【中考2020】初中三年最全数学公式定理总结!
2020年中考数学几何就考这140多条公式定理
初中几何公式定理:线1、同角或等角的余角相等2、过一点有且只有一条直线和已知直线垂直3、过两点有且只有一条直线4、两点之间线段最短5、同角或等角的补角相等6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、定理线段垂直平分线上的点和这条线段两个端点的距离相等10、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上11、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合12、定理1关于某条直线对称的两个图形是全等形13、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线14、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上15、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称初中几何公式定理:角16、同位角相等,两直线平行17、内错角相等,两直线平行18、同旁内角互补,两直线平行19、两直线平行,同位角相等20、两直线平行,内错角相等21、两直线平行,同旁内角互补22、定理1在角的平分线上的点到这个角的两边的距离相等23、定理2到一个角的两边的距离相同的点,在这个角的平分线上24、角的平分线是到角的两边距离相等的所有点的集合初中几何公式定理:三角形25、定理三角形两边的和大于第三边26、推论三角形两边的差小于第三边27、三角形内角和定理三角形三个内角的和等于180°28、推论1直角三角形的两个锐角互余29、推论2三角形的一个外角等于和它不相邻的两个内角的和30、推论3三角形的一个外角大于任何一个和它不相邻的内角31、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c32、勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形初中几何公式定理:等腰、直角三角形33、等腰三角形的性质定理等腰三角形的两个底角相等34、推论1等腰三角形顶角的平分线平分底边并且垂直于底边35、等腰三角形的顶角平分线、底边上的中线和高互相重合36、推论3等边三角形的各角都相等,并且每一个角都等于60°37、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)38、推论1三个角都相等的三角形是等边三角形39、推论2有一个角等于60°的等腰三角形是等边三角形40、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半41、直角三角形斜边上的中线等于斜边上的一半初中几何公式定理:相似、全等三角形42、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似43、相似三角形判定定理1两角对应相等,两三角形相似(ASA)44、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似45、判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)46、判定定理3三边对应成比例,两三角形相似(SSS)47、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似48、性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比49、性质定理2相似三角形周长的比等于相似比50、性质定理3相似三角形面积的比等于相似比的平方51、边角边公理有两边和它们的夹角对应相等的两个三角形全等52、角边角公理有两角和它们的夹边对应相等的两个三角形全等53、推论有两角和其中一角的对边对应相等的两个三角形全等54、边边边公理有三边对应相等的两个三角形全等55、斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等56、全等三角形的对应边、对应角相等初中几何公式定理:四边形57、定理四边形的内角和等于360°58、四边形的外角和等于360°59、多边形内角和定理n边形的内角的和等于(n-2)×180°60、推论任意多边的外角和等于360°61、平行四边形性质定理1平行四边形的对角相等62、平行四边形性质定理2平行四边形的对边相等63、推论夹在两条平行线间的平行线段相等64、平行四边形性质定理3平行四边形的对角线互相平分65、平行四边形判定定理1两组对角分别相等的四边形是平行四边形66、平行四边形判定定理2两组对边分别相等的四边形是平行四边形67、平行四边形判定定理3对角线互相平分的四边形是平行四边形68、平行四边形判定定理4一组对边平行相等的四边形是平行四边形初中几何公式定理:矩形69、矩形性质定理1矩形的四个角都是直角70、矩形性质定理2矩形的对角线相等71、矩形判定定理1有三个角是直角的四边形是矩形72、矩形判定定理2对角线相等的平行四边形是矩形初中几何公式:菱形73、菱形性质定理1菱形的四条边都相等74、菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角75、菱形面积=对角线乘积的一半,即S=(a×b)÷276、菱形判定定理1四边都相等的四边形是菱形77、菱形判定定理2对角线互相垂直的平行四边形是菱形初中几何公式定理:正方形78、正方形性质定理1正方形的四个角都是直角,四条边都相等79、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角80、定理1关于中心对称的两个图形是全等的81、定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分82、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称初中几何公式定理:等腰梯形83、等腰梯形性质定理等腰梯形在同一底上的两个角相等84、等腰梯形的两条对角线相等85、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形86、对角线相等的梯形是等腰梯形初中几何公式:等分87、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等88、推论1经过梯形一腰的中点与底平行的直线,必平分另一腰89、推论2经过三角形一边的中点与另一边平行的直线,必平分第三边90、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半91、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h92、(1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d93、(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d94、(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么,(a+c+…+m)/(b+d+…+n)=a/b95、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例96、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例97、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边98、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值初中几何公式:圆101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