化工原理少学时知识点定稿版
化工原理 知识点

化工原理知识点
化工原理的知识点包括:
1. 热力学:热力学原理、热力学态函数、热力学过程、热力学平衡、热力学循环等。
2. 流体力学:流体性质、流体静力学、流体动力学、流体流动等。
3. 传热学:传热基本过程、传热方程、传热导数、传热换热设备、传热工艺等。
4. 反应工程学:反应平衡、反应动力学、反应器设计、催化剂、反应工艺控制等。
5. 分离工程学:物质平衡、质量传递、分离技术、萃取、吸收、蒸馏、晶体分离等。
6. 化学工程原理:流程图、物料平衡、能量平衡、动力学、热力学、传质、传热、流体力学等。
7. 设备与工艺:乙炔化工艺、氧化过程、氢化工艺、脱硫过程、脱氧过程、催化裂化等。
8. 安全与环保:化工安全、环境保护法规、废弃物处理、环境影响评估等。
9. 经济与管理:成本估算、投资分析、工艺优化、工艺设计、流程控制等。
10. 化工原理应用:化学工业应用、石油炼制、化学品生产、
材料制备、环境治理等。
以上知识点是化工原理的一些基本内容,涵盖了热力学、流体力学、传热学、反应工程学、分离工程学等方面的内容,并且包括了安全与环保、经济与管理等应用领域。
在学习化工原理
时,需要系统地掌握这些知识点,并能够将其应用于实际问题的解决。
(完整版)化工原理基本知识点

第一章 流体流动一、压强1、单位之间的换算关系:221101.3310330/10.33760atm kPa kgf m mH O mmHg ====2、压力的表示(1)绝压:以绝对真空为基准的压力实际数值称为绝对压强(简称绝压),是流体的真实压强。
(2)表压:从压力表上测得的压力,反映表内压力比表外大气压高出的值。
表压=绝压-大气压(3)真空度:从真空表上测得的压力,反映表内压力比表外大气压低多少真空度=大气压-绝压3、流体静力学方程式0p p gh ρ=+二、牛顿粘性定律F du A dyτμ== τ为剪应力;du dy 为速度梯度;μ为流体的粘度; 粘度是流体的运动属性,单位为Pa ·s ;物理单位制单位为g/(cm·s),称为P (泊),其百分之一为厘泊cp111Pa s P cP ==液体的粘度随温度升高而减小,气体粘度随温度升高而增大。
三、连续性方程若无质量积累,通过截面1的质量流量与通过截面2的质量流量相等。
111222u A u A ρρ=对不可压缩流体1122u A u A = 即体积流量为常数。
四、柏努利方程式单位质量流体的柏努利方程式:22u p g z We hf ρ∆∆∆++=-∑ 22u p gz E ρ++=称为流体的机械能 单位重量流体的能量衡算方程:Hf He gp g u z -=∆+∆+∆ρ22z :位压头(位头);22u g :动压头(速度头) ;p gρ:静压头(压力头) 有效功率:Ne WeWs = 轴功率:Ne N η=五、流动类型 雷诺数:Re du ρμ=Re 是一无因次的纯数,反映了流体流动中惯性力与粘性力的对比关系。
(1)层流:Re 2000≤:层流(滞流),流体质点间不发生互混,流体成层的向前流动。
圆管内层流时的速度分布方程:2max 2(1)r r u u R=- 层流时速度分布侧型为抛物线型 (2)湍流Re 4000≥:湍流(紊流),流体质点间发生互混,特点为存在横向脉动。
化工原理知识点总结

化工原理知识点总结一、化工原理的概念和基本原理1. 化工原理的概念化工原理是指研究化工过程中各种物质变化和能量变化规律的科学。
化工原理是化学工程学科的基础,它研究化工过程中的化学反应、物质传递、热力学、流体力学等基本原理和规律。
2. 化工原理的基本原理化工原理的基本原理包括热力学、化学反应动力学、物质传递和流体力学等方面的基本原理。
(1)热力学热力学是研究物质的能量转化规律和能量平衡的科学。
在化工过程中,热力学原理适用于研究热平衡、热力学循环、热力学分析等方面的问题。
(2)化学反应动力学化学反应动力学是研究化学反应速率和影响因素的科学。
化工过程中的化学反应速率、反应机理、反应平衡等问题都需要运用化学反应动力学的原理进行分析和研究。
(3)物质传递物质传递是指物质在不同相之间的传递过程,包括物质的扩散、对流,以及传质设备的设计和运行原理等问题。
(4)流体力学流体力学是研究流体运动规律和流体性质的科学。
在化工过程中,很多问题都需要用到流体力学原理,如管道输送、泵的选择和设计、流体混合等方面的问题。
这些基本原理是化工原理研究的基础,它们为化工过程的设计、优化和运行提供了理论支持和技术指导。
二、化工过程的热力学分析1. 化学平衡在化工过程中,化学反应是一个重要的环节,化学反应的平衡状态对于产品的质量和产率有很大的影响。
因此,分析化学平衡是化工过程设计和运行中的重要内容。
2. 热力学循环热力学循环是指利用热力学原理设计和运行的热力系统,如蒸汽发电系统、制冷系统等。
热力学循环的分析和设计对于提高能量利用率和节能减排具有重要意义。
3. 热力学分析热力学分析是指利用热力学原理对化工过程中的能量转化和热平衡进行分析。
热力学分析通常包括能量平衡、热效率、热损失等方面的内容,它是化工过程优化和节能改造的重要手段。
三、化工过程的化学反应动力学分析1. 反应速率反应速率是指化学反应中物质的转化速率,其大小受到温度、浓度、压力等因素的影响。
化工原理知识点总结复习重点(完美版)

