数据结构课程设计报告(农夫过河)
农夫过河
![农夫过河](https://img.taocdn.com/s3/m/6add0e830722192e4436f66a.png)
农夫过河问题——程序设计(2009-06-05 13:38:22)标签:分类:一、问题需求分析一个农夫带着一只狼、一只羊和一棵白菜,身处河的南岸。
他要把这些东西全部运到北岸。
问题是他面前只有一条小船,船小到只能容下他和一件物品,另外只有农夫能撑船。
另外,因为狼能吃羊,而羊爱吃白菜,所以农夫不能留下羊和白菜或者狼和羊单独在河的一边,自己离开。
请问农夫该采取什么方案才能将所有的东西运过河呢?二、算法选择求解这个问题的最简单的方法是一步一步进行试探,每一步都搜索所有可能的选择,对前一步合适的选择再考虑下一步的各种方案。
用计算机实现上述求解的搜索过程可以采用两种不同的策略:一种是广度优先(breadth_first) 搜索,另一种是深度优先(depth_first) 。
广度优先:u 广度优先的含义就是在搜索过程中总是首先搜索下面一步的所有可能状态,然后再进一步考虑更后面的各种情况。
u 要实现广度优先搜索,一般都采用队列作为辅助结构。
把下一步所有可能达到的状态都列举出来,放在这个队列中,然后顺序取出来分别进行处理,处理过程中把再下一步的状态放在队列里……。
u 由于队列的操作遵循先进先出的原则,在这个处理过程中,只有在前一步的所有情况都处理完后,才能开始后面一步各情况的处理。
三、算法的精化要模拟农夫过河问题,首先需要选择一个对问题中每个角色的位置进行描述的方法。
一个很方便的办法是用四位二进制数顺序分别表示农夫、狼、白菜和羊的位置。
例如用0表示农夫或者某东西在河的南岸,1表示在河的北岸。
因此整数5(其二进制表示为0101) 表示农夫和白菜在河的南岸,而狼和羊在北岸。
四、算法的实现完成了上面的准备工作,现在的问题变成:从初始状态二进制0000(全部在河的南岸) 出发,寻找一种全部由安全状态构成的状态序列,它以二进制1111(全部到达河的北岸) 为最终目标,并且在序列中的每一个状态都可以从前一状态通过农夫(可以带一样东西)划船过河的动作到达。
数据结构实验-农夫过河问题
![数据结构实验-农夫过河问题](https://img.taocdn.com/s3/m/b679c0fdd5bbfd0a795673f8.png)
农夫过河问题一、实验目的掌握广度优先搜索策略,并用队列求解农夫过河问题二、实验内容问题描述:一农夫带着一只狼,一只羊和一颗白菜,身处河的南岸,他要把这些东西全部运到北岸,遗憾的是他只有一只小船,小船只能容下他和一件物品。
这里只能是农夫来撑船,同时因为狼吃羊、羊吃白菜、所以农夫不能留下羊和狼或羊和白菜在河的一边,而自己离开;好在狼属肉食动物,不吃白菜。
农夫怎么才能把所有的东西安全运过河呢?实验要求如下:(1)设计物品位置的表示方法和安全判断算法;(2)设计队列的存储结构并实现队列的基本操作(建立空队列、判空、入队、出队、取对头元素),也可以使用STL中的队列进行代码的编写;(3)采用广度优先策略设计可行的过河算法;(4)输出要求:按照顺序输出一种可行的过河方案;提示:可以使用STL中的队列进行代码编写。
程序运行结果:二进制表示:1111011011100010101100011001,0000三、农夫过河算法流程⏹Step1:初始状态0000入队⏹Step2:当队列不空且没有到达结束状态1111时,循环以下操作:⏹队头状态出队⏹按照农夫一个人走、农夫分别带上三个物品走,循环以下操作:⏹农夫和物品如果在同一岸,则计算新的状态⏹如果新状态是安全的并且是没有处理过的,则更新path[ ],并将新状态入队⏹当状态为1111时,逆向输出path[ ]数组附录一:STL中队列的使用注:队列,可直接用标准模板库(STL)中的队列。
需要#include<queue>STL中的queue,里面的一些成员函数如下(具体可以查找msdn,搜索queue class):front:Returns a reference to the first element at the front of the queue.pop:Removes an element from the front of the queuepush:Adds an element to the back of the queueempty:Tests if the queue is empty三、实验代码FarmerRiver.H#ifndef FARMERRIVER_H#define FARMERRIVER_Hint FarmerOnRight(int status); //农夫,在北岸返回1,否则返回0int WorfOnRight(int status); //狼int CabbageOnRight(int status); //白菜int GoatOnRight(int status); //羊int IsSafe(int status); //判断状态是否安全,安全返回1,否则返回0void FarmerRiver();#endifSeqQueue.h#ifndef SEQQUEUE_H#define SEQQUEUE_Htypedef int DataType;struct Queue{int Max;int f;int r;DataType *elem;};typedef struct Queue *SeqQueue;SeqQueue SetNullQueue_seq(int m);int IsNullQueue_seq(SeqQueue squeue);void EnQueue_seq(SeqQueue squeue, DataType x);void DeQueue_seq(SeqQueue);DataType FrontQueue_seq(SeqQueue);#endifFarmerRiver.c#include <stdio.h>#include <stdlib.h>#include "SeqQueue.h"#include "FarmerRiver.h"int FarmerOnRight(int status) //判断当前状态下农夫是否在北岸{return (0!=(status & 0x08));}int WorfOnRight(int status){return (0!=(status & 0x04));}int CabbageOnRight(int status){return (0!=(status & 0x02));}int GoatOnRight(int status){return (0!=(status & 0x01));}int IsSafe(int status) //判断当前状态是否安全{if ((GoatOnRight(status)==CabbageOnRight(status)) &&(GoatOnRight(status)!=FarmerOnRight(status)))return (0); //羊吃白菜if ((GoatOnRight(status)==WorfOnRight(status)) && (GoatOnRight(status)!=FarmerOnRight(status))) return 0; //狼吃羊return 1; //其他状态是安全的}void FarmerRiver(){int i, movers, nowstatus, newstatus;int status[16]; //用于记录已考虑的状态路径SeqQueue moveTo;moveTo = SetNullQueue_seq(20); //创建空列队EnQueue_seq(moveTo, 0x00); //初始状态时所有物品在北岸,初始状态入队for (i=0; i<16; i++) //数组status初始化为-1{status[i] = -1;}status[0] = 0;//队列非空且没有到达结束状态while (!IsNullQueue_seq(moveTo) && (status[15]==-1)){nowstatus = FrontQueue_seq(moveTo); //取队头DeQueue_seq(moveTo);for (movers=1; movers<=8; movers<<=1)//考虑各种物品在同一侧if ((0!=(nowstatus & 0x08)) == (0!=(nowstatus & movers)))//农夫与移动的物品在同一侧{newstatus = nowstatus ^ (0x08 | movers); //计算新状态//如果新状态是安全的且之前没有出现过if (IsSafe(newstatus)&&(status[newstatus] == -1)){status[newstatus] = nowstatus; //记录新状态EnQueue_seq(moveTo, newstatus); //新状态入队}}}//输出经过的状态路径if (status[15]!=-1){printf("The reverse path is: \n");for (nowstatus=15; nowstatus>=0; nowstatus=status[nowstatus]){printf("The nowstatus is: %d\n", nowstatus);if (nowstatus == 0)return;}}elseprintf("No solution.\n");}Sequeue.c#include <stdio.h>#include <stdlib.h>#include "SeqQueue.h"SeqQueue SetNullQueue_seq(int m){SeqQueue squeue;squeue = (SeqQueue)malloc(sizeof(struct Queue));if (squeue==NULL){printf("Alloc failure\n");return NULL;}squeue->elem = (int *)malloc(sizeof(DataType) * m);if (squeue->elem!=NULL){squeue->Max = m;squeue->f = 0;squeue->r = 0;return squeue;}else free(squeue);}int IsNullQueue_seq(SeqQueue squeue){return (squeue->f==squeue->r);}void EnQueue_seq(SeqQueue squeue, DataType x) //入队{if ((squeue->r+1) % squeue->Max==squeue->f) //是否满printf("It is FULL Queue!");else{squeue->elem[squeue->r] = x;squeue->r = (squeue->r+1) % (squeue->Max);}}void DeQueue_seq(SeqQueue squeue) //出队{if (IsNullQueue_seq(squeue))printf("It is empty queue!\n");elsesqueue->f = (squeue->f+1) % (squeue->Max); }DataType FrontQueue_seq(SeqQueue squeue) //求队列元素{if (squeue->f==squeue->r)printf("It is empty queue!\n");elsereturn (squeue->elem[squeue->f]);}main.c#include <stdio.h>#include <stdlib.h>#include "FarmerRiver.h"int main(void){FarmerRiver();return 0;}实验结果:四、实验总结。
农夫过河问题(数据结构课设)
![农夫过河问题(数据结构课设)](https://img.taocdn.com/s3/m/d8866ed26f1aff00bed51e98.png)