三个点确定一条直线110、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111、推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112、推论2圆的两条平行弦所夹的弧相等113、圆是以圆心为对称中心的中心对称图形114、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116、定理一条弧所对的圆周角等于它所对的圆心角的一半117、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118、推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119、推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121、①直线L和⊙O相交d﹤r②直线L和⊙O相切d=r③直线L和⊙O相离d﹥r122、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123、切线的性质定理圆的切线垂直于经过切点的半径124、推论1经过圆心且垂直于切线的直线必经过切点125、推论2经过切点且垂直于切线的直线必经过圆心126、切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127、圆的外切四边形的两组对边的和相等128、弦切角定理弦切角等于它所夹的弧对的圆周角129、推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130、相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131、推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132、切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134、如果两个圆相切,那么切点一定在连心线上135、①两圆外离d﹥R+r②两圆外切d=R+r③两圆相交R-r﹤d﹤R+r(R﹥r)④两圆内切d=R-r(R﹥r)⑤两圆内含d﹤R-r(R﹥r) 136定理相交两圆的连心线垂直平分两圆的公共弦137、定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138、定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139、正n边形的每个内角都等于(n-2)×180°/n140、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141、正n边形的面积Sn=pnrn/2p表示正n边形的周长142、正三角形面积√3a/4a表示边长143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4 144、弧长计算公式:L=nπR/180145、扇形面积公式:S扇形=nπR/360=LR/2146、内公切线长=d-(R-r)外公切线长=d-(R+r)。
(完整版)初一到初三数学必记重要公式定理汇总(大全)
初中数学定理公式大全1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线和已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公义经过直线外一点,有且只有一条直线与这条直线平行8、若是两条直线都和第三条直线平行,这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论 1 直角三角形的两个锐角互余19、推论 2 三角形的一个外角等于和它不相邻的两个内角的和20、推论 3 三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等22、边角边公义 (SAS) 有两边和它们的夹角对应相等的两个三角形全等23、角边角公义 (ASA) 有两角和它们的夹边对应相等的两个三角形全等24、推论 (AAS) 有两角和其中一角的对边对应相等的两个三角形全等25、边边边公义 (SSS)有三边对应相等的两个三角形全等26、斜边、直角边公义(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27、定理 1 在角的均分线上的点到这个角的两边的距离相等28、定理 2 到一个角的两边的距离相同的点,在这个角的均分线上29、角的均分线是到角的两边距离相等的所有点的会集30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边同等角 )31、推论 1 等腰三角形顶角的均分线均分底边并且垂直于底边32、等腰三角形的顶角均分线、底边上的中线和底边上的高互相重合33、推论 3 等边三角形的各角都相等,并且每一个角都等于60°34、等腰三角形的判判定理若是一个三角形有两个角相等,那么这两个角所对的边也相等(等角同等边 )35、推论 1 三个角都相等的三角形是等边三角形36、推论 2 有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,若是一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半39、定理线段垂直均分线上的点和这条线段两个端点的距离相等40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直均分线上41、线段的垂直均分线可看作和线段两端点距离相等的所有点的会集42、定理 1 关于某条直线对称的两个图形是全等形43、定理 2 若是两个图形关于某直线对称,那么对称轴是对应点连线的垂直均分线44、定理 3 两个图形关于某直线对称,若是它们的对应线段或延长线订交,那么交点在对称轴上45、逆定理若是两个图形的对应点连线被同一条直线垂直均分,那么这两个图形关于这条直线对称46 、勾股定理直角三角形两直角a、 b 的平方和、等于斜 c 的平方,即 a2+b2=c247 、勾股定理的逆定理若是三角形的三a、 b、 c 有关系 a2+b2=c2,那么个三角形是直角三角形48 、定理四形的内角和等于360°49 、四形的外角和等于360°50 、多形内角和定理n 形的内角的和等于(n-2) ×180°51 、推任意多的外角和等于360°52 、平行四形性定理 1 平行四形的角相等53 、平行四形性定理 2 平行四形的相等54 、推在两条平行的平行段相等55 、平行四形性定理 3 平行四形的角互相均分56 、平行四形判判定理 1 两角分相等的四形是平行四形57 、平行四形判判定理 2 两分相等的四形是平行四形58 、平行四形判判定理 3 角互相均分的四形是平行四形59 、平行四形判判定理 4 一平行相等的四形是平行四形60 、矩形性定理 1 矩形的四个角都是直角61 、矩形性定理 2 矩形的角相等62 、矩形判判定理 1 有三个角是直角的四形是矩形63 、矩形判判定理 2 角相等的平行四形是矩形64 、菱形性定理 1 菱形的四条都相等65 、菱形性定理 2 菱形的角互相垂直,并且每一条角均分一角66 、菱形面 =角乘的一半,即 S=(a×b) ÷267 、菱形判判定理 1 四都相等的四形是菱形68 、菱形判判定理 2 角互相垂直的平行四形是菱形69 、正方形性定理 1 正方形的四个角都是直角,四条都相等70 、正方形性定理 2 正方形的两条角相等,并且互相垂直均分,每条角均分一角71 、定理 1 关于中心称的两个形是全等的72 、定理 2 关于中心称的两个形,称点都称中心,并且被称中心均分73 、逆定理若是两个形的点都某一点,并且被一点均分,那么两个形关于一点称74 、等腰梯形性定理等腰梯形在同一底上的两个角相等75 、等腰梯形的两条角相等76 