,则()1
'
-=n nx
x f ;
③()x x f sin =,则()x x f cos '
=;
④()x x f cos =,则()x x f sin '
-=;
⑤()x
a x f =,则()a a x f
x ln '
=; ⑥()x
e x
f =,则()x e x f
='
;
⑦()x x f a log =,则()e x
x f a log 1
'
=
; ⑧()x x f ln =,则()x
x f 1'
=
.
(2) 导数运算法则
①()()[]()()x g x f x g x f ''±='
±;
②()()[]()()()()x g x f x g x f x g x f ''⋅+⋅='
⋅
③ ()()()()()()()x g x g x f x g x f x g x f 2
''-='⎥⎦
⎤⎢⎣⎡;
极坐标与直角坐标转化公式
cos ,sin x y ρθρθ== 222x y ρ=+
1.特殊角的三角函数值熟记,做到“见角知值,见值知角”。
弧度与角度的换算:180°=π rad 1°=
180
π
rad ,1ra d=
180
π
︒≈57.30°
2.正弦、余弦、正切函数的图象与性质(以下Z k ∈) 函数
x y sin =
x y cos = x y tan =
图象
定义域
R R
⎭
⎬⎫⎩⎨⎧∈+≠∈Z k k x R x x ,2,π
π且
值域 []1,1-
[]1,1-
R
周期性 π2
π2
π
奇偶性
奇函数
偶函数
奇函数
单调性
⎥⎦
⎤⎢⎣⎡
+-22,22ππππk k 为增;
⎥⎦
⎤⎢⎣⎡++232,22ππππk k 为减
[]为减πππ+k k 2,2
[]为增πππk k 2,2-
⎪⎭⎫ ⎝
⎛
+-2,2ππππk k 为增
对称中心 ()0,πk
⎪⎭⎫ ⎝
⎛
+0,2ππk
⎪⎭
⎫
⎝⎛0,2πk 对 称轴 2
π
π+
=k x
πk x =
无
定义 一般地,函数y =ax (a >0,且a ≠1)叫
做指数函数
图
象 a>1 0<a<1
定义域 R
值域 (0,)+∞ 性 质
过定点(0,1)
在R上是单调增 在R上单调减
定义
一般地,函数y=l oga x(a >0,且a ≠1)
叫做对数函数 图
象
a >1 0<a<1
定义
域 (0,)+∞
值域 R_
性质
过定点(1,0)_
在(0,+∞)上是单调增 在(0,+∞)上是单
调增。