动能和动能定理专题练习

合集下载

动能 动能定理

动能    动能定理

练习2——2 动能动能定理一填空题1 一个质量为m,速度为v的物体,它的动能等于物体的质量与速度二次方乘积的一半。

2 动能是标量,它的国际单位是 J。

3 合力做的功等于物体动能的增量,这个结论叫做动能定理。

4 两物体的质量相等,速度大小相同,但方向不同,则它们的动能相同(填“相同”或“不相同”)5 合外力对物体做正功,物体的动能增加;合外力对物体做负功,物体的动能减少。

6 汽车的质量为6吨,速度为18km/h,其动能为75000J。

7估算你骑自行车时所具有的最大动能。

8一质量为m的物体在吊绳的拉力作用下,沿竖直方向由静止开始以加速度a 匀加速上升了h,在这一过程中物体动能的改变量为mah 。

9 我国发射的第一颗人造地球卫星的质量是173kg,轨道速度为7.2km/s,它的动能是 4.5×109J。

10 甲乙两物体,甲的质量是乙的4倍,甲的速度是5.0m/s,乙的速度必须是10 m/s,才具有和甲一样的动能。

11 甲的质量为m,速度为v;乙的质量为2m,速度为v/2.它们的动能之比为2:1 。

12 合外力对物体做了50J的功,则物体的动能变化情况是:动能增加了50 J。

13 质量为10kg的物体,由静止开始从6m长的斜面顶端加速滑下,加速度为3m/s2。

它到达斜面底端的速度为6m/s ,动能为180J。

二判断题1 动能是矢量,有负值。

(×)2 如果物体的质量减半,而速度增大一倍,则它的动能将保持不变。

(×)3 合外力对物体做正功时,物体的速度一定增大。

(√)4 只要合外力对物体做的功为零,物体的动能就不变。

(√)5 子弹的速度为v时,恰能射穿一块木板,若子弹的速度为2v时,则恰好能射穿两块同样的木板。

( ×)6 摩擦力对物体做功,有时也能使物体的动能增加。

(√)7 力对物体不做功,物体一定静止不动。

(×)8 动能的最小值是零,不可能有负值。

(√)9 物体受力越大,其动能的改变量越大。

动能与动能定理经典习题及答案(免费》

动能与动能定理经典习题及答案(免费》

1.关于做功和物体动能变化的关系,不正确的是().A.只有动力对物体做功时,物体的动能增加B.只有物体克服阻力做功时,它的功能减少C.外力对物体做功的代数和等于物体的末动能和初动能之差D.动力和阻力都对物体做功,物体的动能一定变化2.下列关于运动物体所受的合外力、合外力做功和动能变化的关系正确的是().A.如果物体所受的合外力为零,那么合外力对物体做的功一定为零B.如果合外力对物体所做的功为零,则合外力一定为零C.物体在合外力作用下作变速运动,动能一定变化D.物体的动能不变,所受的合外力必定为零3.两个材料相同的物体,甲的质量大于乙的质量,以相同的初动能在同一水平面上滑动,最后都静止,它们滑行的距离是().A.乙大B.甲大C.一样大D.无法比较4.一个物体沿着高低不平的自由面做匀速率运动,在下面几种说法中,正确的是().A.动力做的功为零B.动力做的功不为零C.动力做功与阻力做功的代数和为零D.合力做的功为零5.放在水平面上的物体在一对水平方向的平衡力作用下做匀速直线运动,当撤去一个力后,下列说法中错误的是().A.物体的动能可能减少B.物体的动能可能增加C.没有撤去的这个力一定不再做功D.没有撤去的这个力一定还做功平面上做匀速圆周运动,拉力为某个值F时,转动半径为B,当拉力逐渐减小到了F/4时,物体仍做匀速圆周运动,半径为2R,则外力对物体所做的功大小是().A、FR/4B、3FR/4C、5FR/2D、零7. 一物体质量为2kg,以4m/s的速度在光滑水平面上向左滑行。

从某时刻起作用一向右的水平力,经过一段时间后,滑块的速度方向变为水平向右,大小为4m/s,在这段时间内,水平力做功为()A. 0B. 8JC. 16JD. 32J8.质量为5×105kg的机车,以恒定的功率沿平直轨道行驶,在3minl内行驶了1450m,其速度从10m/s增加到最大速度15m/s.若阻力保持不变,求机车的功率和所受阻力的数值.9. 一小球从高出地面Hm 处,由静止自由下落,不计空气阻力,球落至地面后又深入沙坑h米后停止,求沙坑对球的平均阻力是其重力的多少倍。

高考物理动能与动能定理试题(有答案和解析)

高考物理动能与动能定理试题(有答案和解析)

的小物块从轨道右侧 A 点以初速度
冲上轨道,通过圆形轨道,水平轨道
后压缩弹簧,并被弹簧以原速率弹回,取
,求:
(1)弹簧获得的最大弹性势能 ; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能 ; (3)当 R 满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离 轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m 或 0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从 A 到压缩弹簧至最短的过程中,由动
代入数据得:Q=126 J 故本题答案是:(1)μ=0.875.(2)ΔE=90 J(3)Q=126 J 【点睛】 对物体受力分析并结合图像的斜率求得加速度,在 v-t 图像中图像包围的面积代表物体运 动做过的位移。
5.如图所示,一质量为 M、足够长的平板静止于光滑水平面上,平板左端与水平轻弹簧 相连,弹簧的另一端固定在墙上.平板上有一质量为 m 的小物块以速度 v0 向右运动,且在 本题设问中小物块保持向右运动.已知小物块与平板间的动摩擦因数为 μ,弹簧弹性势能 Ep 与弹簧形变量 x 的平方成正比,重力加速度为 g.求:
6J
(3)滑块从 A 点运动到 C 点过程,由动能定理得
解得 BC 间距离
mg
3r
mgs
1 2
mvc2
s 0.5m
小球与弹簧作用后返回 C 处动能不变,小滑块的动能最终消耗在与 BC 水平面相互作用的
过程中,设物块在 BC 上的运动路程为 s ,由动能定理有
mgs
1 2
mvc2
解得
s 0.7m 故最终小滑动距离 B 为 0.7 0.5m 0.2m处停下.
(1)物体与传送带间的动摩擦因数; (2) 0~8 s 内物体机械能的增加量; (3)物体与传送带摩擦产生的热量 Q。 【答案】(1)μ=0.875.(2)ΔE=90 J(3)Q=126 J 【解析】 【详解】 (1)由图象可以知道,传送带沿斜向上运动,物体放到传送带上的初速度方向是沿斜面向下的,

高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)含解析

高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)含解析
(2)等离子体由下方进入区域I后,在洛伦兹力的作用下偏转,当粒子受到的电场力等于洛伦兹力时,形成稳定的匀强电场,设等离子体的电荷量为q´,则q´E=q´v1B1,即:E=B1v1;正离子束经过区域I加速后,离开PQ的速度大小为v3,根据动能定理可知:qU= mv32- mv22,其中电压U=Ed=B1v1d
【解析】
【分析】
【详解】
(1)由图线2得知,小球的速度先增大,后减小.根据库仑定律得知,小球所受的库仑力逐渐减小,合外力先减小后增大,加速度先减小后增大,则小球沿斜面向上做加速度逐渐减小的加速运动,再沿斜面向上做加速度逐渐增大的减速运动,直至速度为零.
(2)由线1可得:
EP=mgh=mgssinθ
斜率:
联立可得:v3= 。
(3)飞船方向调整前后,其速度合成矢量如图所示:
因此tan = ,离子喷出过程中,系统的动量守恒:M v=Nmv3,为了使飞船回到预定的飞行方向,离子推进器喷射出的粒子数N=
9.一质量为m=0.5kg的电动玩具车,从倾角为 =30°的长直轨道底端,由静止开始沿轨道向上运动,4s末功率达到最大值,之后保持该功率不变继续运动,运动的v-t图象如图所示,其中AB段为曲线,其他部分为直线.已知玩具车运动过程中所受摩擦阻力恒为自身重力的0.3倍,空气阻力不计.取重力加速度g=10m/s2.
(1)求在A处的正离子的速度大小v2;
(2)正离子经过区域I加速后,离开PQ的速度大小v3;
(3)在第(2)问中,假设航天器的总质量为M,正在以速度v沿MP方向运动,已知现在的运动方向与预定方向MN成 角,如图所示。为了使飞船回到预定的飞行方向MN,飞船启用推进器进行调整。如果沿垂直于飞船速度v的方向进行推进,且推进器工作时间极短,为了使飞船回到预定的飞行方向,离子推进器喷射出的粒子数N为多少?

