2020中考必备 初中三年最全数学公式定理总结

合集下载

2020中考数学公式总结(2020年7月整理).pdf

2020中考数学公式总结(2020年7月整理).pdf

1 2020年中考数学公式总结 姓名: 1.正数a 的平方根记做“a ±”。

正数a 的正的平方根叫做a 的算术平方根,记作“a ”。

2.整式的乘法:),(都是正整数n m aa a n m n m +=• ),(都是正整数)(n m a a mn n m = )()(都是正整数nb a ab n n n = 平方差公式: 22))((b a b a b a −=−+完全平方公式: 2222)(b ab a b a ++=+ 2222)(b ab a b a +−=−整式的除法:)0,,(≠=÷−a n m aa a n m n m 都是正整数 3.),0(1);0(10为正整数p a a a a a pp ≠=≠=− 4.因式分解 把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式。

5.因式分解的常用方法(1)提公因式法:)(c b a ac ab +=+(2)运用公式法:))((22b a b a b a −+=−(3)十字相乘法:))(()(2q a p a pq a q p a ++=+++ 6.一元二次方程:)0(02≠=++a c bx ax 的求根公式: )04(2422≥−−±−=ac b a ac b b x : 7.ac b 42−=∆, , 2122122212)(x x x x x x −+=+8.加权平均数: 9.方差:10.一次函数:y=kx+b(0≠k ),确定K ,b 的符号:(1)当k>0时,y 随x 的增大而增大(2)当k<0时,y 随x 的增大而减小11.反比例函数的性质:12.二次函数的性质:二次函数的解析式有三种形式:(1)一般式:)0,,(2≠++=a c b a c bx ax y 是常数, 对称轴:直线a b x 2−= 顶点坐标:⎪⎪⎭⎫ ⎝⎛−−a b ac a b 44,22 (2)顶点式:)0,,()(2≠+−=a k h a k h x a y 是常数, 对称轴:直线x=h ,顶点坐标:(h ,k )222)(2b a b ab a ±=+±a b x x −=+21a c x x =21n f x f x f x x k k ++=2211])()()[(1222212x x x x x x ns n −++−+−= 221x x x +=2 (3)交点式:))((21x x x x a y −−=. 对称轴:直线当∆>0时,图像与x 轴有两个交点;当∆=0时,图像与x 轴有一个交点;当∆<0时,图像与x 轴没有交点。