、等腰梯形判判定理在同一底上的两个角相等的梯形是等腰梯形77 、角相等的梯形是等腰梯形78 、平行均分段定理若是一平行在一条直上截得的段相等,那么在其他直上截得的段也相等79 、推 1 梯形一腰的中点与底平行的直,必均分另一腰80 、推 2 三角形一的中点与另一平行的直,必均分第三81 、三角形中位定理三角形的中位平行于第三,并且等于它的一半82 、梯形中位定理梯形的中位平行于两底,并且等于两底和的一半L=(a+b) ÷2S=L×h83 、 (1)比率的基本性:若是 a:b=c:d,那么 ad=bc若是 ad=bc,那么 a:b=c:d84 、 (2)合比性:若是 a/b=c/d,那么 (a ±b)/b=(c ±d)/d85 、 (3)等比性:若是 a/b=c/d= ⋯=m/n(b+d+⋯+n≠0),那么 (a+c+ ⋯+m)/(b+d+ ⋯+n)=a/b86 、平行分段成比率定理三条平行截两条直,所得的段成比率87 、推论平行于三角形一边的直线截其他两边(或两边的延长线 ),所得的对应线段成比率88 、定理若是一条直线截三角形的两边(或两边的延长线 )所得的对应线段成比率,那么这条直线平行于三角形的第三边89 、平行于三角形的一边,并且和其他两边订交的直线,所截得的三角形的三边与原三角形三边对应成比率90 、定理平行于三角形一边的直线和其他两边(或两边的延长线 )订交,所构成的三角形与原三角形相似91 、相似三角形判判定理 1 两角对应相等,两三角形相似(ASA)92 、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 、判判定理 2 两边对应成比率且夹角相等,两三角形相似(SAS)94 、判判定理 3 三边对应成比率,两三角形相似(SSS)95 、定理若是一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比率,那么这两个直角三角形相似96、性质定理 1 相似三角形对应高的比,对应中线的比与对应角均分线的比都等于相似比97、性质定理 2 相似三角形周长的比等于相似比98、性质定理 3 相似三角形面积的比等于相似比的平方99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101、圆是定点的距离等于定长的点的会集102、圆的内部可以看作是圆心的距离小于半径的点的会集103、圆的外面可以看作是圆心的距离大于半径的点的会集104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直均分线107、到已知角的两边距离相等的点的轨迹,是这个角的均分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同素来线上的三点确定一个圆。
初中数学知识点中考必背公式
初中数学知识点中考必背公式一、代数部分:1.二次方程的求根公式:对于一元二次方程ax^2+bx+c=0其中a≠0,Δ=b^2-4ac≥0,则求根公式为:x1=[-b+√(b^2-4ac)]/2ax2=[-b-√(b^2-4ac)]/2a2.二次函数的顶点坐标:对于二次函数y=ax^2+bx+c(a≠0),其顶点坐标为:横坐标x=-b/2a,纵坐标y=-Δ/4a3.因式分解公式:(a+b)^2=a^2+2ab+b^2(a-b)^2=a^2-2ab+b^2(a+b)(a-b)=a^2-b^24.平方差公式:a^2-b^2=(a+b)(a-b)5.和差化积公式:sin(A±B)=sinAcosB±cosAsinBcos(A±B)=cosAcosB∓sinAsinBtan(A±B)=(tanA±tanB)/(1∓tanAtanB)6.一些特殊角的正弦、余弦、正切值:sin30°=1/2,cos30°=√3/2,tan30°=1/√3 sin45°=cos45°=1/√2,tan45°=1sin60°=√3/2,cos60°=1/2,tan60°=√37.等差数列前n项和公式:Sn=n(a1+an)/28.等差数列通项公式:an=a1+(n-1)d9.等比数列前n项和公式:Sn=a1(1-q^n)/(1-q)10.等比数列通项公式:an=a1*q^(n-1)11.绝对值的性质:-a,=,aab,=,a,*,ba/b,=,a,/,b二、几何部分:1.直角三角形的勾股定理:直角三角形的两个直角边的平方和等于斜边的平方,即a^2+b^2=c^22.等边三角形的边长关系:等边三角形的三条边相等3.等腰三角形的性质:等腰三角形的两底角相等,两腰相等4.两条平行线与两条截线的关系:两条平行线与另外两条非平行线(截线)形成的内角、外角相等5.锐角三角函数的定义:sinA=对边/斜边cosA=邻边/斜边tanA=对边/邻边6.三角形内角和公式:三角形的内角和等于180°,即A+B+C=180°7.角平分线定理:角平分线将一个角分为两个大小相等的角8.两角的和差公式:sin(A±B)=sinAcosB±cosAsinBcos(A±B)=cosAcosB∓sinAsinBtan(A±B)=(tanA±tanB)/(1∓tanAtanB)9.三角形面积公式:对于任意三角形ABC,其面积S可以由三边长度a、b、c计算:S=√[s(s-a)(s-b)(s-c)]其中,s=(a+b+c)/2为半周长10.弦切弧定理:圆内一弦的两个弦心角相等,一弦上的切线与此弦所对的弧上任一弦心角相等11.正三角形的面积公式:对于边长为a的正三角形,其面积S=(√3*a^2)/4三、概率统计部分:1.事件的概率公式:对于随机试验的事件A,事件A发生的概率为P(A)=事件A发生的次数/试验次数2.互斥事件的概率公式:对于互斥事件A和B,两事件发生的概率之和为P(A∪B)=P(A)+P(B)3.相互独立事件的概率公式:对于相互独立事件A和B,两事件同时发生的概率为P(A∩B)=P(A)*P(B)4.条件概率公式:对于事件A和事件B,已知事件B发生的情况下事件A发生的概率为P(A,B)=P(A∩B)/P(B)这里列举的只是初中数学常见到的一部分公式,而实际中考中会用到的公式还有很多,建议同学们在备考过程中广泛积累、熟练掌握各类公式,提高解题能力。
中考数学公式大全(2020年整理).pdf
函数解析式
开口方向
对称轴
顶点坐标
y = ax 2 y = ax 2 + k
y = a(x − h)2 y = a(x − h)2 + k
③a2+b2=(a+b)2-2ab,(a-b)2=(a+b)2-4ab.
6、幂的运算性质:①am×an=am+n.②am÷an=am-n.③(am)n=amn.④(ab)n=anbn.⑤( )n
=n.
⑥a-n=
1 an
,特别:(
)-n=(
)n.⑦a0=1(a≠0).如:a3×a2=a5,a6÷a2=a4,(a3)2
的平方根=±2. 8、一元二次方程:对于方程:ax2+bx+c=0:
①求根公式是x= −b b2 − 4ac ,其中△=b2-4ac叫做根的判别式. 2a
当△>0时,方程有两个不相等的实数根; 当△=0时,方程有两个相等的实数根; 当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根. ②若方程有两个实数根x1和x2,并且二次三项式ax2+bx+c可分解为a(x-x1)(x-x2).
10、反比例函数y= (k≠0)的图象叫做双曲线.
当k>0时,双曲线在一、三象限(在每一象限内,从左向右降); 当k<0时,双曲线在二、四象限(在每一象限内,从左向右上升). 因此,它的增减性与一次函数相反. 11、统计初步:(1)概念:①所要考察的对象的全体叫做总体,其中每一个考察对象叫做 个体.从总体中抽取的一部份个体叫做总体的一个样本,样本中个体的数目叫做样本容 量. ②在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数. ③将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做这组数 据的中位数.
0<sinA<1,0<cosA<1,tanA>0.∠A越大,∠A的正弦和正切值越大,余弦值反而 越小.