动能、动能定理、重力势能练习题及答案

动能、动能定理、重力势能练习题及答案

动能、动能定理、重力势能练习一、选择题1、静止在光滑水平面上的物体,受到右图所示水平变力的作用,则A.F在2秒内对物体做功为零B.物体在2秒内位移为零C.2秒内F对物体的冲量为零D.物体在2秒末的速度为零2、车作匀加速运动,速度从零增加到V的过程中发动机做功W1,从V增加到2V的过程中发动机做功W2,设牵引力和阻力恒定,则有A、W2=2W lB、W2=3W1C、W2-=4W lD、仅能判断W2>W13、如图,物体A、B与地面间的动摩擦因数相同质量也相同,在斜向力F的作用下,一起沿水平面运动,则下列说法正确的是A.摩擦力对A、B两物体所做功相等B.外力对A、B两物体做功相等C.力F对A所做功与A对B所做功相等D。

A对B所做功与B对A所做功大小相等4.质量为m的物块始终静止在倾角为θ的斜面上,下列说法正确的是A.若斜面向右匀速移动距离S,斜面对物块没有做功B.若斜面向上匀速移动距离S,斜面对物块做功mgsC.若斜面向左以加速度a匀加速移动距离S,斜面对物块做功masD.若斜面向下以加速度a匀加速移动距离S,斜面对物块做功m(g+a)s5、用100N的力将0.5千克的足球以8m/s的初速度沿水平方向踢出20米,则人对球做功为A.200J B.16J C.2000J D.无法确定6、物体与转台间的动摩擦因数为μ,与转轴间距离为R,m随转台由静止开始加速转动,当转速增加至某值时,m即将在转台上相对滑动,此时起转台做匀速转动,此过程中摩擦力对m做的功为A.0 B.2πμmgR C.2μmgR D.μmgR/27、m从高H处长S的斜面顶端以加速度a由静止起滑到底端时的速度为V,斜面倾角为θ,动摩擦因数为μ,则下滑过程克服摩擦力做功为A.mgH-mV2∕2 B.mgsin θ-mas C.μmgscos θD.mgH8、子弹以水平速度V射人静止在光滑水平面上的木块M,并留在其中,则A.子弹克服阻力做功与木块获得的动能相等B.阻力对于弹做功小于子弹动能的减少C.子弹克服阻力做功与子弹对木块做功相等D.子弹克阻力做功大于子弹对木块做功9、有两个物体其质量M1>M2它们初动能—样,若两物体受到不变的阻力F1和F2作用经过相同的时间停下,它们的位移分别为S1和S2,则A.F1>F2,且S1<S2 B.F1> F2,且S1>S2C .F1< F2,且S1<S2D.F1> F2,且S1>S210、如图,球m用长为L的细线悬挂于O点,现用水平力F,使球从平衡位置P缓慢地移动到O点,此过程中F 所做的功A.mgLcosθB.FLsinθC.FL D.mgL(1-cosθ)二、填空题11、一人从高处坠下,当人下落H高度时安全带刚好绷紧,人又下落h后人的速度减为零,设人的质量为M,则绷紧过程中安全带对人的平均作用力为——·12、木块受水平力F作用在水平面上由静止开始运动,前进S米后撤去F,木块又沿原方向前进3S停止,则摩擦力f=__________。

【物理】物理动能与动能定理练习题含答案及解析

【物理】物理动能与动能定理练习题含答案及解析

【物理】物理动能与动能定理练习题含答案及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。

圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37︒角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。

最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。

已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。

(1)求小物块经过B 点时对轨道的压力大小;(2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小; (3)若小物块恰好能通过C 点,求MN 的长度L 。

【答案】(1)62N (2)60N (3)10m 【解析】 【详解】(1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==︒ 解得:04m /5m /cos370.8A v v s s ===︒小物块经过A 点运动到B 点,根据机械能守恒定律有:()2211cos3722A B mv mg R R mv +-︒= 小物块经过B 点时,有:2BNB v F mg m R-= 解得:()232cos3762N BNBv F mg m R=-︒+=根据牛顿第三定律,小物块对轨道的压力大小是62N (2)小物块由B 点运动到C 点,根据动能定理有:22011222C B mgL mg r mv mv μ--⋅=- 在C 点,由牛顿第二定律得:2CNC v F mg m r+=代入数据解得:60N NC F =根据牛顿第三定律,小物块通过C 点时对轨道的压力大小是60N(3)小物块刚好能通过C 点时,根据22Cv mg m r=解得:2100.4m /2m /C v gr s s ==⨯=小物块从B 点运动到C 点的过程,根据动能定理有:22211222C B mgL mg r mv mv μ--⋅=- 代入数据解得:L =10m2.如图所示,在娱乐节目中,一质量为m =60 kg 的选手以v 0=7 m/s 的水平速度抓住竖直绳下端的抓手开始摆动,当绳摆到与竖直方向夹角θ=37°时,选手放开抓手,松手后的上升过程中选手水平速度保持不变,运动到水平传送带左端A 时速度刚好水平,并在传送带上滑行,传送带以v =2 m/s 匀速向右运动.已知绳子的悬挂点到抓手的距离为L =6 m ,传送带两端点A 、B 间的距离s =7 m ,选手与传送带间的动摩擦因数为μ=0.2,若把选手看成质点,且不考虑空气阻力和绳的质量.(g =10 m/s 2,sin 37°=0.6,cos 37°=0.8)求:(1)选手放开抓手时的速度大小; (2)选手在传送带上从A 运动到B 的时间; (3)选手在传送带上克服摩擦力做的功. 【答案】(1)5 m/s (2)3 s (3)360 J 【解析】试题分析:(1)设选手放开抓手时的速度为v 1,则-mg (L -Lcosθ)=mv 12-mv 02,v 1=5m/s(2)设选手放开抓手时的水平速度为v 2,v 2=v 1cosθ① 选手在传送带上减速过程中 a =-μg② v =v 2+at 1③④匀速运动的时间t 2,s -x 1=vt 2⑤ 选手在传送带上的运动时间t =t 1+t 2⑥ 联立①②③④⑤⑥得:t =3s(3)由动能定理得W f =mv 2-mv 22,解得:W f =-360J 故克服摩擦力做功为360J . 考点:动能定理的应用3.如图所示是一种特殊的游戏装置,CD 是一段位于竖直平面内的光滑圆弧轨道,圆弧半径为10m ,末端D 处的切线方向水平,一辆玩具滑车从轨道的C 点处下滑,滑到D 点时速度大小为10m/s ,从D 点飞出后落到水面上的B 点。

【物理】物理动能与动能定理题20套(带答案)

【物理】物理动能与动能定理题20套(带答案)

【物理】物理动能与动能定理题20套(带答案)一、高中物理精讲专题测试动能与动能定理1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。

水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。

可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求:(1)弹簧获得的最大弹性势能;(2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能;(3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。

【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m【解析】【详解】(1)当弹簧被压缩到最短时,其弹性势能最大。

从A到压缩弹簧至最短的过程中,由动能定理得:−μmgl+W弹=0−m v02由功能关系:W弹=-△E p=-E p解得 E p=10.5J;(2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得−2μmgl=E k−m v02解得 E k=3J;(3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况:①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得−2mgR=m v22−E k小物块能够经过最高点的条件m≥mg,解得R≤0.12m②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心等高的位置,即m v12≤mgR,解得R≥0.3m;设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:−2mgR =m v 12-m v 02且需要满足 m ≥mg ,解得R≤0.72m ,综合以上考虑,R 需要满足的条件为:0.3m≤R≤0.42m 或0≤R≤0.12m 。