2020年中考数学几何公式定理汇总

2020年中考数学几何公式定理汇总

2020年中考数学几何公式定理汇总1.过两点有且只有一条直线2.两点之间线段最短3.同角或等角的补角相等4.同角或等角的余角相等5.过一点有且只有一条直线和已知直线垂直6.直线外一点与直线上各点连接的所有线段中,垂线段最短7.平行公理经过直线外一点,有且只有一条直线与这条直线平行8.如果两条直线都和第三条直线平行,这两条直线也互相平行9.同位角相等,两直线平行10.内错角相等,两直线平行11.同旁内角互补,两直线平行12.两直线平行,同位角相等13.两直线平行,内错角相等14.两直线平行,同旁内角互补15.定理三角形两边的和大于第三边16.推论三角形两边的差小于第三边17.三角形内角和定理三角形三个内角的和等于180°18.推论1直角三角形的两个锐角互余19.推论2三角形的一个外角等于和它不相邻的两个内角的和20.推论3三角形的一个外角大于任何一个和它不相邻的内角21.全等三角形的对应边、对应角相等22.边角边公理有两边和它们的夹角对应相等的两个三角形全等23.角边角公理有两角和它们的夹边对应相等的两个三角形全等24.推论有两角和其中一角的对边对应相等的两个三角形全等25边边边公理有三边对应相等的两个三角形全等26斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27.定理1:在角的平分线上的点到这个角的两边的距离相等28.定理2:到一个角的两边的距离相同的点,在这个角的平分线上29.角的平分线是到角的两边距离相等的所有点的集合30.等腰三角形的性质定理等腰三角形的两个底角相等31.推论1:等腰三角形顶角的平分线平分底边并且垂直于底边32.等腰三角形的顶角平分线、底边上的中线和高互相重合33.推论3:等边三角形的各角都相等,并且每一个角都等于60°34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35.推论1:三个角都相等的三角形是等边三角形36.推论2:有一个角等于60°的等腰三角形是等边三角形37.在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38.直角三角形斜边上的中线等于斜边上的一半39.定理线段垂直平分线上的点和这条线段两个端点的距离相等40.逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41.线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42.定理1:关于某条直线对称的两个图形是全等形43.定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44.定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45.逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46.勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即ab=c47.勾股定理的逆定理如果三角形的三边长a、b、c有关系ab=c,那么这个三角形是直角三角形48.定理四边形的内角和等于360°49.四边形的外角和等于360°50.多边形内角和定理n边形的内角的和等于(n-2)×180°51.推论任意多边的外角和等于360°52.平行四边形性质定理1平行四边形的对角相等53.平行四边形性质定理2平行四边形的对边相等54.推论夹在两条平行线间的平行线段相等55.平行四边形性质定理3平行四边形的对角线互相平分56.平行四边形判定定理1两组对角分别相等的四边形是平行四边形57.平行四边形判定定理2两组对边分别相等的四边形是平行四边形58.平行四边形判定定理3对角线互相平分的四边形是平行四边形59.平行四边形判定定理4一组对边平行相等的四边形是平行四边形60.矩形性质定理1矩形的四个角都是直角61.矩形性质定理2矩形的对角线相等62.矩形判定定理1有三个角是直角的四边形是矩形63.矩形判定定理2对角线相等的平行四边形是矩形64.菱形性质定理1菱形的四条边都相等65.菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角66.菱形面积=对角线乘积的一半,即S=(a×b)÷267.菱形判定定理1:四边都相等的四边形是菱形68.菱形判定定理2:对角线互相垂直的平行四边形是菱形69.正方形性质定理1:正方形的四个角都是直角,四条边都相等70.正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71.定理1关于中心对称的两个图形是全等的72.定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73.逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74.等腰梯形性质定理等腰梯形在同一底上的两个角相等75.等腰梯形的两条对角线相等76.等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77.对角线相等的梯形是等腰梯形78.平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79.推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰80.推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边81.三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82.梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(ab)÷2S=L×h83.(1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84.(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85.(3)等比性质如果a/b=c/d=…=m/n(bd…n≠0),那么(ac…m)/(bd…n)=a/b86.平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87.推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88.定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89.平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90.定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91.相似三角形判定定理1:两角对应相等,两三角形相似(ASA)92.直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93.判定定理2:两边对应成比例且夹角相等,两三角形相似(SAS)94.判定定理3:三边对应成比例,两三角形相似(SSS)95.定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96.性质定理1:相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97.性质定理2:相似三角形周长的比等于相似比98.性质定理3:相似三角形面积的比等于相似比的平方99.任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100.任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101.圆是定点的距离等于定长的点的集合102.圆的内部可以看作是圆心的距离小于半径的点的集合103.圆的外部可以看作是圆心的距离大于半径的点的集合104.同圆或等圆的半径相等105.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106.和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107.到已知角的两边距离相等的点的轨迹,是这个角的平分线108.到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109.定理不在同一直线上的三个点确定一条直线110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111.推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧弦的垂直平分线经过圆心,并且平分弦所对的两条弧平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112.推论2:圆的两条平行弦所夹的弧相等113.圆是以圆心为对称中心的中心对称图形114.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116.定理一条弧所对的圆周角等于它所对的圆心角的一半117.推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118.推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119.推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120.定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121.直线L和O相交d﹤r直线L和O相切d=r直线L和O相离d﹥r122.切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123.切线的性质定理圆的切线垂直于经过切点的半径124.推论1:经过圆心且垂直于切线的直线必经过切点125.推论2:经过切点且垂直于切线的直线必经过圆心126.切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127.圆的外切四边形的两组对边的和相等128.弦切角定理弦切角等于它所夹的弧对的圆周角129.推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130.相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131.推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132.切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133.推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134.如果两个圆相切,那么切点一定在连心线上135.两圆外离d﹥Rr两圆外切d=Rr两圆相交R-r﹤d﹤Rr(R﹥r)两圆内切d=R-r(R﹥r)两圆内含d﹤R-r(R﹥r)136.定理相交两圆的连心线垂直平分两圆的公共弦137.定理把圆分成n(n≥3):依次连结各分点所得的多边形是这个圆的内接正n边形经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138.定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139.正n边形的每个内角都等于(n-2)×180°/n140.定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141.正n边形的面积Sn=pnrn/2p表示正n边形的周长142.正三角形面积√3a/4a表示边长143.如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4144.弧长计算公式:L=n∏R/180145.扇形面积公式:S扇形=n∏R/360=LR/2146.内公切线长=d-(R-r)外公切线长=d-(Rr)2019-2020学年数学中考模拟试卷一、选择题1.化简(﹣a 2)•a 5所得的结果是( ) A.a 7B.﹣a 7C.a 10D.﹣a 102.下列调查中,适合普查的事件是( ) A .调查华为手机的使用寿命v B .调查市九年级学生的心理健康情况 C .调查你班学生打网络游戏的情况D .调查中央电视台《中国舆论场》的节目收视率3.在△ABC 中,AB=10,AC=210,BC 边上的高AD=6,则另一边BC 等于( ) A .10B .8C .6或10D .8或104.2018年12月27日,国家发展改革委发布《关于全力做好2019年春运工作的意见》显示预测,2019年春运全国民航旅客发送量将达到7300万人次,比上一年增长12%.其中7300万用科学记数法表示为( ) A .77310⨯B .77.310⨯C .87.310⨯D .80.7310⨯5.一元二次方程(x ﹣1)(x+5)=3x+2的根的情况是( ) A.方程没有实数根 B.方程有两个相等的实数根 C.方程有两个不相等的实数根 D.方程的根是1、﹣5和6.在一个不透明的口袋中装有2个绿球和若干个红球,这些球除颜色外无其它差别,从这个口袋中随机摸出一个球,摸到绿球的概率为14,则红球的个数是( ) A.2B.4C.6D.87.《居室内空气中甲醛的卫生标准》(GB/T16127-1995)规定:居室内空气中甲醛的最高容许浓度为0.00008g/m 3.将0.00008用科学记数法可表示为( ) A .40.810-⨯B .4810-⨯C .50.810-⨯D .5810-⨯8.如图,四边形OABC 是矩形,四边形ADEF 是正方形,点A 、D 在x 轴的负半轴上,点C 在y 轴的正半轴上,点F 在AB 上,点B 、E 在反比例函数y=kx(k 为常数,k≠0)的图象上,正方形ADEF 的面积为4,且BF=2AF ,则k 值为( )A.4 B.-4 C.6 D.-69.一元二次方程﹣x2+2x=﹣1的两个实数根为α,β,则α+β+α•β的值为()A.1 B.﹣3 C.3 D.﹣110.如图,直线l与x轴、y轴分别交于A、B两点,与反比例函数y=kx的图象在第一象限相交于点C.若AB=BC,△AOB的面积为3,则k的值为()A.6 B.9 C.12 D.1811.如图,反比例函数myx的图象与一次函数y=kx﹣b的图象交于点P,Q,已点P的坐标为(4,1),点Q的纵坐标为﹣2,根据图象信息可得关于x的方程mx=kx﹣b的解为()A.﹣2,﹣2 B.﹣2,4 C.﹣2,1 D.4,1 12.23的相反数是()A.﹣13B.13C.﹣3 D.3二、填空题13.在平面坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2),延长CB交x轴于点A1,作正方形A1B1C1C,延长C1B1交x轴于点A2,作正方形A2B2C2C1,…按这样的规律进行下去,第2014个正方形的面积为_________。

