武汉大学微电子学与固体电子学研究生培养方案

合集下载

微电子学与固体电子学专业攻读博士学位培养方案

微电子学与固体电子学专业攻读博士学位培养方案

微电⼦学与固体电⼦学专业攻读博⼠学位培养⽅案微电⼦与固体电⼦专业攻读博⼠学位研究⽣培养⽅案⼀、培养⽬标1.较好地掌握马列主义、⽑泽东思想和邓⼩平理论,拥护党的基本路线,树⽴正确的世界观、⼈⽣观和价值观,遵纪守法,具有较强的事业⼼和责任感,具有良好的道德品质和学术修养,愿为社会主义现代化建设事业服务。

2.具有严谨的治学态度,在微电⼦与固体电⼦学学科内掌握坚实宽⼴的基础理论和系统深⼊的专业知识,了解电⼦科学的前沿动态,具有独⽴从事科学研究⼯作的能⼒,在科学或专门技术上做出创新性的成果。

3.熟练掌握⼀门外国语。

达到能熟练阅读专业⽂献、以及写作专业论⽂和进⾏国际学术交流的能⼒。

4.⾝⼼健康。

⼆、研究⽅向(⼀)光电⼦学1、宽禁带半导体材料与器件2、智能光电磁材料与传感器件3、半导体光电器件与光电探测系统(⼆)微电⼦学与固体电⼦学1、固体量⼦结构与器件2、纳微电⼦学3、半导体传感电⼦学4、微电⼦系统设计与应⽤(三)磁电⼦学(四)⽣物医学电⼦学1、⽣物医学信号的检测与处理2、⽣物医学光电⼦学三、学习年限全⽇制博⼠研究⽣学习年限⼀般为3-4年。

⾮全⽇制博⼠研究⽣的学习年限最长不超过6年。

四、课程设置与学分分配(见下表)总学分不少于15学分。

其中公共必修课4分(含政治课2学分,外语课2学分),专业必修课5学分,研究⽅向必修课不少于4学分,其余为选修课学分。

五、学位论⽂第⼀学期完成主要课程学习,第⼆学期根据研究⽅向选修部分课程。

从第⼆学期开始与导师共同商定论⽂题⽬。

攻博期间,在导师指导下分阶段完成以下⼯作。

提交读书报告、综述报告、研究报告和开题报告,提出博⼠学位论⽂题⽬和撰写计划,并向博⼠⽣指导⼩组作开题报告,⽂献阅读量不得少于100篇,其中课题相关论⽂不得少于50篇。

开题报告由导师组织五位同⾏专家进⾏评审,经讨论认可后正式进⼊专题研究和论⽂撰写⼯作。

论⽂的选题应属本学科相关领域具有重要理论及其应⽤价值的研究课题。

微电子学专业培养方案

微电子学专业培养方案

微电子科学与工程专业培养方案一、培养目标培养适应现代化建设和未来社会与科技发展需要,德、智、体、美全面发展与健康个性和谐统一,富有创新精神、实践能力和国际视野,掌握微电子技术基本理论、技能与最新技术发展动向、计算机系统与接口芯片基本理论和基本技能,受到严格的科学实验训练和电子产品开发的基本训练,具有较强实践能力、良好的科学素养、一定的企业管理知识和创新能力,能够在微电子设计和生产领域及各类电子信息技术领域从事科技开发、产品设计、工程技术与生产管理的高级技术应用型人才。

毕业生掌握微电子学专业所必需的基础知识、基本理论和基本实验技能,能在微电子学及相关领域从事科研、产品开发、工程技术、生产管理与行政管理等工作。

二、培养要求本专业学生主要学习微电子学的基本理论和基本知识,受到科学实验与科学思维的基本训练,具有良好科学素养,掌握大规模集成电路和新型半导体器件的设计、分析及测试所必需的基本理论和方法,具有集成电路分析、设计、器件性能分析和版图设计等基本能力。

毕业生应获得以下几方面的知识和能力:1.掌握半导体物理、半导体器件和VLSI设计与制造等方面的基本理论和基本知识,掌握集成电路和其它半导体器件的分析与设计方法;2.熟悉集成电路设计的CAD系统,掌握硬件描述语言及逻辑模拟、电路模拟、时序分析等技术,具有应用EDA工具设计与分析集成电路的技能;3.具有大规模集成电路(VLSI)版图设计与可靠性分析的基本能力;4.掌握集成电路制造工艺理论,具备从事微电子生产线技术管理工作的能力;5.掌握电子电路技术、计算机原理与应用、软件设计与制作等基本知识,适应在相应工作领域(如通信、电子技术、自动控制、计算机应用等)的需要;6.掌握资料查询、文献检索及运用现代信息技术获取信息的基本方法;具有一定的实验设计能力,能创造实验条件,归纳、整理、分析实验结果,具备撰写论文,参与学术交流的能力;7.了解大规模集成电路VLSI和其它新型半导体器件的应用前景、最新发展动态,以及电子产业发展状况;8.熟悉国家电子产业政策、国内外有关的知识产权及其他法律法规。