#include "stdafx.h"#include <stdio.h>/*0代表在河的这边;1代表在河的对岸*/struct Condition {int farmer;int wolf;int sheep;int cabbage;};/*设置结构体*/struct Condition conditions [100];/*结构体条件数组*/char* action[100];/*字符串数组*/ void takeWolfOver(int i)/*把狼带过去*/ {action[i] = "带狼过去. (wolf)--->对岸";conditions[i+1].wolf=1;conditions[i+1].sheep=conditions[i].sheep;conditions[i+1].cabbage=conditions[i].cabbage;} void takeWolfBack(int i)/*把狼带回来*/{action[i] = "带狼回来. 本岸<---(wolf)";conditions[i+1].wolf=0;conditions[i+1].sheep=conditions[i].sheep;conditions[i+1].cabbage=conditions[i].cabbage;} void takeSheepOver(int i)/*把羊带过去*/{action[i] = "带羊过去. (sheep)--->对岸";conditions[i+1].wolf=conditions[i].wolf;conditions[i+1].sheep=1;conditions[i+1].cabbage=conditions[i].cabbage;} void takeSheepBack(int i)/*把羊带回来*/{action[i] = "带羊回来. 本岸<---(sheep)";conditions[i+1].wolf=conditions[i].wolf;conditions[i+1].sheep=0;conditions[i+1].cabbage=conditions[i].cabbage;} void takeCabbageOver(int i)/*把菜带过去*/{action[i] = "带菜过去. (cabbage)--->对岸";conditions[i+1].wolf=conditions[i].wolf;conditions[i+1].sheep=conditions[i].sheep;conditions[i+1].cabbage=1;} void takeCabbageBack(int i)/*把菜带回来*/{action[i] = "带菜回来. 本岸<---(cabbage)";conditions[i+1].wolf=conditions[i].wolf;conditions[i+1].sheep=conditions[i].sheep;conditions[i+1].cabbage=0;} void getOverBarely(int i)/*过河时的情况*/{action[i] = "空手过去. (barely)--->对岸";conditions[i+1].wolf=conditions[i].wolf;conditions[i+1].sheep=conditions[i].sheep;conditions[i+1].cabbage=conditions[i].cabbage;/*全不动*/} void getBackBarely(int i)/*返回时的情况*/{action[i] = "空手回来. 本岸<---(barely)";conditions[i+1].wolf=conditions[i].wolf;conditions[i+1].sheep=conditions[i].sheep;conditions[i+1].cabbage=conditions[i].cabbage;} void showSolution(int i)/*显示解决方法*/{int c;printf("\n");printf ("%s\n", "解决办法:");for(c=0; c<i; c++){printf ("step%d: %s\n", c+1, action[c]);/*换行输出*/}printf ("%s\n", "Successful!");}void tryOneStep(int i)/*再试一遍*/{int c;int j;if(i>=100)/*检查循环是否出现问题*/{printf("%s\n", "渡河步骤达到100步,出错!");return;}if(conditions[i].farmer==1&&conditions[i].wolf==1&&conditions[i].sheep==1&&conditions[i].cabbage==1)/*检查是否都过河*/{showSolution(i);/*是的,都过河了.返回*/return;}if((conditions[i].farmer!=conditions[i].wolf &&conditions[i].wolf==conditions[i].sheep)||(conditions[i].farmer!=conditions[i].sheep && conditions[i].sheep==conditions[i].cabbage))/*检查是否丢失,出错*/{/*不,狼会吃掉羊,或者羊会吃掉菜的*/return;}/*检查条件是否满足*/for (c=0; c<i; c++){if(conditions[c].farmer==conditions[i].farmer&&conditions[c].wolf==conditions[i].wolf&&conditions[c].sheep==conditions[i].sheep&&conditions[c].cabbage==conditions[i].cabbage) {return;}}j=i+1;if(conditions[i].farmer==0)/*农夫在河这边*/{conditions[j].farmer=1;getOverBarely(i);tryOneStep(j);if(conditions[i].wolf==0)/*如果狼没带过去*/{takeWolfOver(i);tryOneStep(j);}if(conditions[i].sheep==0){takeSheepOver(i);tryOneStep(j);}if(conditions[i].cabbage==0){takeCabbageOver(i);tryOneStep(j);}}else{conditions[j].farmer=0;getBackBarely(i);tryOneStep(j);if(conditions[i].wolf==1){takeWolfBack(i);tryOneStep(j);}if(conditions[i].sheep==1){takeSheepBack(i);tryOneStep(j);}if(conditions[i].cabbage==1){takeCabbageBack(i);tryOneStep(j);}}} int main()/*主函数*/{printf("问题:农夫过河。
农夫过河问题(C++编写)
![农夫过河问题(C++编写)](https://img.taocdn.com/s3/m/d3057f711ed9ad51f01df24e.png)
cout<<"\t 农夫使三样东西平安过河方法为:"<<endl<<endl;
Ferry(0);
}
for (i = 0; i < ferryTimes; i++) {
if (a[i][3] == 0) {
cout<<"\t\t\t 载"<<name[b[i]]<<"到对岸"<<endl; } else {
cout<<"\t\t\t 载"<<name[b[i]]<<"回本岸"<<endl; } } cout<<endl; return; } //狼单独和羊在一起以及羊和白菜单独在一起的情况 if (a[ferryTimes][1] != a[ferryTimes][3] && (a[ferryTimes][2] == a[ferryTimes][1] || a[ferryTimes][0] == a[ferryTimes][1])) { return; }
3)、如果上两个条件都不满,则可执行运输的动作,但每次都应考虑,该运 输情况以前是否执行过(即两岸以及船上的东西以及各自位置和以前完全相同),
农夫过河问题
![农夫过河问题](https://img.taocdn.com/s3/m/87976557a8956bec0975e381.png)
课程设计题目:农夫过河一.问题描述一个农夫带着一只狼、一只羊和一箩白菜,身处河的南岸。
他要把这些东西全部运到北岸。
他面前只有一条小船,船只能容下他和一件物品,另外只有农夫才能撑船。
过河有以下规则:(1)农夫一次最多能带一样东西(或者是狼、或者是羊、或者是白菜)过河;(2)当农夫不在场是狼会吃羊;(3)当农夫不在场是羊会吃掉白菜。
现在要求为农夫想一个方案,能将3样东西顺利地带过河。
从出事状态开始,农夫将羊带过河,然后农夫将羊待会来也是符合规则的,然后农夫将羊带过河仍然是符合规则的,但是如此这般往返,搜索过程便进入了死循环,因此,在这里,采用改进的搜索算法进行搜索。
二.基本要求(1)为农夫过河问题抽象数据类型,体会数据模型在问题求解中的重要性;(2)要求利用数据结构的方法以及C++的编程思想来完成问题的综合设计;(3)在问题的设计中,使用深度优先遍历搜索方式,避免死循环状态;(4)设计一个算法求解农夫过河问题,并输出过河方案;(5)分析算法的时间复杂度。
三.概要设计(1)数据结构的设计typedef struct // 图的顶点{int farmer; // 农夫int wolf; // 狼int sheep; // 羊int veget; // 白菜}Vertex;设计Vertex结构体的目的是为了存储农夫、狼、羊、白菜的信息,因为在遍历图的时候,他们的位置信息会发生变化,例如1111说明他们都在河的北岸,而0000说明他们都在河的南岸。
t ypedef struct{int vertexNum; // 图的当前顶点数Vertex vertex[VertexNum]; // 顶点向量(代表顶点)bool Edge[VertexNum][VertexNum]; // 邻接矩阵. 用于存储图中的边,其矩阵元素个数取决于顶点个数,与边数无关}AdjGraph; // 定义图的邻接矩阵存储结构存储图的方法是用邻接矩阵,所以设计一个简单的AdjGraph结构体是为了储图的顶点数与边数,农夫过河问题我采用的是图的深度优先遍历思想。
农夫过河C语言课程设计
![农夫过河C语言课程设计](https://img.taocdn.com/s3/m/5c354a8f29ea81c758f5f61fb7360b4c2f3f2a5d.png)
农夫过河C语言课程设计一、课程目标知识目标:1. 理解C语言中基本的数据类型和语法结构;2. 学会使用C语言进行逻辑判断和循环控制;3. 掌握C语言中的函数定义和调用方法;4. 了解“农夫过河”问题的背景和解决方案。
技能目标:1. 能够运用C语言编写出解决“农夫过河”问题的程序;2. 培养逻辑思维和问题分析能力,将实际问题转化为程序代码;3. 提高编程实践能力,学会调试和修改代码,解决程序中的错误。
情感态度价值观目标:1. 激发学生对编程的兴趣,培养计算机科学素养;2. 培养学生面对问题积极思考、勇于探索的精神;3. 强调团队合作,学会与他人共同解决问题,培养沟通与协作能力。
分析课程性质、学生特点和教学要求:本课程为C语言编程课程,旨在让学生掌握C语言的基本知识,并通过解决实际问题,提高编程能力。
学生为初中生,具有一定的逻辑思维能力和数学基础。
教学要求注重实践,将理论教学与实际操作相结合,引导学生主动参与,培养其独立思考和解决问题的能力。
课程目标分解:1. 知识目标:通过讲解和实例演示,让学生掌握C语言的基本知识;2. 技能目标:通过编写“农夫过河”程序,提高学生的编程实践能力;3. 情感态度价值观目标:通过课程教学,激发学生对编程的兴趣,培养其积极思考、勇于探索的精神,以及团队合作能力。
二、教学内容1. C语言基础知识回顾:- 数据类型、变量、常量- 运算符、表达式、语句- 选择结构(if-else)- 循环结构(for、while、do-while)2. 函数定义与调用:- 函数的概念和作用- 函数的定义、声明和调用- 递归函数的原理和应用3. “农夫过河”问题分析:- 问题的描述和规则- 状态表示和状态空间- 搜索策略(深度优先、广度优先)4. 编程实践:- 设计“农夫过河”问题的算法- 编写C语言程序实现算法- 调试和优化程序5. 教学内容安排与进度:- 第一课时:C语言基础知识回顾,引入“农夫过河”问题- 第二课时:函数定义与调用,分析问题并设计算法- 第三课时:编写程序,实现“农夫过河”算法- 第四课时:调试优化程序,总结经验,展示成果教学内容关联教材章节:- 《C语言程序设计》第一章:C语言概述- 《C语言程序设计》第二章:数据类型与运算符- 《C语言程序设计》第三章:控制结构- 《C语言程序设计》第四章:函数- 《C语言程序设计》第十章:算法与程序设计实例教学内容注重科学性和系统性,结合教材章节,使学生能够在掌握C语言基础知识的基础上,学会解决实际问题,提高编程能力。
