数列中an及Sn的关系
数学人教A版高中必修5数列中an与Sn的关系探究优秀学案
数列中n a 与n S 的关系探究1、理解数列的前n 项和n S 与通项n a 的关系;对数列的前n 项和n S 与通项n a 的关系能有较深刻的理性认识,会变形利用⎩⎨⎧≥-==-.2,;1,11n S S n S a n n n )(*N n ∈来解决一些与n a 及n S 有关联的一定难度的灵活性、综合性问题,形成技能。
2、通过对问题探究与变式训练,体会⎩⎨⎧≥-==-.2,;1,11n S S n S a n n n )(*N n ∈联结数列的通项n a 和前n 项和n S 的作用。
重点:由数列前n 项和n S 与通项n a 的关系求n a ; 难点:(1)由1-⇒n n S S 及使用1--=n n n S S a 的前提条件”“2≥n ; (2)由数列前n 项和n S 与通项n a 的关系,进行n a 与n S 的转化。
1、回顾:我们前面学过等差数列、等比数列,可以由a n →S n ,如等差数列中有2)(1n n a a n S +=;等比数列中有S n →a n ,如已知22n S n n =+,可以求a n 。
2、问题引入:如果知道a n 与S n 之间的关系式,能否求a n 或S n 呢? 3、典型例题及类题演练:例1:2016年全国III 卷17题:已知数列}{n a 的前n 项和n n a S λ+=1,其中0≠λ。
(1)、证明}{n a 是等比数列,并求其通项公式;(2)、若32315=S ,求λ。
类题演练:2015年全国I 卷17:n S 为数列}{n a 的前n 项,已知342,02+=+>n n n n S a a a .(1)、求}{n a 的通项公式;(2)、设11+=n n n a a b ,求数列}{n b 的前n 项和。
问题演变:变式:已知正项数列{a n }的前n 项和为n S ,a 1=3,且)2(21≥=+-n a S S n n n ,求该数列的通项a n 。
等差数列中Sn与an间的重要关系及应用
等差数列中S n 与a n 间的 重要关系及其应用“设S n、a n分别是等差数列{a n}的前n 和与通项,则它们之间有如下的重要关系:S n =(kn )a n ,其中k 是非零实数,n 是正整数。
”我们知道,等差数列{a n }的前n 和S n 、通项a n 分别有如下的表达式:⑴ S n =na 1- n(n-1)2 d ,其可等价变形为S n = d 2 n 2 +(a 1-d2 )n ,它是关于n 的二次函数且不含常数项,一般形式是:S n =An 2+Bn ,其中A 、B 是非零待定系数;⑵ a n = a 1 +(n-1)d ,其可等价变形为a n =dn+(a 1 -d ),它是关于n 的一次函数,一般形式是:a n =an+b ,其中a 、b 是非零待定系数;通过对等差数列{a n }前n 和S n 的一般形式S n =An 2+Bn 与其通项a n 的一般形式a n =an+b 的观察分析,不难得出S n 与a n 之间有这样的重要关系式:S n =(kn )a n 。
S n 与a n 相互关系的应用举例:[例1]在等差数列{a n }中,a 4=0.8,a 11=2.2,求a 51+a 52+…+a 80.【解】 由等差数列的通项公式得⎩⎨⎧=+=+2.2108.0311d a d a ,解得a 1=0.2,d =0.2.∴a 51+a 52+…+a 80=S 80-S 50 =80a 1+d a d 2495050279801⨯--⨯=30a 1+1935d =30×0.2+1935×0.2=393. 【点评】 本题求解分两个层次,首先由已知求出a 1和d ,再将所求转化为S 80-S 50,这是解题的关键.[例2]根据数列{a n }的前n 项和公式,判断下列数列是否是等差数列. (1)S n =2n 2-n (2)S n =2n 2-n +1【解】 (1)a 1=S 1=1 当n ≥2时,a n =S n -S n -1=(2n 2-n )-[2(n -1)2-(n -1)]=2(2n -1)-1=4n -3∵n =1 时也成立,∴a n =4n -3 a n +1-a n =[4(n +1)-3]-[4n -3]=4∴{a n }成等差数列(2)a 1=S 1=2 a 2=S 2-S 1=5 a 3=S 3-S 2=9 ∵a 2-a 1≠a 3-a 2 ∴{a n }不是等差数列.