初中数学知识点中考必背公式

初中数学知识点中考必背公式

初中数学知识点中考必背公式一、代数部分:1.二次方程的求根公式:对于一元二次方程ax^2+bx+c=0其中a≠0,Δ=b^2-4ac≥0,则求根公式为:x1=[-b+√(b^2-4ac)]/2ax2=[-b-√(b^2-4ac)]/2a2.二次函数的顶点坐标:对于二次函数y=ax^2+bx+c(a≠0),其顶点坐标为:横坐标x=-b/2a,纵坐标y=-Δ/4a3.因式分解公式:(a+b)^2=a^2+2ab+b^2(a-b)^2=a^2-2ab+b^2(a+b)(a-b)=a^2-b^24.平方差公式:a^2-b^2=(a+b)(a-b)5.和差化积公式:sin(A±B)=sinAcosB±cosAsinBcos(A±B)=cosAcosB∓sinAsinBtan(A±B)=(tanA±tanB)/(1∓tanAtanB)6.一些特殊角的正弦、余弦、正切值:sin30°=1/2,cos30°=√3/2,tan30°=1/√3 sin45°=cos45°=1/√2,tan45°=1sin60°=√3/2,cos60°=1/2,tan60°=√37.等差数列前n项和公式:Sn=n(a1+an)/28.等差数列通项公式:an=a1+(n-1)d9.等比数列前n项和公式:Sn=a1(1-q^n)/(1-q)10.等比数列通项公式:an=a1*q^(n-1)11.绝对值的性质:-a,=,aab,=,a,*,ba/b,=,a,/,b二、几何部分:1.直角三角形的勾股定理:直角三角形的两个直角边的平方和等于斜边的平方,即a^2+b^2=c^22.等边三角形的边长关系:等边三角形的三条边相等3.等腰三角形的性质:等腰三角形的两底角相等,两腰相等4.两条平行线与两条截线的关系:两条平行线与另外两条非平行线(截线)形成的内角、外角相等5.锐角三角函数的定义:sinA=对边/斜边cosA=邻边/斜边tanA=对边/邻边6.三角形内角和公式:三角形的内角和等于180°,即A+B+C=180°7.角平分线定理:角平分线将一个角分为两个大小相等的角8.两角的和差公式:sin(A±B)=sinAcosB±cosAsinBcos(A±B)=cosAcosB∓sinAsinBtan(A±B)=(tanA±tanB)/(1∓tanAtanB)9.三角形面积公式:对于任意三角形ABC,其面积S可以由三边长度a、b、c计算:S=√[s(s-a)(s-b)(s-c)]其中,s=(a+b+c)/2为半周长10.弦切弧定理:圆内一弦的两个弦心角相等,一弦上的切线与此弦所对的弧上任一弦心角相等11.正三角形的面积公式:对于边长为a的正三角形,其面积S=(√3*a^2)/4三、概率统计部分:1.事件的概率公式:对于随机试验的事件A,事件A发生的概率为P(A)=事件A发生的次数/试验次数2.互斥事件的概率公式:对于互斥事件A和B,两事件发生的概率之和为P(A∪B)=P(A)+P(B)3.相互独立事件的概率公式:对于相互独立事件A和B,两事件同时发生的概率为P(A∩B)=P(A)*P(B)4.条件概率公式:对于事件A和事件B,已知事件B发生的情况下事件A发生的概率为P(A,B)=P(A∩B)/P(B)这里列举的只是初中数学常见到的一部分公式,而实际中考中会用到的公式还有很多,建议同学们在备考过程中广泛积累、熟练掌握各类公式,提高解题能力。

中考数学公式大全(2020年整理).pdf

中考数学公式大全(2020年整理).pdf

函数解析式
开口方向
对称轴
顶点坐标
y = ax 2 y = ax 2 + k
y = a(x − h)2 y = a(x − h)2 + k
③a2+b2=(a+b)2-2ab,(a-b)2=(a+b)2-4ab.
6、幂的运算性质:①am×an=am+n.②am÷an=am-n.③(am)n=amn.④(ab)n=anbn.⑤( )n
=n.
⑥a-n=
1 an
,特别:(
)-n=(
)n.⑦a0=1(a≠0).如:a3×a2=a5,a6÷a2=a4,(a3)2
的平方根=±2. 8、一元二次方程:对于方程:ax2+bx+c=0:
①求根公式是x= −b b2 − 4ac ,其中△=b2-4ac叫做根的判别式. 2a
当△>0时,方程有两个不相等的实数根; 当△=0时,方程有两个相等的实数根; 当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根. ②若方程有两个实数根x1和x2,并且二次三项式ax2+bx+c可分解为a(x-x1)(x-x2).
10、反比例函数y= (k≠0)的图象叫做双曲线.
当k>0时,双曲线在一、三象限(在每一象限内,从左向右降); 当k<0时,双曲线在二、四象限(在每一象限内,从左向右上升). 因此,它的增减性与一次函数相反. 11、统计初步:(1)概念:①所要考察的对象的全体叫做总体,其中每一个考察对象叫做 个体.从总体中抽取的一部份个体叫做总体的一个样本,样本中个体的数目叫做样本容 量. ②在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数. ③将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做这组数 据的中位数.
0<sinA<1,0<cosA<1,tanA>0.∠A越大,∠A的正弦和正切值越大,余弦值反而 越小.