数据结构实验-农夫过河问题
![数据结构实验-农夫过河问题](https://img.taocdn.com/s3/m/a01c800bcfc789eb172dc838.png)
农夫过河问题一、实验目的掌握广度优先搜索策略,并用队列求解农夫过河问题二、实验内容问题描述:一农夫带着一只狼,一只羊和一颗白菜,身处河的南岸,他要把这些东西全部运到北岸,遗憾的是他只有一只小船,小船只能容下他和一件物品。
这里只能是农夫来撑船,同时因为狼吃羊、羊吃白菜、所以农夫不能留下羊和狼或羊和白菜在河的一边,而自己离开;好在狼属肉食动物,不吃白菜。
农夫怎么才能把所有的东西安全运过河呢?实验要求如下:(1)设计物品位置的表示方法和安全判断算法;(2)设计队列的存储结构并实现队列的基本操作(建立空队列、判空、入队、出队、取对头元素),也可以使用STL中的队列进行代码的编写;(3)采用广度优先策略设计可行的过河算法;(4)输出要求:按照顺序输出一种可行的过河方案;提示:可以使用STL中的队列进行代码编写。
程序运行结果:二进制表示:1111011011100010101100011001,0000三、农夫过河算法流程⏹Step1:初始状态0000入队⏹Step2:当队列不空且没有到达结束状态1111时,循环以下操作:⏹队头状态出队⏹按照农夫一个人走、农夫分别带上三个物品走,循环以下操作:⏹农夫和物品如果在同一岸,则计算新的状态⏹如果新状态是安全的并且是没有处理过的,则更新path[ ],并将新状态入队⏹当状态为1111时,逆向输出path[ ]数组附录一:STL中队列的使用注:队列,可直接用标准模板库(STL)中的队列。
需要#include<queue>STL中的queue,里面的一些成员函数如下(具体可以查找msdn,搜索queue class):front:Returns a reference to the first element at the front of the queue.pop:Removes an element from the front of the queuepush:Adds an element to the back of the queueempty:Tests if the queue is empty三、实验代码FarmerRiver.H#ifndef FARMERRIVER_H#define FARMERRIVER_Hint FarmerOnRight(int status); //农夫,在北岸返回1,否则返回0int WorfOnRight(int status); //狼int CabbageOnRight(int status); //白菜int GoatOnRight(int status); //羊int IsSafe(int status); //判断状态是否安全,安全返回1,否则返回0void FarmerRiver();#endifSeqQueue.h#ifndef SEQQUEUE_H#define SEQQUEUE_Htypedef int DataType;struct Queue{int Max;int f;int r;DataType *elem;};typedef struct Queue *SeqQueue;SeqQueue SetNullQueue_seq(int m);int IsNullQueue_seq(SeqQueue squeue);void EnQueue_seq(SeqQueue squeue, DataType x);void DeQueue_seq(SeqQueue);DataType FrontQueue_seq(SeqQueue);#endifFarmerRiver.c#include <stdio.h>#include <stdlib.h>#include "SeqQueue.h"#include "FarmerRiver.h"int FarmerOnRight(int status) //判断当前状态下农夫是否在北岸{return (0!=(status & 0x08));}int WorfOnRight(int status){return (0!=(status & 0x04));}int CabbageOnRight(int status){return (0!=(status & 0x02));}int GoatOnRight(int status){return (0!=(status & 0x01));}int IsSafe(int status) //判断当前状态是否安全{if ((GoatOnRight(status)==CabbageOnRight(status)) && (GoatOnRight(status)!=FarmerOnRight(status)))return (0); //羊吃白菜if ((GoatOnRight(status)==WorfOnRight(status)) && (GoatOnRight(status)!=FarmerOnRight(status))) return 0; //狼吃羊return 1; //其他状态是安全的}void FarmerRiver(){int i, movers, nowstatus, newstatus;int status[16]; //用于记录已考虑的状态路径SeqQueue moveTo;moveTo = SetNullQueue_seq(20); //创建空列队EnQueue_seq(moveTo, 0x00); //初始状态时所有物品在北岸,初始状态入队for (i=0; i<16; i++) //数组status初始化为-1{status[i] = -1;}status[0] = 0;//队列非空且没有到达结束状态while (!IsNullQueue_seq(moveTo) && (status[15]==-1)){nowstatus = FrontQueue_seq(moveTo); //取队头DeQueue_seq(moveTo);for (movers=1; movers<=8; movers<<=1)//考虑各种物品在同一侧if ((0!=(nowstatus & 0x08)) == (0!=(nowstatus & movers)))//农夫与移动的物品在同一侧{newstatus = nowstatus ^ (0x08 | movers); //计算新状态//如果新状态是安全的且之前没有出现过if (IsSafe(newstatus)&&(status[newstatus] == -1)){status[newstatus] = nowstatus; //记录新状态EnQueue_seq(moveTo, newstatus); //新状态入队}}}//输出经过的状态路径if (status[15]!=-1){printf("The reverse path is: \n");for (nowstatus=15; nowstatus>=0; nowstatus=status[nowstatus]){printf("The nowstatus is: %d\n", nowstatus);if (nowstatus == 0)return;}}elseprintf("No solution.\n");}Sequeue.c#include <stdio.h>#include <stdlib.h>#include "SeqQueue.h"SeqQueue SetNullQueue_seq(int m){SeqQueue squeue;squeue = (SeqQueue)malloc(sizeof(struct Queue));if (squeue==NULL){printf("Alloc failure\n");return NULL;}squeue->elem = (int *)malloc(sizeof(DataType) * m);if (squeue->elem!=NULL){squeue->Max = m;squeue->f = 0;squeue->r = 0;return squeue;}else free(squeue);}int IsNullQueue_seq(SeqQueue squeue){return (squeue->f==squeue->r);}void EnQueue_seq(SeqQueue squeue, DataType x) //入队{if ((squeue->r+1) % squeue->Max==squeue->f) //是否满printf("It is FULL Queue!");else{squeue->elem[squeue->r] = x;squeue->r = (squeue->r+1) % (squeue->Max);}}void DeQueue_seq(SeqQueue squeue) //出队{if (IsNullQueue_seq(squeue))printf("It is empty queue!\n");elsesqueue->f = (squeue->f+1) % (squeue->Max); }DataType FrontQueue_seq(SeqQueue squeue) //求队列元素{if (squeue->f==squeue->r)printf("It is empty queue!\n");elsereturn (squeue->elem[squeue->f]);}main.c#include <stdio.h>#include <stdlib.h>#include "FarmerRiver.h"int main(void){FarmerRiver();return 0;}实验结果:四、实验总结。
数据结构农夫过河项目课报告
![数据结构农夫过河项目课报告](https://img.taocdn.com/s3/m/7d6fc0b4b14e852459fb571b.png)
数据结构农夫过河项目课报告数据结构-农夫过河项目课报告-计算机四班第七组项目名称:农夫过河算法与数据结构设计专业班级:计算机科学与技术四班学生姓名:王喆指导教师: 完成日期:2015年12月28日数据结构-农夫过河项目课报告-计算机四班第七组农夫过河算法与数据结构设计摘要农夫过河问题即一个农夫带着一只狼、一只羊和一棵白菜,身处河的南岸,他需要把这些东西全部运到河的北岸。
而他只有一条小船,且这只小船小到只能容下他和一件物品,另外只有农夫能撑船。
农夫不能留下狼和羊自己离开,也不能留下白菜和羊自己离开,更不能留下狼,羊和白菜而独自离开,因为没有农夫的照看,狼就要吃掉羊,而羊又要吃掉白菜。
好在狼是是肉动物,它不吃白菜,问农夫应该采取什么方案才能将所有的东西安全地从河的南岸运到北岸,这类农夫问题是一个传统的数据结构问题,农夫过河问题根据图求解的搜索过程可采用两种不同的策略:一种是图的深度优先遍历搜索,另外一种是广度优先遍历搜索。
如果采用深度优先遍历搜索,则需要采用递归的方式来编写程序,而这种程序的系统的开销比较大,如果采用广度优先搜索,则可以借助队列的方式,这种方式开销较小。
关键字:农夫过河,广度优先遍历搜索,队列,深度优先遍历搜索,递归。
2数据结构-农夫过河项目课报告-计算机四班第七组目录1.前言…………………………………………………………42.设计任务与技术要求………………………………………43.总体设计方案………………………………………………44.数据结构和算法的设计……………………………………55.程序测试与调试(一)……………………………………7 6.程序测试与调试(二)..........................................9 7.程序出现的问题及修改情况....................................14 8.心得与体会.........................................................14 参考文献 (15)3数据结构-农夫过河项目课报告-计算机四班第七组1.前言课程研究项目是《数据结构》课程学习的重要方式之一,也是《数据结构》课程学习的重要组成部分之一。
数据结构课程设计-农夫过河-实验报告.