化工原理知识点总结复习重点(完美版) 嘿,伙计们!今天我们来聊聊化工原理这个话题,让大家对这个专业有个更深入的了解。
别着急,我会尽量用简单的语言和有趣的方式来讲解,让我们一起来复习一下化工原理的重点吧!我们来聊聊化工原理的基本概念。
化工原理是研究化学反应过程中物质变化规律的科学。
它主要包括传质、传热、流体力学等方面的知识。
在化工生产过程中,我们需要掌握这些基本原理,以便更好地控制反应过程,提高生产效率。
我们来看看化工原理中的一些重要概念。
第一个概念是摩尔质量。
摩尔质量是指一个物质的质量与一个摩尔该物质的物质的量之比。
这个概念很重要,因为它可以帮助我们计算出不同物质之间的质量关系。
比如说,如果我们知道两种物质的摩尔质量,就可以算出它们混合后的总质量。
第二个概念是浓度。
浓度是指单位体积或单位面积内所含物质的质量。
浓度可以用来表示溶液中溶质的质量分数。
在化工生产过程中,我们需要控制溶液的浓度,以保证产品质量和生产效率。
第三个概念是热力学第一定律。
热力学第一定律告诉我们,能量守恒,即能量不会凭空产生也不会凭空消失。
在化工生产过程中,我们需要利用这一定律来设计高效的反应过程,提高能源利用率。
第四个概念是传质速率。
传质速率是指单位时间内通过某一截面的物质质量。
传质速率受到多种因素的影响,如流体的性质、流速、管道形状等。
在化工过程中,我们需要控制传质速率,以保证产品的质量和生产效率。
现在我们来说说化工原理中的一些实际应用。
首先是石油加工。
石油加工是一个复杂的过程,涉及到多个步骤,如蒸馏、催化裂化、重整等。
在这个过程中,我们需要运用化工原理的知识,如传热、传质等原理,来设计合理的反应条件,提高石油的加工效率和产品质量。
其次是化肥生产。
化肥生产是一个重要的农业生产环节。
在这个过程中,我们需要利用化工原理的知识,如化学反应原理、浓度控制等原理,来生产高效、环保的化肥产品,满足农业生产的需求。
最后是废水处理。
随着工业化的发展,废水排放成为一个严重的环境问题。
(完整版)化工原理知识点总结整理

一、流体力学及其输送1.单元操作:物理化学变化的单个操作过程,如过滤、蒸馏、萃取。
2.四个基本概念:物料衡算、能量衡算、平衡关系、过程速率。
3.牛顿粘性定律:F=±τA=±μAdu/dy ,(F :剪应力;A :面积;μ:粘度;du/dy :速度梯度)。
4.两种流动形态:层流和湍流。
流动形态的判据雷诺数Re=duρ/μ;层流—2000—过渡—4000—湍流。
当流体层流时,其平均速度是最大流速的1/2。
5.连续性方程:A1u1=A2u2;伯努力方程:gz+p/ρ+1/2u2=C 。
6.流体阻力=沿程阻力+局部阻力;范宁公式:沿程压降:Δpf=λlρu2/2d ,沿程阻力:Hf=Δpf/ρg=λl u2/2dg(λ:摩擦系数);层流时λ=64/Re ,湍流时λ=F(Re ,ε/d),(ε:管壁粗糙度);局部阻力hf=ξu2/2g ,(ξ:局部阻力系数,情况不同计算方法不同)7.流量计:变压头流量计(测速管、孔板流量计、文丘里流量计);变截面流量计。
孔板流量计的特点;结构简单,制造容易,安装方便,得到广泛的使用。
其不足之处在于局部阻力较大,孔口边缘容易被流体腐蚀或磨损,因此要定期进行校正,同时流量较小时难以测定。
转子流量计的特点——恒压差、变截面。
8.离心泵主要参数:流量、压头、效率(容积效率ηv :考虑流量泄漏所造成的能量损失;水力效率ηH :考虑流动阻力所造成的能量损失;机械效率ηm :考虑轴承、密封填料和轮盘的摩擦损失。
)、轴功率;工作点(提供与所需水头一致);安装高度(气蚀现象,气蚀余量);泵的型号(泵口直径和扬程);气体输送机械:通风机、鼓风机、压缩机、真空泵。
9. 常温下水的密度1000kg/m3,标准状态下空气密度1.29 kg/m31atm =101325Pa=101.3kPa=0.1013MPa=10.33mH2O=760mmHg(1)被测流体的压力 > 大气压 表压 = 绝压-大气压(2)被测流体的压力 < 大气压 真空度 = 大气压-绝压= -表压10. 管路总阻力损失的计算 11. 离心泵的构件: 叶轮、泵壳(蜗壳形)和 轴封装置离心泵的叶轮闭式效率最高,适用于输送洁净的液体。
化工原理知识点总结复习重点(完美版)

无论是层流或揣流,在管道任意截面上,流体 质点的速度均沿管径而变化,管壁处速度为零,离 开管壁以后速度渐增,到管中心处速度最大。
层流:1、呈抛物线分布;2、管中心最大速度 为平均速度的2倍。
湍流:1、层流内层;2、过渡区或缓冲区;3、 湍流主体
湍流时管壁处的速度也等于零,靠近管壁的流 体仍作层流流动,这-作层流流动的流体薄层称为 层流内层或层流底层。自层流内层往管中心推移, 速度逐渐增大,出现了既非层流流动亦非完全端流 流动的区域,这区域称为缓冲层或过渡层,再往中
出上、下游界面;
2、 截面的选取:两截面均应与流动方向垂直;
3、 基准水平面的选取:任意选取,必须与地面平
行,用于确定流体位能的大小;
4、 两截面上的压力:单位一致、表示方法一致;
5、 单位必须一致:有关物理量的单位必须一致相
匹配。
三、流体流动现象:
流体流动类型及雷诺准数:
(1)层流区
Re<2000
离心泵:电动机 流体(动能)转化 静压能
一、离心泵的结构和工作原理:
离心泵的主要部件:
离
心泵的的启动流程:
叶
轮
吸液(管泵,无自吸能力)
泵壳
液体的汇集与能量的转换
转能
泵
轴
排放
密封 填料密封 机械密封(高级)
叶轮 其作用为将原动机的能量直接传给液体,
以提高液体的静压能与动能(主要为静压能)。
泵壳 具有汇集液体和能量转化双重功能。
(2)过渡区
2000< Re<4000
(3)湍流区
Re>4000
本质区别:(质点运动及能量损失区别)层流与端
流的区分不仅在于各有不同的Re 值,更重要的是
(完整版)化工原理各章节知识点总结