【点睛】解决本题的关键是分析清楚小物块的运动情况,把握隐含的临界条件,运用动能定理时要注意灵活选择研究的过程。

物理动能与动能定理练习题20篇含解析

物理动能与动能定理练习题20篇含解析

物理动能与动能定理练习题20篇含解析一、高中物理精讲专题测试动能与动能定理1.如图所示,圆弧轨道AB 是在竖直平面内的14圆周,B 点离地面的高度h =0.8m ,该处切线是水平的,一质量为m =200g 的小球(可视为质点)自A 点由静止开始沿轨道下滑(不计小球与轨道间的摩擦及空气阻力),小球从B 点水平飞出,最后落到水平地面上的D 点.已知小物块落地点D 到C 点的距离为x =4m ,重力加速度为g =10m /s 2.求:(1)圆弧轨道的半径(2)小球滑到B 点时对轨道的压力. 【答案】(1)圆弧轨道的半径是5m .(2)小球滑到B 点时对轨道的压力为6N ,方向竖直向下. 【解析】(1)小球由B 到D 做平抛运动,有:h=12gt 2 x =v B t 解得: 10410/220.8B g v xm s h ==⨯=⨯ A 到B 过程,由动能定理得:mgR=12mv B 2-0 解得轨道半径 R =5m(2)在B 点,由向心力公式得:2Bv N mg m R-=解得:N =6N根据牛顿第三定律,小球对轨道的压力N =N =6N ,方向竖直向下点睛:解决本题的关键要分析小球的运动过程,把握每个过程和状态的物理规律,掌握圆周运动靠径向的合力提供向心力,运用运动的分解法进行研究平抛运动.2.如图所示,水平地面上一木板质量M =1 kg ,长度L =3.5 m ,木板右侧有一竖直固定的四分之一光滑圆弧轨道,轨道半径R =1 m ,最低点P 的切线与木板上表面相平.质量m =2 kg 的小滑块位于木板的左端,与木板一起向右滑动,并以0v 39m /s =的速度与圆弧轨道相碰,木板碰到轨道后立即停止,滑块沿木板冲上圆弧轨道,后又返回到木板上,最终滑离木板.已知滑块与木板上表面间的动摩擦因数μ1=0.2,木板与地面间的动摩擦因数μ2=0.1,g 取10 m/s 2.求: (1)滑块对P 点压力的大小;(2)滑块返回木板上时,木板的加速度大小; (3)滑块从返回木板到滑离木板所用的时间.【答案】(1)70 N (2)1 m/s 2 (3)1 s 【解析】 【分析】 【详解】(1)滑块在木板上滑动过程由动能定理得:-μ1mgL =12mv 2-1220mv 解得:v =5 m/s在P 点由牛顿第二定律得:F -mg =m 2v r解得:F =70 N由牛顿第三定律,滑块对P 点的压力大小是70 N (2)滑块对木板的摩擦力F f 1=μ1mg =4 N 地面对木板的摩擦力 F f 2=μ2(M +m )g =3 N对木板由牛顿第二定律得:F f 1-F f 2=Ma a =12f f F F M-=1 m/s 2(3)滑块滑上圆弧轨道运动的过程机械能守恒,故滑块再次滑上木板的速度等于v =5 m/s 对滑块有:(x +L )=vt -12μ1gt 2 对木板有:x =12at 2 解得:t =1 s 或t =73s(不合题意,舍去) 故本题答案是: (1)70 N (2)1 m/s 2 (3)1 s 【点睛】分析受力找到运动状态,结合运动学公式求解即可.3.如图所示,半径为R 的四分之三圆周轨道固定在竖直平面内,O 为圆轨道的圆心,D 为圆轨道的最高点,圆轨道内壁光滑,圆轨道右侧的水平面BC 与圆心等高.质量为m 的小球从离B 点高度为h 处(332R h R ≤≤)的A 点由静止开始下落,从B 点进入圆轨道,重力加速度为g ).(1)小球能否到达D 点?试通过计算说明; (2)求小球在最高点对轨道的压力范围;(3)通过计算说明小球从D 点飞出后能否落在水平面BC 上,若能,求落点与B 点水平距离d 的范围.【答案】(1)小球能到达D 点;(2)03F mg ≤'≤;(3)()()21221R d R ≤≤【解析】 【分析】 【详解】(1)当小球刚好通过最高点时应有:2Dmv mg R =由机械能守恒可得:()22Dmv mg h R -=联立解得32h R =,因为h 的取值范围为332R h R ≤≤,小球能到达D 点; (2)设小球在D 点受到的压力为F ,则2Dmv F mg R ='+ ()22Dmv mg h R ='- 联立并结合h 的取值范围332R h R ≤≤解得:03F mg ≤≤ 据牛顿第三定律得小球在最高点对轨道的压力范围为:03F mg ≤'≤(3)由(1)知在最高点D 速度至少为min D v gR =此时小球飞离D 后平抛,有:212R gt =min min D x v t =联立解得min 2x R R =>,故能落在水平面BC 上,当小球在最高点对轨道的压力为3mg 时,有:2max 3Dv mg mg m R+=解得max 2D v gR = 小球飞离D 后平抛212R gt =', max max D x v t ='联立解得max 22x R =故落点与B 点水平距离d 的范围为:()()21221R d R -≤≤-4.如图所示,倾角为θ=45°的粗糙平直导轨与半径为R 的光滑圆环轨道相切,切点为B ,整个轨道处在竖直平面内.一质量为m 的小滑块从导轨上离地面高为h=3R 的D 处无初速下滑进入圆环轨道.接着小滑块从圆环最高点C 水平飞出,恰好击中导轨上与圆心O 等高的P 点,不计空气阻力.求:(1)滑块运动到圆环最高点C 时的速度的大小; (2)滑块运动到圆环最低点时对圆环轨道压力的大小; (3)滑块在斜面轨道BD 间运动的过程中克服摩擦力做的功. 【答案】(1)Rg (2)6mg (3)12mgR 【解析】 【分析】 【详解】(1)小滑块从C 点飞出来做平抛运动,水平速度为v 0,竖直方向上:,水平方向上:,解得(2)小滑块在最低点时速度为v C 由机械能守恒定律得牛顿第二定律:由牛顿第三定律得:,方向竖直向下(3)从D 到最低点过程中,设DB 过程中克服摩擦力做功W 1,由动能定理h=3R【点睛】对滑块进行运动过程分析,要求滑块运动到圆环最低点时对圆环轨道压力的大小,我们要知道滑块运动到圆环最低点时的速度大小,小滑块从圆环最高点C 水平飞出,恰好击中导轨上与圆心O 等高的P 点,运用平抛运动规律结合几何关系求出最低点时速度.在对最低点运用牛顿第二定律求解.5.如图甲所示为某一玩具汽车的轨道,其部分轨道可抽象为图乙的模型.AB 和BD 为两段水平直轨道,竖直圆轨道与水平直轨道相切于B 点,D 点为水平直轨道与水平半圆轨道的切点.在某次游戏过程中,通过摇控装置使静止在A 点的小车以额定功率启动,当小车运动到B 点时关闭发动机并不再开启,测得小车运动到最高点C 时对轨道的压力大小5.6N N F =,小车通过水平半圆轨道时速率恒定.小车可视为质点,质量400g m =,额定功率20W P =,AB 长1m l =,BD 长0.75m s =,竖直圆轨道半径25cm R =,水平半圆轨道半径10cm r =.小车在两段水平直轨道所受的阻力大小均为4N f =,在竖直圆轨道和水平半圆轨道所受的阻力均忽略不计,重力加速度取210m/s g =.求:(1)小车运动到C 点时的速度大小; (2)小车在BD 段运动的时间; (3)水平半圆轨道对小车的作用力大小;(4)要使小车能通过水平半圆轨道,发动机开启的最短时间. 【答案】(16m/s ;(2)0.3s ;(3)42N .;(4)0.35s . 【解析】 【详解】(1)由小车在C 点受力得:2N c v F mg m R+=解得:C v =(2)从C 点到B 点,由动能定理得:2211222B C mgR mv mv =-解得:4m/s B v =小车在BD 段运动的加速度大小为:210m/s fa m== 由运动学公式:212B s v t at =-解得:0.3s t =(3)从B 点到D 点,由运动学公式:D B v v at =-,解得:1m/s D v =小车在水平半圆轨道所需的向心力大小:2Dn v F m r=,代入数据可得:4N n F =()222n F F mg =+水平半圆轨道对小车的作用力大小为:F =.(4)设小车恰能到C 点时的速度为1v ,对应发动机开启的时间为1t ,则:21v mg m R=211122Pt fl mgR mv --=解得10.325s t =.在此情况下从C 点到D 点,由动能定理得:211222D C mgR Fs mv mv -=-解得2 2.5Dv=-即小车无法到达D点.设小车恰能到D点时对应发动机开启的时间为2t,则有:() 20Pt f l s-+=,解得20.35st=.6.如图所示,两个半圆形的光滑细管道(管道内径远小于半圆形半径)在竖直平面内交叠,组成“S”字形通道.大半圆BC的半径R=0.9m,小半圆CD的半径r=0.7m.在“S”字形通道底部B连结一水平粗糙的细直管AB.一质量m=0.18kg的小球(可视为质点)从A点以V0=12m/s的速度向右进入直管道,经t1=0.5s 到达B点,在刚到达半圆轨道B点时,对B 点的压力为N B=21.8N.(取重力加速度g=10m/s2)求:(1)小球在B点的速度V B及小球与AB轨道的动摩擦因数μ ?(2)小球到达“S”字形通道的顶点D后,又经水平粗糙的细直管DE,从E点水平抛出,其水平射程S=3.2m.小球在E点的速度V E为多少?(3)求小球在到达C点后的瞬间,小球受到轨道的弹力大小为多少?