![数据结构课程设计-农夫过河-实验报告.](https://img.taocdn.com/s3/m/ccda4739178884868762caaedd3383c4ba4cb455.png)
一、需求分析描述1、针对实现整个过程需要多步,不同步骤中各个事物所处位置不同的情况,可定义一个结构体来实现对四个对象狼、羊、白菜和农夫的表示。
对于起始岸和目的岸,可以用0或者1来表示,以实现在程序设计中的简便性。
2、题目要求给出四种事物的过河步骤,没有对先后顺序进行约束,这就需要给各个事物依次进行编号,然后依次试探,若试探成功,进行下一步试探。
这就需要使用循环或者递归算法,避免随机盲目运算且保证每种情况均试探到。
3、题目要求求出农夫带一只羊,一条狼和一颗白菜过河的办法,所以依次成功返回运算结果后,需要继续运算,直至求出结果,即给出农夫的过河方案。
4、输出界面要求具有每一步中农夫所带对象及每步之后各岸的物体,需要定义不同的数组来分别存储上述内容,并使界面所示方案清晰简洁。
二、系统架构设计1.设计中首先涉及的就是数据类型的定义,首先,定义一个结构体用来存放农夫、狼、羊、白菜的信息。
具体定义为:struct Condition{int farmer;int wolf;int sheep;int cabbage;};定义了一个结构体数组Condition conditions[100],定义状态数组用来记录他们过河的状态0:起始岸;1:目的岸;程序中定义的char action100数组用来存放各个物件以及人过河或返回的说明语句。
2.程序中定义的子函数有:2.1 将狼带到目的岸以及带回起始岸的函数takeWolfOver()和takeWolfBack ();takeWolfOver()函数中将conditions[i+1].wolf=1,白菜、羊的状态不变,同时要有action[i]=" take wolf over."将狼带到目的岸语句;takeWolfBack()函数中将conditions[i+1].wolf=0,白菜、羊的状态不变,同时要有action[i]=" take wolf back."将狼带回起始岸语句。
数据结构—农夫过河问题
![数据结构—农夫过河问题](https://img.taocdn.com/s3/m/5ca5e755c281e53a5902ff38.png)
题目:一个农夫带着一匹狼、一只羊、一颗白菜要过河,只有一条船而且农夫每次最多只能带一个动物或物品过河,并且当农夫不在的时候狼会吃羊,羊会吃白菜,列出所有安全将所有动物和物品带过河的方案。
要求:广度优先搜索农夫过河解,并输出结果源代码:#include <stdio.h>#include <stdlib.h>typedef int DataType;struct SeqQueue{int MAXNUM;int f, r;DataType *q;};typedef struct SeqQueue *PSeqQueue; // 顺序队列类型的指针类型PSeqQueue createEmptyQueue_seq(int m)//创建一个空队列{PSeqQueue queue = (PSeqQueue)malloc(sizeof(struct SeqQueue)); if (queue != NULL){queue->q = (DataType*)malloc(sizeof(DataType) *m);if (queue->q){queue->MAXNUM = m;queue->f = 0;queue->r = 0;return (queue);}elsefree(queue);}printf("Out of space!!\n"); // 存储分配失败return NULL;}int isEmptyQueue_seq(PSeqQueue queue)//判断队列是否为空{return (queue->f == queue->r);}void enQueue_seq(PSeqQueue queue, DataType x)//入队{if ((queue->r + 1) % queue->MAXNUM == queue->f)printf("Full queue.\n");else{queue->q[queue->r] = x;queue->r = (queue->r + 1) % queue->MAXNUM;}}void deQueue_seq(PSeqQueue queue)// 删除队列头部元素{if (queue->f == queue->r)printf("Empty Queue.\n");elsequeue->f = (queue->f + 1) % queue->MAXNUM;}DataType frontQueue_seq(PSeqQueue queue)//取队头元素{if (queue->f == queue->r)printf("Empty Queue.\n");elsereturn (queue->q[queue->f]);}int farmer(int location)//判断农夫的位置 1000表示在北岸{return (0 != (location &0x08));}int wolf(int location)//判断狼的位置 0100表示在北岸{return (0 != (location &0x04));}int cabbage(int location)//判断白菜的位置 0010表示在北岸{return (0 != (location &0x02));}int goat(int location)//判断羊的位置 0001表示在北岸{return (0 != (location &0x01));}int safe(int location)//安全状态的判断{if ((goat(location) == cabbage(location)) && (goat(location) != farmer(location))) //羊与白菜不安全return 0;if ((goat(location) == wolf(location)) && (goat(location) != farmer(location)))//羊与狼不安全return 0;return 1; // 其他状态是安全的}void bin_print(int num)//将十进制数转换成二进制数输出{char tmp[4];int i;for (i = 0; i < 4; ++i){tmp[i] = num & 0x01;num >>= 1;}for (i = 3; i >= 0; --i)putchar((tmp[i] == 0)?'0':'1');return;}int main(){int i, movers, location, newlocation;int a=0;int r[16];int route[16]; //用于记录已考虑的状态路径PSeqQueue moveTo; //用于记录可以安全到达的中间状态moveTo = createEmptyQueue_seq(20); //创建空队列enQueue_seq(moveTo, 0x00); //初始状态进队列for (i = 0; i < 16; i++)route[i] = -1; //准备数组route初值route[0] = 0;while (!isEmptyQueue_seq(moveTo) && (route[15] == - 1)){location = frontQueue_seq(moveTo); //取队头状态为当前状态deQueue_seq(moveTo);for (movers = 1; movers <= 8; movers <<= 1)//考虑各种物品移动 if ((0 != (location & 0x08)) == (0 != (location & movers)))//判断农夫与移动的物品是否在同一侧{newlocation = location ^ (0x08 | movers);//计算新状态,代表把船上的(0x08|movers)从一个岸移到另一个岸;(0x08|movers)代表船上有农夫和movers代表的东西if (safe(newlocation) && (route[newlocation] == -1)) //新状态安全且未处理{route[newlocation] = location; //记录新状态的前驱 enQueue_seq(moveTo, newlocation); //新状态入队}}}// 打印出路径if (route[15] != -1)//到达最终状态{printf("The reverse path is : \n");for (location = 15; location >= 0; location = route[location]) {r[a]=location;a++;if (location == 0) break;}for(i=a-1;i>=0;i--){printf("%d ",r[i]);bin_print(r[i]);//用1表示北岸,0表示南岸,用四位二进制数的顺序依次表示农夫、狼、白菜、羊的位置if(r[i]==0) printf("开始\n");//0000else if(r[i]==1) printf(" 农夫独自返回南岸\n"); //0001else if(r[i]==2) printf(" 农夫带着羊返回南岸\n");//0010else if(r[i]==3) printf(" 白菜与羊共同在北岸,不安全\n"); //0011else if(r[i]==4) printf(" 只有狼在北岸,农夫独自返回南岸\n"); //0100else if(r[i]==5) printf(" 狼与羊共同在北岸,不安全\n");//0101else if(r[i]==6) printf(" 农夫独自返回南岸\n");//0110else if(r[i]==7) printf(" 狼、白菜和羊共同在北岸,不安全\n");// 0111else if(r[i]==8) printf(" 农夫独自去北岸\n");//1000else if(r[i]==9) printf(" 农夫把羊带到北岸\n");//1001else if(r[i]==10) printf(" 农夫把白菜带到北岸\n");//1010else if(r[i]==11) printf(" 农夫把白菜带到北岸\n");//1011else if(r[i]==12) printf(" 农夫把狼带到北岸\n");//1100else if(r[i]==13) printf(" 只有白菜在南岸\n");//1101else if(r[i]==14) printf(" 农夫把狼带到北岸\n");//1110else if(r[i]==15) printf(" 农夫把羊带到北岸\n");//1111 putchar('\n');}printf("\n");}elseprintf("No solution.\n");}。
数据结构课程设计报告(农夫过河)
![数据结构课程设计报告(农夫过河)](https://img.taocdn.com/s3/m/9aef9393680203d8ce2f2427.png)
目录引言 (2)1 问题描述 (2)基本要求 (2)2.1为农夫过河问题抽象数据模型体会数据模型在问题求解中的重要性; (2)2.2设计一个算法求解农夫过河问题,并输出过河方案; (2)3 概要设计 (2)3.1数据结构的设计。
(2)3.1.1农夫过河问题的模型化 (2)3.1.2 算法的设计 (3)4、运行与测试 (5)5、总结与心得 (6)附录 (6)参考文献 (12)引言所谓农夫过河问题是指农夫带一只狼、一只羊和一棵白菜在河南岸, 需要安全运到北岸。
一条小船只能容下他和一件物品, 只有农夫能撑船。