(完整版)化工原理各章节知识点总结第一章流体流动质点含有大量分子的流体微团,其尺寸远小于设备尺寸,但比起分子自由程却要大得多。
连续性假定假定流体是由大量质点组成的、彼此间没有间隙、完全充满所占空间的连续介质。
拉格朗日法选定一个流体质点,对其跟踪观察,描述其运动参数(如位移、速度等)与时间的关系。
欧拉法在固定空间位置上观察流体质点的运动情况,如空间各点的速度、压强、密度等,即直接描述各有关运动参数在空间各点的分布情况和随时间的变化。
定态流动流场中各点流体的速度u 、压强p 不随时间而变化。
轨线与流线轨线是同一流体质点在不同时间的位置连线,是拉格朗日法考察的结果。
流线是同一瞬间不同质点在速度方向上的连线,是欧拉法考察的结果。
系统与控制体系统是采用拉格朗日法考察流体的。
控制体是采用欧拉法考察流体的。
理想流体与实际流体的区别理想流体粘度为零,而实际流体粘度不为零。
粘性的物理本质分子间的引力和分子的热运动。
通常液体的粘度随温度增加而减小,因为液体分子间距离较小,以分子间的引力为主。
气体的粘度随温度上升而增大,因为气体分子间距离较大,以分子的热运动为主。
总势能流体的压强能与位能之和。
可压缩流体与不可压缩流体的区别流体的密度是否与压强有关。
有关的称为可压缩流体,无关的称为不可压缩流体。
伯努利方程的物理意义流体流动中的位能、压强能、动能之和保持不变。
平均流速流体的平均流速是以体积流量相同为原则的。
动能校正因子实际动能之平均值与平均速度之动能的比值。
均匀分布同一横截面上流体速度相同。
均匀流段各流线都是平行的直线并与截面垂直,在定态流动条件下该截面上的流体没有加速度, 故沿该截面势能分布应服从静力学原理。
层流与湍流的本质区别是否存在流体速度u、压强p的脉动性,即是否存在流体质点的脉动性。
稳定性与定态性稳定性是指系统对外界扰动的反应。
定态性是指有关运动参数随时间的变化情况。
边界层流动流体受固体壁面阻滞而造成速度梯度的区域。
化工原理知识点总结复习重点

化工原理知识点总结复习重点化工原理是化学工程与工艺专业的一门基础课程,主要介绍化学工程与工艺中的物质平衡、能量平衡和动量平衡等基本原理及其应用。
下面是化工原理的知识点总结和复习重点的详细版:1.化学反应平衡-反应物与生成物的化学计量关系-反应的平衡常数与平衡常数表达式- Le Chatelier原理和平衡移动方向-改变反应条件对平衡的影响2.物质平衡-物质守恒定律-化学工程中常见的物质平衡问题-不可压缩流体的物质平衡-反应器中的物质平衡-非理想流动下的物质平衡3.能量平衡-能量的守恒定律-热力学一、二、三定律-热力学方程与热力学性质-各种热力学过程的分析-标准生成焓与反应焓-反应器中的能量平衡4.动量平衡-动量的守恒定律-流体的运动学性质-流体的连续性方程、动量方程和能量方程-流体的黏度、雷诺数与运动阻力-流体的流动模式与阻力系数5.质量传递-质量传递的基本概念和规律-质量传递过程中的浓度梯度-净质量流率和摩尔质量流率-质量传递的速率方程和传质系数-各种传质装置的设计和分析6.物料的流动-流体的本构关系和流变特性-流体的流变模型和流变学方程-各种物料的流动模式和流动参数-孔板、喷嘴、管道等流体动力装置的设计和分析7.反应工程学-反应器的分类与特性-反应速率方程和反应级数-决定反应速率的因素-等温、非等温反应的热力学分析-反应器的设计和分析8.分离工程学-分离过程的基本原理-平衡闪蒸和分馏过程-萃取、吸附和吸附过程-结晶和干燥过程-分离设备的设计和分析9.管道和设备-化工工艺流程图的绘制-管道的基本特性和设计原则-常见流体设备的结构和工作原理-设备的选择、设计和运行控制以上是化工原理的知识点总结和复习重点的详细版。
在复习时,需要重点掌握每个知识点的基本概念、原理和公式,并通过习题和实例进行巩固和应用。
同时,建议结合实际工程问题,加深对知识点的理解和运用能力。
化工原理知识点总结复习重点完美版

化工原理知识点总结复习重点完美版为了更好地进行化工原理的复习和理解,以下是一份完整的知识点总结,帮助你复习和复盘学到的重要内容。
一、化学平衡1.化学反应方程式的写法2.反应物和生成物的摩尔比例3.平衡常数的定义和计算4.浓度和活度的关系5.反应速率和速率常数的定义及计算6.动态平衡和平衡移动原理7.影响平衡的因素:温度、压力、浓度二、质量平衡1.质量守恒定律2.原料消耗和产物生成的计算3.原料和产物的流量计算4.反应含量和反应度的计算5.塔的进料和出料物质的计算三、能量平衡1.能量守恒定律2.热平衡方程及其计算3.基础能量平衡方程的应用4.燃料燃烧的能量平衡计算5.固体、液体和气体的热容和焓变计算6.直接、间接测定燃烧热的方法及其原理7.燃料的完全燃烧和不完全燃烧四、流体流动1.流体的基本性质:密度、粘度、黏度、温度、压力2.流体的流动模式:层流和湍流3.流量和速度的计算4.伯努利方程及其应用5.流体在管道中的阻力和压降6.伽利略与雷诺数的关系7.流体静力学公式的应用五、气体平衡1.理想气体状态方程的计算2.弗拉索的原理及其应用3.气体的混合物和饱和汽4.气体的传递和扩散5.气体流动和气体固体反应的应用6.气体和液体的溶解度计算六、固体粒度和颗粒分离1.颗粒的基本性质:颗粒大小、形状和密度2.颗粒分布函数和粒度分析3.颗粒分离的基本过程和方法4.难磨性颗粒的碾磨过程5.颗粒的流动性和堆积性6.各种固体分离设备的工作原理和应用领域七、非均相反应工程1.反应器的分类和基本概念2.反应速率方程的推导和计算3.反应的平均摩尔体积变化和速率方程的确定方法4.反应动力学和机理的研究方法5.混合反应和连续反应的计算6.活性物质的拟合反应速率方程7.补偿反应的控制和模拟以上是化工原理的主要知识点总结,希望能够帮助你更好地进行复习和理解。
祝你取得好成绩!。
(完整版)化工原理各章节知识点总结