方向如何?【答案】(1)V B=10m/s ,μ=0.4(2)V E=S/ t=4m/s(3) N C=18.25N 方向向上【解析】【详解】(1)根据牛顿第二定律有N B-mg=mV B2/RV B=10m/sa=(V0-V B)/t=4m/s2μmg=m a a =mg μ=0.4(2)H=2R+2r=3.2m2HgV E=S/ t=4m/s(3)N C- mg=mV C2/r1 2m V B2=2mg R+12m V C2N C=18.25N 方向向上7.如图所示,将一根弹簧和一个小圆环穿在水平细杆上,弹簧左端固定,右端与质量为m 的小圆环相接触,BC 和CD 是由细杆弯成的1/4圆弧,BC 分别与杆AB 和弧CD 相切,两圆弧的半径均为R .O 点为弹簧自由端的位置.整个轨道竖直放置,除OB 段粗糙外,其余部分均光滑.当弹簧的压缩量为d 时释放,小圆环弹出后恰好能到达C 点,返回水平杆时刚好与弹簧接触,停在O 点,(已知弹簧弹性势能与压缩量的平方成正比,小球通过B 处和C 处没有能量损失),问:(1)当为弹簧的压缩量为d 时,弹簧具有的弹性势能P E 是多少?(2)若将小圆环放置在弹簧的压缩量为2d 时释放,求小圆环到达最高点D 时,轨道所受到的作用力.(3)为了使物块能停在OB 的中点,弹簧应具有多大的弹性势能?【答案】(1)P 2E mgR =(2)9mg ,方向竖直向上(3)''P 1=()2E n mgR + (n =0、1、2) 【解析】 【分析】 【详解】(1)设小圆环与OB 之间的摩擦力为f ,OB=L ;从释放到回到O 点,由能量关系可知,当弹簧的压缩量为d 时,弹簧具有的弹性势能P 2E fL =小圆环从释放能到达C 点到,由能量关系可知0P E fL mgR --=可得:P 2E mgR =(2)因弹簧弹性势能与压缩量的平方成正比,则弹簧的压缩量为2d 时弹性势能为E P ´=4E P =8mgR小圆环到达最高点D 时:'2P D 122E mv mg R fL =+⋅+解得D 10v gR =在最高点D 时由牛顿第二定律:2Dv N mg m R+=解得N =9mg ,方向竖直向下由牛顿第三定律可知在D 点时轨道受到的作用为9mg ,方向竖直向上;(3)为了使物块能停在OB 的中点,则要求滑块到达的最高点为D 点,然后返回,则''P 23E fL mgR mgR ≤+=为了使物块能停在OB 的中点,同时还应该满足:''P 1(21)()22L E n f n mgR =+⋅=+ 则只能取n =0、1、2;8.如图为一水平传送带装置的示意图.紧绷的传送带AB 始终保持 v 0=5m/s 的恒定速率运行,AB 间的距离L 为8m .将一质量m =1kg 的小物块轻轻放在传送带上距A 点2m 处的P 点,小物块随传送带运动到B 点后恰好能冲上光滑圆弧轨道的最高点N .小物块与传送带间的动摩擦因数μ=0.5,重力加速度g =10 m/s 2.求:(1)该圆轨道的半径r ;(2)要使小物块能第一次滑上圆形轨道达到M 点,M 点为圆轨道右半侧上的点,该点高出B 点0.25 m ,且小物块在圆形轨道上不脱离轨道,求小物块放上传送带时距离A 点的位置范围.【答案】(1)0.5r m =(2)77?.5,05?.5m x m x m ≤≤≤≤ 【解析】 【分析】 【详解】试题分析:(1)小物块在传送带上匀加速运动的加速度25/a g m s μ==小物块与传送带共速时,所用的时间01v t s a== 运动的位移02.52v x m a∆==<L -2=6m 故小物块与传送带达到相同速度后以05/v m s =的速度匀速运动到B ,然后冲上光滑圆弧轨道恰好到达N 点,故有:2Nv mg m r=由机械能守恒定律得22011(2)22N mv mg r mv =+,解得0.5r m = (2)设在距A 点x 1处将小物块轻放在传送带上,恰能到达圆心右侧的M 点,由能量守恒得:1()mg L x mgh μ-= 代入数据解得17.5?x m = 设在距A 点x 2处将小物块轻放在传送带上,恰能到达右侧圆心高度,由能量守恒得:2()mg L x mgR μ-=代入数据解得27?x m =则:能到达圆心右侧的M 点,物块放在传送带上距A 点的距离范围;同理,只要过最高点N 同样也能过圆心右侧的M 点,由(1)可知38 2.5 5.5?x m m m -== 则:0 5.5x m ≤≤.故小物块放在传送带上放在传送带上距A 点的距离范围:77?.505?.5m x m x m ≤≤≤≤和 考点:考查了相对运动,能量守恒定律的综合应用9.如图所示,ABC 为竖直面内一固定轨道,AB 段是半径为R 的14光滑圆弧,水平段与圆弧轨道相切于B ,水平段BC 长度为L ,C 端固定一竖直挡板.一质量为m 的小物块自A 端从静止开始沿圆轨道下滑,与挡板共发生了两次碰撞后停止在水平段B 、C 之间的某处,物块每次与挡板碰撞不损失机械能(即碰撞前、后速率相同).不计空气阻力,物块与水平段BC 间的动摩擦因数为μ,重力加速度为g .试求物块 (1)第一次与挡板碰撞时的速率; (2)在水平轨道上滑行的总路程;(3)最后一次滑到圆轨道底端B 处对圆轨道的压力.【答案】(1) 12()v g R L μ-RS μ=(3) 物块最后一次滑到底端B 处对圆轨道的压力可能为43L mg R μ骣琪-琪桫或83L mg R μ骣琪-琪桫 【解析】 【详解】(1)对物块第一次从A 到C 过程,根据动能定理:2112mgR mgL mv -=μ ① 解得第一次碰撞挡板的速率12()v g R L μ-(2)设物块质量为m ,在水平轨道上滑行的总路程为S ,对物块从开始下滑到停止在水平轨道上的全过程,根据动能定理:mgR -μmg ·S =0③解得RS μ=④(3)设物块最后一次经过圆弧轨道底端B 时的速率为v 2,对圆轨道的压力为FN ,则:22N v F mg m R-= ⑤第一种可能情况:物块与挡板第二次碰撞后,向右运动还未到B 点时即停下,则:22122mgR mg L mv -⋅=μ⑥由⑤⑥解得43N L F mg R ⎛⎫=- ⎪⎝⎭μ ⑦第二种可能情况:物块与挡板第二次碰撞后,向右可再一次滑上光滑圆弧轨道,则:22142mgR mg L mv -⋅=μ ⑧由⑤⑧解得83N L F mg R μ⎛⎫=- ⎪⎝⎭⑨物块最后一次滑到底端B 处对圆轨道的压力可能为43L mg R μ骣琪-琪桫或83Lmg R μ骣琪-琪桫10.在粗糙的水平桌面上有两个静止的木块A 和B ,两者相距为d .现给A 一初速度,使A 与B 发生弹性正碰,碰撞时间极短.当两木块都停止运动后,相距仍然为d .已知两木块与桌面之间的动摩擦因数均为μ. B 的质量为A 的2倍,重力加速度大小为g .求A 的初速度的大小.【解析】 【详解】设在发生碰撞前的瞬间,木块A 的速度大小为v 0;在碰撞后的瞬间,A 和B 的速度分别为v 1和v 2.在碰撞过程中,由能量守恒定律和动量守恒定律,得2220121112222mv mv mv =+⋅ 0122mv mv mv =+ ,式中,以碰撞前木块A 的速度方向为正,联立解得:13v v =-,2023v v = 设碰撞后A 和B 运动的距离分别为d 1和d 2,由动能定理得21112mgd mv μ=, 2221222m gd mv μ=⋅() .按题意有:21d d d =+ . 联立解得:0185v gd =μ11.如图所示,AB 为倾角37θ=︒的斜面轨道,BP 为半径R =1m 的竖直光滑圆弧轨道,O 为圆心,两轨道相切于B 点,P 、O 两点在同一竖直线上,轻弹簧一端固定在A 点,另一端在斜面上C 点处,轨道的AC 部分光滑,CB 部分粗糙,CB 长L =1.25m ,物块与斜面间的动摩擦因数为μ=0.25,现有一质量m =2kg 的物块在外力作用下将弹簧缓慢压缩到D 点后释放(不栓接),物块经过B 点后到达P 点,在P 点物块对轨道的压力大小为其重力的1.5倍,sin370.6,37cos 0.8︒︒==,g=10m/s 2.求:(1)物块到达P 点时的速度大小v P ; (2)物块离开弹簧时的速度大小v C ;(3)若要使物块始终不脱离轨道运动,则物块离开弹簧时速度的最大值v m . 【答案】(1)5m/s P v = (2)v C =9m/s (3)6m/s m v = 【解析】 【详解】(1)在P 点,根据牛顿第二定律:2PP v mg N m R+=解得: 2.55m/s P v gR ==(2)由几何关系可知BP 间的高度差(1cos37)BP h R =+︒物块C 至P 过程中,根据动能定理:2211sin37cos37=22BP P C mgL mgh mgL mv mv μ-︒--︒-联立可得:v C =9m/s(3)若要使物块始终不脱离轨道运动,则物块能够到达的最大高度为与O 等高处的E 点, 物块C 至E 过程中根据动能定理:21cos37sin 37sin 53=02m mgL mgL mgR mv μ-︒-︒-︒-解得:6m/s m v =12.如图所示,物块B 静止放置在水平面上,物块A 以一定的初速度v 0冲向B ,若在物块A 、B 正对的表面加上粘合剂,则物块A 、B 碰后一起沿水平面运动的最大距离为l ;若在物块A 、B 正对的表面加上弹性装置,则两物块将发生弹性正碰,碰后两物块间的最大距离为5l 。