微电子学与固体电子学专业攻读硕士学位研究生培养方案

微电子学与固体电子学专业攻读硕士学位研究生培养方案

微电子学与固体电子学专业攻读硕士学位研究生培养方案一、培养目标本专业培养德、智、体全面发展的微电子学与固体电子学高层次专门人才。

要求所培养的硕士研究生达到:1、热爱祖国、热爱人民,认真学习并较好掌握马克思列宁主义理论。

具有良好的道德修养和科学态度。

愿意为祖国的现代化建设事业热忱服务。

2、具有严谨踏实的学风,较全面系统地掌握微电子学与固体电子学的基础理论和专业知识。

注意跟踪了解微电子学与固体电子学发展的前沿动态。

熟练掌握一门外国语。

具有创新精神,能独立从事本专业的科研与技术开发工作。

3、身心健康。

二、研究方向1、纳微电子学纳米加工与纳米器件、宽带隙纳米材料与场效应晶体管、石墨烯材料与场效应晶体管、基于纳米结构的发光与显示器件等;2、半导体传感电子学压电、铁电、磁电材料与传感器件、电阻开关器件;氧化物光敏与气敏传感器件;GaN、ZnO、GaAs、硅等半导体光电材料与探测器等;3、能源电子材料与器件有机光伏电子学与器件、染料敏华太阳能电池、GaN/GaAs多结高效太阳能电池、新型高效硅太阳能电池等;4、宽禁带半导体材料与器件GaN、AlN、ZnO、MgO半导体材料与光电器件等;5、微电子系统与集成电路设计微纳电子器件模型设计、微电子系统与集成电路设计等;6、磁电子学磁电材料与传感器件、有机磁材料设计与计算、稀磁材料与器件等;7、信息处理与微系统基于大规模集成电路芯片的处理器系统;基于现代信号处理技术的图像增强、压缩、重建、识别算法与实现;高性能DSP与嵌入式CPU智能系统等;8、生物医学电子学生物医学微流纳流芯片、医学影像的特征信息提取算法研究、医学断层光电子技术等。

三、学习年限本专业硕士研究生实行以三年制为基础的弹性学制,最长学习年限不超过四年,其中课程学习1.5年。

本专业不允许申请提前毕业。

四、课程设置(见附表)及学分要求本专业学术型硕士研究生应修学分总数为42学分,其中:课程学分总数30学分(包括公共必修课5分;学科必修课不少于8学分;研究方向必修课不少于6学分;其余为选修课学分);实践环节2学分;学位论文10学分。

中国科学院微电子研究所硕士研究生培养方案(讨论稿)

中国科学院微电子研究所硕士研究生培养方案(讨论稿)

中国科学院微电子研究所硕士研究生培养方案(讨论稿)为适应创新型国家建设和社会发展对高层次人才的新要求,保证研究生培养质量,遵照《中国科学院研究生院关于修订研究生培养方案的指导意见》,结合本所实际制定本方案。

一、培养目标微电子学与固体电子学学科是电子科学与技术一级学科下属的二级学科。

微电子研究所是一所专门从事微电子领域研究与开发的国立研究机构,面向国家在微电子领域的战略需求,加强关键技术创新与集成,承担重点科技攻关与产品开发;面向产业发展需求,建设开放平台,通过全方位合作积极推进成果的应用开发和产业化;拓展前沿技术与基础研究领域,发展交叉学科方向,成为我国IC技术和产业领域一个技术创新基地和高素质高层次人才培养基地,为促进国家微电子技术进步和自主创新,实现产业的可持续发展作出贡献。

具体要求如下:1.掌握马克思主义基本理论、树立科学的世界观,坚持党的基本路线,热爱祖国;遵纪守法,品行端正;诚实守信,学风严谨,团结协作,具有良好的科研道德和敬业精神。

2.掌握坚实的“电子科学与技术”一级学科较宽厚的理论基础, 具有“微电子学与固体电子学”二级学科系统的专业知识, 能熟练运用计算机, 掌握相应的实验技术, 掌握一门外国语,具有从事科学研究工作或独立承担专门技术工作的能力。

3.硕士研究生能够熟练运用英语阅读本领域有关文献资料,并能撰写论文摘要,具有良好的英语听说能力。

4.具有健康的体质与良好的心理素质。

二、学科专业及研究方向本所在微电子学与固体电子学学科专业培养硕士研究生,该学科专业及研究方向设置如下:学科专业 研究方向1、硅器件及集成技术2、微细加工与新型纳米器件集成微电子学与固体电子学3、微波电路与化合物半导体器件4、集成电路设计与系统应用三、培养方式及学习年限硕士研究生培养采取“两段式”的培养模式,包括课程学习和科研实践两个阶段;实行导师或导师小组负责制。

导师或导师小组负责指导研究生科研工作,关心研究生政治思想品德,并在严谨治学、科研道德和团结协作等方面对研究生严格要求,配合、协助研究生教育管理部门做好研究生的各项管理工作。

微电子与固体电子学专业硕士研究生培养方案

微电子与固体电子学专业硕士研究生培养方案

微电子与固体电子学专业硕士研究生培养方案(院系:电子信息工程学院专业代码:080903)一、培养目标本专业培养目标是:1、进一步学习和掌握马克思主义、毛泽东思想和邓小平理论的基本原理,树立为社会主义现代化建设事业服务的理想;坚持四项基本原则,热爱祖国,遵纪守法,品德良好,具备严谨的科学态度和优良的学风。