【点评】 已知S n ,求a n ,要注意a 1=S 1,当n ≥2时a n =S n -S n -1, 因此a n =⎩⎨⎧≥-=-)2( )1(11n S S n S n n.练习: 已知等差数列{a n }的前项和S n 满足条件:S n =2n 2+3n ,求此等差数列的通项a n解: 根据等差数列的前n 项和S n 是关于n 的二次函数且不含常数项,即S n = d 2n 2+(a 1-d 2 )n,并结合已知条件等差数列{a n }的前项和S n =2n 2+3n 立有, d2 =2且a 1-d2=3, 解之得 a 1=5,d=4,于是便得所求等差数列的通项a n =4n+1. [例3]已知等差数列{a n }满足:S p =q ,S q =p ,求S p +q (其中p ≠q ). 【解】 由已知S p =q ,S q =p 得 pa 1+q d p p =-2)1( ① qa 1+p d q q =-2)1( ② ①-②整理得2)1(21dq p a -++=-1∴d q p q p a q p S q p 2)1)(()(1-++++=+=(p +q )2)1(21d q p a -++=-(p +q ) 【点评】 本问题即是在a 1、d 、n 、a n 、S n 中知三求二问题,但在解方程的过程中体现出了较高的技巧;也可考虑设S n =An 2+Bn 去求解. 例4 有两个等差数列{a n }、{b n },其前n 和分别为S n 、 T n ,并且n n T S =7n+2n+3 ,求:⑴ 55b a 的值;⑵115b a的值分析:由等差数列可知,其前n 项和是关于n 的二次函数且不含常数项;根据已知条件,两个等差数列前n 项和的比的结果是关于n 的一次因式,说明它们在相比的过程中约去了一个共同的因式kn ,于是,我们只要将其还原,即可得到两个等差数列的前n 项和,再对照等差数列前n 项和的二次函数形式:S n = d 2 n 2 +(a 1-d2 )n ,很快便可得到其首项、公差与通项,进而由等差数列通项公式求出数列中的任意一项。
数列中an及Sn的关系
对于任意一个数列,当定义数列的前n项和通常用S表示时,记作S= a i+ a2+・・・+禺,此时通项公S,n= 1,式a n= .Si—S T, n》2而对于不同的题目中的a n与S的递推关系,在解题时又应该从哪些方向去灵活应用◎= S— S-1 (n》2)去解决不同类型的问题呢?我们将从下面三个角度去探索在各类考试中出现的a n与S相关的问题:归纳起来常见的角度有:角度一:直观运用已知的S,求a n;角度二:客观运用a n= S—S—1 (n》2),求与如S有关的结论;角度三:a n与S的延伸应用.方法:已知 $求a n的三个步骤(此时S为关于n的代数式):(1) 先利用a i= S求出a i ;(2) 用n—1替换S中的n得到一个新的关系,利用a n = S—S—1 (n》2)便可求出当n》2时a n的表达式;(3) 对n= 1时的结果进行检验,看是否符合n》2时a n的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n = 1与n》2两段来写.同时,在部分题目中需要深刻理解“数列的前n项和”的实际意义,对“和的式子”有本质的认识,这样才能更好的运用S求解.女口:a+ 2a2+ 3a s+ — + na n= 2n—1,其中a+ 2比+ 3a s+^+ na n表示数列{na n}的前n 项和.1.已知数列{a n}的前n项和S= n2—2n+2,则数列{a()n}的通项公式为A. a n = 2n —3 B . a n= 2n+ 31, n= 11, n= 1C. a n = D . a n =2n —3, n》22n+ 3, n》2【解析】当n》2时,a n = S n —S n—1 = 2n—3 .当n = 1时,a1= S = 1,不满足上式.【答案】C2. (2015 •河北石家庄一中月考)数列{a n}满足:a1+ 3a2+ 5&+…+ (2 n—1) • a n= ( n—1) • 3n+1+ 3( n € M),则数列的通项公式a n= _____________ .