高中物理【动能和动能定理】专题训练练习题

高中物理【动能和动能定理】专题训练练习题

高中物理【动能和动能定理】专题训练练习题课时作业(A) [A 组 基础达标练]1.如图所示,电梯质量为M ,在它的水平地板上放置一质量为m 的物体。

电梯在钢索的拉力作用下竖直向上加速运动,当电梯的速度由v 1增加到v 2时,上升高度为H ,重力加速度为g ,则在这个过程中,下列说法或表达式正确的是( )A .对物体,动能定理的表达式为W N =12m v 22,其中W N 为支持力做的功B .对物体,动能定理的表达式为W 合=0,其中W 合为合力做的功C .对物体,动能定理的表达式为W N -mgH =12m v 22-12m v 12 D .对电梯,其所受合力做的功为12M v 22-12M v 12-mgH 解析:物体受重力和支持力作用,根据动能定理得W合=W N -mgH =12m v 22-12m v 12,故选项C 正确,A 、B 错误;对电梯,合力做的功等于电梯动能的变化量,故选项D 错误。

答案:C2.如图所示,AB 为14圆弧轨道,BC 为水平直轨道,圆弧的半径为R ,BC 的长度也是R 。

一质量为m 的物体,与两个轨道的动摩擦因数都为μ,当它由轨道顶端A 从静止下滑时,恰好运动到C 处停止,那么物体在AB 段克服摩擦力做的功为( )A .μmgR B.12mgR C .mgRD .(1-μ)mgR解析:BC 段物体所受摩擦力F f =μmg ,位移为R ,故BC 段摩擦力对物体做的功W =-F f R =-μmgR ,对全程由动能定理可知,mgR +W 1+W =0,解得W 1=μmgR -mgR ,故AB 段克服摩擦力做的功为W 克=-W 1=mgR -μmgR =(1-μ)mgR ,故A 、B 、C 错误,D 正确。

答案:D3.一质量为m 的小球,用长为l 的轻绳悬挂于O 点,小球在水平力F 作用下从平衡位置P 点很缓慢地移动到Q 点,如图所示,则力F 所做的功为( ) A .mgl cos θ B .Fl sin θ C .mgl (1-cos θ)D .Fl (1-sin θ)解析:小球的运动过程是缓慢的,因而小球任何时刻均可看作是平衡状态,力F 的大小在不断变化,F 做功是变力做功。

高中物理动能与动能定理解题技巧及练习题(含答案)

高中物理动能与动能定理解题技巧及练习题(含答案)
(2)根据动能定理得: 代入数据解得:
根据牛顿第二定律得:
解得:
,方向向下
根据牛顿第三定律得,小球对轨道最高点的压力大小为 20N,方向向上.
【点睛】
本题考查了动能定理、动量守恒定律、牛顿第二定律的综合,涉及到平抛运动、圆周运
动,综合性较强,关键要理清过程,选择合适的规律进行求解.
7.如图所示,一长度 LAB=4.98m,倾角 θ=30°的光滑斜面 AB 和一固定粗糙水平台 BC 平 滑连接,水平台长度 LBC=0.4m,离地面高度 H=1.4m,在 C 处有一挡板,小物块与挡板 碰撞后原速率反弹,下方有一半球体与水平台相切,整个轨道处于竖直平面内。在斜面顶 端 A 处静止释放质量为 m="2kg" 的小物块(可视为质点),忽略空气阻力,小物块与 BC 间的动摩擦因素 μ=0.1,g 取 10m/s2。问:
减速运动;根据动能定理有:

解得:

(3)设滑块在传送带上运动的时间为 t,则 t 时间内传送带的位移:s=v0t
由机械能守恒有:

⑨ 滑块相对传送带滑动的位移 相对滑动生成的热量

⑩ ⑪
4.如图所示,在娱乐节目中,一质量为 m=60 kg 的选手以 v0=7 m/s 的水平速度抓住竖直 绳下端的抓手开始摆动,当绳摆到与竖直方向夹角 θ=37°时,选手放开抓手,松手后的上 升过程中选手水平速度保持不变,运动到水平传送带左端 A 时速度刚好水平,并在传送带 上滑行,传送带以 v=2 m/s 匀速向右运动.已知绳子的悬挂点到抓手的距离为 L=6 m,传 送带两端点 A、B 间的距离 s=7 m,选手与传送带间的动摩擦因数为 μ=0.2,若把选手看 成质点,且不考虑空气阻力和绳的质量.(g=10 m/s2,sin 37°=0.6,cos 37°=0.8)求:

高中物理动能与动能定理题20套(带答案)

高中物理动能与动能定理题20套(带答案)

高中物理动能与动能定理题20套(带答案)一、高中物理精讲专题测试动能与动能定理1.如图所示,水平地面上一木板质量M =1 kg ,长度L =3.5 m ,木板右侧有一竖直固定的四分之一光滑圆弧轨道,轨道半径R =1 m ,最低点P 的切线与木板上表面相平.质量m =2 kg 的小滑块位于木板的左端,与木板一起向右滑动,并以0v 39m /s 的速度与圆弧轨道相碰,木板碰到轨道后立即停止,滑块沿木板冲上圆弧轨道,后又返回到木板上,最终滑离木板.已知滑块与木板上表面间的动摩擦因数μ1=0.2,木板与地面间的动摩擦因数μ2=0.1,g 取10 m/s 2.求: (1)滑块对P 点压力的大小;(2)滑块返回木板上时,木板的加速度大小; (3)滑块从返回木板到滑离木板所用的时间.【答案】(1)70 N (2)1 m/s 2 (3)1 s 【解析】 【分析】 【详解】(1)滑块在木板上滑动过程由动能定理得:-μ1mgL =12mv 2-1220mv 解得:v =5 m/s在P 点由牛顿第二定律得:F -mg =m 2v r解得:F =70 N由牛顿第三定律,滑块对P 点的压力大小是70 N (2)滑块对木板的摩擦力F f 1=μ1mg =4 N 地面对木板的摩擦力 F f 2=μ2(M +m )g =3 N对木板由牛顿第二定律得:F f 1-F f 2=Ma a =12f f F F M-=1 m/s 2(3)滑块滑上圆弧轨道运动的过程机械能守恒,故滑块再次滑上木板的速度等于v =5 m/s 对滑块有:(x +L )=vt -12μ1gt 2 对木板有:x =12at 2解得:t =1 s 或t =73s(不合题意,舍去) 故本题答案是: (1)70 N (2)1 m/s 2 (3)1 s 【点睛】分析受力找到运动状态,结合运动学公式求解即可.2.如图所示,粗糙水平地面与半径为R =0.4m 的粗糙半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量为m =1kg 的小物块在水平恒力F =15N 的作用下,从A 点由静止开始做匀加速直线运动,当小物块运动到B 点时撤去F ,小物块沿半圆轨道运动恰好能通过D 点,已知A 、B 间的距离为3m ,小物块与地面间的动摩擦因数为0.5,重力加速度g 取10m/s 2.求: (1)小物块运动到B 点时对圆轨道B 点的压力大小. (2)小物块离开D 点后落到地面上的点与D 点之间的距离【答案】(1)160N (2)2 【解析】 【详解】(1)小物块在水平面上从A 运动到B 过程中,根据动能定理,有: (F -μmg )x AB =12mv B 2-0 在B 点,以物块为研究对象,根据牛顿第二定律得:2Bv N mg m R-=联立解得小物块运动到B 点时轨道对物块的支持力为:N =160N由牛顿第三定律可得,小物块运动到B 点时对圆轨道B 点的压力大小为:N ′=N =160N (2)因为小物块恰能通过D 点,所以在D 点小物块所受的重力等于向心力,即:2Dv mg m R=可得:v D =2m/s设小物块落地点距B 点之间的距离为x ,下落时间为t ,根据平抛运动的规律有: x =v D t ,2R =12gt 2解得:x =0.8m则小物块离开D 点后落到地面上的点与D 点之间的距离20.82m l x ==3.如图所示,斜面高为h ,水平面上D 、C 两点距离为L 。

动能和动能定理(高考题)

动能和动能定理(高考题)

动能和动能定理1.足球守门员在发球门球时,将一个静止的质量为0.4kg 的足球,以10m/s 的速度踢出,这时足球获得的动能是J 。

足球沿草地作直线运动,受到的阻力是足球重力的0.2倍,当足球运动到距发球点20米的后卫队员处时,速度为 m/s 。

(g 取10m/s 2)2.如图11所示,半径R =0.40m 的光滑半圆环轨道处于竖直平面内,半圆环与粗糙的水平地面相切于圆环的端点A 。

一质量m=0.10kg 的小球,以初速度v 0=7.0m/s 在水平地面上向左作加速度a =3.0m/s 2的匀减速直线运动,运动4.0m 后,冲上竖直半圆环,最后小球落在C 点。

求A 、C 间的距离(取重力加速度g=10m/s 2)。

3. 如图4所示,ABCD 是一个盆式容器,盆内侧壁与盆底BC 的连接处都是一段与 BC 相切的圆孤,B 、C 为水平的,其距离 d=0.50m.盆边缘的高度为h=0.30m.在A 物处放一个质量为m 的小块并让其从静止出发下滑.已知盆内侧壁是光滑的,而盆底BC 面与小物块间的动摩擦因数为μ=0.10.小物块在盆内来回滑动,最后停下来,则停在地点到B 的距离为 ( )A. 0.50mB. 0.25mC. 0.10mD. 04.一个质量为0.3kg 的弹性小球,在光滑水平面上以6m/s 的速度垂直撞到墙上,碰撞后小 球沿相反方向运动,反弹后的速度大小与磁撞前相同,则碰撞前后小球速度变化量的大 小△v 和碰撞过程中墙对小球做功的大小W 为( )A .△v =0B .△v =12m/sC .W=0D .W=10.8J5.小球由地面竖直上抛,上升的最大高度为H ,设所受阻力大小恒定,地面为零势能面。