初中三年数学公式定理大全,初一到初三

初中三年数学公式定理大全,初一到初三

要知道明年你们将迎来人生中的第一次选拔性考试——中考,所以,这一年的时间都是很宝贵了。

不想落后他人,预习复习工作都得做到位。

今天,老师和大家分享的是新初三数学:三年【公式定理】大全,初一初二预习,初三复习!初中数学公式定理大全1、点、线、角点的定理:过两点有且只有一条直线;两点之间线段最短角的定理:同角或等角的补角相等;同角或等角的余角相等直线定理:过一点有且只有一条直线和已知直线垂直;直线外一点与直线上各点连接的所有线段中,垂线段最短2、几何平行平行定理:经过直线外一点,有且只有一条直线与这条直线平行推论:如果两条直线都和第三条直线平行,这两条直线也互相平行证明两直线平行定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行两直线平行推论:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补3、三角形内角定理定理:三角形两边的和大于第三边推论:三角形两边的差小于第三边三角形内角和定理:三角形三个内角的和等于180°4定理:全等三角形的对应边、对应角相等边角边定理(SAS):有两边和它们的夹角对应相等的两个三角形全等;有两角和它们的夹边对应相等的两个三角形全等推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等边边边定理(SSS):有三边对应相等的两个三角形全等斜边、直角边定理(HL):有斜边和一条直角边对应相等的两个直角三角形全等5定理1:在角的平分线上的点到这个角的两边的距离相等定理2:到一个角的两边的距离相同的点,在这个角的平分线上;角的平分线是到角的两边距离相等的所有点的集合6等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角)推论1:等腰三角形顶角的平分线平分底边并且垂直于底边;等腰三角形顶角平分线、底边上的中线和底边上的高互相重合等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)7定理:线段垂直平分线上的点和这条线段两个端点的距离相等逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上;线段的垂直平分线可看作和线段两端点距离相等的所有点的集合定理1:关于某条直线对称的两个图形是全等形定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称8定理:在直角三角形中,如果一个锐角等于30°那它所对的直角边等于斜边的一半判定定理:直角三角形斜边上的中线等于斜边上的一半勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方,a^2+b^2=c^2勾股定理的逆定理:如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形9定理:四边形的内角和等于360°;四边形的外角和等于360°多边形内角和定理:n边形的内角和等于(n-2)×180°推论:任意多边的外角和等于360°10平行四边形性质定理:1.平行四边形的对角相等2.平行四边形的对边相等3.平行四边形的对角线互相平分推论:夹在两条平行线间的平行线段相等平行四边形判定定理1.两组对角分别相等的四边形是平行四边形2.两组对边分别相等的四边形是平行四边形3.对角线互相平分的四边形是平行四边形4.一组对边平行相等的四边形是平行四边形11矩形性质定理:矩形的四个角都是直角;矩形的对角线相等矩形判定定理1:有三个角是直角的四边形是矩形;对角线相等的平行四边形是矩形12菱形性质定理1:菱形的四条边都相等菱形性质定理2:菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形面积=对角线乘积的一半,即S=(a×b)÷2菱形判定定理1:四边都相等的四边形是菱形菱形判定定理2:对角线互相垂直的平行四边形是菱形13正方形性质定理1:正方形的四个角都是直角,四条边都相等正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角14定理:关于中心对称的两个图形是全等的;关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称15等腰梯形性质定理:1.等腰梯形在同一底上的两个角相等2.等腰梯形的两条对角线相等等腰梯形判定定理:1. 在同一底上的两个角相等的梯形是等腰梯形2.对角线相等的梯形是等腰梯形平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边16三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半:L=(a+b)÷2S=L×h17相似三角形定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似相似三角形判定定理:1. 两角对应相等,两三角形相似(ASA)2. 两边对应成比例且夹角相等,两三角形相似(SAS)3. 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似判定定理3:三边对应成比例,两三角形相似(SSS)相似直角三角形定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似性质定理:1.相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比2.相似三角形周长的比等于相似比3.相似三角形面积的比等于相似比的平方18定理1:任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值定理2:任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值19定理:过不共线的三个点,可以作且只可以作一个圆;垂直于弦的直径平分这条弦,并且评分弦所对的两条弧推论1:平分弦(不是直径)的直径垂直于弦并且平分弦所对的两条弧推论2:弦的垂直平分弦经过圆心,并且平分弦所对的两条弧推论3:平分弦所对的一条弧的直径,垂直评分弦,并且平分弦所对的另一条弧定理3:1.在同圆或等圆中,相等的弧所对的弦相等,所对的弦的弦心距相等2.经过圆的半径外端点,并且垂直于这条半径的直线是这个圆的切线3.圆的切线垂直经过切点的半径4.三角形的三个内角平分线交于一点,这点是三角形的内心5.从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角6.圆的外切四边形的两组对边的和相等7.如果四边形两组对边的和相等,那么它必有内切圆8.两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等20比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b。