【解析】当n》2时,a1 + 3a2 + 5a3+-+ (2n —3) • a n—1= (n —2) • 3n+ 3;则用已知等式减去上式得(2 n—1) • a n = (2n—1) • 3,得a n= 3 ;当n = 1 时,a i = 3,满足上式;故a n = 3.【答案】a n= 3n3. ____________________________________________________________________________________ (2015 •天津一中月考)已知{a n}的前n项和为S,且满足log2(S+1) = n +1,贝U a n= ______________________________ .【解析】由已知得S+ 1= 2n+1,贝U S= 2n+1—1;当n》2 时,a n= S—S—1= 2n+1—1 —2n+ 1 = 2n;当n3, n= 1=1时,a1 = S1 = 3,不满足上式;故a n= n.2 , n》23, n= 1【答案】a n= n2 , n》24. (2015 •四川成都树德期中)已知{a n}是一个公差大于0的等差数列,且满足a3a5= 45, a2 + a6= 14.(1) 求{a n}的通项公式;b b2 b n(2) 若数列{b n}满足:空+ 尹…+ 2 = a n+ 1(n€ M),求{b n}的前n项和.【解】(1)设等差数列{a n}的公差为d,则d>0,由a2+ a6= 14,可得a4= 7由a3a5= 45,得(7 —d)(7 + d) = 45,解得d= 2 或d=—2(舍)a n= a4+ ( n—4) d= 7+ 2( n —4),即a n= 2n—1.b n(2) 令6=尹贝U C1+ C2+ C3+ — + C n= a n+ 1 = 2n ①当n》2 时,d+ C2+ C3+・・・+ C n-1= 2( n—1) ②由①一②得,C n= 2,当n= 1时,C1= 2,满足上式;b n n 亠 1贝U C n= 2(n€ N*),即戸=2, . b n= 2 + ,故数列{b n}是首项为4,公比为2得等比数列,4(1 —2n) n+2•••数列{b n}的前n项和S n= = 2 +—4.1 —2此类题目中,已知条件往往是一个关于a n与S n的等式,问题则是求解与a n, S有关联的结论.那么我们需要通过对所求问题进行客观分析后,判定最后的结果中是保留a n,还是S.那么,主要从两个方向利用a n= S n—S n- 1( n》2):方向一:若所求问题是与a n相关的结论,那么用S—S—1 = a n ( n》2)消去等式中所有S与S n—1,保留项数a n,在进行整理求解;1. (2015 •广州潮州月考)数列{a n}的前n项和记为S, ai = 1, a n+1= 2S+ 1(n》1, n€ N*),则数列的通项公式是.【解析】当 n 》2 时,a n = 2S — i +1,两式相减得 a n +i — a n = 2( S — S —J ,即 a n +1 — a n = 2a n ,得 a n +1 = 3a n ;当n = 1时,a 2= 3,则a 2= 3a i ,满足上式;故{a n }是首项为1,公比为3得等比数列,二a n = 3 I . 【答案】a n = 3n — 12.数列{a n }的前 n 项和为 S,若 a n +1 = — 4S +1, a 1= 1. (1) 求数列{a n }的通项公式;(2) 设b n = na n ,求数列{b n }的前n 项和T n .【解】(1)当 n 》2 时,a n = — 4S —1 + 1,又 a n +1 = — 4S + 1,又 a 2 = — 4a 1 + 1 = — 3, a 1 = 1,•••数列{a n }是首项为a 1= 1,公比为q =— 3的等比数列,⑵由(1)可得b n = n • ( — 3)T n = 1 • ( — 3)0+ 2 • ( — 3)1 + 3 • ( — 3)2 +•••+ (n — 1) • ( — 3)n —2 + n • ( — 3)n —1,—3T n = 1 • ( — 3)1 + 2 • ( — 3)2+…+ (n — 2) • ( — 3)n —2 + (n — 1) • ( — 3)n —1+ n ( — 3)n ,1 2 n — 1n.