初中三年数学公式定理大全,初一到初三
要知道明年你们将迎来人生中的第一次选拔性考试——中考,所以,这一年的时间都是很宝贵了。
不想落后他人,预习复习工作都得做到位。
今天,老师和大家分享的是新初三数学:三年【公式定理】大全,初一初二预习,初三复习!初中数学公式定理大全1、点、线、角点的定理:过两点有且只有一条直线;两点之间线段最短角的定理:同角或等角的补角相等;同角或等角的余角相等直线定理:过一点有且只有一条直线和已知直线垂直;直线外一点与直线上各点连接的所有线段中,垂线段最短2、几何平行平行定理:经过直线外一点,有且只有一条直线与这条直线平行推论:如果两条直线都和第三条直线平行,这两条直线也互相平行证明两直线平行定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行两直线平行推论:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补3、三角形内角定理定理:三角形两边的和大于第三边推论:三角形两边的差小于第三边三角形内角和定理:三角形三个内角的和等于180°4定理:全等三角形的对应边、对应角相等边角边定理(SAS):有两边和它们的夹角对应相等的两个三角形全等;有两角和它们的夹边对应相等的两个三角形全等推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等边边边定理(SSS):有三边对应相等的两个三角形全等斜边、直角边定理(HL):有斜边和一条直角边对应相等的两个直角三角形全等5定理1:在角的平分线上的点到这个角的两边的距离相等定理2:到一个角的两边的距离相同的点,在这个角的平分线上;角的平分线是到角的两边距离相等的所有点的集合6等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角)推论1:等腰三角形顶角的平分线平分底边并且垂直于底边;等腰三角形顶角平分线、底边上的中线和底边上的高互相重合等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)7定理:线段垂直平分线上的点和这条线段两个端点的距离相等逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上;线段的垂直平分线可看作和线段两端点距离相等的所有点的集合定理1:关于某条直线对称的两个图形是全等形定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称8定理:在直角三角形中,如果一个锐角等于30°那它所对的直角边等于斜边的一半判定定理:直角三角形斜边上的中线等于斜边上的一半勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方,a^2+b^2=c^2勾股定理的逆定理:如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形9定理:四边形的内角和等于360°;四边形的外角和等于360°多边形内角和定理:n边形的内角和等于(n-2)×180°推论:任意多边的外角和等于360°10平行四边形性质定理:1.平行四边形的对角相等2.平行四边形的对边相等3.平行四边形的对角线互相平分推论:夹在两条平行线间的平行线段相等平行四边形判定定理1.两组对角分别相等的四边形是平行四边形2.两组对边分别相等的四边形是平行四边形3.对角线互相平分的四边形是平行四边形4.一组对边平行相等的四边形是平行四边形11矩形性质定理:矩形的四个角都是直角;矩形的对角线相等矩形判定定理1:有三个角是直角的四边形是矩形;对角线相等的平行四边形是矩形12菱形性质定理1:菱形的四条边都相等菱形性质定理2:菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形面积=对角线乘积的一半,即S=(a×b)÷2菱形判定定理1:四边都相等的四边形是菱形菱形判定定理2:对角线互相垂直的平行四边形是菱形13正方形性质定理1:正方形的四个角都是直角,四条边都相等正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角14定理:关于中心对称的两个图形是全等的;关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称15等腰梯形性质定理:1.等腰梯形在同一底上的两个角相等2.等腰梯形的两条对角线相等等腰梯形判定定理:1. 在同一底上的两个角相等的梯形是等腰梯形2.对角线相等的梯形是等腰梯形平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边16三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半:L=(a+b)÷2S=L×h17相似三角形定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似相似三角形判定定理:1. 两角对应相等,两三角形相似(ASA)2. 两边对应成比例且夹角相等,两三角形相似(SAS)3. 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似判定定理3:三边对应成比例,两三角形相似(SSS)相似直角三角形定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似性质定理:1.相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比2.相似三角形周长的比等于相似比3.相似三角形面积的比等于相似比的平方18定理1:任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值定理2:任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值19定理:过不共线的三个点,可以作且只可以作一个圆;垂直于弦的直径平分这条弦,并且评分弦所对的两条弧推论1:平分弦(不是直径)的直径垂直于弦并且平分弦所对的两条弧推论2:弦的垂直平分弦经过圆心,并且平分弦所对的两条弧推论3:平分弦所对的一条弧的直径,垂直评分弦,并且平分弦所对的另一条弧定理3:1.在同圆或等圆中,相等的弧所对的弦相等,所对的弦的弦心距相等2.经过圆的半径外端点,并且垂直于这条半径的直线是这个圆的切线3.圆的切线垂直经过切点的半径4.三角形的三个内角平分线交于一点,这点是三角形的内心5.从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角6.圆的外切四边形的两组对边的和相等7.如果四边形两组对边的和相等,那么它必有内切圆8.两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等20比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b。
新初三数学:三年【公式定理】大全,初一初二预习,初三复习!
【才整理】新初三数学:三年【公式定理】大全,初一初二预习,初三复习!九上数学要知道明年你们将迎来人生中的第一次选拔性考试——中考,所以,这一年的时间都是很宝贵了。
不想落后他人,预习复习工作都得做到位。