2、在电路与系统学科上掌握坚实的基础理论、系统的专门知识和必要的实验技能,熟悉所从事研究方向的科技发展前沿和动态,具有独立从事本学科领域内的科学研究工作、专门技术工作及大学教学工作的能力;掌握一门外国语。

3、具有健康的体格。

二、研究方向1、微纳电子器件模拟与建模2、高压功率器件与电路3、集成电路与系统的结构话设计。

三、学习年限三年,其中课程学习时间一年半,学位论文时间一年半。

硕士研究生学习年限一般为三年。

四、培养方式前一年半以课程学习为主,后一年半以学位论文为主。

1.课堂讲授和课堂研讨相结合。

培养研究生的独立思考能力和学术交流能力,发挥研究生的创造性和积极性,提倡启发式,反对填鸭式。

2.课程学习和阅读自学相结合。

任课教师提供与本课程相关的参考书和参考文献,指导研究生查阅资料,广泛阅读文献,撰写读书报告和学术综述,使研究生通过课程学习,熟悉学术规范、发展动态和前沿课题。

3.课题研究和个别指导相结合。

指导教师应指导研究生的学习和研究,并提供适合研究生参与的研究课题,具体指导他们在课题研究的实践中综合运用所学的方法和知识,增长才干,追求创新。

五、实践环节1.本科教学辅导;2.参加导师的科研项目、锻炼实际工作能力。

六、学位论文及答辩对学位论文的具体要求,按照学校研究生部有关规定执行。

论文答辩工作按照学校研究生部有关规定执行。

七、课程设置(见附表)。

【专业介绍】微电子学与固体电子学专业介绍

【专业介绍】微电子学与固体电子学专业介绍

【专业介绍】微电子学与固体电子学专业介绍微电子学与固体电子学专业介绍一、专业简介微电子学与固体电子学是一级学科电子科学与技术所属的二级学科。

它是现代信息技术的基础和重要支柱,也是国际高新技术研究的前沿领域和竞争焦点。

超大规模集成电路产业化水平被列为衡量一个国家综合实力的重要标志,它的发展必将极大地推动信息社会的进步,对促进我国国民经济的发展具有极其重要的意义。

微电子学与液态电子学专业了解二、培养目标微电子学与固体电子学专业培养德、智、体全面发展的微电子学及固体电子学专业的高级技术人才,要求掌握本学科坚实的理论基础和前沿的专业知识具有较高的外语水具有独立从事科学研究和教学工作能力具有健康身体良好道德品质及心理素质成为积极为社会主义祖国现代化服务的高级技术人才。

微电子学与液态电子学专业了解三、培育建议微电子学与固体电子学专业应掌握本学科坚实的理论基础,系统的专门知识,和熟练的实验技术;较为熟练地掌握一门外国语,能阅读本专业的外文资料;具有独立从事科学研究工作的能力,以及严谨求实的科学态度和工作作风;坚持四项基本原则,热爱祖国,遵纪守法,德智体全面发展,能胜任研究机构、高等院校和产业部门有关方面的教学、研究、工程、开发及管理工作。

微电子学与液态电子学专业了解四、课程设置电路分析基础、模拟电路基础、信号与系统、量子力学、统计物理、固体物理、半导体物理、半导体器件物理、电磁场与波、数字逻辑设计及应用、微型计算机系统原理及接口技术、集成电路原理与设计、近代物理实验、电子设计自动化、微波半导体器件、电力电子器件基础、集成电子学、纳米材料与纳米器件等。

微电子学与液态电子学专业了解五、劳动力方向微电子学与固体电子学专业毕业生有宽广的就业市场和较强的适应能力,可在电子和光电子器件设计、集成电路和集成电子系统(soc)设计、光电子系统设计以及微电子技术、光电子技术、电子材料与元器件开发等领域及电子信息领域从事科技开发等工作。

(080903)微电子与固体电子学培养方案

(080903)微电子与固体电子学培养方案

【微电子与固体电子学(080903)】全日制学术学位硕士研究生培
养方案
一、学科简介
微电子学与固体电子学是电子科学技术与信息科学技术的先导和基础,主要研究半导体器件物理与固体物理,电子材料与固体电子器件,超大规模集成电路的设计与制造技术,微电子系统与微机械系统以及计算机辅助设计制造等。

主要研究内容为微电子与固体电子器件物理、微电子与固体电子工艺技术、超大规模集成电路、微电子集成系统以及电子材料。

二、培养目标
具有正确的政治方向,遵纪守法,具备良好的道德品质、学术修养和合作精神。

掌握微电子学及固体电子学基础理论、系统的专门知识和必须的实验技能,熟悉本学科国内外发展动态,具有较强的分析、表达和解决问题的能力,成为适应经济社会发展需要的高级专门人才。