问农夫怎么能安全过河, 当然狼吃羊, 羊吃白菜, 农夫不能将这两种或三种物品单独放在河的一侧, 因为没有农夫的照看, 狼就要吃羊, 而羊可能要吃白菜? 这类问题的实质是系统的状态问题, 要寻求的是从初始状态经一系列的安全状态到达系统的终止状态的一条路径。
1 问题描述一个农夫带一只狼、一棵白菜和一只羊要从一条河的南岸过到北岸,农夫每次只能带一样东西过河,但是任意时刻如果农夫不在场时,狼要吃羊、羊要吃白菜,请为农夫设计过河方案。
基本要求2.1为农夫过河问题抽象数据模型体会数据模型在问题求解中的重要性;2.2设计一个算法求解农夫过河问题,并输出过河方案;3 概要设计3.1 数据结构的设计。
3.1.1农夫过河问题的模型化分析这类问题会发现以下特征:有一组状态( 如农夫和羊在南, 狼和白菜在北) ; 从一个状态可合法地转到另外几个状态( 如农夫自己过河或农夫带着羊过河) ; 有些状态不安全( 如农夫在北, 其他东西在南) ; 有一个初始状态( 都在南) ; 结束状态集( 这里只有一个, 都在北) 。
问题表示: 需要表示问题中的状态, 农夫等位于南P北( 每个有两种可能) 。
可以采用位向量, 4 个二进制位的0P1 情况表示状态, 显而易见, 共24= 16种可能状态。
从高位到低位分别表示农夫、狼、白菜和羊。
农夫过河报告(最终版)
![农夫过河报告(最终版)](https://img.taocdn.com/s3/m/2d1cfb44650e52ea551898b3.png)
农夫过河报告(最终版).12.29Administrator组员:李琦、郑鸿飞、王琅辉、张育博这最起码是一个报告,虽然我摘要农夫过河问题是应用广度优先搜索和深度优先搜索的典型问题,但这里我们应用了简单的数组,通过层层筛选的手段也解决了同样的问题,其中用到了部分广度优先搜索的思想。
前言农夫过河问题描述:一个农夫带着—只狼、一只羊和—棵白菜,身处河的南岸。
他要把这些东西全部运到北岸。
他面前只有一条小船,船只能容下他和—件物品,另外只有农夫才能撑船。
如果农夫在场,则狼不能吃羊,羊不能吃白菜,否则狼会吃羊,羊会吃白菜,所以农夫不能留下羊和白菜自己离开,也不能留下狼和羊自己离开,而狼不吃白菜。
请求出农夫将所有的东西运过河的方案。
正文1.问题抽象和数据组织农夫过河问题应该应用图的广度优先遍历或者深度优先遍历,但这里我们仅使用简单的线性表——数组,通过多重的条件限制,达成目的。
这里我们同样用0和1代表农夫、狼、羊、白菜在左岸还是在右岸,并规定0在左,1在右,我们的目的便是从0000通过一系列变换到1111。
2.农夫过河算法源代码#include <stdio.h>#define MAX 16typedef struct FWSV{i nt farmer;i nt wolf;i nt sheep;i nt vegetable;}Item;//函数原型//操作:筛选符合条件的安全的数组成员//操作前:无//操作后:返回安全数组的指针void screen(void);//操作:判断下一个数应该取安全数组中那个数//操作前: 传递一个结构体数组成员//操作后:返回另一个结构体数组指针Item * judge(Item Fwsv);Item safe[MAX];int k = 0; //用于计数safe[]中的总数int main (void){s creen();I tem * next;I tem first,second,end;f irst = safe[0];e nd = safe[k];p rintf("first:0000\n");n ext = judge(first);for (int count = 0;count <= 6;count++){if (next->farmer + next->wolf + next->sheep + next->vegetable != 0){second = *next;next = judge(second);}elsenext++;}printf("end:1111\n");r eturn 0;}void screen(void){i nt f = 0,w = 0,s = 0,v = 0;f or(f = 0;f < 2;f++){for(w = 0;w < 2;w++){for(s = 0;s < 2;s++){for(v = 0;v < 2;v++){if (!(f != s && (s == w || s == v))){safe[k].farmer = f;s afe[k].wolf = w;s afe[k].sheep = s;safe[k].vegetable = v;k++;}}}}}}Item * judge(Item Fwsv){I tem * next;Item compare[4];n ext = compare;i nt x1 = 0;i nt sum = 0;i f (Fwsv.farmer == 0){for (int x = 0;x < k;x++){//把出现过的置零操作if(safe[x].farmer == Fwsv.farmer && safe[x].wolf == Fwsv.wolf && safe[x].sheep == Fwsv.sheep && safe[x].vegetable == Fwsv.vegetable ){safe[x].farmer = 0;safe[x].wolf = 0;safe[x].sheep = 0;safe[x].vegetable = 0;}//筛选出农夫状态值与之前相反的1变0 0变1if(safe[x].farmer == 1 && (safe[x].farmer + safe[x].wolf + safe[x].sheep + safe[x].vegetable != 4 )) {compare[x1] = safe[x];x1++;}}for (int x2 = 0;x2 < 4;x2++){//删除状态值与农夫不同但是改变了的sum = Fwsv.farmer + Fwsv.wolf + Fwsv.sheep + Fwsv.vegetable;if ((Fwsv.farmer != Fwsv.wolf && compare[x2].wolf != Fwsv.wolf)||(Fwsv.farmer != Fwsv.sheep && compare[x2].sheep != Fwsv.sheep)|| (Fwsv.farmer != Fwsv.vegetable && compare[x2].vegetable != Fwsv.vegetable)|| (Fwsv.farmer != Fwsv.vegetable && compare[x2].vegetable != Fwsv.vegetable)){compare[x2].farmer = 0;compare[x2].wolf = 0;compare[x2].sheep = 0;compare[x2].vegetable = 0;}sum+=2;//对和的限制if(compare[x2].farmer + compare[x2].wolf + compare[x2].sheep + compare[x2].vegetable != sum){compare[x2].farmer = 0;compare[x2].wolf = 0;compare[x2].sheep = 0;compare[x2].vegetable = 0;}}printf("-----------------------------------------\n");for(int x3 = 0;x3 < 4;x3++){if (compare[x3].farmer + compare[x3].wolf + compare[x3].sheep + compare[x3].vegetable != 0){printf("上数与:%d%d%d%d相连\n",c ompare[x3].farmer,compare[x3].wolf,c ompare[x3].sheep,compare[x3].vegetabl );}}}i f (Fwsv.farmer == 1){for (int y = 0;y < k;y++){if(safe[y].farmer == Fwsv.farmer && safe[y].wolf == Fwsv.wolf && safe[y].sheep == Fwsv.sheep && safe[y].vegetable == Fwsv.vegetable ){safe[y].farmer = 0;safe[y].wolf = 0;safe[y].sheep = 0;safe[y].vegetable = 0;}if(safe[y].farmer == 0 && (safe[y].farmer + safe[y].wolf + safe[y].sheep + safe[y].vegetable != 0 )) {compare[x1] = safe[y];x1++;}}for (int x2 = 0;x2 < 4;x2++){sum = Fwsv.farmer + Fwsv.wolf + Fwsv.sheep + Fwsv.vegetable;if ((Fwsv.farmer != Fwsv.wolf && compare[x2].wolf != Fwsv.wolf)||(Fwsv.farmer != Fwsv.sheep && compare[x2].sheep != Fwsv.sheep)|| (Fwsv.farmer != Fwsv.vegetable && compare[x2].vegetable != Fwsv.vegetable)|| (Fwsv.farmer != Fwsv.vegetable && compare[x2].vegetable != Fwsv.vegetable)){compare[x2].farmer = 0;compare[x2].wolf = 0;compare[x2].sheep = 0;compare[x2].vegetable = 0;}}printf("-----------------------------------------\n");for(int x3 = 0;x3 < 4;x3++){if (compare[x3].farmer + compare[x3].wolf + compare[x3].sheep + compare[x3].vegetable != 0){printf("上数与:%d%d%d%d相连\n",compare[x3].farmer,compare[x3].wolf,com pare[x3].sheep,compare[x3].vegetable );}}r eturn next;}3.算法功能说明和流程描述首先我们定义了一个结构体Itemtypedef struct FWSV{int farmer;int wolf;int sheep;int vegetable;}Item;Item中包含了农夫(farmer),狼(wolf),羊(sheep),白菜(vegetable),用来表示农夫、狼、羊、白菜的状态,并作出规定当为0的时候表示在左岸,当为1的时候表示在右岸,我们的目标便是从0000的状态到1111的状态。
农夫过河实验报告——数据结构
![农夫过河实验报告——数据结构](https://img.taocdn.com/s3/m/7d09ef6e7e21af45b307a850.png)
数据结构实验报告——实验四农夫过河的求解本实验的目的是进一步理解顺序表和队列的逻辑结构和存储结构,进一步提高使用理论知识指导解决实际问题的能力。
一、【问题描述】一个农夫带着一只狼、一只羊和一棵白菜,身处河的南岸。
他要把这些东西全部运到北岸。
他面前只有一条小船,船只能容下他和一件物品,另外只有农夫才能撑船。
如果农夫在场,则狼不能吃羊,羊不能吃白菜,否则狼会吃羊,羊会吃白菜,所以农夫不能留下羊和白菜自己离开,也不能留下狼和羊自己离开,而狼不吃白菜。