在上升至离地高度h 处,小球的动能是势能的2倍,在下落至离高度h 处,小球的势能是动能的2倍,则h 等于( )(A )H /9 (B )2H /9 (C )3H /9(D )4H /96.质量为m 的飞机以水平速度v 0飞离跑道后逐渐上升,若飞机在此过程中水平速度保持不变,同时受到重力和竖直向上的恒定升力(该升力由其它力的合力提供,不含重力)。

动能和动能定理练习题

动能和动能定理练习题

动能和动能定理练习题第I卷(选择题)一、单选题1.某研究小组对一实验小车的性能进行研究。

小车的质量为1.0kg,在水平直轨道上由静止开始运动,其v-t图像如图所示(2~10s时间段图像为曲线,其余时间段均为直线)。

已知2s后小车的功率恒为9W,且整个运动过程中小车所受的阻力不变。

下列说法正确的是()A.0~2s时间内,牵引力做功10.5JB.2~10s时间内,小车的平均速度大小是4.5m/sC.0~10s内小车克服阻力做功63JD.小车在第2s末与第14s末的牵引力功率之比为1∶22.如图,一半径为R的半圆形轨道竖直固定放置,轨道两端等高。

质量为m的质点自轨道端点P由静止开始滑下,滑到最低点Q时,对轨道的正压力为2mg,重力加速度大小为g。

则质点自P滑到Q的过程中,克服摩擦力所做的功为()A.12mgR B.13mgR C.14mgR D.15mgR3.如图所示,用同种材料制成的一个轨道,AB段为14圆弧,半径为R,水平放置的BC段长度为R.一小物块质量为m,与轨道间的动摩擦因数为μ,当它从轨道顶端A 由静止下滑时,恰好运动到C点静止,那么物块在AB段克服的摩擦力做的功为()A.μmgR B.mgR(1-μ)C.12πμmgR D.12mgR4.如图所示,在水平桌面上的A 点有一个质量为m 的物体,以初速度v 0被抛出,不计空气阻力,当它到达B 点时,其动能为( )A .2012mv +mgH B .2012 mv +mgh 1 C .mgH -mgh 2 D .2012 mv +mgh 2 5.自由下落的物体,其动能与位移的关系如图所示,则图中直线的斜率表示该物体的( )A .质量B .机械能C .重力大小D .重力加速度 6.一条长为l 、质量为m 的均质柔软绳平放在水平光滑地面上,现在缓慢地把绳子一端竖直提起来。

设提起第一个3l 段绳子人做的功为W 1,提起第二个3l 段绳子人做的功为W 2,提起第三个3l 段绳子人做的功为W 3,则W 1:W 2:W 3等于( ) A .1:1:1B .1:2:3C .1:3:5D .1:4:7二、多选题7.改变物体的质量和速度,都能使物体的动能发生改变.下列哪种情况,物体的动能是原来的2倍A .质量减半,速度增大到原来的2倍B .速度不变,质量增大到原来的2倍C .质量减半,速度增大到原来的4倍D .速度减半,质量增大到原来的4倍8.如图所示,斜面ABC 竖直固定放置,斜边AC 与一光滑的圆弧轨道DEG 相切,切点为D ,AD 长为tan RL θμ=-,圆弧轨道圆心为O ,半径为R ,DOE θ∠=,90EOG ∠=︒,OG 水平。

动能和动能定理练习含答案

动能和动能定理练习含答案

动能和动能定理精选练习一夯实基础1.如图,某同学用绳子拉动木箱,使它从静止开始沿粗糙水平路面运动至具有某一速度。

木箱获得的动能一定()A.小于拉力所做的功B.等于拉力所做的功C.等于克服摩擦力所做的功D.大于克服摩擦力所做的功【答案】A【解析】:A对、B错:由题意知,W拉-W阻=ΔE k,则W拉>ΔE k;C、D错:W阻与ΔE k的大小关系不确定。

2.(2019·浙江温州九校高一下学期期中)如图,小飞用手托着质量为m的“地球仪”,从静止开始沿水平方向运动,前进距离L后,速度为v(地球仪与手始终相对静止,空气阻力不可忽略),地球仪与手掌之间的动摩擦因数为μ,则下列说法正确的是()A.手对地球仪的作用力方向竖直向上B.地球仪所受摩擦力大小为μmgC.手对地球仪做的功等于mv2/2 D.地球仪对手做正功【答案】C【解析】:经受力分析知,手对地球仪的作用力斜向前上方,A错;地球仪所受摩擦力f=ma,B错;由动能定理W f=12mv2,C对;地球仪对手做负功,D错。

3.(2019·山东省诸城一中高一下学期期中)2018年2月22日平昌冬奥会短道速滑接力赛,中国男队获得亚军。

观察发现,“接棒”的运动员甲提前站在“交棒”的运动员乙前面,并且开始向前滑行,待乙追上甲时,乙猛推甲,甲获得更大的速度向前冲出。

在乙推甲的过程中,忽略运动员与冰面间在水平方向上的相互作用,则()A .甲对乙的作用力与乙对甲的作用力相同B .乙对甲的作用力一定做正功,甲的动能增大C .甲对乙的作用力可能不做功,乙的动能可能不变D .甲的动能增加量一定等于乙的动能减少量【答案】B【解析】:甲、乙间的相互作用力大小相等方向相反,A 错;根据动能定理可判B 正确,C 、D 错误。

4.在水平路面上,有一辆以36 km/h 行驶的客车,在车厢后座有一位乘客甲,把一个质量为4 kg 的行李以相对客车5 m/s 的速度抛给前方座位的另一位乘客乙,则以地面为参考系行李的动能和以客车为参考系行李的动能分别是( )A .200 J 50 JB .450 J 50 JC .50 J 50 JD .450 J 450 J【答案】B【解析】:行李相对地面的速度v =v 车+v 相对=15 m/s ,所以行李的动能E k =12mv 2=450 J 。

功 功率 动能定理 --2024届新高考物理冲刺专项训练(解析版)

功 功率 动能定理 --2024届新高考物理冲刺专项训练(解析版)

专题功 功率 动能定理一、单选题1(23-24高三下·浙江宁波·阶段练习)下列说法正确的是()A.甲图中研究篮球的进入篮筐的过程,可将篮球看成质点B.乙图中羽毛球在空中运动时的轨迹并非抛物线,其水平方向的分速度逐渐减小C.丙图中运动员训练蹲踞式起跑时,起跑器对运动员做正功D.丁图中运动员跳高下落时,通过海绵垫可减少接触面对运动员的冲量从而实现缓冲【答案】B【详解】A.甲图中研究篮球的进入篮筐的过程,篮球大小和形状不能忽略,不可以将篮球看成质点,A错误;B.羽毛球所受空气阻力不能忽略,故轨迹并非抛物线,在阻力作用下羽毛球水平方向的分速度逐渐减小,B正确;C.起跑器的弹力方向运动员没有位移,起跑器对运动员不做功,C错误;D.运动员动量的变化量一定,海绵垫的作用是通过延长接触时间,减小运动员受到的弹力,起到缓冲作用,D错误。

故选B。

2(2024·安徽·模拟预测)如图所示,一质量为m的物体,沿半径为R的四分之一固定圆弧轨道滑行,由于物体与轨道之间动摩擦因数是变化的,使物体滑行到最低点的过程中速率不变。

该物体在此运动过程,下列说法正确的是()A.动量不变B.重力做功的瞬时功率不变C.重力做功随时间均匀变化D.重力的冲量随时间均匀变化【答案】D【详解】A.物体的速度大小不变,方向发生改变,则物体的动量大小不变,方向发生改变,故A错误;B.根据P=mgv y由于物体竖直方向的分速度逐渐减小,则重力做功的瞬时功率逐渐减小,故B错误;C.根据W=mgh物体速率不变,但竖直方向的分速度发生改变,所以物体下落的高度不是随时间均匀变化,则重力做功不是随时间均匀变化,故C错误;D.根据I=mgt由于重力恒定不变,可知重力的冲量随时间均匀变化,故D正确。

故选D。

3(23-24高三上·贵州贵阳·期末)课间,某男同学利用未开封的矿泉水,进行负重深蹲训练,根据体育老师传授的经验,将矿泉水环抱入怀中,与胸口保持相对静止,稳定后完成“下蹲-维持-站起”的深蹲动作。

动能和动能定理专题练习(三)

动能和动能定理专题练习(三)

动能和动能定理专题练习(三)系统动能定理的应用1.如图所示,质量为M的木块放在光滑的水平面上,质量为m的子弹以速度v0沿水平射中木块,并最终留在木块中与木块一起以速度v运动。