中考数学公式定理汇总

中考数学公式定理汇总

中考数学公式定理汇总1. 两点间距离公式:设两点坐标分别为(x1,y1)和(x2,y2),则两点间距离公式为d=√[(x2-x1)²+(y2-y1)²]。

2. 勾股定理:直角三角形斜边的平方等于两直角边长度的平方和。

即a²+b²=c²(其中c为斜边,a、b为两直角边)。

3. 相似三角形定理:若两个三角形的对应角相等,那么它们的对应边成比例。

4. 正弦定理:在任意三角形ABC中,有a/sinA=b/sinB=c/sinC,其中a、b、c分别为三角形的三个边长。

5. 余弦定理:在任意三角形ABC中,有c²=a²+b²-2abcosC。

6. 集合论基本公式:①并集公式:A∪B表示A和B的并集,其中A、B为两个集合,则A∪B={x|x∈A∨x∈B};②交集公式:A∩B表示A和B的交集,其中A、B为两个集合,则A∩B={x|x∈A∧x∈B};③差集公式:A-B表示A与B的差集,其中A、B为两个集合,则A-B={x|x∈A∧x∉B}。

7. 均值不等式:对于任意非负实数a1、a2、……、an,则有(a1+a2+……+an)/n≥√(a1a2……an),即算术平均数大于等于几何平均数。

8. 对数基本公式:①a^m*a^n=a^(m+n);②(a^m)^n=a^(mn);③a^(m-n)=a^m/a^n;④loga(m*n)=logam+logan;⑤loga(m/n)=logam-logan;⑥loga(m^n)=n*logam。

9. 斯涅尔定理:(1)光线从光疏介质到光密介质中以一定角度射入后,会向法线方向弯曲;(2)入射角和折射角之比是一个定值,称为折射率n,即n=sin(i)/sin(r)。

10. 三角函数基本公式:sin(-x)=-sinx,cos(-x)=cosx,tan(-x)=-tanx,cot(-x)=-cotx。

11. 欧拉公式:e^(ix)=cosx+i*sinx。

数学初中三年中学数学必备定理

数学初中三年中学数学必备定理

数学初中三年中学数学必备定理1.点、线、角基本事实:过两点有且只有一条直线。

线段的基本事实:两点之间线段最短。

补角的性质:同角或等角的补角相等。

余角的性质:同角或等角的余角相等。

直线定理:过一点有且只有一条直线和已知直线垂直。

直线定理:直线外一点与直线上各点连接的所有线段中,垂线段最短。

2.几何平行平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

平行公理的推论:如果两条直线都和第三条直线平行,这两条直线也互相平行。

平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。

平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。

3.三角形内角定理三角形边的关系:三角形两边之和大于第三边,推论:三角形两边之差小于第三边。

三角形内角和定理:三角形内角和为180°。

三角形内角和定理的推论:三角形的一个外角等于和它不相邻的两个内角之和。

4.全等三角形判定性质:全等三角形的对应边相等、对应角相等。

边角边定理(SAS):有两边和它们的夹角对应相等的两个三角形全等。

角边角定理(ASA):有两角和它们的夹边对应相等的两个三角形全等。

角角边定理(AAS):有两角和其中一角的对边对应相等的两个三角形全等。

边边边定理(SSS):有三边对应相等的两个三角形全等。

斜边、直角边定理(HL):有斜边和一条直角边对应相等的两个直角三角形全等。

5.角的平分线性质:在角的平分线上的点到这个角的两边的距离相等。

逆定理:到一个角的两边的距离相同的点,在这个角的平分线上。

角的平分线是到角的两边距离相等的所有点的集合。

6.等腰三角形性质等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角)。

推论1:等腰三角形顶角的平分线平分底边并且垂直于底边、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合。