(完整版)化工原理各章节知识点总结第一章流体流动质点含有大量分子的流体微团,其尺寸远小于设备尺寸,但比起分子自由程却要大得多。
连续性假定假定流体是由大量质点组成的、彼此间没有间隙、完全充满所占空间的连续介质。
拉格朗日法选定一个流体质点,对其跟踪观察,描述其运动参数(如位移、速度等)与时间的关系。
欧拉法在固定空间位置上观察流体质点的运动情况,如空间各点的速度、压强、密度等,即直接描述各有关运动参数在空间各点的分布情况和随时间的变化。
定态流动流场中各点流体的速度u 、压强p 不随时间而变化。
轨线与流线轨线是同一流体质点在不同时间的位置连线,是拉格朗日法考察的结果。
流线是同一瞬间不同质点在速度方向上的连线,是欧拉法考察的结果。
系统与控制体系统是采用拉格朗日法考察流体的。
控制体是采用欧拉法考察流体的。
理想流体与实际流体的区别理想流体粘度为零,而实际流体粘度不为零。
粘性的物理本质分子间的引力和分子的热运动。
通常液体的粘度随温度增加而减小,因为液体分子间距离较小,以分子间的引力为主。
气体的粘度随温度上升而增大,因为气体分子间距离较大,以分子的热运动为主。
总势能流体的压强能与位能之和。
可压缩流体与不可压缩流体的区别流体的密度是否与压强有关。
有关的称为可压缩流体,无关的称为不可压缩流体。
伯努利方程的物理意义流体流动中的位能、压强能、动能之和保持不变。
平均流速流体的平均流速是以体积流量相同为原则的。
动能校正因子实际动能之平均值与平均速度之动能的比值。
均匀分布同一横截面上流体速度相同。
均匀流段各流线都是平行的直线并与截面垂直,在定态流动条件下该截面上的流体没有加速度, 故沿该截面势能分布应服从静力学原理。
层流与湍流的本质区别是否存在流体速度u、压强p的脉动性,即是否存在流体质点的脉动性。
稳定性与定态性稳定性是指系统对外界扰动的反应。
定态性是指有关运动参数随时间的变化情况。
边界层流动流体受固体壁面阻滞而造成速度梯度的区域。
化工原理知识点总结复习重点(完美版)

第一章、流体流动一、 流体静力学 二、 流体动力学 三、 流体流动现象四、流动阻力、复杂管路、流量计一、流体静力学:● 压力的表征:静止流体中,在某一点单位面积上所受的压力,称为静压力,简称压力,俗称压强。
表压强(力)=绝对压强(力)-大气压强(力) 真空度=大气压强-绝对压大气压力、绝对压力、表压力(或真空度)之间的关系 ● 流体静力学方程式及应用:压力形式 )(2112z z g p p -+=ρ 备注:1)在静止的、连续的同一液体内,处于同一 能量形式g z p g z p 2211+=+ρρ水平面上各点压力都相等。
此方程式只适用于静止的连通着的同一种连续的流体。
应用:U 型压差计 gR p p )(021ρρ-=- 倾斜液柱压差计 微差压差计二、流体动力学● 流量质量流量 m S kg/s m S =V S ρ体积流量 V S m 3/s 质量流速 G kg/m 2s(平均)流速 u m/s G=u ρ ● 连续性方程及重要引论:22112)(d d u u = m S =GA=π/4d 2G V S =uA=π/4d 2u● 一实际流体的柏努利方程及应用(例题作业题) 以单位质量流体为基准:f e W p u g z W p u g z ∑+++=+++ρρ222212112121 J/kg 以单位重量流体为基准:f e h gp u g z H g p u g z ∑+++=+++ρρ222212112121 J/N=m 输送机械的有效功率: e s e W m N = 输送机械的轴功率: ηeN N =(运算效率进行简单数学变换)应用解题要点:1、 作图与确定衡算范围:指明流体流动方向,定出上、下游界面;2、 截面的选取:两截面均应与流动方向垂直;3、 基准水平面的选取:任意选取,必须与地面平行,用于确定流体位能的大小;4、 两截面上的压力:单位一致、表示方法一致;5、 单位必须一致:有关物理量的单位必须一致相匹配。
(完整版)化工原理知识点总结整理