已知当子弹相对木块静止时,木块前进距离L,子弹进入木块的深度为s。

若木块对子弹的阻力f视为恒定。

则下列关系式中正确的是()A.fL=Mv2/2 B.f s=mv02/2-(M+m)v2/2C.fs=mv2/2 D.f(L+s)=mv02/2-mv2/22.如图所示,一块长木板B放在光滑的水平面上,在B上放一物体A,现以恒定的外力拉B,由于A、B间摩擦力的作用,A将在B上滑动,以地面为参照物,A、B都向前移动一段距离,在此过程中()A.外力F做的功等于A和B动能的增量B.B对A的摩擦力所做的功,等于A的动能的增量C.A对B的摩擦力所做的功,等于B对A的摩擦力所做的功D.外力F对B做的功等于B的动能的增量与B克服摩擦力所做的功之和3.如图所示,竖直平面内放一直角杆MON,杆的水平部分粗糙,动摩擦因数μ=0.2,杆的竖直部分光滑。

两部分各套有质量均为2kg的小球A和B,A、B球间用细绳相连。

初始A、B均处于静止状态,此时OA=3m,OB=4m,若A球在水平拉力F的作用下向右运动1 m时速度大小为3m/s。

试求:此过程中(取g=10 m/s2)。

(1)拉力F所做的功(2)细绳拉力对B球所做的功4.在倾角为θ的光滑斜面上有两个用轻弹簧连接的物块A和B,它们的质量分别为3m和2m,弹簧的劲度系数为k,C为一固定挡板,系统处于静止状态。

现用一沿斜面方向的恒力拉物块A使之沿斜面向上运动,当B刚离开C 时,A的速度为v,加速度方向沿斜面向上、大小为a,则()A.从静止到B刚离开C的过程中,A发生的位移为5mgsinθ/kB.从静止到B刚离开C的过程中,重力对A做的功为-5m2g2sin2θ/kC.B刚离开C时,恒力对A做功的功率为(5mgsinθ+3ma)vD.当A的速度达到最大时,B的加速度大小为 3a/25.如图所示,质量M=8.0kg的小车放在光滑的水平面上,给小车施加一水平向右的恒力F=8.0N。

高考物理《动能和动能定理》真题练习含答案

高考物理《动能和动能定理》真题练习含答案

高考物理《动能和动能定理》真题练习含答案1.[2024·江苏省淮安市学情调研]质量为m 的物体以初速度v 0沿水平面向左开始运动,起始点A 与一水平放置的轻弹簧O 端相距s ,轻弹簧的另一端固定在竖直墙上,如图所示,已知物体与水平面间的动摩擦因数为μ,物体与弹簧相碰后,弹簧的最大压缩量为x ,重力加速度为g ,则从开始碰撞到弹簧被压缩至最短的过程中,克服弹簧弹力所的功为( )A .12 m v 20 -μmg (s +x )B .12m v 20 -μmgx C .μmg (s +x )-12m v 20 D .-μmg (s +x ) 答案:A解析:从开始碰撞到弹簧被压缩至最短的过程中,由动能定理-μmg (s +x )-W =0-12m v 20 ,解得W =12 m v 20 -μmg (s +x ),A 正确.2.[2024·河南省部分学校摸底测试]如图所示,水平圆盘桌面上放有质量为0.1 kg 的小铁碗A (可视为质点),一小孩使圆盘桌面在水平面内由静止开始绕过圆盘中心O 的轴转动,并逐渐增大圆盘转动的角速度,直至小铁碗从圆盘的边缘飞出,飞出后经过0.2 s 落地,落地点与飞出点在地面投影点的距离为80 cm.若不计空气阻力,该过程中,摩擦力对小铁碗所做的功为( )A.0.2 J B .0.4 JC .0.8 JD .1.6 J答案:C解析:小铁碗飞出后做平抛运动,由平抛运动规律可得v =x t,解得v =4 m/s ,小铁碗由静止到飞出的过程中,由动能定理有W =12m v 2,故摩擦力对小铁碗所做的功W =0.8 J ,C 正确.3.(多选)如图所示,在倾角为θ的斜面上,质量为m 的物块受到沿斜面向上的恒力F 的作用,沿斜面以速度v 匀速上升了高度h .已知物块与斜面间的动摩擦因数为μ、重力加速度为g .关于上述过程,下列说法正确的是( )A .合力对物块做功为0B .合力对物块做功为12m v 2 C .摩擦力对物块做功为-μmg cos θh sin θD .恒力F 与摩擦力对物块做功之和为mgh答案:ACD解析:物体做匀速直线运动,处于平衡状态,合外力为零,则合外力做功为零,故A正确,B 错误;物体所受的摩擦力大小为f =μmg cos θ,物体的位移x =h sin θ,摩擦力对物块做功为W f =-fx =-μmg cos θh sin θ,C 正确;物体所受各力的合力做功为零,则W G +W F +W f =0,所以W F +W f =-W G =-(-mgh )=mgh ,D 正确.4.(多选)质量为2 kg 的物体,放在动摩擦因数μ=0.1的水平面上,在水平拉力的作用下由静止开始运动,水平拉力做的功W 和物体发生的位移x 之间的关系如图所示,重力加速度g 取10 m/s 2,则此物体( )A .在位移x =9 m 时的速度是33 m/sB .在位移x =9 m 时的速度是3 m/sC .在OA 段运动的加速度是2.5 m/s 2D .在OA 段运动的加速度是1.5 m/s 2答案:BD解析:运动x =9 m 的过程由动能定理W -μmgx =12m v 2,得v =3 m/s ,A 错误,B 正确;前3 m 过程中,水平拉力F 1=W 1x 1 =153N =5 N ,根据牛顿第二定律,F 1-μmg =ma 得a =1.5 m/s 2,C 错误,D 正确.5.[2024·张家口市期末考试]如图所示,倾角为θ=37°的足够长光滑斜面AB 与长L BC =2 m 的粗糙水平面BC 用一小段光滑圆弧(长度不计)平滑连接,半径R =1.5 m 的光滑圆弧轨道CD 与水平面相切于C 点,OD 与水平方向的夹角也为θ=37°.质量为m 的小滑块从斜面上距B 点L 0=2 m 的位置由静止开始下滑,恰好运动到C 点.已知重力加速度g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.(1)求小滑块与粗糙水平面BC 间的动摩擦因数μ;(2)改变小滑块从斜面上开始释放的位置,小滑块能够通过D 点,求小滑块的释放位置与B 点的最小距离.答案:(1)0.6 (2)6.75 m解析:(1)滑块恰好运动到C 点,由动能定理得mgL 0sin 37°-μmgL BC =0-0解得μ=0.6(2)滑块能够通过D 点,在D 点的最小速度,由mg sin θ=m v 2D R解得v D =3 m/s设滑块在斜面上运动的距离为L ,由动能定理得mgL sin θ-μmgL BC -mgR (1+sin θ)=12m v 2D -0 解得L =6.75 m。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动能和动能定理专题练习(一) 质量为W f =恒定功率运动时,牵引力做功转换研究对象,将变力做功转化为恒力做功例1、 (2015·海南单科)如图6,一半径为R 的半圆形轨道竖直固定放置,轨道两端等高,质量为m 的质点自轨道端点P 由静止开始滑下,滑到最低点Q 时,对轨道的正压力为2mg ,重力加速度大小为g 。

质点自P 滑到Q 的过程中,克服摩擦力所做的功为( )A.14mgR B.13mgR C.12mgR D.π4mgR 例2、如图所示,有一台小型石磨,某人用大小恒为F ,方向始终与磨杆垂直的力推磨。

假设施力点到固定转轴的距离为L ,在使磨转动一周的过程中,推力做功例3、一辆汽车质量为800kg ,从静止开始运动,其阻力为车重的0.05倍。

其牵引力的大小与车前进的距离变化关系为:F=100x+f 0,f 0是车所受的阻力。

当车前进20m 时,牵引力做的功是 (g=10m/s 2)例4、一物体所受的力F 随位移x 变化的图象如图7所示,求在这一过程中,力F 对物体做的功为( )A .3JB .6JC .7JD .8J例5、质量为4000kg 的汽车,由静止开始以恒定的功率前进,它经100/3s 的时间前进425m ,这时候它达到最大速度15m/s 。

假设汽车在前进中所受阻力不变,求阻力为多大?例6、如图所示,某人用大小不变的力F 拉着放在光滑平面上的物体,开始时与物体相连的绳和水平面间的夹角是α,当拉力F 作用一段时间后,绳与水平面间的夹角为β。

已知图中的高度h ,求绳的拉力FT 对物体所做的功,绳的质量、滑轮质量及绳与滑轮间的摩擦不计.课堂练习 1、静置于光滑水平面上坐标原点处的小物块,在水平拉力F 作用下,沿x轴方向运动(如图甲所示),拉力F 随物块所在位置坐标x 的变化关系(如图乙所示),图线为半圆。