等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)。

2020初一二三中考数学定理公式全

2020初一二三中考数学定理公式全

2020初一二三中考数学定理公式全1、点、线、角点的定理:过两点有且只有一条直线点的定理:两点之间线段最短角的定理:同角或等角的补角相等角的定理:同角或等角的余角相等直线定理:过一点有且只有一条直线和已知直线垂直直线定理:直线外一点与直线上各点连接的所有线段中,垂线段最短2、几何平行平行定理:经过直线外一点,有且只有一条直线与这条直线平行推论:如果两条直线都和第三条直线平行,这两条直线也互相平行证明两直线平行定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行两直线平行推论:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补3、三角形内角定理定理:三角形两边的和大于第三边推论:三角形两边的差小于第三边三角形内角和定理:三角形三个内角的和等于180°4、全等三角形判定定理:全等三角形的对应边、对应角相等边角边定理(SAS):有两边和它们的夹角对应相等的两个三角形全等角边角定理(ASA):有两角和它们的夹边对应相等的两个三角形全等推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等边边边定理(SSS):有三边对应相等的两个三角形全等斜边、直角边定理(HL):有斜边和一条直角边对应相等的两个直角三角形全等5、角的平分线定理1:在角的平分线上的点到这个角的两边的距离相等定理2:到一个角的两边的距离相同的点,在这个角的平分线上角的平分线是到角的两边距离相等的所有点的集合等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角)推论1:等腰三角形顶角的平分线平分底边并且垂直于底边等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)7、对称定理定理:线段垂直平分线上的点和这条线段两个端点的距离相等逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上线段的垂直平分线可看作和线段两端点距离相等的所有点的集合定理1:关于某条直线对称的两个图形是全等形定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称定理:在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半判定定理:直角三角形斜边上的中线等于斜边上的一半勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2勾股定理的逆定理:如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形9、多边形内角和定理定理:四边形的内角和等于360°;四边形的外角和等于360°多边形内角和定理:n边形的内角和等于(n-2)×180°推论:任意多边的外角和等于360°10、平行四边形定理平行四边形性质定理:1.平行四边形的对角相等2.平行四边形的对边相等3.平行四边形的对角线互相平分推论:夹在两条平行线间的平行线段相等平行四边形判定定理:1.两组对角分别相等的四边形是平行四边形2.两组对边分别相等的四边形是平行四边形3.对角线互相平分的四边形是平行四边形4.一组对边平行相等的四边形是平行四边形11、矩形定理矩形性质定理1:矩形的四个角都是直角矩形性质定理2:矩形的对角线相等矩形判定定理1:有三个角是直角的四边形是矩形矩形判定定理2:对角线相等的平行四边形是矩形12、菱形定理菱形性质定理1:菱形的四条边都相等菱形性质定理2:菱形的对角线互相垂直,并且每一条对角线平分一组对角菱形面积=对角线乘积的一半,即S=(a×b)÷2菱形判定定理1:四边都相等的四边形是菱形菱形判定定理2:对角线互相垂直的平行四边形是菱形13、正方形定理正方形性质定理1:正方形的四个角都是直角,四条边都相等正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角14、中心对称定理定理1:关于中心对称的两个图形是全等的定理2:关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称15、等腰梯形性质定理等腰梯形性质定理:1.等腰梯形在同一底上的两个角相等2.等腰梯形的两条对角线相等等腰梯形判定定理:1.在同一底上的两个角相等的梯形是等腰梯形2.对角线相等的梯形是等腰梯形平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边16、中位线定理三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半:L=(a+b)÷2S=L×h17、相似三角形定理相似三角形定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似相似三角形判定定理:1.两角对应相等,两三角形相似(ASA)2.两边对应成比例且夹角相等,两三角形相似(SAS)直角三角形被斜边上的高分成的两个直角三角形和原三角形相似判定定理3:三边对应成比例,两三角形相似(SSS)相似直角三角形定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似性质定理:1.相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比2.相似三角形周长的比等于相似比3.相似三角形面积的比等于相似比的平方18、三角函数定理任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值19、圆的定理定理:过不共线的三个点,可以作且只可以作一个圆定理:垂直于弦的直径平分这条弦,并且评分弦所对的两条弧推论1:平分弦(不是直径)的直径垂直于弦并且平分弦所对的两条弧推论2:弦的垂直平分弦经过圆心,并且平分弦所对的两条弧推论3:平分弦所对的一条弧的直径,垂直评分弦,并且平分弦所对的另一条弧定理:1.在同圆或等圆中,相等的弧所对的弦相等,所对的弦的弦心距相等2.经过圆的半径外端点,并且垂直于这条半径的直线是这个圆的切线3.圆的切线垂直经过切点的半径4.三角形的三个内角平分线交于一点,这点是三角形的内心5.从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角6.圆的外切四边形的两组对边的和相等7.如果四边形两组对边的和相等,那么它必有内切圆8.两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等20、比例性质定理比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d 合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b。

初三初中数学常用公式与定理

初三初中数学常用公式与定理

初三初中数学常用公式与定理1. 数学常用公式在初三初中数学学习中,常用公式对于解题和计算非常重要。

下面列举了一些常用的数学公式:1.1 代数公式- 两个数的乘积等于它们的最大公约数与最小公倍数的积:a × b = [a, b] × (a,b)- 平方差公式:(a + b)(a - b) = a^2 - b^2- 一元二次方程求根公式:x = (-b ± √(b^2 - 4ac)) / 2a1.2 几何公式- 三角形周长公式:P = a + b + c(a、b、c为三角形的三边)- 三角形面积公式:S = 1/2 ×底边 ×高- 圆的周长公式:C = 2πr(r为圆的半径)- 圆的面积公式:S = πr^21.3 概率公式- 事件的概率:P(A) = n(A) / n(S)(n(A)为事件A发生的次数,n(S)为样本空间的元素个数)- 互斥事件的概率:P(A ∪ B) = P(A) + P(B)2. 数学常用定理2.1 代数定理- 乘法交换律:a × b = b × a- 加法结合律:(a + b) + c = a + (b + c)- 分配律:a × (b + c) = a × b + a × c2.2 几何定理- 直角三角形勾股定理:c^2 = a^2 + b^2(c为斜边,a和b为两直角边)- 三角形内角和定理:三角形的三个内角的和为180°- 对角线定理:平行四边形的对角线互相平分2.3 梅钦定理- 若一个集合A是集合B的子集,且集合B是集合C的子集,则集合A一定是集合C的子集3. 数学常用定律3.1 代数定律- 同号相乘,异号相乘:正 ×正 = 正、负 ×负 = 正、正 ×负 = 负- 零乘任何数等于零:0 × a = 03.2 几何定律- 同位角定理:同位角互等,即对应角、内错角、同旁内角相等- 对顶角定理:对顶角互等,即顶角和底角互补以上列举的公式、定理和定律只是初三初中数学学习中的一部分常用内容,希望能够对你的学习有所帮助。