请求出农夫将所有的东西运过河的方案。
二、【数据结构设计】求解这个问题的简单的方法是一步一步进行试探,每一步搜索所有可能的选择,对前一步合适的选择再考虑下一步的各种方案。
要模拟农夫过河问题,首先需要对问题中每个角色的位置进行描述。
一个很方便的办法是用四位二进制数顺序分别表示农夫、狼、白菜和羊的位置。
用0表示农夫或者某东西在河的南岸,1表示在河的北岸。
例如整数5(其二进制表示为0101) 表示农夫和白菜在河的南岸,而狼和羊在北岸。
现在问题变成:从初始状态二进制0000(全部在河的南岸) 出发,寻找一种全部由安全状态构成的状态序列,它以二进制1111(全部到达河的北岸)为最终目标,并且在序列中的每一个状态都可以从前一状态到达。
为避免瞎费功夫,要求在序列中不出现重复的状态。
实现上述求解的搜索过程可以采用两种不同的策略:一种是广度优先(breadth_first) 搜索,另一种是深度优先(depth_first) 搜索。
本书只介绍在广度优先搜索方法中采用的数据结构设计。
广度优先就是在搜索过程中总是首先搜索下面一步的所有可能状态,再进一步考虑更后面的各种情况。
要实现广度优先搜索,可以使用队列。
把下一步所有可能的状态都列举出来,放在队列中,再顺序取出来分别进行处理,处理过程中把再下一步的状态放在队列里……。
由于队列的操作遵循先进先出的原则,在这个处理过程中,只有在前一步的所有情况都处理完后,才能开始后面一步各情况的处理。
过河问题,数据结构
![过河问题,数据结构](https://img.taocdn.com/s3/m/c0a4e1ea19e8b8f67c1cb921.png)
数据结构课程设计报告1.问题描述(第27题)有一人要将自己的兔子、蔬菜和狐狸等三件物品运过河。
但过河所用的船每次只能装其中的两件,而这三件物品之间又存在一定的制约关系:兔子不能单独和狐狸以及不能和蔬菜在一起,因为狐狸要吃兔子,兔子也能吃蔬菜。
试构造出问题的模型,并编程实现这一问题的求解。
2、模型表示农夫要把三件物品运过河,但三个物品之间又有一定的制约关系。
因此河的两岸,可以用几个状态来表示。
那么为了能够把物品安全的运过河,河两岸的状态可以表示为:用1表示蔬菜,2表示兔子,3表示狐狸,0表示移走了河的此岸河的彼岸(1,2,3) (0,0,0)(1,0,3) (0,2,0)(0,0,3) (1,2,0)(0,2,3) (1,0,0)(0,2,0) (1,0,3)(0,0,0) (1,2,3)为了能够把河两岸的状态正确的表示出来,那么首要解决的问题就是如何确定移走和带回。
设计一个函数来确定带回那个权值(1,2,3,0),这样可以形成河两岸的几种状态。
(1,2,0)、(0,2,3)、(1,2,3)在农夫不在的情况下均是不稳定状态需要移走或者带回。
兔子对于蔬菜和狐狸两个量均有影响。
而我们可以观察到(1,0,3)在农夫不在的情况下是个稳定的状态,从而可以确定移走三个物品的路径了:兔子过去;没有东西回来.白菜过去;兔子回来.狼过去;没有东西回来.兔子过去;没有东西回来.3、算法的思想描述通过对河两岸状态的判断,确定移走哪个、带回哪个。
因此这就需要一个功能函数int begin(int first,int second,int third,int number)来实现这个功能。
在实现此函数的过程中,对剩余量进行判断,用switch()选择性的语句。
河的此岸还剩三个的时候,直间返回中间量,即兔子;河的此岸还剩两个的时候,分三种情况:(1)有兔子、狼时,返回狼。
(2)不移走时,相当于回到初始状态,因为兔子变量对其他两个均有影响。
数据结构课程设计报告(农夫过河)
![数据结构课程设计报告(农夫过河)](https://img.taocdn.com/s3/m/1c9c3d9f51e79b89680226f5.png)
目录引言 (2)1 问题描述 (3)基本要求 (3)2.1为农夫过河问题抽象数据模型体会数据模型在问题求解中的重要性; (3)2.2设计一个算法求解农夫过河问题,并输出过河方案; (3)3 概要设计 (3)3.1数据结构的设计。
(3)3.1.1农夫过河问题的模型化 (3)3.1.2 算法的设计 (4)4、运行与测试 (6)5、总结与心得 (7)附录 (7)参考文献 (13)引言所谓农夫过河问题是指农夫带一只狼、一只羊和一棵白菜在河南岸, 需要安全运到北岸。
一条小船只能容下他和一件物品, 只有农夫能撑船。
问农夫怎么能安全过河, 当然狼吃羊, 羊吃白菜, 农夫不能将这两种或三种物品单独放在河的一侧, 因为没有农夫的照看, 狼就要吃羊, 而羊可能要吃白菜? 这类问题的实质是系统的状态问题, 要寻求的是从初始状态经一系列的安全状态到达系统的终止状态的一条路径。
1 问题描述一个农夫带一只狼、一棵白菜和一只羊要从一条河的南岸过到北岸,农夫每次只能带一样东西过河,但是任意时刻如果农夫不在场时,狼要吃羊、羊要吃白菜,请为农夫设计过河方案。
基本要求2.1为农夫过河问题抽象数据模型体会数据模型在问题求解中的重要性;2.2设计一个算法求解农夫过河问题,并输出过河方案;3 概要设计3.1 数据结构的设计。
3.1.1农夫过河问题的模型化分析这类问题会发现以下特征:有一组状态( 如农夫和羊在南, 狼和白菜在北) ; 从一个状态可合法地转到另外几个状态( 如农夫自己过河或农夫带着羊过河) ; 有些状态不安全( 如农夫在北, 其他东西在南) ; 有一个初始状态( 都在南) ; 结束状态集( 这里只有一个, 都在北) 。
问题表示: 需要表示问题中的状态, 农夫等位于南P北( 每个有两种可能) 。
可以采用位向量, 4 个二进制位的0P1 情况表示状态, 显而易见, 共24= 16种可能状态。
从高位到低位分别表示农夫、狼、白菜和羊。
农夫过河C语言课程设计
![农夫过河C语言课程设计](https://img.taocdn.com/s3/m/3d748877bc64783e0912a21614791711cd797965.png)
农夫过河C语言课程设计一、教学目标本课程的学习目标包括以下三个方面:1.知识目标:学生需要掌握C语言的基本语法、数据类型、运算符、控制结构、函数等核心知识,理解C语言的编程思想和方法,能够独立编写简单的C语言程序。
2.技能目标:学生能够熟练使用C语言编程工具,掌握代码的调试和运行方法,具备自主学习和解决问题的能力。
3.情感态度价值观目标:培养学生对计算机科学的兴趣和热情,提高学生逻辑思维和抽象思维能力,培养学生良好的编程习惯和团队合作精神。
二、教学内容本课程的教学内容主要包括以下几个部分:1.C语言基本语法:数据类型、变量、常量、运算符、表达式等。
2.控制结构:顺序结构、分支结构、循环结构等。
3.函数:函数的定义、调用、参数传递、返回值等。
4.数组和字符串:一维数组、多维数组、字符串的基本操作等。
5.指针:指针的概念、指针的运算、指针与数组、指针与函数等。
6.结构体和联合体:结构体的定义、使用、联合体的定义和使用等。
7.文件操作:文件的打开、关闭、读写等基本操作。
三、教学方法本课程采用多种教学方法,以激发学生的学习兴趣和主动性:1.讲授法:教师讲解C语言的基本语法、概念和原理,引导学生理解并掌握相关知识。
2.案例分析法:通过分析实际案例,让学生了解C语言在实际编程中的应用,提高学生的编程能力。
3.实验法:学生动手编写C语言程序,进行调试和运行,培养学生的实际编程能力。
4.讨论法:学生分组讨论问题,共同解决问题,培养学生的团队合作精神和沟通能力。
四、教学资源本课程所需的教学资源包括:1.教材:《C程序设计语言》(K&R)或《C语言程序设计》(谭浩强)。
2.参考书:《C Primer Plus》、《C和指针》等。
3.多媒体资料:课件、教学视频、编程实例等。
4.实验设备:计算机、编程环境(如Visual Studio、Code::Blocks等)。
5.在线资源:编程、论坛、博客等,供学生自主学习和交流。
农夫过河报告(最终版)
![农夫过河报告(最终版)](https://img.taocdn.com/s3/m/34bcb954fad6195f312ba696.png)
农夫过河算法实验报告组长:崔俊组员:李琦、郑鸿飞、王琅辉、张育博15.12.29摘要农夫过河问题是应用广度优先搜索和深度优先搜索的典型问题,但这里我们应用了简单的数组,通过层层筛选的手段也解决了同样的问题,其中用到了部分广度优先搜索的思想。
前言农夫过河问题描述:一个农夫带着—只狼、一只羊和—棵白菜,身处河的南岸。
他要把这些东西全部运到北岸。
他面前只有一条小船,船只能容下他和—件物品,另外只有农夫才能撑船。
如果农夫在场,则狼不能吃羊,羊不能吃白菜,否则狼会吃羊,羊会吃白菜,所以农夫不能留下羊和白菜自己离开,也不能留下狼和羊自己离开,而狼不吃白菜。
请求出农夫将所有的东西运过河的方案。
正文1.问题抽象和数据组织农夫过河问题应该应用图的广度优先遍历或者深度优先遍历,但这里我们仅使用简单的线性表——数组,通过多重的条件限制,达成目的。
这里我们同样用0和1代表农夫、狼、羊、白菜在左岸还是在右岸,并规定0在左,1在右,我们的目的便是从0000通过一系列变换到1111。
2.农夫过河算法源代码#include <stdio.h>#define MAX 16typedef struct FWSV{int farmer;int wolf;int sheep;int vegetable;}Item;//函数原型//操作:筛选符合条件的安全的数组成员//操作前:无//操作后:返回安全数组的指针void screen(void);//操作:判断下一个数应该取安全数组中那个数//操作前: 传递一个结构体数组成员//操作后:返回另一个结构体数组指针Item * judge(Item Fwsv);Item safe[MAX];int k = 0; //用于计数safe[]中的总数int main (void){screen();Item * next;Item first,second,end;first = safe[0];end = safe[k];printf("first:0000\n");next = judge(first);for (int count = 0;count <= 6;count++){if (next->farmer + next->wolf + next->sheep + next->vegetable != 0){second = *next;next = judge(second);}elsenext++;}printf("end:1111\n");return 0;}void screen(void){int f = 0,w = 0,s = 0,v = 0;for(f = 0;f < 2;f++){for(w = 0;w < 2;w++){for(s = 0;s < 2;s++){for(v = 0;v < 2;v++){if (!