一、流体力学及其输送1.单元操作:物理化学变化的单个操作过程,如过滤、蒸馏、萃取。
2.四个基本概念:物料衡算、能量衡算、平衡关系、过程速率。
3.牛顿粘性定律:F=±τA=±μAdu/dy ,(F :剪应力;A :面积;μ:粘度;du/dy :速度梯度)。
4.两种流动形态:层流和湍流。
流动形态的判据雷诺数Re=duρ/μ;层流—2000—过渡—4000—湍流。
当流体层流时,其平均速度是最大流速的1/2。
5.连续性方程:A1u1=A2u2;伯努力方程:gz+p/ρ+1/2u2=C 。
6.流体阻力=沿程阻力+局部阻力;范宁公式:沿程压降:Δpf=λlρu2/2d ,沿程阻力:Hf=Δpf/ρg=λl u2/2dg(λ:摩擦系数);层流时λ=64/Re ,湍流时λ=F(Re ,ε/d),(ε:管壁粗糙度);局部阻力hf=ξu2/2g ,(ξ:局部阻力系数,情况不同计算方法不同)7.流量计:变压头流量计(测速管、孔板流量计、文丘里流量计);变截面流量计。
孔板流量计的特点;结构简单,制造容易,安装方便,得到广泛的使用。
其不足之处在于局部阻力较大,孔口边缘容易被流体腐蚀或磨损,因此要定期进行校正,同时流量较小时难以测定。
转子流量计的特点——恒压差、变截面。
8.离心泵主要参数:流量、压头、效率(容积效率ηv :考虑流量泄漏所造成的能量损失;水力效率ηH :考虑流动阻力所造成的能量损失;机械效率ηm :考虑轴承、密封填料和轮盘的摩擦损失。
)、轴功率;工作点(提供与所需水头一致);安装高度(气蚀现象,气蚀余量);泵的型号(泵口直径和扬程);气体输送机械:通风机、鼓风机、压缩机、真空泵。
9. 常温下水的密度1000kg/m3,标准状态下空气密度1.29 kg/m31atm =101325Pa=101.3kPa=0.1013MPa=10.33mH2O=760mmHg(1)被测流体的压力 > 大气压 表压 = 绝压-大气压(2)被测流体的压力 < 大气压 真空度 = 大气压-绝压= -表压10. 管路总阻力损失的计算 11. 离心泵的构件: 叶轮、泵壳(蜗壳形)和 轴封装置离心泵的叶轮闭式效率最高,适用于输送洁净的液体。
(完整版)化工原理基本知识点

第一章 流体流动一、压强1、单位之间的换算关系:221101.3310330/10.33760atm kPa kgf m mH O mmHg ====2、压力的表示(1)绝压:以绝对真空为基准的压力实际数值称为绝对压强(简称绝压),是流体的真实压强。
(2)表压:从压力表上测得的压力,反映表内压力比表外大气压高出的值。
表压=绝压-大气压(3)真空度:从真空表上测得的压力,反映表内压力比表外大气压低多少真空度=大气压-绝压3、流体静力学方程式0p p gh ρ=+二、牛顿粘性定律F du A dyτμ== τ为剪应力;du dy 为速度梯度;μ为流体的粘度; 粘度是流体的运动属性,单位为Pa ·s ;物理单位制单位为g/(cm·s),称为P (泊),其百分之一为厘泊cp111Pa s P cP ==g液体的粘度随温度升高而减小,气体粘度随温度升高而增大。
三、连续性方程若无质量积累,通过截面1的质量流量与通过截面2的质量流量相等。
111222u A u A ρρ=对不可压缩流体1122u A u A = 即体积流量为常数。
四、柏努利方程式单位质量流体的柏努利方程式:22u p g z We hf ρ∆∆∆++=-∑ 22u p gz E ρ++=称为流体的机械能 单位重量流体的能量衡算方程:Hf He gp g u z -=∆+∆+∆ρ22z :位压头(位头);22u g :动压头(速度头) ;p gρ:静压头(压力头) 有效功率:Ne WeWs = 轴功率:Ne N η=五、流动类型 雷诺数:Re du ρμ=Re 是一无因次的纯数,反映了流体流动中惯性力与粘性力的对比关系。
(1)层流:Re 2000≤:层流(滞流),流体质点间不发生互混,流体成层的向前流动。
圆管内层流时的速度分布方程:2max 2(1)r r u u R=- 层流时速度分布侧型为抛物线型 (2)湍流Re 4000≥:湍流(紊流),流体质点间发生互混,特点为存在横向脉动。
化工原理的知识点总结

化工原理的知识点总结一、物质的转化1. 化学反应原理化学反应是化工生产中最基本的过程之一,其原理是指通过物质之间的相互作用,原有物质的化学成分和结构发生变化,产生新的物质。
在化学反应中,往往会 Begingroup 产生热量、释放或者吸收气体以及溶解或析出固体物质。
常见的反应类型包括酸碱反应、氧化还原反应、置换反应、水解反应等。
2. 反应热力学反应热力学研究的是化学反应在不同途径下产生的能量变化规律。
反应热力学的主要内容包括热力学系统、热力学函数、热力学平衡、化学平衡等。
通过反应热力学的研究,可以预测化学反应的进行方向和速率,为化工生产提供重要的理论指导。
3. 反应动力学反应动力学研究的是化学反应速率随时间变化规律。
反应动力学的主要内容包括反应速率和反应速率常数的确定、反应速率方程和速率常数的推导等。
通过反应动力学的研究,可以基于反应速率的规律来设计和优化化工反应器,提高反应效率,减少能耗,降低生产成本。
二、传热传质1. 传热原理传热是指热量从高温物体传递到低温物体的过程。
传热原理主要包括热传导、对流传热和辐射传热三种方式。
热传导是指热量在固体物质内部传递的过程,对流传热是指热量通过流体介质传递的过程,而辐射传热是指热量通过辐射的方式传递的过程。
2. 传质原理传质是物质在空间内由高浓度区向低浓度区扩散的过程。
传质原理主要包括扩散、对流传质和表面传质。
扩散是指物质在固体、液体或气体中沿浓度梯度传输的现象,对流传质是指物质通过流体介质进行传送的过程,表面传质是指物质在表面上通过吸附和蒸发进行传递的过程。
三、流体力学1. 流体性质流体是一种无固定形态的物质,其主要特点包括不能承受剪切应力、易于流动和易于变形。
在化工过程中,流体的性质对设备设计和流体流动有重要影响。
流体的主要性质包括黏度、密度、表观黏度、流变性等。
2. 流体流动流体流动是指流体在管道或设备内部的运动过程。
流体的流动过程包括定常流动和非定常流动,同时还会受到雷诺数、流态、雷诺方程等因素的影响。
化工原理重要知识点总结(五篇)