中考数学重要公式

中考数学重要公式

中考数学重要公式1.直角三角形的勾股定理:凡是直角三角形都满足勾股定理,即直角三角形斜边的平方等于两腰的平方和。

勾股定理公式:c²=a²+b²2.等腰三角形:等腰三角形两边相等,两底角相等。

等腰三角形底角公式:a=b3.等边三角形:等边三角形三条边相等,三个内角也相等,每个角都是60度。

等边三角形内角公式:a=b=c=60度4.平行四边形:对角线互相平分。

平行四边形对角线公式:对角线相等,且互相平分5.矩形:矩形对角线相等,且互相平分。

矩形对角线公式:对角线相等,且互相平分6.正方形:正方形对角线相等,且互相平分。

正方形对角线公式:对角线相等,且互相平分7.圆的周长和面积:圆的周长公式:C=2πr圆的面积公式:S=πr²8.扇形的周长和面积:扇形周长公式:C=2πr*(θ/360)扇形面积公式:S=πr²*(θ/360)9.椭圆的周长和面积:椭圆周长公式:C=2π*√((a²+b²)/2)椭圆面积公式:S=π*a*b10.球体的体积和表面积:球体体积公式:V=(4/3)*πr³球体表面积公式:S=4πr²11.直角三角形的正弦定理:正弦定理公式:a/sinA = b/sinB = c/sinC12.直角三角形的余弦定理:余弦定理公式:c² = a² + b² - 2ab * cosC13.直角三角形的正切定理:正切定理公式:tanA = a/b14.等腰三角形的高公式:等腰三角形高公式:h=√(a²-b²/4)15.相交弦的行程定理:行程定理公式:PA*PB=PC*PD16.相交弦幂的定理:幂的定理公式:PA*PB=PC*PD17.逆时针偏角的角平分线公式:角平分线公式:eⁱᵐᵖᵃʳᵍ^ɑ=z₀18.二次函数的顶点坐标:二次函数顶点公式:(h,k)19.等差数列的通项公式:通项公式:an = a₁ + (n-1)d20.等比数列的通项公式:通项公式:an = a₁ * q^(n-1)以上是中考数学中常用的一些公式,掌握这些公式可以帮助我们更好地解题。

初一到初三数学必记重要公式定理汇总(大全)

初一到初三数学必记重要公式定理汇总(大全)

初中数学定理公式大全1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线和已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论1直角三角形的两个锐角互余19、推论2三角形的一个外角等于和它不相邻的两个内角的和20、推论3三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等22、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SSS)有三边对应相等的两个三角形全等26、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27、定理1在角的平分线上的点到这个角的两边的距离相等28、定理2到一个角的两边的距离相同的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31、推论1等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33、推论3等边三角形的各角都相等,并且每一个角都等于60°34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1三个角都相等的三角形是等边三角形36、推论2有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半39、定理线段垂直平分线上的点和这条线段两个端点的距离相等40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42、定理1关于某条直线对称的两个图形是全等形43、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247、勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形48、定理四边形的内角和等于360°49、四边形的外角和等于360°50、多边形内角和定理n边形的内角的和等于(n-2)×180°51、推论任意多边的外角和等于360°52、平行四边形性质定理1平行四边形的对角相等53、平行四边形性质定理2平行四边形的对边相等54、推论夹在两条平行线间的平行线段相等55、平行四边形性质定理3平行四边形的对角线互相平分56、平行四边形判定定理1两组对角分别相等的四边形是平行四边形57、平行四边形判定定理2两组对边分别相等的四边形是平行四边形58、平行四边形判定定理3对角线互相平分的四边形是平行四边形59、平行四边形判定定理4一组对边平行相等的四边形是平行四边形60、矩形性质定理1矩形的四个角都是直角61、矩形性质定理2矩形的对角线相等62、矩形判定定理1有三个角是直角的四边形是矩形63、矩形判定定理2对角线相等的平行四边形是矩形64、菱形性质定理1菱形的四条边都相等65、菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角66、菱形面积=对角线乘积的一半,即S=(a×b)÷267、菱形判定定理1四边都相等的四边形是菱形68、菱形判定定理2对角线互相垂直的平行四边形是菱形69、正方形性质定理1正方形的四个角都是直角,四条边都相等70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71、定理1关于中心对称的两个图形是全等的72、定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74、等腰梯形性质定理等腰梯形在同一底上的两个角相等75、等腰梯形的两条对角线相等76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77、对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79、推论1经过梯形一腰的中点与底平行的直线,必平分另一腰80、推论2经过三角形一边的中点与另一边平行的直线,必平分第三边81、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91、相似三角形判定定理1两角对应相等,两三角形相似(ASA)92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93、判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)94、判定定理3三边对应成比例,两三角形相似(SSS)95、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96、性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97、性质定理2相似三角形周长的比等于相似比98、性质定理3相似三角形面积的比等于相似比的平方99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三点确定一个圆。