今天,小高老师和大家分享的是新初三数学:三年【公式定理】大全,初一初二预习,初三复习!初中数学公式定理大全1、点、线、角点的定理:过两点有且只有一条直线;两点之间线段最短角的定理:同角或等角的补角相等;同角或等角的余角相等直线定理:过一点有且只有一条直线和已知直线垂直;直线外一点与直线上各点连接的所有线段中,垂线段最短2、几何平行平行定理:经过直线外一点,有且只有一条直线与这条直线平行推论:如果两条直线都和第三条直线平行,这两条直线也互相平行证明两直线平行定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行两直线平行推论:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补3定理:三角形两边的和大于第三边推论:三角形两边的差小于第三边三角形内角和定理:三角形三个内角的和等于180°4定理:全等三角形的对应边、对应角相等边角边定理(S A S):有两边和它们的夹角对应相等的两个三角形全等;有两角和它们的夹边对应相等的两个三角形全等推论(A A S):有两角和其中一角的对边对应相等的两个三角形全等边边边定理(S S S):有三边对应相等的两个三角形全等斜边、直角边定理(H L):有斜边和一条直角边对应相等的两个直角三角形全等5定理1:在角的平分线上的点到这个角的两边的距离相等定理2:到一个角的两边的距离相同的点,在这个角的平分线上;角的平分线是到角的两边距离相等的所有点的集合6等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角)推论1:等腰三角形顶角的平分线平分底边并且垂直于底边;等腰三角形顶角平分线、底边上的中线和底边上的高互相重合等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)7定理:线段垂直平分线上的点和这条线段两个端点的距离相等逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上;线段的垂直平分线可看作和线段两端点距离相等的所有点的集合定理1:关于某条直线对称的两个图形是全等形定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称8定理:在直角三角形中,如果一个锐角等于30°那它所对的直角边等于斜边的一半判定定理:直角三角形斜边上的中线等于斜边上的一半勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方,a^2+b^2=c^2勾股定理的逆定理:如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形9定理:四边形的内角和等于360°;四边形的外角和等于360°多边形内角和定理:n边形的内角和等于(n-2)×180°推论:任意多边的外角和等于360°10平行四边形性质定理:1.平行四边形的对角相等2.平行四边形的对边相等3.平行四边形的对角线互相平分推论:夹在两条平行线间的平行线段相等平行四边形判定定理1.两组对角分别相等的四边形是平行四边形2.两组对边分别相等的四边形是平行四边形 3.对角线互相平分的四边形是平行四边形4.一组对边平行相等的四边形是平行四边形11矩形性质定理:矩形的四个角都是直角;矩形的对角线相等矩形判定定理1:有三个角是直角的四边形是矩形;对角线相等的平行四边形是矩形12菱形性质定理1:菱形的四条边都相等菱形性质定理2:菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形面积=对角线乘积的一半,即S=(a×b)÷2菱形判定定理1:四边都相等的四边形是菱形菱形判定定理2:对角线互相垂直的平行四边形是菱形13正方形性质定理1:正方形的四个角都是直角,四条边都相等正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角14定理:关于中心对称的两个图形是全等的;关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称15等腰梯形性质定理:1.等腰梯形在同一底上的两个角相等2.等腰梯形的两条对角线相等等腰梯形判定定理:1.在同一底上的两个角相等的梯形是等腰梯形2.对角线相等的梯形是等腰梯形平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边16三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半:L=(a+b)÷2S=L×h17相似三角形定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似相似三角形判定定理:1.两角对应相等,两三角形相似(A S A)2.两边对应成比例且夹角相等,两三角形相似(S A S)3.直角三角形被斜边上的高分成的两个直角三角形和原三角形相似判定定理3:三边对应成比例,两三角形相似(S S S)相似直角三角形定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似性质定理:1.相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比2.相似三角形周长的比等于相似比3.相似三角形面积的比等于相似比的平方18定理1:任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值定理2:任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值19定理:过不共线的三个点,可以作且只可以作一个圆;垂直于弦的直径平分这条弦,并且评分弦所对的两条弧推论1:平分弦(不是直径)的直径垂直于弦并且平分弦所对的两条弧推论2:弦的垂直平分弦经过圆心,并且平分弦所对的两条弧推论3:平分弦所对的一条弧的直径,垂直评分弦,并且平分弦所对的另一条弧定理3:1.在同圆或等圆中,相等的弧所对的弦相等,所对的弦的弦心距相等2.经过圆的半径外端点,并且垂直于这条半径的直线是这个圆的切线3.圆的切线垂直经过切点的半径4.三角形的三个内角平分线交于一点,这点是三角形的内心5.从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角6.圆的外切四边形的两组对边的和相等7.如果四边形两组对边的和相等,那么它必有内切圆8.两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等20比例的基本性质如果a:b=c:d,那么a d=b c如果a d=b c,那么a:b=c:d合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b。
初中三年数学所有公式
初中三年数学所有公式初一数学公式:1. 两角和与差公式:sin(a ± b) = sin a cos b ± cos a sin bcos(a ± b) = cos a cos b ∓ sin a sin b2. 绝对值的性质:|a × b| = |a| × |b|3. 二次根式化简:√(a × b) = √a × √b4. 平方差公式:a² - b² = (a + b)(a - b)5. 相反数相加为0:a + (-a) = 06. 完全平方公式:a²± 2ab + b² = (a ± b)²7. 勾股定理:a² + b² = c²(适用于直角三角形)8. 三角函数的定义:sinθ = 对边/斜边,cosθ = 邻边/斜边,tanθ = 对边/邻边9. 三角恒等式:sin²θ + cos²θ = 110. 二项式定理: (a + b)ⁿ = Σ(from k=0 to n) C(n,k) a^(n-k) b^k11. 分式的基本性质:a/b = c/d 当且仅当 ad = bc12. 分式的化简:a/b × c/d = (ac)/(bd)13. 指数法则:a^m × a^n = a^(m+n),(a^m)^n = a^(mn),a^m / a^n = a^(m-n)14. 对数的定义:a^x = N 当且仅当 x = log_a N15. 对数的换底公式:log_a b = log_c b / log_c a16. 对数的性质:log_a (MN) = log_a M + log_a N,log_a (M/N) = log_a M - log_a N17. 解一元一次方程:ax + b = 0 的解为 x = -b/a18. 解一元二次方程:ax² + bx + c = 0 的解为 x = [-b ±√(b² - 4ac)] / (2a)19. 解二元一次方程组:ax + by = c,dx + ey = f 的解为 x = (ef - bd) / (ae - bd),y = (cd - af) / (ae - bd)20. 平面直角坐标系中两点距离公式:d = √[(x2 - x1)² + (y2 - y1)²]21. 相似三角形的性质:对应角度相等,对应边成比例22. 平行四边形的性质:对边平行且相等23. 矩形的性质:对边平行且相等,对角线相等24. 菱形的性质:四边相等,对角线相互垂直平分25. 正方形的性质:四边相等,四个角都是直角26. 圆的周长和面积公式:C = 2πr,S = πr²27. 扇形的面积公式:S = 1/2 rL(其中 L 为弧长)28. 平均数公式:若有 n 个数 a1, a2, ..., an,则它们的平均数为 (a1 + a2 + ... + an) / n29. 中位数公式:若有 n 个数 a1, a2, ..., an,将它们从小到大排序,若 n 为奇数,则中位数为第 (n+1)/2 个数;若 n 为偶数,则中位数为第 n/2 个数和第 (n/2 + 1) 个数的平均数。