•4 T n = 1 + ( — 3) + ( — 3) +…+ ( — 3)— n ,( — 3),16方向二:若所求问题是与 S 相关的结论,那么用 &= S — S —1 (n 》2)消去等式中所有项数 a n ,保留S 与$-1,在进行整理求解.11. 已知数列{a n }的前n 项和为S 且满足a n + 2S • S-1 = 0( n 》2) , a 1=玄1(1) 求证:—是等差数列; (2) 求a n 的表达式.【解】(1)证明:••• a n = S — S-1( n 》2),又 a n =— 2S • S-1,• S n - 1 — Si = 2S n • Si - 1 , S n M 0 .11因此疋―W= 2( n 》2).S 1 S 1— 111 1故由等差数列的定义知$是以&=一=2为首项,2为公差的等差数列.Si S 1 a 11 1 1(2)由(1)知S = S + (n — 1)d = 2 + (n — 1) x 2= 2n ,即 S =亦.1当 n 》2 时,a n =— 2S • Si —1 =—2n (n — 1)I又T a 1 = ,不适合上式.a n= ( — 3)n — 11 — (4n + 1)( — 3)所以, T n =--a n +1 — a n = —4a即—3(n 》2),12, n = 1,2. (2015 •江西名校联盟调考)已知正项数列{a n }的前n 项和为S ,且a 2— 2S a n + 1 = 0. (1) 求数列{S }的通项公式;1 1 1 一 1 2(2) 求证:$+疋+…+Q >2(S+I — 1).(提示: 一 > ------------------------ )o ! S2 Sn寸 n 寸 n +1+寸 n【解】(1) T a n = S1— Si -1 (n 》2),由 a n — 2S n a n +1 = 0,得(S — S —1)2— 2S n (S n — S —1) + 1= 0,整理得 S 2— S 2— 1= 1 . 当 n = 1 时,a 1 — 2Sa 1 + 1 = 0,且 a 1 >0,解得 a = 1, 故由等差数列的定义知{S n }是以1为首项,1为公差的等差数列. • S n = n ,则 S n = n . 亠 & 1 1 22 ,—— 厂⑵由⑴知十=丽>$+讦=2("—回,• S + S +…+ S >2( .2 — 1) + 2( 3 — 2) +…+ 2( n + 1— , n) = 2( n + 1 — 1) 即 1 + 2+…+ 1 > 2(S n + 1— 1)【总结】此类题目往往伴随着等差、等比数列的判定,所以需要对数列的判定方法熟练掌握.S , n = 1, 解此类题目中不仅需要深刻理解“数列的前 n 项和”的实际意义,还需要对a n =关S n — S n - 1 , n系式的形式结构很熟练的掌握,这样才能在题目中对已知等式灵活地变换.当然在解决问题的时候仍然需要从求谁的角度出发分析,确定等式的变换方向. 方向一:关于双重前n 项和此类题目中一般出现“数列 {a n }的前n 项和为S,数列{S }的前n 项和为T n ”的条件,在解答时需要 确定清楚求的是与 a n , S n , T n 中谁相关的问题,确定已知等式的运用方向.但一般是求解最底层的/ .1. (2015 •湖北武汉质检)设数列{a n }的前n 现和为S ,数列{S }的前n 项和为T n ,满足T n = 2S — n 2,n € N*.(1) 求a 1的值;(2) 求数列{a n }的通项公式.【解】(1)当 n = 1 时,T 1= 2S — 1,且 T 1 = S = a 1,解得 a 1= 1,(2)当 n 》2 时,S n = T n — T n -1= 2S — n — [2 S -1 — (n — 1) ] = 2S — 2S n -1 — 2n + 1a n =1 2n (n — 1)n 》2.i +1 i歹(1 -尹)n + 1_3尹=2n + 3 3盯v 2--S n = 2Si -1 + 2n — 1①则 S+1 = 2S + 2n +1②由②一①,得 a n +i = 2a n + 2,••• a n + 2 = 3 - 2n -1,贝y a n = 3 • 2n -1-2(n € N*).2• (2015 •安徽滁州期末联考)设数列{a n }的前n 项和为S,数列{S n }的前n 项和为T n ,且2T n = 4S n -2(n + n ), n € N*.