掌握一门外国语,能熟练阅读本专业外文资料、文献,能用外文撰写论文摘要,并具有一定的听、说能力。

三、研究方向
1.专用集成电路与系统设计
2.器件物理﹑工艺﹑材料
3.有机电子器件
4.微电子系统设计与应用
四、学习年限
学制2.5年。

研究生在校学习时间最少为2年,最长不超过3.5年。

五、学分要求和课程设置
本学科研究生总学分不低于28学分,包括课程学分和必修环节学分。

课程分为:公共课、学位课、选修课和补修课程。

学位课不低于11学分。

六、培养方式、考核方式及要求和学位论文要求
参见《江南大学全日制学术学位硕士研究生培养方案》
该方案从2013级研究生开始执行,解释权属物联网工程学院。

微电子学与固体电子学博士生培养方案

微电子学与固体电子学博士生培养方案

微电子学与固体电子学——电子科技大学博士生培养方案2006-1-15 15:31:50 电子科技大学考研共济网·[考研一站式]电子科技大学硕士招生相关文章索引·[考研一站式]电子科技大学硕士专业课试题、[订购]考研参考书、专业目录微电子学与固体电子学是电子科学与技术与信息科学技术的先导和基础,是我国二十一世纪重点发展的学科之一。

主要研究半导体物理与固体物理,电子材料与固体电子元器件,超大规模集成电路的设计与制造技术,系统芯片技术,电路组件与系统,微机电系统等。

它涉及到微电子学与固体电子学的理论,信息的获取、存储、处理与控制,并且和电路与系统、通信与信息系统、信号与信息处理、电子工程学、物理电子学、电磁场与微波技术、材料科学与工程、自动控制以及计算机科学与技术等多个学科有着密切的联系。

这一学科的发展非常迅速,目前已进入了以超大规模集成电路为主要标志的发展阶段。

其主要发展方向是超深亚微米技术,系统芯片集成技术,量子电子器件与纳米器件电子学以及微机电系统。

我校本学科是国家重点学科,有一支以科学院院士陈星弼教授为学科带头人,以长江学者特聘教授、博士生导师、教授、副教授以及一批青年博士、硕士组成的学术队伍,在新型半导体功率器件与新型智能集成电路方面研究独具特色,一些工作在国内外享有盛誉。

并与国内外相关的学校和研究所有着广泛的联系。

一、培养目标本学科博士学位获得者应具有微电子与固体电子学方面坚实宽广的基础理论和系统深入的专业知识(数学,固体物理,包括半导体、电介质与磁性材料等,超大规模集成电路,电子材料与固体电子元器件,电路与系统,微电子系统集成,集成固体电路组件与系统,计算机技术等)和较强的运用计算机和仪器设备的能力。

对本学科的某一方面有深入的研究,并有创新性的研究成果。

至少熟练掌握一门外语。

有严谨求实的科学态度和工作作风。

应能独立从事并能领导、组织科学研究或国民经济建设有意义的研究或开发课题,能胜任科研机构,产业部门和高等院校的研究开发,工程技术,教学或管理工作。

微电子学与固体电子学--培养方案基本信息

微电子学与固体电子学--培养方案基本信息

微电子材料与工 信息科学与

工程学院
学分 总学时 开课学期 授课方式 开课方式 多选组 4 72 第一学期 面授讲课 考试 3 54 第一学期 面授讲课 考试 4 72 第一学期 面授讲课 考试 4 72 第一学期 面授讲课 考试 4 72 第二学期 面授讲课 考试
3 54 第二学期 面授讲课 考试
二、课程学习及学分的基本要求
三、必修环节的基本要求
(一)实践的基本范围或基本形式 (1)能指导本科生教学实验或辅导相关专业本科生的基础课程。 (2)具有根据研究结果撰写实验总结和学术论文,并将结果进行口头报告的能力,具有对文献进行归纳分 析并口头报告能力。 (3)具有运用计算机进行文字、数据处理和资料检索能力。 (二)学术活动的次数、考核方式及基本要求 (1)讲座课或讨论班的基本范围或基本形式 学科前沿进展讲座:邀请国内外著名学者和系内专家作微电子学科进展前沿的学术报告,每年不少于15次 (各专业方向不少于3次),由研究生自主选择听讲,以签到计次数。 文献报告:由研究生报告有关学科和研究课题的国内进展文献动态报告,每次报告有书面摘要,在教研组 或科研组报告,同时听取其他同学的类似文献报告。 第四学期结合中期考核,组织科研工作突出的学生参加校庆学术报告。 尽可能参加国内学术会议并作报告。 (2)次数、考核方式及基本要求 学科前沿报告:每个研究生每年不少于8次。文献报告:每个研究生每学期至少一次,3年共计5次(第一学 期免),由导师和专家打分,分为:优、良、通过、不通过。
四、博士生学科综合考试或资格考试的基本要求
五、硕博连读生学科综合考试或资格考试的基本要求
六、学位论文的基本要求
硕士学位论文应在充分阅读文献、熟悉国内外研究情况的基础上,选择有学术价值、对国民经济发展有一 定意义的课题开展研究。与论文直接相关的实验室工作量累计不少于1年。论文应具备一定的理论分析,可 靠的实验结果,合理有效的数据处理,应有较完整的结果。答辩前应至少有1篇《复旦大学学位与研究生教 育国内期刊指导目录》中规定的B类文章发表(含录用)。

武汉大学物理学专业培养方案

武汉大学物理学专业培养方案

物理科学与技术学院物理学专业(物理、应用物理)本科人才培养方案一、专业代码、专业名称专业代码:070201专业名称:物理学 Physics二、专业培养目标坚持正确的人才培养方向,培养学生有为国家富强、民族昌盛而奋斗的志向和责任感,有良好的思想品德、社会公德和职业道德,有健全的心理和健康的体魄。