初中数学必背公式及定理
初中数学必背公式及定理数学是一门重要的学科,也是一门需要掌握公式和定理的学科。
初中数学中的公式和定理是学习数学的基础,掌握了这些公式和定理,能够更好地解题和理解数学知识。
下面是初中数学必背的公式和定理。
一、代数中的公式1. 二次方程的求根公式:对于一元二次方程ax²+bx+c=0,其根可以通过以下公式求得:x = (-b ± √(b²-4ac))/(2a)2. 平方差公式:(a±b)² = a²±2ab+b²3. 二次完全平方公式:a²+2ab+b²=(a+b)²4. 立方差公式:(a±b)³=a³±3a²b+3ab²±b³5.平方根的乘法公式:√a*√b=√(a*b)二、几何中的公式1.矩形的周长和面积:对于矩形,其周长C=2(l+w),面积S=l*w,其中l表示矩形的长度,w表示矩形的宽度。
2.三角形的周长和面积:对于三角形,其周长C=a+b+c,面积S=1/2*b*h,其中a、b、c表示三角形的三边长,h表示三角形的高。
3.圆的周长和面积:对于圆,其周长C=2πr,面积S=πr²,其中π取近似值3.14,r表示圆的半径。
4.直角三角形的勾股定理:对于直角三角形,设c为斜边,a、b为两直角边,则满足a²+b²=c²。
5.同心圆弦的等分定理:如果两条弦(或弦和直径)在同一个圆的同一边相交,那么它们所夹的弧(或弧和弦所夹的角)相等。
三、概率与统计中的公式1.事件的概率:设S为一个随机试验的样本空间,E为S的子集(即事件),则事件E的概率P(E)定义为E中的样本点数除以S中的样本点数。
2.互斥事件的概率:设A、B为两个事件,如果A和B不可能同时发生,称A和B为互斥事件,概率计算公式为P(A∪B)=P(A)+P(B)。
(完整版)初中数学公式定理大全
初中数学公式定理大全一、锐角三角函数:①∠A 是Rt △ABC 的任一锐角,则∠A 的正弦:,∠A的余弦:,sin A =∠A 的对边斜边cos A =∠A 的邻边斜边∠A 的正切:; 并且sin 2A +cos 2A =1. 0<sin A <1,0<cos A <1,tan A >0.tan A =∠A 的对边∠A 的邻边∠A 越大,∠A 的正弦和正切值越大,余弦值反而越小.②余角公式:sin(90º-A )=cos A ,cos(90º-A )=sin A .③斜坡的坡度:i =.设坡角为α,则i =tan α=.铅垂高度水平宽度=ℎl ℎl ④特殊角的三角函数值:a sina cosa tana cota 30°123233345°22221160°321233390°1不二、二次函数:1.定义:一般地,如果,那么y 叫做x 的二次函数.y =ax 2+bx +c(a,b,c 是常数,a ≠0)2.抛物线的三要素:开口方向、对称轴、顶点.①的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、a a >0a <0|a |形状相同。
②平行于y 轴(或重合)的直线记作特别地,y 轴记作直线。
x =ℎ,x =0几种特殊的二次函数的图像特征如下:函数解析式开口方向对称轴顶点坐标Y=ax 2X=0(y 轴)(0,0)Y=ax 2+k X=0(y 轴)(0, k)Y=a(x-h)2X=h (h,0)Y=a(x-h)2+k X=h (h,k)Y=ax 2+bx+c当a 时>0开口向上当a 时<0开口向下X=‒b2a()‒b 2a ,4ac ‒b 24a 3.求抛物线的顶点、对称轴的方法 (1)公式法:,∴顶点是,对称轴是直线y =ax 2+bx +c =a (x +b 2a )2+4ac ‒b 24a (‒b2a, 4ac ‒b 24a )x =‒b 2a(2)配方法:运用配方的方法,将抛物线的解析式化为的形式,得到顶点为(h,k),对称轴是直y =a (x ‒ℎ)2+k 线x =ℎ(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,对称轴与抛物线的交点是顶点。
初中三年数学常用公式定理大全
初中三年数学常⽤公式定理⼤全初中数学定理、公式汇编第⼀篇数与代数第⼀节数与式⼀、实数1.实数的分类:整数(包括:正整数、0、负整数)和分数(包括:有限⼩数和⽆限环循⼩数)都是有理数.如:-3,,0.231,0.737373…,,等;⽆限不环循⼩数叫做⽆理数. 如:π,,0.1010010001…(两个1之间依次多1个0)等.有理数和⽆理数统称为实数.2.数轴:规定了原点、正⽅向和单位长度的直线叫数轴。
实数和数轴上的点⼀⼀对应。
3.绝对值:在数轴上表⽰数a的点到原点的距离叫数a的绝对值,记作∣a∣。
正数的绝对值是它本⾝;负数的绝对值是它的相反数;0的绝对值是0。
如:⼁-_⼁=;⼁3.14-π⼁=π-3.14.4.相反数:符号不同、绝对值相等的两个数,叫做互为相反数。
a的相反数是-a,0的相反数是0。
5.有效数字:⼀个近似数,从左边笫⼀个不是0的数字起,到最末⼀个数字⽌,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0.6.科学记数法:把⼀个数写成a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法. 如:407000=4.07×105,0.000043=4.3×10-5.7.⼤⼩⽐较:正数⼤于0,负数⼩于0,两个负数,绝对值⼤的反⽽⼩。
8.数的乘⽅:求相同因数的积的运算叫乘⽅,乘⽅运算的结果叫幂。
9.平⽅根:⼀般地,如果⼀个数x的平⽅等于a,即x2=a那么这个数a就叫做x的平⽅根(也叫做⼆次⽅根式)。
⼀个正数有两个平⽅根,它们互为相反数;0只有⼀个平⽅根,它是0本⾝;负数没有平⽅根.10.开平⽅:求⼀个数a的平⽅根的运算,叫做开平⽅.11.算术平⽅根:⼀般地,如果⼀个正数x的平⽅等于a,即x2=a,那么这个正数x就叫做a的算术平⽅根,0的算术平⽅根是0.12.⽴⽅根:⼀般地,如果⼀个数x的⽴⽅等于a,即x3=a,那么这个数x就叫做a的⽴⽅根(也叫做三次⽅根),正数的⽴⽅根是正数;负数的⽴⽅根是负数;0的⽴⽅根是0.13.开⽴⽅:求⼀个数a的⽴⽅根的运算叫做开⽴⽅.14.平⽅根易错点:(1)平⽅根与算术平⽅根不分,如 64的平⽅根为⼠8,易丢掉-8,⽽求为64的算术平⽅根;(2)4的平⽅根是⼠2,误认为4平⽅根为⼠ 2,知道4=2.15.⼆次根式:(1)定义:形如a(a≥0)的式⼦叫做⼆次根式.16.⼆次根式的化简:17.最简⼆次根式应满⾜的条件:(1)被开⽅数的因式是整式或整数;(2)被开⽅数中不含有能开得尽的因数或因式.18.同类⼆次根式:⼏个⼆次根式化成最简⼆次根式以后,如果被开⽅数相同,这⼏个⼆次根式就叫做同类⼆次根式.19.⼆次根式的乘法、除法公式20..⼆次根式运算注意事项:(1)⼆次根式相加减,先把各根式化为最简⼆次根式,再合并同类⼆次根式,防⽌:①该化简的没化简;②不该合并的合并;③化简不正确;④合并出错.(2)⼆次根式的乘法除法常⽤乘法公式或除法公式来简化计算,运算结果⼀定写成最简⼆次根式或整式.21.有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较⼤的数的符号,并⽤较⼤的绝对值减去较⼩的绝对值;⼀个数同0相加,仍得这个数.22.有理数减法法则:减去⼀个数,等于加上这个数的相反数.23.有理数乘法法则:两个有理数相乘,同号得正,异号得负,再把绝对值相乘;任何数与0相乘,积仍为0.24.有理数除法法则:两个有理数相除,同号得正,异号得负,并把绝对值相除;0除以任何⾮0的数都得0;除以⼀个数等于乘以这个数的倒数.25.有理数的混合运算法则:先算乘⽅,再算乘除,最后算加减;如果有括号,先算括号⾥⾯的.26.有理数的运算律:加法交换律:a+b=b+a(a b、为任意有理数)加法结合律:(a+ b)+c=a+(b+c)(a, b,c为任意有理数)⼆.代数式:(1)⽤运算符号把数和表⽰数的字母连接⽽成的式⼦叫做代数式。