(1) 证明:数列{a n + 1}为等比数列;n +1(2) 设 b n =■ ~-,证明:b 1 + b 2+^+ b n v 3.a n + 1【解】(1)当 n = 1 时,2T 1 = 4S - 2,且 T 1 = S= a 1,解得 a= 1,当 n = 2 时,212= 2(a + ◎ + a ?) = 4(a+ a ?) — 6,解得 a ?= 3, 当 n >2 时,2T n -1= 4S n -1-[( n — 1) + (n - 1)]• 2S = 2T n - 2T n -1 = 4S — (n + n ) — 4S -1 + [( n — 1) + ( n — 1)] 整理得s= 2S n -1 + n ① 则 S n +1 = 2S + n + 1②由②一①,得 a n +1 = 2a n + 1 ,a n + 1 + 1• a n +1 +1= 2(a n + 1),即——=2(n 》2),a n + 1•数列{a n +1}是首项为2,公比为2的等比数列,(2)由(1)知,a n + 1 = 2n ,贝 y b n =号1则 b 1+ b 2+-+ b n = |+ 22 + 壬…+2 2 2令T n = 2 +斗芬+专,① 则扣=|+1+寺…+ 7+齐,②,—+ 1 1 1 1 1 n +1由①一②,得2几=1+戸+戸+尹••+歹一I ^+Ta n +1 + 2K+I=E 2),易求得, a i + 2= 3, a 2 + 2= 6,贝U=2 ,显然a ?+ 1 a 1 + 1n + 12 ,a n + 1 + 2= 2( a n + 2), 即•••数列{a n + 2}是首项为3,公比为2的等比数列,1 则 T n V 3,即 b i + b 2+…+ b n v 3.方向二:已知等式在整理过程中需要因式分解求数列{a n }的通项公式.【解】(1)当 n = 1 时,「= 2S — 1;又 T 1 = S = a 1,__22(2)当 n 》2 时,S n = T n — T n — 1 = (2 S n — n ) — [2 S n —1 — (n — 1) ] = 2S n — 2 Si — 1 — 2n + 1,整理得s= 2$-1 + 2n — 1①•- S n + 1 = 2S n + 2n + 1②由②一①,得 a n +1 = 2a n + 2又 T 2= 20— 4;得 a 2= 4a 1 + 2当 n = 1 时,a1+ 2 = 3,比+ 2= 6,则市=2,•••数列{a n + 2}是以3为首项,2为公比的等比数列. 则 a n + 2 = 3 ・2“ 1,所以 a n = 3 ・2“ 1 — 2. 已知数列{ a n }的各项均为正数,前n 项和为$,且S= a (a J ° , n € N*.1设 b n = 2S , T n = b + b 2+…+ b n ,求 T n .a 1 (a 1 + 1)【解】(1)由已知得,当n = 1时,a 1 = S =2 ( &> 0) , - a 1= 1.22S a n + a n ,当n 》2时,由cc 22Si —1 = a n — 1 + a n — 1得 2a n = a n + ai — a n - 1 — a n —1 . 即(a n + a n -1)( a n — a n — 1 — 1) = 0,a n + a n —1 >0, • a n — a n — 1 = 1( n 》2).所以数列{a n }是以1为首项,1为公差的等差数列.(2)由(1)可得 a n = n , $= n(ri+ ° , b n = 2 =1——=-—^^22S n (n + 1) nn +1此类问题大多数时候会伴随"各项均为正数的数列{a n } ”这样的条件,运用在因式分解后对因式进行符号的判定,对因式进行的取舍.