(f != s && (s == w || s == v))){safe[k].farmer = f;safe[k].wolf = w;safe[k].sheep = s;safe[k].vegetable = v;k++;}}}}}}Item * judge(Item Fwsv){Item * next;Item compare[4];next = compare;int x1 = 0;int sum = 0;if (Fwsv.farmer == 0){for (int x = 0;x < k;x++){//把出现过的置零操作if(safe[x].farmer == Fwsv.farmer && safe[x].wolf == Fwsv.wolf && safe[x].sheep == Fwsv.sheep && safe[x].vegetable == Fwsv.vegetable ){safe[x].farmer = 0;safe[x].wolf = 0;safe[x].sheep = 0;safe[x].vegetable = 0;}//筛选出农夫状态值与之前相反的 1变0 0变1if(safe[x].farmer == 1 && (safe[x].farmer + safe[x].wolf + safe[x].sheep + safe[x].vegetable != 4 )){compare[x1] = safe[x];x1++;}}for (int x2 = 0;x2 < 4;x2++){//删除状态值与农夫不同但是改变了的sum = Fwsv.farmer + Fwsv.wolf + Fwsv.sheep + Fwsv.vegetable;if ((Fwsv.farmer != Fwsv.wolf && compare[x2].wolf != Fwsv.wolf) ||(Fwsv.farmer != Fwsv.sheep && compare[x2].sheep != Fwsv.sheep)|| (Fwsv.farmer != Fwsv.vegetable && compare[x2].vegetable != Fwsv.vegetable)|| (Fwsv.farmer != Fwsv.vegetable && compare[x2].vegetable != Fwsv.vegetable)){compare[x2].farmer = 0;compare[x2].wolf = 0;compare[x2].sheep = 0;compare[x2].vegetable = 0;}sum+=2;//对和的限制if(compare[x2].farmer + compare[x2].wolf + compare[x2].sheep + compare[x2].vegetable != sum){compare[x2].farmer = 0;compare[x2].wolf = 0;compare[x2].sheep = 0;compare[x2].vegetable = 0;}}printf("-----------------------------------------\n");for(int x3 = 0;x3 < 4;x3++){if (compare[x3].farmer + compare[x3].wolf + compare[x3].sheep + compare[x3].vegetable != 0){printf("上数与:%d%d%d%d相连\n",compare[x3].farmer,compare[x3].wolf,compare[x3].sheep,compare[x3].veget abl );}}}if (Fwsv.farmer == 1){for (int y = 0;y < k;y++){if(safe[y].farmer == Fwsv.farmer && safe[y].wolf == Fwsv.wolf && safe[y].sheep == Fwsv.sheep && safe[y].vegetable == Fwsv.vegetable ){safe[y].farmer = 0;safe[y].wolf = 0;safe[y].sheep = 0;safe[y].vegetable = 0;}if(safe[y].farmer == 0 && (safe[y].farmer + safe[y].wolf + safe[y].sheep + safe[y].vegetable != 0 )){compare[x1] = safe[y];x1++;}}for (int x2 = 0;x2 < 4;x2++){sum = Fwsv.farmer + Fwsv.wolf + Fwsv.sheep + Fwsv.vegetable;if ((Fwsv.farmer != Fwsv.wolf && compare[x2].wolf != Fwsv.wolf) ||(Fwsv.farmer != Fwsv.sheep && compare[x2].sheep != Fwsv.sheep)|| (Fwsv.farmer != Fwsv.vegetable && compare[x2].vegetable != Fwsv.vegetable)|| (Fwsv.farmer != Fwsv.vegetable && compare[x2].vegetable != Fwsv.vegetable)){compare[x2].farmer = 0;compare[x2].wolf = 0;compare[x2].sheep = 0;compare[x2].vegetable = 0;}}printf("-----------------------------------------\n");for(int x3 = 0;x3 < 4;x3++){if (compare[x3].farmer + compare[x3].wolf + compare[x3].sheep + compare[x3].vegetable != 0){printf("上数与:%d%d%d%d相连\n",compare[x3].farmer,compare[x3].wolf,compare[x3].sheep,compare[x3].vegetable );}}}return next;}3.算法功能说明和流程描述首先我们定义了一个结构体Itemtypedef struct FWSV{int farmer;int wolf;int sheep;int vegetable;}Item;Item中包含了农夫(farmer),狼(wolf),羊(sheep),白菜(vegetable),用来表示农夫、狼、羊、白菜的状态,并作出规定当为0的时候表示在左岸,当为1的时候表示在右岸,我们的目标便是从0000的状态到1111的状态。
数据结构与算法专题实验实验报告-八皇后-背包问题的求解-农夫过河
![数据结构与算法专题实验实验报告-八皇后-背包问题的求解-农夫过河](https://img.taocdn.com/s3/m/e7b7c9c1a0116c175f0e48bc.png)
八皇后问题1.问题描述设在初始状态下在国际象棋的棋盘上没有任何棋子(这里的棋子指皇后棋子)。
然后顺序在第1行,第2行……第8行上布放棋子。
在每一行中共有8个可选择的位置,但在任一时刻棋盘的合法布局都必须满足3个限制条件(1)任意两个棋子不得放在同一行(2)任意两个棋子不得放在同一列上(3)任意棋子不得放在同一正斜线和反斜线上。
2.基本要求编写求解并输出此问题的一个合法布局的程序。
3、实现提示:在第i行布放棋子时,从第1列到第8列逐列考察。
当在第i行第j列布放棋子时,需要考察布放棋子后在行方向、列方向、正斜线和反斜线方向上的布局状态是否合法,若该棋子布放合法,再递归求解在第i+1行布放棋子;若该棋子布放不合法,移去这个棋子,恢复布放该棋子前的状态,然后再试探在第i行第j+1列布放棋子。
4 程序代码#include<iostream.h>#include<stdio.h>static char Queen[8][8];static int a[8];static int b[15];static int c[15];static int QueenNum=0;//记录总的棋盘状态数void qu(int i);//参数i代表行int main(){int Line,Column;//棋盘初始化,空格为*,放置皇后的地方为@ for(Line=0;Line<8;Line++){a[Line]=0; //列标记初始化,表示无列冲突for(Column=0;Column<8;Column++)Queen[Line][Column]='*';}//主、从对角线标记初始化,表示没有冲突for(Line=0;Line<15;Line++)b[Line]=c[Line]=0;qu(0);return 0;}void qu(int i){int Column;for(Column=0;Column<8;Column++){if(a[Column]==0&&b[i-Column+7]==0&&c[i+Column]==0) //如果无冲突{Queen[i][Column]='Q'; //放皇后a[Column]=1;//标记,下一次该列上不能放皇后b[i-Column+7]=1;//标记,下一次该主对角线上不能放皇后c[i+Column]=1;//标记,下一次该从对角线上不能放皇后if(i<7) qu(i+1); //如果行还没有遍历完,进入下一行else//否则输出{//输出棋盘状态int Line,Column;cout<<"第"<<++QueenNum<<"种状态为:"<<endl;for(Line=0;Line<8;Line++){for(Column=0;Column<8;Column++)cout<<Queen[Line][Column]<<" ";cout<<endl;}cout<<endl;getchar();}/*如果前次的皇后放置导致后面的放置无论如何都不能满足要求,则回溯,重置*/Queen[i][Column]='*';a[Column]=0;b[i-Column+7]=0;c[i+Column]=0;}}}5 程序结果题目2 背包问题的求解1.问题描述假设有一个能装入总体积为T的背包和n件体积分别为w1,w2,…w n的物品,能否从n件物品中挑选若干件恰好装满背包,即使w1+w2+…+w m=T,要求找出所有满足上述条件的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录引言 (2)1 问题描述 (3)基本要求 (3)2.1为农夫过河问题抽象数据模型体会数据模型在问题求解中的重要性; (3)2.2设计一个算法求解农夫过河问题,并输出过河方案; (3)3 概要设计 (3)3.1数据结构的设计。
(3)3.1.1农夫过河问题的模型化 (3)3.1.2 算法的设计 (4)4、运行与测试 (6)5、总结与心得 (7)附录 (7)参考文献 (13)引言所谓农夫过河问题是指农夫带一只狼、一只羊和一棵白菜在河南岸, 需要安全运到北岸。
一条小船只能容下他和一件物品, 只有农夫能撑船。
问农夫怎么能安全过河, 当然狼吃羊, 羊吃白菜, 农夫不能将这两种或三种物品单独放在河的一侧, 因为没有农夫的照看, 狼就要吃羊, 而羊可能要吃白菜? 这类问题的实质是系统的状态问题, 要寻求的是从初始状态经一系列的安全状态到达系统的终止状态的一条路径。
1 问题描述一个农夫带一只狼、一棵白菜和一只羊要从一条河的南岸过到北岸,农夫每次只能带一样东西过河,但是任意时刻如果农夫不在场时,狼要吃羊、羊要吃白菜,请为农夫设计过河方案。
基本要求2.1为农夫过河问题抽象数据模型体会数据模型在问题求解中的重要性;2.2设计一个算法求解农夫过河问题,并输出过河方案;3 概要设计3.1 数据结构的设计。
3.1.1农夫过河问题的模型化分析这类问题会发现以下特征:有一组状态( 如农夫和羊在南, 狼和白菜在北) ; 从一个状态可合法地转到另外几个状态( 如农夫自己过河或农夫带着羊过河) ; 有些状态不安全( 如农夫在北, 其他东西在南) ; 有一个初始状态( 都在南) ; 结束状态集( 这里只有一个, 都在北) 。
问题表示: 需要表示问题中的状态, 农夫等位于南P北( 每个有两种可能) 。
可以采用位向量, 4 个二进制位的0P1 情况表示状态, 显而易见, 共24= 16种可能状态。
从高位到低位分别表示农夫、狼、白菜和羊。
0000( 整数0) 表示都在南岸, 目标状态1111( 即整数15) 表示都到了北岸。
有些状态0011,0101, 0111, 0001, 1100, 1001 是不允许出现的, 因为这些状态是不安全状态。
根据上述条件可以画出系统的状态图如图1 所示。
图1 系统状态转换图其中双向的箭头表示状态可逆, 即农夫可以带着某种东西过去, 也可以带着该东西回来。