初一到初三数学必记重要公式定理汇总(大全)
初中数学定理公式大全1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线和已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论1直角三角形的两个锐角互余19、推论2三角形的一个外角等于和它不相邻的两个内角的和20、推论3三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等22、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SSS)有三边对应相等的两个三角形全等26、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27、定理1在角的平分线上的点到这个角的两边的距离相等28、定理2到一个角的两边的距离相同的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31、推论1等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33、推论3等边三角形的各角都相等,并且每一个角都等于60°34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1三个角都相等的三角形是等边三角形36、推论2有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半39、定理线段垂直平分线上的点和这条线段两个端点的距离相等40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42、定理1关于某条直线对称的两个图形是全等形43、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247、勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形48、定理四边形的内角和等于360°49、四边形的外角和等于360°50、多边形内角和定理n边形的内角的和等于(n-2)×180°51、推论任意多边的外角和等于360°52、平行四边形性质定理1平行四边形的对角相等53、平行四边形性质定理2平行四边形的对边相等54、推论夹在两条平行线间的平行线段相等55、平行四边形性质定理3平行四边形的对角线互相平分56、平行四边形判定定理1两组对角分别相等的四边形是平行四边形57、平行四边形判定定理2两组对边分别相等的四边形是平行四边形58、平行四边形判定定理3对角线互相平分的四边形是平行四边形59、平行四边形判定定理4一组对边平行相等的四边形是平行四边形60、矩形性质定理1矩形的四个角都是直角61、矩形性质定理2矩形的对角线相等62、矩形判定定理1有三个角是直角的四边形是矩形63、矩形判定定理2对角线相等的平行四边形是矩形64、菱形性质定理1菱形的四条边都相等65、菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角66、菱形面积=对角线乘积的一半,即S=(a×b)÷267、菱形判定定理1四边都相等的四边形是菱形68、菱形判定定理2对角线互相垂直的平行四边形是菱形69、正方形性质定理1正方形的四个角都是直角,四条边都相等70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71、定理1关于中心对称的两个图形是全等的72、定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74、等腰梯形性质定理等腰梯形在同一底上的两个角相等75、等腰梯形的两条对角线相等76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77、对角线相等的梯形是等腰梯形78、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79、推论1经过梯形一腰的中点与底平行的直线,必平分另一腰80、推论2经过三角形一边的中点与另一边平行的直线,必平分第三边81、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91、相似三角形判定定理1两角对应相等,两三角形相似(ASA)92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93、判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)94、判定定理3三边对应成比例,两三角形相似(SSS)95、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96、性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97、性质定理2相似三角形周长的比等于相似比98、性质定理3相似三角形面积的比等于相似比的平方99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三点确定一个圆。
初中中考数学常用公式及重要性质和定理(重新整理)
【中考必备】初中几何定理必背总结大全1、过两点有且只有一条直线。
2 、两点之间线段最短。
3 、同角或等角的补角相等。
4、同角或等角的余角相等。
5 、同一平面内,过一点有且只有一条直线和已知直线垂直。
6 、直线外一点与直线上各点连接的所有线段中,垂线段最短。
7 、平行公理 :(1在同一平面内,不相交的两条直线收做平行线。
(2经过直线外一点,有且只有一条直线与这条直线平行。
8 、如果两条直线都和第三条直线平行,这两条直线也互相平行。
9 、同位角相等,两直线平行。
10 、内错角相等,两直线平行。
11 、同旁内角互补,两直线平行。
12、两直线平行,同位角相等。
13 、两直线平行,内错角相等。
14 、两直线平行,同旁内角互补。
15 、定理 :三角形两边的和大于第三边。
16 、推论 :三角形两边的差小于第三边。
17 、三角形内角和定理 :三角形三个内角的和等于 180°18 、推论 1 :直角三角形的两个锐角互余。
19 、推论 2 :三角形的一个外角等于和它不相邻的两个内角的和。
20 、推论 3 :三角形的一个外角大于任何一个和它不相邻的内角。
21 、全等三角形的对应边、对应角相等。
22、边角边公理 :有两边和它们的夹角对应相等的两个三角形全等(SAS 23 、角边角公理 :有两角和它们的夹边对应相等的两个三角形全等(ASA 24 、推论 :有两角和其中一角的对边对应相等的两个三角形全等 (AAS 25 、边边边公理 :有三边对应相等的两个三角形全等(SSS26 、斜边、直角边公理:有斜边和一条直角边对应相等的两个直角三角形全等(HL27 、定理 1 :在角的平分线上的点到这个角的两边的距离相等(垂线段长 28 、定理 2 :到一个角的两边的距离相同的点,在这个角的平分线上。
29 、角的平分线是到角的两边距离相等的所有点的集合。
30 、等腰三角形的性质定理 :等腰三角形的两个底角相等。
31 、推论 1:等腰三角形顶角的平分线平分底边并且垂直于底边。
数学初三必背定理大全