化工原理重要知识点总结(五篇)第一篇:化工原理重要知识点总结一基本概念1、连续性方程2、液体和气体混合物密度求取3、离心泵特性曲线的测定4、旋风分离器的操作原理5、传热的三种基本方式6、如何测定及如何提高对流传热的总传热系数K7、重力沉降与离心沉降8、如何强化传热9、简捷法10、精馏原理11、亨利定律12、漏液13、板式塔与填料塔14、气膜控制与液膜控制15、绝热饱和温度二、核心公式第一章、流体流动与流体输送机械(1)流体静力学基本方程(例1-9)U型管压差计(2)柏努利方程的应用(例1-14)(3)范宁公式(4)离心泵的安装高度(例2-5)第二章、非均相物系的分离和固体流态化(1)重力沉降滞流区的沉降公式、降尘室的沉降条件、在降尘室中设置水平隔板(例3-3)、流型校核、降尘室的生产能力(2)离心沉降旋风分离器的压强降、旋风分离器的临界粒径、沉降流型校核(离心沉降速度、层流)、多个旋风分离器的并联(例3-5)第三章、传热(1)热量衡算(有相变、无相变)K的计算、平均温度差、总传热速率方程、传热面积的计算(判别是否合用)(例4-8)(2)流体在圆形管内作强制湍流流动时α计算式(公式、条件),粘度μ对α的影响。
(3)实验测K(例4-9)(4)换热器操作型问题(求流体出口温度,例4-10)下册第一章蒸馏全塔物料衡算【例1-4】、精馏段、提馏段操作线方程、q线方程、相平衡方程、逐板计算法求理论板层数和进料版位置(完整手算过程)进料热状况对汽液相流量的影响下册第二章吸收吸收塔的物料衡算;液气比与最小液气比求m 【例2-8】填料层高度的计算【传质单元高度、传质单元数(脱吸因数法)】提高填料层高度对气相出口浓度的影响下册干燥湿度、相对湿度、焓带循环的干燥器物料衡算(求循环量)热量衡算(求温度)预热器热量【例5-5】第二篇:混凝土结构原理重要知识点总结1,混凝土结构是以混泥土为主要材料制成的结构,包括素混凝土结构,钢筋混凝土结构,预应力混凝土结构,和配置各种纤维筋的混凝土结构。
化工原理少学时知识点整理

1、吸收分离的依据是什么?如何分类?答:依据是组分在溶剂中的溶解度差异。
(1)按过程有无化学反应:分为物理吸收、化学吸收(2)按被吸收组分数:分为单组分吸收、多组分吸收(3)按过程有无温度变化:分为等温吸收、非等温吸收(4)按溶质组成高低:分为低组成吸收、高组成吸收2、吸收操作在化工生产中有何应用?答:吸收是分离气体混合物的重要方法,它在化工生产中有以下应用。
① 分离混合气体以回收所需组分,如用洗油处理焦炉气以回收其中的芳烃等。
② 净化或精制气体,如用水或碱液脱除合成氨原料气中的二氧化碳等。
③ 制备液相产品,如用水吸收氯化氢以制备盐酸等。
④ 工业废气的治理,如工业生产中排放废气中含有NO SO 等有毒气体,则需用吸收方法除去,以保护大气环境。
3、吸收与蒸馏操作有何区别?答:吸收和蒸馏都是分离均相物系的气—液传质操作,但是,两者有以下主要差别。
① 蒸馏是通过加热或冷却的办法,使混合物系产生第二个物相;吸收则是从外界引入另一相物质(吸收剂)形成两相系统。
因此,通过蒸馏操作可以获得较纯的组分,而在吸收操作中因溶质进入溶剂,故不能得到纯净组分。
② 传质机理不同,蒸馏液相部分气化和其相部分冷凝同时发生,即易挥发组分和难挥发组分同时向着彼此相反方向传递。
吸收进行的是单向扩散过程,也就是说只有溶质组分由气相进入液相的单向传递。
③ 依据不同。
4、实现吸收分离气相混合物必须解决的问题?答:(1)选择合适的溶剂(2)选择适当的传质设备(3)溶剂的再生5、简述吸收操作线方程的推导、物理意义、应用条件和操作线的图示方法。
答:对塔顶或塔底与塔中任意截面间列溶质的物料衡算,可整理得)(V L Y 22X VL Y X -+= )(11X V L Y X V L Y -+=或 上式皆为逆流吸收塔的操作线方程。
该式表示塔内任一截面上的气液相组成之间的关系。
式中L/V 为液气比,其值反映单位气体处理量的吸收剂用量,是吸收塔重要的操作参数。
化工原理少学时知识点整理