培养掌握物理学的基本理论与方法,具有较高的理论水平、理论基础、理论知识和实验技能,获得基础研究或应用研究的初步训练,能运用物理知识和方法进行科学研究和技术开发,具有良好的科学素养,具有创新精神,适应高新技术发展的需要,具有较强的知识更新能力和较广泛的科学适应能力,能在物理学或相关的科学技术领域中从事科研、教学、技术开发和相关的管理工作的高级专门人才。

三、专业特色和培养要求本专业除要求学生具有扎实、宽厚的物理学、数学基础理论知识和必需的化学基础理论知识外,还要求对物理学的新发展、近代物理学在高新技术和生产中的应用,以及与物理学密切相关的交叉学科和新技术的发展有所了解。

本专业对基地班采取滚动式管理、实行导师全程指导制,理论物理课程实行双语或讨论式教学。

毕业生应获得以下几方面的知识和能力:(1)系统地掌握物理学的基本理论、基本知识、基本实验方法和技能,具有基础扎实、适应性强的特点和自学新知识、新技术的能力;具有运用物理学的理论和方法进行科学研究、应用研究、教学和相应管理工作的能力。

(2)掌握系统的数学、计算机等方面的基本原理、基本知识。

(3)较熟练地掌握一门外国语,能够阅读本专业的外文书刊。

(4)了解相近专业以及应用领域的一般原理和知识。

(5)了解物理学的理论前沿、应用前景和最新发展动态以及相关高新技术的发展状况。

(6)掌握资料查询、文献检索及运用现代信息技术获得最新参考文献的基本方法;具有一定的实验设计、归纳、整理分析实验结果、撰写论文、参与学术交流的能力。

(7)了解我国科学技术、知识产权等方面的方针、政策和法规。

微电子学与固体电子学专业硕士学位研究生培养方案

微电子学与固体电子学专业硕士学位研究生培养方案

址新资料推荐080903微电子学与固体电子学专业硕士学位研究生培养方案一.培养目标微电子学与固体电子学专业是一个横跨物理学、电子学、计算机科学和材料科学的综合性学科.要求硕士学位获得者掌握半导体物理,半导体器件物理、材料物理及微电子学的基础理论和系统、深入的专门知识(数学、外语、材料物理和半导体理论基础、电子线路及计算机等)和较强的独立开展科学研究和工程实践的能力,熟练掌握集成电路和其它电子元器件的计算机辅助设计技术,掌握有关电子材料,电子元器件和集成电路的主要测试分析技术,了解国内外本学科及相关专业的发展动向,能在导师指导下,深入开展与本专业有关的科研方向专题的研究工作,具备独立思考问题,解决问题的能力,并取得具有一定学术水平和使用价值的研究成果。

能用一种外文比较熟练地阅读专业资料并撰写论文,并具有初步的进行国际学术交流的能力。

本专业硕士学位获得者应身心健康,德智体全面发展,具有实事求是、踏实认真,一丝不苟和团结协作的科学作风和科学道德,具有为人类的科学技术进步而无私奉献的精神,为祖国的繁荣昌盛而努力奋斗的决心。

本专业的硕士毕业生可在有关研究所、工厂等单位从事电子材料与元器件、微电子技术和集成电路应用、半导体器件和物理等方面的研究开发和生产等技术工作或在高等院校任教。

二.学习年限本专业为全日制教学,学制为三年。

学生提前修完规定的课程并提前完成硕士论文,可提前毕业;也可延期毕业,但在校学习年限不得超过4年。

三.培养方式全日制脱产学习。

培养环节包括课程学习、教学实践、生产实习、科研训练、硕士论文研究。

其中课程学习1年,教学实践要求研究生独立讲授1门课程(40 学时以上),生产实习不少于1个月,科研训练包括每学期参加学术活动4次以上, 公开学术报告1次以上,参加本专业其他研究方向的科学硏究活动。

用于硕士论文研究的时间不少于1年。

硕士论文开题报告在第三学期举行。

硕士论文答辩时要求研究生至少提供1篇省级以上学术期刊公开发表的第一作者论文,或第二作者论文(导师为笫一作者),或作为项目参与人员获得省级科技进步三等奖以上或地市级科技进步二等奖以上奖励的证明。

微电子学与固体电子学 (学科代码:080903)

微电子学与固体电子学 (学科代码:080903)

微电子学与固体电子学(学科代码:080903)一、培养目标本学科培养德、智、体全面发展的,在半导体器件、超大规模集成电路设计与应用及微电子工艺等领域具有坚实的理论基础和技能,了解本学科发展的前沿和动 态,具有独立开展本学科研究工作能力的高级专门人才。

学位获得者应能承担高等院校、科研院所及高科技企业的教学科研、技术开发及管理等工作。

二、研究方向1.半导体器件、器件物理和器件模型、2.超大规模集成电路设计与应用、3.专用集成电路设计与应用、4.系统集成芯片SOC设计与应用、5.光电器件研究与应用、6.电力电子器件与应用三、学制及学分按照研究生院有关规定。