则小物块运动到x 0的过程中拉力做功为 ( )A .0B .Fx 0/2C .πFx 0/4D .πFx 0/22、某物体同时受到两个在同一直线上的力F 1、F 2的作用,由静止开始做直线运动,力F 1、F 2与位移x 的关系图象如图所示,在物体开始运动后的前4.0 m 内,物体具有最大动能是多少?物体开始运动4.0 m 的动能是多少?3、子弹以速度v 0射入墙壁,入射深度为h 。

若子弹在墙中受到的阻力与深度成正比,欲使子弹的入射深度为2h ,求子弹的入射速度应增大到多少?4、如图所示,面积很大的水池,水深为H 水面浮着一正方体木块,木块边长为a ,密度为水的一半,质量为m ,开始时,木块静止,现用力F 将木块缓慢往下压,求从开始到木块刚好完全没入水中的过程中,力F 所做的功。

5、用大小不变、方向始终与物体运动方向一致的力F ,将质量为m 的小物体沿半径为R 的固定圆弧轨道从A 点推到B 点,圆弧AB 对应的圆心角为60°,如图所示,则在此过程中力F 对物体做的功为________,若将推力改为水平恒力F ,则此过程中力F 对物体做的功为__________。

6、如图所示,一质量为m=2.0kg 的物体从半径R=5.0m 的圆弧的A 端,在拉力作用下沿圆弧缓慢运动到B 端(圆弧AB 在竖直平面内),拉力F 大小不变始终为15N ,方向始终与物体在该点的切线成37度角,圆弧所对应的圆心角为60度,BO 边为竖直方向,求这一过程中:(1)拉力F 做的功(2)重力G 做的功(3)圆弧面对物体的支持力F N 做的功(4)圆弧面对物体的摩擦力F f 做的功7、质量为m 的小球,用长为L 的轻绳悬挂于O 点,小球在水平拉力F 作用下,从最低位置P 点很缓慢地移动到Q 点如图所示,轻绳与竖直方向的夹角为θ。

则力F 所做的功为( )A .mgLcos θB .mgL (1- cos θ)C .FLsin θD .FLcos θ8、如图所示,用竖直向下的恒力F 通过跨过光滑定滑轮的细线拉动光滑水平面上的物体,物体沿水平面移动过程中经过A 、B 、C 三点,设AB=BC ,物体经过A 、B 、C 三点时的动能分别为E kA ,E kB ,E kC ,则它们间的关系一定是( )A .E kB -E kA =E kC -E kB B .E kB -E kA <E kC -E kBC .E kB -E kA >E kC -E kBD .E kC <2E kB9、一辆汽车在平直公路上从速度v 0开始加速行驶,经时间t 后,前进了距离S ,此时恰好达到其最大速度v m 。

设此过程中发动机始终以额定功率P 工作,汽车所受阻力恒为F f 则在这段时间里,发动机所做的功为( )A .FSB .PtC .mv m 2/2+F f S-mv 02/2D .F f (v m +v 0)/210、质量500t 的机车,以恒定输出功率从静止出发,经5min 行驶2250m 后,速度达最大值15m/s ,求机车所受阻力的阻力。

11、如图所示,一质量均匀的不可伸长的绳索重为G ,A 、B 两端固定在天花板上,今在最低点C 施加一竖直向下的力将绳拉至D 点,在此过程中,绳索AB 的重心位置将( )A .逐渐升高B .逐渐降低C .先降低后升高D .始终不变12、如图所示,人用跨过光滑滑轮的细绳牵拉静止于光滑水平平台上的质量为m 的滑块,从绳竖直的位置到绳与水平方向夹角为30°的过程中,人始终以速度v 0匀速走动,则在这个过程中人拉重物做的功为( )A .mv 02/8B .3mv 02/8C .mv 02/2D .3mv 02/413、如图所示,在竖直平面内,轨道ABC 关于B 点对称,且A 、B 、C 三点在同一水平线上。

若小滑块第一次由A 滑到C ,所用时间为t1,到达C 点速度为v 1,第二次由C 滑到A ,所用时间为t 2,到达A 点速度为v 2,小滑块两次的初速度大小相同且运动过程始终沿着轨道滑行,小滑块与轨道间的动摩擦因素恒定,则( )A .t 1<t 2B .t 1>t 2C .v 1>v 2D .v 1<v 214、如图所示,一物块以6m/s 的初速度从曲面A 点下滑,运动到B 点速度仍为6m/s ,若物体以5m/s 的初速度仍由A 点下滑,则它运动到B 点时的速度( )A .大小5m/sB .等于5m/sC .小于5m/sD .条件不足,无法计算15、用汽车从井下提重物,重物质量为m ,定滑轮高为H ,如图所示,已知汽车由A 点静止开始运动至B 点时速度为v B ,此时轻绳与竖直方向夹角为θ。

这一过程中轻绳的拉力做功多大?巩固练习1、一根粗细均匀的木棒竖直插入水中,若将木棒等分成n 段,且第一段进入的过程中,浮力做功为W ,求第n 段和全部浸入的过程中,浮力分别做了多少功?2、一质量为2kg 的物体,在水平恒定拉力的作用下以一定的初速度在粗糙的水平面上做匀速运动,当运动一段时间后,拉力逐渐减小,且当拉力减小到零时,物体刚好停止运动,如图所示,给出了拉力随位移变化的关系图象。

已知重力加速度g=10m/s 2,由此可知( )A .物体与水平面间的动摩擦因数约为0.35B .减速过程中拉力对物体所做的功约为13JC .匀速运动时的速度约为6m/sD .减速运动的时间约为1.7s3、一辆汽车在平直公路上从速度v 0开始加速行驶,经时间t 后,前进了距离S ,此时恰好达到其最大速度v m 。

设此过程中发动机始终以额定功率P 工作,汽车所受阻力恒为F f 则在这段时间里,发动机所做的功为( )A .FSB .PtC .mvm 2/2+F f S-mv 02/2 D .F f (v m +v 0)/24、如图所示,质量为m 的物块与转台之间能出现的最大静摩擦力为物块重力的k 倍,物块与转轴OO ′相距R ,物块随转台由静止开始转动,当转速增加到一定值时,物块将在转台上滑动,在物块由静止到滑动前的这一过程中,转台对物块做的功为( )A .0B .2πkmgRC .2kmgRD .kmgR/25、如图所示,光滑水平桌面上开一个小孔,穿一根细绳,绳一端系一个小球,另一端用力F 向下拉,维持小球在水平面上做半径为R 的匀速圆周运动。

现缓缓地增大拉力,使圆周半径逐渐减小。

当拉力变为8F 时,小球做半径为R/2匀速圆周运动,则在此过程中拉力对小球所做的功是:( )A .0B .7FR/2C .4FRD .3FR/26、如图所示,固定的光滑竖直杆上套着一个滑块,用轻绳系着滑块绕过光滑的定滑轮,以大小恒定的拉力F拉绳,使滑块从A点起由静止开始上升。

若从A点上升至B点和从B点上升至C点的过程中拉力F做的功分别为W1、W2,滑块经B、C两点时的动能分别为E KB、E KC,图中AB=BC,则一定有()A.W l>W2B.W1<W2C.E KB>E KC D.E KB<E KC7、如图所示,一质量为m、长度为L的均匀柔软细绳PQ竖直悬挂。

用外力将绳的下端Q缓慢地竖直向上拉起至M点,M点与绳的上端P相距L/3。

重力加速度大小为g。

在此过程中,外力做的功为()A.mgL/2 B.mgL/3 C.mgL/6 D.mgL/98、如图所示,固定在地面上的半圆轨道直径ab水平,质点P从a点正上方高H处自由下落,经过轨道后从b点冲出竖直上抛,上升的最大高度为2H/3,空气阻力不计。

当质点下落再经过轨道a点冲出时,能上升的最大高度h为()A.h=2H/3 B.h=H/3 C.h<H/3 D.H/3<h<2H/39、质量为10kg的物体,在变力F作用下沿x轴做直线运动,力随坐标x的变化情况如图所示。

物体在x=0处,速度为1m/s,一切摩擦不计,则物体运动到x=16m处时,速度大小为()A.2m/s B.3m/s C.4m/s D.m/s10、一劲度系数k=800N/m的轻质弹簧两端分别连接着质量均为12kg的物体A、B将他们竖直静止放置在水平面上,如图所示。

现将一竖直向上的变力F作用A上,使A开始向上做匀加速运动,经0.4s物体B刚要离开地面。

(设整个过程弹簧都在弹性限度内,取g =10m/s2)求:(1)此过程中所加外力F的最大值和最小值(2)此过程中力F所做的功11、如图所示,一物体质量m=2kg,在倾角θ=37°的斜面上的A点以初速度v0=3m/s下滑,A点距弹簧上端B的距离AB=4m,当物体到达B后将弹簧压缩到C点,最大压缩量BC=0.2m,然后物体又被弹簧弹上去,弹到的最高位置为D点,D点距A点AD=3m,挡板及弹簧质量不计,g取10m/s2。

求:(1)物体与斜面间的动摩擦因数μ(2)弹簧的最大弹性势能E pm。

相关文档
最新文档