欢迎共阅1、吸收分离的依据是什么?如何分类?答:依据是组分在溶剂中的溶解度差异。
(1)按过程有无化学反应:分为物理吸收、化学吸收(2)按被吸收组分数:分为单组分吸收、多组分吸收(3)按过程有无温度变化:分为等温吸收、非等温吸收(4)按溶质组成高低:分为低组成吸收、高组成吸收2、吸收操作在化工生产中有何应用?答:吸收是分离气体混合物的重要方法,它在化工生产中有以下应用。
①分离混合气体以回收所需组分,如用洗油处理焦炉气以回收其中的芳烃等。
②净化或精制气体,如用水或碱液脱除合成氨原料气中的二氧化碳等。
③制备液相产品,如用水吸收氯化氢以制备盐酸等。
④工业废气的治理,如工业生产中排放废气中含有NO SO等有毒气体,则需用吸收方法除去,以保护大气环境。
3、吸收与蒸馏操作有何区别?答:吸收和蒸馏都是分离均相物系的气—液传质操作,但是,两者有以下主要差别。
①蒸馏是通过加热或冷却的办法,使混合物系产生第二个物相;吸收则是从外界引入另一相物质(吸收剂)形成两相系统。
因此,通过蒸馏操作可以获得较纯的组分,而在吸收操作中因溶质进入溶剂,故不能得到纯净组分。
②传质机理不同,蒸馏液相部分气化和其相部分冷凝同时发生,即易挥发组分和难挥发组分同时向着彼此相反方向传递。
吸收进行的是单向扩散过程,也就是说只有溶质组分由气相进入液相的单向传递。
③依据不同。
4、实现吸收分离气相混合物必须解决的问题?答:(1)选择合适的溶剂(2)选择适当的传质设备(3)溶剂的再生5、简述吸收操作线方程的推导、物理意义、应用条件和操作线的图示方法。
答:对塔顶或塔底与塔中任意截面间列溶质的物料衡算,可整理得上式皆为逆流吸收塔的操作线方程。
该式表示塔内任一截面上的气液相组成之间的关系。
式中L/V为液气比,其值反映单位气体处理量的吸收剂用量,是吸收塔重要的操作参数。
上述讨论的操作线方程和操作线,仅适用于气液逆流操作,在并流操作时,可用相似方法求得操作线方程和操作线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化工原理少学时知识点精编W O R D版IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】1、吸收分离的依据是什么如何分类答:依据是组分在溶剂中的溶解度差异。
(1)按过程有无化学反应:分为物理吸收、化学吸收(2)按被吸收组分数:分为单组分吸收、多组分吸收(3)按过程有无温度变化:分为等温吸收、非等温吸收(4)按溶质组成高低:分为低组成吸收、高组成吸收2、吸收操作在化工生产中有何应用?答:吸收是分离气体混合物的重要方法,它在化工生产中有以下应用。
①分离混合气体以回收所需组分,如用洗油处理焦炉气以回收其中的芳烃等。
②净化或精制气体,如用水或碱液脱除合成氨原料气中的二氧化碳等。
③制备液相产品,如用水吸收氯化氢以制备盐酸等。
④工业废气的治理,如工业生产中排放废气中含有NO SO等有毒气体,则需用吸收方法除去,以保护大气环境。
3、吸收与蒸馏操作有何区别?答:吸收和蒸馏都是分离均相物系的气—液传质操作,但是,两者有以下主要差别。
①蒸馏是通过加热或冷却的办法,使混合物系产生第二个物相;吸收则是从外界引入另一相物质(吸收剂)形成两相系统。
因此,通过蒸馏操作可以获得较纯的组分,而在吸收操作中因溶质进入溶剂,故不能得到纯净组分。
②传质机理不同,蒸馏液相部分气化和其相部分冷凝同时发生,即易挥发组分和难挥发组分同时向着彼此相反方向传递。
吸收进行的是单向扩散过程,也就是说只有溶质组分由气相进入液相的单向传递。
③依据不同。
4、实现吸收分离气相混合物必须解决的问题?答:(1)选择合适的溶剂(2)选择适当的传质设备(3)溶剂的再生5、简述吸收操作线方程的推导、物理意义、应用条件和操作线的图示方法。
答:对塔顶或塔底与塔中任意截面间列溶质的物料衡算,可整理得上式皆为逆流吸收塔的操作线方程。
该式表示塔内任一截面上的气液相组成之间的关系。
式中L/V为液气比,其值反映单位气体处理量的吸收剂用量,是吸收塔重要的操作参数。
上述讨论的操作线方程和操作线,仅适用于气液逆流操作,在并流操作时,可用相似方法求得操作线方程和操作线。
应予指出,无论是逆流还是并流操作,其操作线方程和操作线都是通过物料衡算得到的,它们与物系的平衡关系、操作温度与压强及塔的结构等因素无关。
6、亨利定律有哪些表达式应用条件是什么答:亨利定律表达气液平衡时两相组成间的关系。
由于相组成由多种有多种表示方法,因此亨利定律有多种表达式,可据使用情况予以选择。
① 气相组成用分压,液相组成用摩尔分数表示时,亨利定律表达式为式中E 称为亨利系数,单位为kPa 。
亨利系数由试验测定,其值随物系特性和温度而变。
在同一种溶剂中,难溶气体的E 值很大,易溶的则很小。
对一定的气体和溶剂,一般温度愈高E 值愈大,表明气体的溶解度随温度升高而降低。
应予指出,亨利定律适用于总压不太高时的稀溶液。
② 以分压和物质的量浓度表示气、液相组成,亨利定律表达式为式中H 称为溶解度系数,单位为kmol/(3m kPa )。
溶解度系数H 随物系而变,也是温度的函数。
易溶气体H 值很大,而难溶气体H 值很小。
对一定的物系,H 值随温度升高而减小。
③ 以摩尔分数或摩尔比表示气、液相组成,亨利定律表达式为和 mX Xm mx Y ≈--=*)1(1 式中m 称为相平衡常数,无因次。
与亨利系数E 相似,相平衡常数m 愈大,表示溶解度愈低,即易溶气体的m 值很小。
对一定的物系,m 是温度和压强的函数。
温变升高、压强降低,则m 变大。
④ 各种亨利常数换算关系:式中P 为总压,Pa 或k Pa 。
s s p H EM =。
7、相平衡在吸收过程中有何应用?答:相平衡在吸收过程中主要有以下应用。
(1)判断过程方向当不平衡的气液里两相接触时,溶质是被吸收,还是被脱吸,取决于相平衡关系。
Y>Y *,吸收过程;Y=Y *,平衡状态;Y<Y *,脱吸过程。
(2)指明过程的极限在一定的操作条件下,当气液两相达到平衡时,过程即行停止,可见平衡是过程的极限。