四、课程设置英语、政治等公共必修课和必修环节按研究生院统一要求。

学科基础课和专业课如下所列。

基础课:PH05101 高等量子力学(B)(4) PH05102 近代物理进展(4)ES34201★超大规模集成电路工艺学★(3)ES35201★半导体器件原理★(3)ES35202★模拟集成电路原理与设计★(3)PH55201 高等固体物理(5)PH55213 高等半导体物理(4)专业课:ES35210 超大规模集成系统导论(3) ES35211 数字集成电路原理与设计(2)ES35212 超大规模集成电路CAD (3) ES35213 专用集成电路ASIC设计及应用(2)ES35214 可编程逻辑设计与应用(2) ES35701 电子器件与微电子学实验(4级)(2)ES36201 微电子前沿技术(3) ES36202 现代CMOS工艺(2)ES36203 SOC设计技术(2) ES36204 现代半导体器件物理(3)备注:带★号课程为博士生资格考试科目。

五、科研能力要求按照研究生院有关规定。

六、学位论文要求按照研究生院有关规定。

微电子学专业培养方案

微电子学专业培养方案

微电子学专业一、培养目标本专业培养能适应我国社会主义市场经济和信息科学技术及产业的发展要求,在德、智、体、美诸方面全面发展;具有良好的科学文化素质、工程实践能力、创新思维能力和创业能力;具备物理电子、电路与系统及微电子学领域内宽厚的理论基础、实验能力和专业知识;能从事各类电路与系统、数字化信息系统、微电子器件、集成电路设计与系统集成等领域的研究、设计、制造及应用、管理与开发的工程应用型人才。

二、培养要求本专业学生主要学习数学、物理、电路与系统、微电子学、集成电路设计与集成系统等方面的基本理论,受到相关的电子实验与设计技术、计算机技术等方面的基本训练。

要求具有较广泛的自然科学知识及较扎实的数理基础;具备基本英语能力,能用英语获得本专业的原始信息;具有电路与系统、数字系统建模与设计、微电子器件、集成电路设计与测试等领域从事系统分析、设计和研究的基本能力。

毕业生应获得以下几方面的知识和能力:1. 掌握较扎实的数学、物理等自然科学的基础知识,具有较好的人文社会科学和管理科学基础和外语综合能力;2. 系统地掌握本专业领域必需的较宽的技术基础理论知识,主要包括半导体物理、半导体器件物理、半导体集成电路设计、VLSI设计等方面的基本理论和基本知识;3. 掌握电子线路的基本理论和实验技术,具有分析和设计电子系统的基本能力;获得较好的工程实践训练,具有较熟练的计算机应用能力;4. 具有系统工程的初步知识,掌握集成电路设计与分析方法,具有独立进行系统建模与设计、系统仿真、版图设计、器件性能分析与测试等基本能力。

具有本专业领域内1—2个专业方向的专业知识与技能,了解本专业学科前沿的发展趋势;5. 具有较强的工作适应能力,具备一定的科学研究、科技开发和组织管理的实际工作能力。

三、主干学科、主要课程和主要实践性教学环节主干学科:电子科学与技术主要课程:C语言程序设计、电路分析基础、信号与系统分析、模拟电子技术、数字逻辑、半导体物理、微电子技术基础、电磁场与微波技术、通信原理B、半导体集成电路、数字系统设计、射频集成电路设计、现代模拟集成电路原理及应用等。

微电子学与固体电子学学科 博士研究生培养方案

微电子学与固体电子学学科  博士研究生培养方案

微电子学与固体电子学学科博士研究生培养方案(专业代码:080903)微电子学与固体电子学是电子科学与技术与信息科学技术的先导和基础,是我国二十一世纪重点发展的学科之一。

主要研究半导体物理与器件,电子材料与固体电子元器件,超大规模集成电路的设计与制造技术,系统芯片技术,电路组件与系统,微机电系统等。

它涉及到电路与系统、通信与信息系统、信号与信息处理、电子工程学、物理电子学、电磁场与微波技术、电子材料科学与工程、自动控制学以及计算机科学与技术等多个学科。

这一学科的发展非常迅速,目前已进入了以超大规模集成电路为主要标志的发展阶段。

其主要发展方向是超深亚微米物理与技术,集成电路与系统技术,新型固体电子器件,纳米电子器件以及微机电系统。

我校本学科是国家重点学科,有一支以科学院院士陈星弼教授为学科带头人,以长江学者特聘教授、博士生导师、教授、副教授以及一批青年博士、硕士组成的学术队伍,在新型半导体功率器件与智能功率集成电路等方面研究独具特色,一些工作在国内外享有盛誉。

并与国内外相关的学校和研究所有着广泛的联系。

一、培养目标本学科博士学位获得者应具有微电子学与固体电子学方面坚实宽广的基础理论和系统深入的专业知识,能熟练运用计算机和仪器设备进行实验研究,具有较强的独立分析问题和解决问题的能力。

不仅对本学科的某一方面有深入的了解,而且在该方面有一定的研究成果。

应掌握一门外语。

具有严谨求实、敬业创新和团结合作的品德,具有作为项目主持者乃至学术领头人的素质,能胜任本专业科研、教学或产业的技术管理职责。

二、研究方向1.新型半导体材料与功率器件2.功率集成电路与系统3.大规模集成电路与系统4.专用集成电路与系统5.SOC/SIP系统芯片技术6.微电子学理论与技术7.电子薄膜与集成器件三、培养方式和学习年限全日制博士研究生学制为四年。