(2015 •山东青岛一模)各项均为正数的数列2{a n }满足 a n = 4S — 2a n —1( n € N*),其中 S 为{a n }的n 项和. (1) 求a i , a 2的值;则 a 1= 2a — 1,解得 a 1= 1 ;...a n + 1 + 2= 2( a n + 2),即 a n + 1 + 2K =2(n > 2)(1) 求证:数列{a n }是等差数列;方向三:需对已知等式变形后,再求解1. (2015 •江西五校联考)已知正项数列{&}中,其前n 项和为S ,且a n = 2西一1. (1) 求数列{a n }的通项公式;1(2) 设 b n =, T n = b 1 + b 2+ b 3+…+ b n ,求 T n .a n • a n+1【解】(1)由已知得,4S = (a n + 1)2.当 n 》2 时,4S —1= (a n -1+ 1)2,2222则 4S1 — 4S n - 1 = (a n + 1) — ( a n - 1 + 1),整理得(a n — 1) — ( a n - 1 +1) = 0 ,..(a n — a n — 1 — 2)( a n + a n — 1) = 0 又 a n > 0,贝U a n — a n — 1 = 2,2当 n = 1 时,4S = (a 1 +1),得 a 1 = 1 ; 故数列{a n }是首项为1,公差为2的等差数列;--a n = 2n — 1.1 111 1 12 1 —3 + 3 — 5 +…+ 2n — 1 — 2n + 1 1 1 n 2 1 — 2n + 1 = 2n + 12. (2015 •浙江温州中学月考)设数列{a n }的前n 项和为S,已知a 1 = 2, a 2= 8, $+1 + 4S -1= 5$(n 》2) , T n 是数列{log 2a n }的前n 项和.(1) 求数列{a n }的通项公式; (2) 求 T n .【解】(1)当n 》2时,S+1+ 4S —1= 5S ,..S n + 1 — Si = 4( S n — S n — 1),即 N n + 1 = 43n , 当 n = 1 时,a 2= 4a 1;故数列{a n }是以2为首项,4为公比的等比数列.n —12n —1a n = 2 • 4 = 2.2n 一 1(2)由(1)可知 log 2a n = log 22 = 2n — 1,111 1 ...T n = b 1 + b 2+ b 3+ …+ b n = 1—石 + 石一厅+…+ - 2 2 3 n1 1 nn =1—nnn n T! •1 1 1⑵由(1)可得"=K =犷* — 1 1 2 2n —11 2n + 1,T n =+ £ + £ +…+ b 1 b 2 b 31b n•- A n =1 — q n1 — q ,4. (2015 •辽宁沈阳诊断考试)设数列{a n }的前n 项和为S, a 1= 10, a n +1 = 9S + 10. (1)求证:{lg a n }是等差数列;⑵设Tn 是数列(lg a n )(lg a n +!)的前n 项和,求Tn ;1 2⑶ 求使T n >4(m i — 5m )对所有的n € N*恒成立的整数 m 的取值集合.【解】(1)证明:当n 》2时,&= 9S — 1+ 10,/• T n = log 2a i + log 2a ?+ log 2a 3+・・・+ log 2a n=1 + 3+ 5+…+ 2n — 1n (1 + 2n —1) 23. (2015 •江西三县联考)已知数列{a n }的各项均为正数, 记A (n ) = a i + a 2+-+ a n , B ( n )=a 2 + a 3+…+ a n +1, C ( n )= a 3 + a 4 +…+ a n +2,其中 n € N .(1)若a 1= 1, a 2 = 5,且对任意n € N ,三个数A (n ),巳n ) , C (n )依次组成等差数列,求数列{a n }的通项公式;⑵ a 1 = 1,对任意n € N*,三个数A (n ),耳n ) , C (n )依次组成公比为 q 的等比数列,求数列{a n }的前n 项和A.