因此在工业生产的逆流填料吸收塔中,即使填料层很高,吸收剂用量很少的情况下,离开吸收塔的吸收液组成1X 也不会无限增大,其极限是进塔气相组成1Y 成平衡的液相组成*1X ,即mY X X 1*1max ,1==,反之,当吸收剂用量大、气体流量小时,即使填料层很高,出口气体组成也不会低于与吸收剂入口组成2X 呈平衡的气相组成*2Y ,即2*2min ,2mX Y Y ==,由此可知,相平衡关系限制了吸收液的最高组成及吸收尾气的最低组成。
(3) 计算过程推动力在吸收过程中,通常以实际的气、液相组成与其平衡组成的偏离程度来表示吸收推动力。
实际组成偏离平衡组成愈远,过程推动力愈大,过程速率愈快。
即*=∆Y -Y Y ;也可用液相组成表示,即X -=∆*X X 。
8、双膜理论的基本论点是什么?答:双膜理论要点:(1)相互接触的气液两相存在一固定的相界面。
界面两侧分别存在气膜和液膜,膜内流体呈滞流流动,物质传递以分子扩散方式进行,膜外流体成湍流流动。
膜层取决于流动状态,湍流程度愈强烈,膜层厚度愈薄。
(2)气、液相界面上无传质阻力,即在界面上气、液两相组成呈平衡关系。
(3)膜外湍流主体内传质阻力可忽略,气、液两相间的传质阻力取决于界面两侧的膜层传质阻力。
根据双膜理论,将整个气、液两相间的传质过程简化为通过气、液两个滞流膜层的分子扩散过程,从而简化了吸收过程的计算。
9、何谓最小液气比怎样确定答:在极限的情况下,操作线和平衡线相交(有特殊平衡线时为相切),此点传质推动力为零,所需的填料层为无限高,对应的吸收剂用量为最小用量,该操作线的斜率为最小液气比min (L/V )。
因此min L 可用下式求得式中*1X 为与气相组成1Y 相平衡的液相组成。
若气液平衡关系服从亨利定律,则*1X 由亨利定律算得,否则可由平衡曲线读出。
10、吸收剂用量对吸收操作有何影响如何确定适宜液气比答:吸收剂用量的大小与吸收的操作费用及设备的投资费用密切相关。
在L>min L 前提下,若L 愈大,塔高可降低,设备费用 较底,但操作费用较高;反之,若L 愈小,则操作费用减低,而设备费用增高。
故应选择适宜的吸收剂用量,使两者之和最底。
为此需通过经济衡算确定适宜吸收剂用量和适宜液气比。
但是一般计算中可取经验值,即11、吸收操作的全塔物料衡算有何应用何谓回收率答:对逆流操作的填料吸收塔,作全塔溶质组成的物料衡算,可得吸收塔的分离效果通常用溶质的回收率来衡量。
回收率(又称吸收率)定义为通常,进塔混合气流量和组成是吸收任务规定的,若吸收剂的流量和组成被选定,则V 、L 、11Y X 、均为已知;又根据吸收任务规定的溶质回收率A ϕ,可求得出塔气体的组成2Y ;然后求得出塔的吸收液组成1X 。
12、何谓传质单元高度和传质单元数它们的物理意义如何答:通常将填料层高度基本计算式的右端分为两部分来处理,该式右端的数组V/Y K a Ω是由过程条件所决定的,具有高度的单位,以OG H 表示,称为气相总传质单元高度。
式中积分项内的分子与分母具有相同的单位,整个积分为一个无因次的数值,以OG N 表示,称为气相总传质单元数。
于是填料层高度基本计算式可以表示为同理,有 OL OL Z H N =其中 0G X L H K a =Ω 12OG dX x N x X X *=-⎰ 由此可见,计算填料层高度的通式为:填料层高度=传质单元高度×传质单元数传质单元高度反映传质阻力及填料性能。
若吸收阻力愈大,填料的有效表面积愈小,则每个传质单元所相当的填料层高度愈高。
传质单元数反映吸收过程的难易程度。
若任务所要求的气体浓度变化愈大,过程的推动力愈小,则吸收过程愈难,所需的传质单元数愈大。
若OG N 等于1,即气体经一段填料层高度的组成变化(12Y Y -)恰等于此段填料层内推动力的平均值()m Y Y *-,那么这段填料高度就是一个气相传质单元高度(OG Z H =)。
13、如何用平均推动力法计算传质单元数使用条件是什么答:在吸收过程中,若平衡线和操作线均为直线时,则可仿照传热中对数平均温度差推导方法。
根据吸收塔塔顶基塔底两个端面上的吸收推动力来计算全塔的平均推动力,以N OG 为例,即故 12OG mY Y N Y -=∆ 式中m Y ∆称为全塔气相对数平均推动力。
若2212212121≤∆∆≤≤∆∆≤X X Y Y 或,则相应的对数平均推动力可用算数平均推动力进行计算,即221Y Y Y m ∆+∆=∆。
14、试述填料塔的结构?答:填料塔为连续接触式的气液传质设备,可应用于吸收、蒸馏等分离过程。
塔体为圆筒形,两端装有封头,并有气、液体进、出口接管。
塔下部装有支撑板,板上充填一定高度的填料。
操作时液体自塔顶经分布器均匀喷洒至塔截面上,沿填料表面下流经塔底出口管排出;气体从支撑板下方入口管进入塔内,在压强差的作用下自下而是地通过填料层的空隙而由塔的顶部气体出口管排出。
填料层内气液两相呈逆流流动,在填料表面的气液界面上进行传质(或传热),因此两相组成沿塔高连续变化。
由于液体在填料中有倾向于塔壁流动,故当填料层较高时,常将其分成若干段,在两段之间设置液体再分布装置,以有利于流体的重新均匀分布。
填料塔结构简单,且有阻力小用便于用耐腐蚀材料制造等优点,对于直径较小的塔,处理有腐蚀性的物料或要求压强降较小的真空蒸馏系统,更宜采用填料。
15、填料有哪些主要特性如何选择答:填料是填料塔的核心,填料性能的优劣是填料塔能否正常操作的关键。
表示填料特性的参数主要有以下几项。
(1)比表面积a(2)空隙率∈(3)填料因子a/ε3,湿填料因子,以ψ表示在选择填料时,一般要求填料的比表面积大,空隙率大,填料润湿性好,单位体积填料的质量轻,造价低及具有足够的力学强度和化学稳定性。
16、填料塔有哪些附件各自有何作用答:填料塔的附件主要有填料支承装置、液体分布装置、液体再分布装置和除沫装置等。
合理选择和设计填料塔的附件,可保证填料塔的正常操作和良好的性能。
(1)填料支承装置填料支承装置的作用是支承填料及其所持有液体的质量,帮支承装置应有足够的力学强度。
同时,应使气体和液体可顺利通过,避免在支承装置处发生液泛现象,保证填料塔的正常操作。
(2)液体分布装置若液体分布不匀,填料表面不能被液体润湿,塔的传质效率就会降低。
因此要求塔顶填料层上应有良好的液体初始分布,保证有足够数目且分布均匀的喷淋点,以防止塔内的壁流和沟流现象发生。
(3)流体再分布装置当液体在乱堆填料层内向下流动时,有偏向塔壁流动的倾向。
为将流到塔壁处的液体重新汇集并引入塔中央区域,应在填料层中每隔一段高度设置液体再分布装置。