提前完成博士学业者,可申请适当缩短学习年限;若因客观原因不能按时完成学业者,可申请适当延长学习年限,但最长学习年限不超过六年。

微电子学与固体电子学专业五年制研究生培养方案

微电子学与固体电子学专业五年制研究生培养方案

微电子学与固体电子学专业五年制研究生培养方案一、培养目标:本专业培养德、智、体全面发展的微电子学与固体电子学方面的高级专门人才。

要求学生遵守中华人民共和国宪法和法律,具有为科学事业献身的精神、良好的品德和科学修养、健康的身体和良好的心理素质;在本学科掌握坚实宽广的基础理论和系统深入的专业知识,掌握一至两门外国语,具有独立从事科学研究、教学或独立负担专业技术工作的能力,在微电子学与固体电子学或相关科学领域的研究或应用上做出创造性成果,成为为社会主义建设服务的高层次专门人才。

二、研究方向1、集成电路设计与微电子技术;2、真空纳电子与微电子;3、宽禁带半导体材料与器件。

4、微纳光电子器件及集成;5、微纳电子器件与加工;6、SOC设计与应用;7、平板显示技术;8、微纳能量转换器件;9、电力电子中的微电子技术;10、纳微电子器件与加工;11、电子材料与敏感元器件;12、场发射显示器件;13、电子薄膜技术。

三、学习年限按中山大学《学位与研究生教育工作手册》有关规定执行。

四、课程设置五、考核方式按中山大学《学位与研究生教育工作手册》有关规定执行。

六、学位论文工作及发表论文要求按《物理科学与工程技术学院研究生培养管理条例》有关规定执行。

七、执行范围适用于2008年9月至新培养方案出台前期间入学各年级研究生。

八、主要参考书目1.半导体物理与器件——基本原理(Semiconductor Physics and Devices : Basic Principles), Donald A.Neamen, McGraw-Hill Companies, Inc, 清华大学出版社,2003。

2.纳米电子学,杜磊,庄弈琪编著,电子工业出版社,2004。

3.Micro-Nanofabrication Technologies and Applications, Zheng Cui, 高等教育出版社,2005。

4.Vacuum Microelectronics, Edited by Wei, John Wiley & Sons, 2001。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微电子学与固体电子学专业攻读硕士学位
研究生培养方案
一、培养目标
本专业培养德、智、体全面发展的微电子学与固体电子学高层次专门人才。

要求所培养的硕士研究生达到:
1、热爱祖国、热爱人民,认真学习并较好掌握马克思列宁主义理论。

具有良好的道德修养和科学态度。

愿意为祖国的现代化建设事业热忱服务。

2、具有严谨踏实的学风,较全面系统地掌握微电子学与固体电子学的基础理论和专业知识。

注意跟踪了解微电子学与固体电子学发展的前沿动态。

熟练掌握一门外国语。

具有创新精神,能独立从事本专业的科研与技术开发工作。

3、身心健康。

二、研究方向
1、纳微电子学
纳米加工与纳米器件、宽带隙纳米材料与场效应晶体管、石墨烯材料与场效应晶体管、基于纳米结构的发光与显示器件等;
2、半导体传感电子学
压电、铁电、磁电材料与传感器件、电阻开关器件;氧化物光敏与气敏传感器件;GaN、ZnO、GaAs、硅等半导体光电材料与探测器等;
3、能源电子材料与器件
有机光伏电子学与器件、染料敏华太阳能电池、GaN/GaAs多结高效太阳能电池、新型高效硅太阳能电池等;
4、宽禁带半导体材料与器件
GaN、AlN、ZnO、MgO半导体材料与光电器件等;
5、微电子系统与集成电路设计
微纳电子器件模型设计、微电子系统与集成电路设计等;
6、磁电子学
磁电材料与传感器件、有机磁材料设计与计算、稀磁材料与器件等;
7、信息处理与微系统
基于大规模集成电路芯片的处理器系统;基于现代信号处理技术的图像增强、压缩、重建、识别算法与实现;高性能DSP与嵌入式CPU智能系统等;
8、生物医学电子学
生物医学微流纳流芯片、医学影像的特征信息提取算法研究、医学断层光电子技术等。

三、学习年限
本专业硕士研究生实行以三年制为基础的弹性学制,最长学习年限不超过四年,其中课程学习1.5年。

本专业不允许申请提前毕业。

四、课程设置(见附表)及学分要求
本专业学术型硕士研究生应修学分总数为42学分,其中:课程学分总数30学分(包括公共必修课5分;学科必修课不少于8学分;研究方向必修课不少于6学分;其余为选修课学分);实践环节2学分;学位论文10学分。

鼓励学生跨专业选课,跨专业所选课程计为选修课。

跨专业入学和以同等学力入学的研究生,须补修2门本科生必修课并取得合格以上成绩,该成绩不计入学分。

五、学位论文
1、论文选题:选题合适,在理论或应用上具有一定意义,且实验方案合理,路线切实可行,方能正式开展科学实验。

2、开题报告:学术型的硕士研究生,从第一学期开始与导师共同商定学习计划和论文题目,在导师的指导下有计划地进行理论课程学习、阅读文献和必要的调查研究等,并向课题组或教研室作开题报告。