2020年中考数学常用公式定理总结大全

2020年中考数学常用公式定理总结大全

2020年中考数学常用公式定理总结大全(名师总结必考知识点,值得下载背诵)1、整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3,,0.231,0.737373…,,.无限不环循小数叫做无理数.-如:π,-,0.1010010001…(两个1之间依次多1个0).有理数和无理数统称为实数.2、绝对值:a≥0丨a丨=a;a≤0丨a丨=-a.如:丨-丨=;丨3.14-π丨=π-3.14.3、一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0.4、把一个数写成±a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法.如:-40700=-4.07×105,0.000043=4.3×10-5.5、乘法公式(反过来就是因式分解的公式):①(a+b)(a-b)=a2-b2.②(a±b)2=a2±2ab +b2.③(a+b)(a2-ab+b2)=a3+b3.④(a-b)(a2+ab+b2)=a3-b3;a2+b2=(a+b)2-2ab,(a-b)2=(a+b)2-4ab.6、幂的运算性质:①a m×a n=a m+n.②a m÷a n=a m-n.③(a m)n=a mn.④(ab)n=a n b n.⑤()n=n.⑥a-n=,特别:()-n=()n.⑦a0=1(a≠0).如:a3×a2=a5,a6÷a2=a4,(a3)2=a6,(3a3)3=27a9,(-3)-1=-,5-2==,()-2=()2=,(-3.14)º=1,(-)0=1.7、二次根式:①()2=a(a≥0),②=丨a丨,③=×,④=(a>0,b≥0).如:①(3)2=45.②=6.③a<0时,=-a.④的平方根=4的平方根=±2.(平方根、立方根、算术平方根的概念)8、一元二次方程:对于方程:ax2+bx+c=0:①求根公式是x=,其中△=b2-4ac叫做根的判别式.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根.②若方程有两个实数根x1和x2,并且二次三项式ax2+bx+c可分解为a(x-x1)(x-x2).③以a和b为根的一元二次方程是x2-(a+b)x+ab=0.9、一次函数y=kx+b(k≠0)的图象是一条直线(b是直线与y轴的交点的纵坐标即一次函数在y轴上的截距).当k>0时,y随x的增大而增大(直线从左向右上升);当k<0时,y随x的增大而减小(直线从左向右下降).特别:当b=0时,y=kx(k≠0)又叫做正比例函数(y 与x成正比例),图象必过原点.10、反比例函数y=(k≠0)的图象叫做双曲线.当k>0时,双曲线在一、三象限(在每一象限内,从左向右降);当k<0时,双曲线在二、四象限(在每一象限内,从左向右上升).因此,它的增减性与一次函数相反.11、统计初步:(1)概念:①所要考察的对象的全体叫做总体,其中每一个考察对象叫做个体.从总体中抽取的一部份个体叫做总体的一个样本,样本中个体的数目叫做样本容量.②在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数.③将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做这组数据的中位数.(2)公式:设有n个数x1,x2,…,x n,那么:①平均数为:;②极差:用一组数据的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,即:极差=最大值-最小值;③方差:数据、……… …的方差为,则…=标准差:方差的算术平方根.数据、……… …的标准差,则…=一组数据的方差越大,这组数据的波动越大,越不稳定。

初三数学所有公式归纳总结

初三数学所有公式归纳总结

初三数学所有公式归纳总结数学是一门重要且基础的学科,对于初中阶段的学生来说,掌握数学公式是非常关键的。

公式的运用可以帮助学生更好地理解和解决数学问题。

本文将对初三数学中常用的公式进行归纳总结,以帮助同学们更好地复习和掌握数学知识。

一、代数公式1. 小学四则运算- 加法:a + b = b + a- 减法:a - b ≠ b - a- 乘法:a × b = b × a- 除法:a ÷ b ≠ b ÷ a2. 平方公式- 平方差公式:(a + b) × (a - b) = a² - b²- 完全平方公式:- (a + b)² = a² + 2ab + b²- (a - b)² = a² - 2ab + b²3. 二次根式公式- 二次根式的乘法公式:√a × √b = √(a × b)- 二次根式的除法公式:√a ÷ √b = √(a ÷ b)- 二次根式的加减法公式:a√m ± b√m = (a ± b)√m4. 指数公式- 同底数幂的乘法公式:a^m × a^n = a^(m + n)- 同底数幂的除法公式:a^m ÷ a^n = a^(m - n)- 幂的幂公式:(a^m)^n = a^(m × n)- 科学计数法:a × 10^m × b × 10^n = (a × b) × 10^(m + n)5. 对数公式- 对数的乘法公式:logₐ(m × n) = logₐm + logₐn- 对数的除法公式:logₐ(m ÷ n) = logₐm - logₐn- 对数的幂公式:logₐ(a^m) = m × logₐa二、几何公式1. 平面几何公式- 周长公式:正方形 P = 4s,长方形 P = 2l + 2w,圆形C = 2πr - 面积公式:正方形 S = s²,长方形 S = l × w,圆形S = πr²- 三角形面积公式:S = 1/2 ×底 ×高- 直角三角形勾股定理:c² = a² + b²2. 空间几何公式- 体积公式:长方体 V = l × w × h,正方体 V = a³,圆柱体 V =πr²h- 表面积公式:长方体 A = 2lw + 2lh + 2wh,正方体 A = 6a²,圆柱体A = 2πrh + 2πr²三、三角函数公式1. 三角函数的正弦定理:a/sinA = b/sinB = c/sinC2. 三角函数的余弦定理:a² = b² + c² - 2bc·cosA3. 三角函数的正切定理:tanA = sinA/cosA4. 三角函数的和差化积公式:- sin(A ± B) = sinA·cosB ± cosA·sinB- cos(A ± B) = cosA·cosB ∓ sinA·sinB以上只是初三数学中常见的一些公式,实际上数学公式非常多且广泛。

2020初中中考必备初中三年最全数学公式定理总结计划

2020初中中考必备初中三年最全数学公式定理总结计划

2020初中中考必备初中三年最全数学公式定理总结计划
WORD格式
初中数学公式初中数学公式定理定理
2020初中中考必备初中三年最全数学公式定理总结计划
1
专业资料整理
WORD格式
2
专业资料整理
WORD格式
3
专业资料整理
WORD格式
4
专业资料整理
WORD格式
5
专业资料整理
WORD格式
6
专业资料整理
WORD格式
7
专业资料整理
WORD格式
8
专业资料整理
WORD格式
9
专业资料整理
WORD格式
10专业资料整理
WORD格式
11专业资料整理
WORD格式
12专业资料整理
WORD格式
13专业资料整理
WORD格式
14专业资料整理
WORD格式
15专业资料整理
WORD格式
16专业资料整理
WORD格式
17专业资料整理
WORD格式
18专业资料整理
WORD格式
19专业资料整理
WORD格式
20专业资料整理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档