箭头上的字母表示农夫所携带的东西:f( farmer) , w(wolf) , g(goat) , c( cabbage) 分别表示农夫自己、农夫携带狼、农夫携带羊、农夫携带菜过河。
现在的问题转化为: 找一条合法路径( 相邻状态之间的转移合法) , 从开始状态到某个结束状态, 途中不经过不安全状态。
3.1.2 算法的设计求农夫、狼、白菜和羊的当前状态的函数为每一种状态做测试, 状态安全则返回0, 否则返回1。
安全性判断函数, 若状态安全则返回0int farmer(int location) //判断农夫位置对0做与运算,还是原来的数字,用来判断位置{return 0 != (location & 0x08);}int wolf(int location) //判断狼位置{return 0 != (location & 0x04);}int cabbage(int location) //判断白菜位置{return 0 != (location & 0x02);}int goat(int location) //判断羊的位置{return 0 !=(location & 0x01);}int safe(int location) // 若状态安全则返回 true{if ((goat(location) == cabbage(location)) && (goat(location) !=farmer(location)) )return 0;if ((goat(location) == wolf(location)) && (goat(location) !=farmer(location)))return 0;return 1; //其他状态是安全的借助于位向量和按位运算符, 很容易描述过河动作, 这种问题表示的设计使得程序的实现比较容易。
算法的基本思想: 利用队列moveTo 记录可到的尚未向前探试的状态, 数组元素route [ i] 记录状态i的路径[ 前一状态] , - 1 表示尚未访问。
则算法的高级抽象可描速为:{初始状态出发点入队列;所有其他点状态标记为未访问;while ( ! isEmptyQueue seq ( moveTo) &&( route[ 15] == - 1) ){从moveTo 取出一个状态;试探所有由这个状态出发可能到达的状态;if( 能到达的状态安全且未访问过){记录到它的路径;压入队列;}}}精化上速算法得到问题的具体算法如下:void farmerProblem( ){int movers, i, location, newlocation;int route[16]; //记录已考虑的状态路径int print[MAXNUM];PSeqQueue moveTo;moveTo = createEmptyQueue_seq( );//新的队列判断路径enQueue_seq(moveTo, 0x00); //初始状态为0for (i = 0; i < 16; i++)route[i] = -1; //-1表示没有记录过路径route[0]=0;while (!isEmptyQueue_seq(moveTo)&&(route[15]== -1))//队列不为空,路径未满时循环{location = frontQueue_seq(moveTo); //从队头出队,location表示位置,0为北岸,1为南岸deQueue_seq(moveTo);//已出队的删除for (movers = 1; movers <= 8; movers<<= 1) //向左移位,movers分别0001,0010,0100,1000,也就是依次判断过河的可行性{if ((0 != (location & 0x08)) == (0 != (location & movers)))//判断农夫和要移动的物品是否在同岸{newlocation = location^(0x08|movers);//过岸if (safe(newlocation) && (route[newlocation] == -1))//判断是否安全,以及路径是否可用{route[newlocation] = location;enQueue_seq(moveTo, newlocation);//记录路径并入队,位置改变4、运行与测试5、总结与心得“纸上得来终觉浅,绝知此事要躬行。
”通过这两周的课程设计,使我对书上的的理论知识有了更深的理解,也使我对于团队合作有了新的认识,意识到团队的力量。
课程设计是一个必须经历的过程,是我们理解书本知识、熟悉所学专业的一次很好实践。
在这次设计过程中,体现出自己单独设计程序的能力以及综合运用知识的能力,体会了学以致用、突出自己劳动成果的喜悦心情,从中发现自己平时学习的不足和薄弱环节,从而加以弥补。
附录#include<iostream.h>#include<stdio.h>#define MAXNUM 20typedef struct //顺序队列类型定义{int f, r; //f表示头,r 表示尾int q[MAXNUM];//顺序队}SeqQueue ,*PSeqQueue;PSeqQueue createEmptyQueue_seq( ) //创建队列{PSeqQueue paqu = new SeqQueue;if (paqu == NULL)cout<<"Out of space!"<<endl;elsepaqu->f=paqu->r=0;return (paqu);}int isEmptyQueue_seq( PSeqQueue paqu ) //判断 paqu 所指是否是空队列{return paqu->f==paqu->r;}void enQueue_seq(PSeqQueue paqu,int x) //在队列中插入一元素 x{if ((paqu->r+1)%MAXNUM==paqu->f)cout<<"队列已满."<<endl;else{paqu->q[paqu->r]=x;paqu->r=(paqu->r+1)%MAXNUM;}}void deQueue_seq(PSeqQueue paqu) //删除队列头部元素{if( paqu->f==paqu->r)cout<<"队列为空"<<endl;elsepaqu->f=(paqu->f+1)%MAXNUM;}int frontQueue_seq( PSeqQueue paqu ) //对非空队列,求队列头部元素{return (paqu->q[paqu->f]);}int farmer(int location) //判断农夫位置对0做与运算,还是原来的数字,用来判断位置{return 0 != (location & 0x08);}int wolf(int location) //判断狼位置{return 0 != (location & 0x04);}int cabbage(int location) //判断白菜位置{return 0 != (location & 0x02);}int goat(int location) //判断羊的位置{return 0 !=(location & 0x01);}int safe(int location) // 若状态安全则返回 true{if ((goat(location) == cabbage(location)) && (goat(location) !=farmer(location)) )return 0;if ((goat(location) == wolf(location)) && (goat(location) !=farmer(location)))return 0;return 1; //其他状态是安全的}void farmerProblem( ){int movers, i, location, newlocation;int route[16]; //记录已考虑的状态路径int print[MAXNUM];PSeqQueue moveTo;moveTo = createEmptyQueue_seq( );//新的队列判断路径enQueue_seq(moveTo, 0x00); //初始状态为0for (i = 0; i < 16; i++)route[i] = -1; //-1表示没有记录过路径route[0]=0;while (!isEmptyQueue_seq(moveTo)&&(route[15]== -1))//队列不为空,路径未满时循环{location = frontQueue_seq(moveTo); //从队头出队,location表示位置,0为北岸,1为南岸deQueue_seq(moveTo);//已出队的删除for (movers = 1; movers <= 8; movers<<= 1) //向左移位,movers分别0001,0010,0100,1000,也就是依次判断过河的可行性{if ((0 != (location & 0x08)) == (0 != (location & movers)))//判断农夫和要移动的物品是否在同岸{newlocation = location^(0x08|movers);//过岸if (safe(newlocation) && (route[newlocation] == -1))//判断是否安全,以及路径是否可用{route[newlocation] = location;enQueue_seq(moveTo, newlocation);//记录路径并入队,位置改变}}}}/* 打印出路径 */if(route[15] != -1){cout<<"过河步骤是 : "<<endl;i=0;for(location = 15; location >= 0; location = route[location]){print[i]=location;i++;if (location == 0)break;}int num=i-1;int temp[20][4];int j;for(i=num;i>=0;i--){for(j=3;j>=0;j--){temp[num-i][j]=print[i]%2;print[i]/=2;temp[0][j]=0;temp[num+1][j]=1;}}/* for(i=0;i<=num;i++){for(j=0;j<4;j++)cout<<temp[i][j]<<" ";cout<<endl;}*/for(i=1;i<=num;i++){cout<<"\t\t\tNO . "<<i<<"\t";if(i%2==1){if(temp[i][3]!=temp[i-1][3])cout<<"农夫带羊过南岸";if(temp[i][2]!=temp[i-1][2])cout<<"农夫带白菜过南岸";if(temp[i][1]!=temp[i-1][1])cout<<"农夫带狼过南岸";if(temp[i][3]==temp[i-1][3]&&temp[i][2]==temp[i-1][2]&&temp[i][1]==temp[i-1 ][1])cout<<"农夫自己过南岸";}else if(i%2==0){if(temp[i][3]!=temp[i-1][3])cout<<"农夫带羊回北岸";if(temp[i][2]!=temp[i-1][2])cout<<"农夫带白菜回北岸";if(temp[i][1]!=temp[i-1][1])cout<<"农夫带狼回北岸";if(temp[i][3]==temp[i-1][3]&&temp[i][2]==temp[i-1][2]&&temp[i][1]==temp[i-1 ][1])cout<<"农夫自己回北岸";}cout<<endl;}}elsecout<<"No solution."<<endl;}int main() /*主函数*/{farmerProblem();return 0;}参考文献1.王红梅、王涛、胡明编著。