参加论文开题报告的老师应不少于三名(包括导师)。

经指导小组讨论通过后,方可正式进行搜集资料、专题研究和论文撰写工作。

3、论文撰写:进入论文撰写阶段后,导师应不定期检查论文进展情况;学位论文完成并经指导小组审查通过后,在论文答辩前一个月提交给2位论文评阅人评阅。

评阅人须是具备教授、副教授或相当职称的同行专家。

评阅意见在合格以上者,方可进入论文答辩环节。

4、答辩资格:本专业学术型硕士研究生在读期间应完成课程的学习并修满学分,完成实习实践环节并参与至少一项课题研究,参加8次以上学术交流活动(包括参加国内外学术会议、听取学术报告等)。

在学习期间必须至少有一篇学术论文以第一作者在核心及以上学术刊物上发表,或用英文写一篇全文论文,并在国际会议的论文集上发表,方才获得答辩资格。

最后在导师的指导下撰写出学位论文,通过答辩后,授予工学硕士学位。

5、论文答辩:论文答辩委员会由5人组成。

经全体委员三分之二以上(含三分之二)同意,论文方为通过。

六、其他必修环节
1、实践环节:
学术型硕士研究生在校期间应在导师指导下深入企事业开展社会实践、专业实习或进行跨学科相关联专业实验方法和技术学习等实践活动,总时间不得少于三个月。

为了扩大知识面,活跃学术思想,培养独立工作能力,学术型硕士研究生必须经常听学
术报告,撰写读书报告和研究报告,作学术报告,参加学术讨论。

积极参加学术讲座,学术会议,调查研究,收集资料或去外单位进行论文的部分工作。

参加实习实践和学术交流活动的情况需详细填写在《武汉大学学术型硕士研究生实习实践考核表》和《武汉大学硕士研究生学术活动考核表》上,并提交实习实践总结报告。

经学院审核合格并报研究生院培养处审批备案后方可计2学分,并进入答辩环节。

2、中期考核
学术型的硕士研究生,在第三学期末或第四学期初进行中期考核,向课题组或教研室作中期进展报告。

中期考核实行淘汰制,根据研究生学习及科研情况,结合专业成绩,确认其具体流向,大致包括硕博连读、继续攻读硕士学位以及退学三种情况。

七、培养方式
1、学术型的硕士研究生,可以通过双向选择的方式,在入学时选定指导教师。

导师对研究生要既教书又育人,必须在政治思想上、学风上、治学态度上加强对研究生的教育,严格要求,全面负责。

同时要发扬民主,贯彻百家争鸣的方针,鼓励研究生在学术上大胆创新。

研究生必须积极参加形势政策教育活动、公益劳动及体育锻炼。

2、充分发挥校内外专家学者的集体培养优势,成立导师为主的培养小组。

导师小组在研究生入学后一个月内根据研究生的实际情况及课题要求,制订合理的培养计划,对课程学习、实践活动、学术活动及科学研究等列出具体要求。

3、对于特别优秀的硕士研究生,可推荐其进行海外联合培养。

微电子学与固体电子学专业(专业代码080903)攻读硕士学位
研究生课程计划表
类别课程编码课程名称英文课程名称学



开课
学期


学位课公




第一外国语First Foreign Language 2 72 1
5

分中国特色社会主义理
论与实践研究
Theory and Practice of
Socialism with Chinese
Characteristics
2 36 1
自然辩证法概论Dialectics of Nature 1 18 1





凝聚态物理Condensed Matter Physics 3 54 2



8

分量子电子学Quantum Electronics 2 36 1
半导体物理(Ⅱ)Semiconductor Physics (Ⅱ) 3 54 1
半导体器件物理(Ⅱ)
Semiconductor Device
Physics (Ⅱ)
3 5
4 1
随机信号分析Random Signal Analysis 2 36 1
微电子学数值技术
Microelectronics Numerical
Technology
2 36 1







电子科技前沿
Frontiers in Electronics
Science and Technology
2 36 2



6

分数字集成电路设计
Digital Integrated Circuit
Design
2 36 2
现代数字信号处理
(Ⅱ)
Modern Digital Signal
Processing (Ⅱ)
2 36 2
纳米材料与器件Nano Materials and Devices 2 36 2
电子材料与器件
Electronics Materials and
Devices
2 36 2
微电子学导论
Introduction to
Microelectronics
2 36 2





光电子器件Photoelectric Devices 2 36 2
电介质物理学Dielectric Physics 2 36 2
传感与智能器件
Sensor and Intelligent
Instruments
2 36 2
纳米量子结构Nano-Quantum Structures 2 36 2
薄膜物理Thin Film Physics 2 36 2
数字图像处理Digital Image Processing 2 36 2
磁性物理与磁性材料Magnetism and Magnetic
Materials
3 5
4 2
微电子CAD技术Micro-electronic
Technology
2 36 2
补修课半导体物理(Ⅰ)Semiconductor Physics(Ⅰ) 3 54 1 电子技术基础Electronic Technology 3 54 1
实践环节实习、实践与学术交

2
其它学习
项目学术活动
环节
在校内听8次以上的学术报告,并参与讨论。

论文开题
报告环节
在第2学期末由导师组织同行专家对学生的开题报告进行评审,经讨论
认可后,正式进入专题研究和论文撰写工作。

论文答辩
环节
通过论文评审的学生按学校要求组织论文答辩。

相关文档
最新文档