中考数学必背定理100条一、平行公理:1、经过直线外一点,有且只有一条直线与这条直线平行2、如果两条直线都和第三条直线平行,这两条直线也互相平行3、同位角相等,两直线平行、错角相等,两直线平行、同旁角互补,两直线平行4、两直线平行,同位角相等、两直线平行,错角相等、两直线平行,同旁角互补二、三角形5、三角形任意两边的和都大于第三边推论:三角形中任意两边的差都小于第三边6、三角形角和定理:三角形三个角的和等于180°推论1:直角三角形的两个锐角互余推论2:三角形的一个外角等于和它不相邻的两个角的和推论3:三角形的一个外角大于任何一个和它不相邻的角全等三角形的性质7、全等三角形的对应边、对应角相等全等三角形的判定8、边角边公理:有两边和它们的夹角对应相等的两个三角形全等(SAS)9、角边角公理:有两角和它们的夹边对应相等的两个三角形全等(ASA)10、推论:有两角和其中一角的对边对应相等的两个三角形全等(AAS)11、边边边公理:有三边对应相等的两个三角形全等(SSS)12、斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等(HL)13、定理1:在角的平分线上的点到这个角的两边的距离相等14、定理2:到一个角的两边的距离一样的点,在这个角的平分线上13、角的平分线是到角的两边距离相等的所有点的集合14、等腰三角形的性质定理:等腰三角形的两个底角相等15、推论1:等腰三角形顶角的平分线平分底边并且垂直于底边16、等腰三角形的顶角平分线、底边上的中线和高互相重合〔著名的三线合一〕17、推论3:等边三角形的各角都相等,并且每一个角都等于60°18、等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等〔等角对等边〕19、推论1:三个角都相等的三角形是等边三角形20、推论2:有一个角等于60°的等腰三角形是等边三角形21、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半22、直角三角形斜边上的中线等于斜边上的一半23、直角三角形的斜边上的高等于两直角边的成绩÷斜边24 直角三角形的切圆的半径r = 半周长- 斜边25、勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方。
初中数学146个常见定理和公式大全
初中数学146个常见定理和公式大全1.定理1:两点之间的距离公式两点A(x1,y1)和B(x2,y2)之间的距离公式为d=√[(x2-x1)²+(y2-y1)²]。
2.定理2:两点之间的中点公式两点A(x1,y1)和B(x2,y2)的中点公式为M[(x1+x2)/2,(y1+y2)/2]。
3.定理3:两条平行线之间的距离公式平行于x轴的直线l1和l2之间的距离公式为d=,y1-y2;平行于y 轴的直线l1和l2之间的距离公式为d=,x1-x24.定理4:勾股定理直角三角形的斜边的平方等于两直角边的平方和,即a²+b²=c²。
5.定理5:勾股定理的逆定理若三边长度满足a²+b²=c²,则该三边构成一个直角三角形。
6.定理6:正方形的性质正方形每条边的长都相等,且每个角的大小为90°。
7.定理7:矩形的性质矩形相对的边相等,且每个角的大小为90°。
8.定理8:平行四边形的性质平行四边形相对的边平行且相等,相邻角互补(和为180°)。
9.定理9:三角形内角和定理三角形内角和等于180°,即∠A+∠B+∠C=180°。
10.定理10:等腰三角形的性质等腰三角形的两边相等,两底角也相等。
11.定理11:等边三角形的性质等边三角形的三边相等,且每个角的大小为60°。
12.定理12:圆的周长公式圆的周长公式为C=2πr,其中r为圆的半径。
13.定理13:圆的面积公式圆的面积公式为A=πr²,其中r为圆的半径。
14.定理14:同心圆的面积公式半径分别为r1和r2的两个同心圆的面积之比为(r1/r2)²。
15.定理15:棱台的体积公式棱台的体积公式为V=(1/3)Ah,其中A为底面积,h为高。
16.定理16:平行四边形的面积公式平行四边形的面积公式为A = bh,其中b为底边长,h为高。
初一到初三数学必记重要公式定理汇总(大全)
初中数学定理公式大全1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线和已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论1直角三角形的两个锐角互余19、推论2三角形的一个外角等于和它不相邻的两个内角的和20、推论3三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等22、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SSS)有三边对应相等的两个三角形全等26、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27、定理1在角的平分线上的点到这个角的两边的距离相等28、定理2到一个角的两边的距离相同的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31、推论1等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33、推论3等边三角形的各角都相等,并且每一个角都等于60°34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1三个角都相等的三角形是等边三角形36、推论2有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半39、定理线段垂直平分线上的点和这条线段两个端点的距离相等40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42、定理1关于某条直线对称的两个图形是全等形43、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247、勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形48、定理四边形的内角和等于360°49、四边形的外角和等于360°50、多边形内角和定理n边形的内角的和等于(n-2)×180°51、推论任意多边的外角和等于360°52、平行四边形性质定理1平行四边形的对角相等53、平行四边形性质定理2平行四边形的对边相等54、推论夹在两条平行线间的平行线段相等55、平行四边形性质定理3平行四边形的对角线互相平分56、平行四边形判定定理1两组对角分别相等的四边形是平行四边形57、平行四边形判定定理2两组对边分别相等的四边形是平行四边形58、平行四边形判定定理3对角线互相平分的四边形是平行四边形59、平行四边形判定定理4一组对边平行相等的四边形是平行四边形60、矩形性质定理1矩形的四个角都是直角61、矩形性质定理2矩形的对角线相等62、矩形判定定理1有三个角是直角的四边形是矩形63、矩形判定定理2对角线相等的平行四边形是矩形64、菱形性质定理1菱形的四条边都相等65、菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角66、菱形面积=对角线乘积的一半,即S=(a×b)÷267、菱形判定定理1四边都相等的四边形是菱形68、菱形判定定理2对角线互相垂直的平行四边形是菱形69、正方形性质定理1正方形的四个角都是直角,四条边都相等70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71、定理1关于中心对称的两个图形是全等的72、定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74、等腰梯形性质定理等腰梯形在同一底上的两个角相等75、等腰梯形的两条对角线相等76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77、对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79、推论1经过梯形一腰的中点与底平行的直线,必平分另一腰80、推论2经过三角形一边的中点与另一边平行的直线,必平分第三边81、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91、相似三角形判定定理1两角对应相等,两三角形相似(ASA)92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93、判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)94、判定定理3三边对应成比例,两三角形相似(SSS)95、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96、性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97、性质定理2相似三角形周长的比等于相似比98、性质定理3相似三角形面积的比等于相似比的平方99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三点确定一个圆。