【解】(1) •••任意n € N*,三个数A (n ) , B ( n ) , C (n )依次组成等差数列,••• B ( n ) — A ( n ) = C ( n ) — B ( n ),贝V a n +1 — a 1 = a n + 2— a 2,即卩 a n + 2— a n +1 = a 2— a 1 = 4, 故数列{ a n }是首项为1,公差为4的等差数列;•- a n = 1 + (n — 1) x 4 = 4n — 3.(2)若对任意n € N*,三个数A (n ),B ( n ),C (n )依次组成公比为q 的等比数列,• B (n ) = qA (n ), C ( n ) = qB (n ), 则 C (n ) — Rn ) = q [Bn ) — A ( n )],得 a n + 2— a 2= q (a n +1 — a 1),即 a n + 2—qa n +1 = a 2— qa 1 , 当 n = 1 时,由 耳1) = qA (1),可得 a 2= qa ; a n +2 a 2 则 a n + 2—qa n +1 = a 2— qa = 0,又 a n >0,则—==q ,a n +1 a 1故数列{a n }是以1为首项,q 为公比的等比数列.a n + 1 a n + 1 — a n = 9( S n — S n _1),贝U a ・+ 1= 10a n ,即 =10,a n当 n = 1 时,a 2= 9a 1+ 10= 100,则竺=10, a 1故数列{a n }是以10为首项,10为公比的等比数列.a n = 10:贝y ig a n = n ,--lg a n +1 — Ig a n = n + 1 — n = 1,故数列{Ig a n }是首项为1,公差为1的等差数列.- 3 11⑵解:由(1)知 --=——=3 -—(Ig a n ) (lg a n +1)n n +1 n1 1 1 1 1 1• Tn =31 —1+1—3+…+ n —市=31—市3n3⑶Tn =市=3—市,3•••当n = 1时,T n 取最小值2-依题意有|>治—5n ),解得一1v m< 6, 故整数m 的取值集合为{0,1,2,3,4,5}1. (2015 •江苏扬州外国语中学模拟 )已知数列{a n }的前n 项和S = 2n — 3,则数列{a n }的通项公式为 __________ .【解析】当n 》2时,a n = Si — Si -1 = I — 3— I 1 + 3 = I 1.当n = 1时,a 1= S = — 1,不满足上式.—1, n =1【答案】a n = n — !2, n 》2a 2a n 2n2. (2015 •辽宁沈阳二中月考)已知数列{a n }满足a 1 + - +…+ -= a — 1,求数列{a n }的通项公式. 【解】当n 》2时,a 1 +号+…十-^7 = a 2n —2 — 12 n — 1an2n 2n — 2 2 2n —2由已知等式减去上式,得 -=a — 1 — a + 1 = (a — 1)a ,n —2…a n = n (a — 1) a ,3 (2015 •安徽江淮十校联考)已知函数f (x )是定义在(0,+^ )上的单调函数,且对任意的正数x .y 都有 f (x • y )= f (x ) + f (y ),若数列{a n }的前 n 项和为 S,且满足 f(S + 2) — f (a n )= f (3)( n € M),则 a n3nn +^.当n = 1时,a 1= a 2— 1,满足上式;.2八 2n—2• a n = n (a — 1) a .n — 1A. 2C. 2n—1【解析】由f(x • y)= f (x) + f(y) , f (S+ 2) —f(a n)= f (3),得S+ 2 = 3a n, S—1+ 2= 3a n—1 (n》2),3 两式相减得2a n= 3a n—1 ;当n= 1时,S + 2= 3a1= a1 + 2,则a1= 1 .所以数列{a n}是首项为1,公比为q的等比数列.3 n 1 【答案】a n= 2 n—134. (2015 •辽宁鞍山二中期中)设数列{a n}是等差数列,数列{b n}的前n项和S满足S=^(b n—1),且a2 = b1, a5= b2.(1) 求数列{a n}和{b n}的通项公式;(2) 设C n= a n • b n, T n 为{C n}的前Fl 项和,求T n .3【解】(1)当n >2 时,S n— 1 = 2(b n—1—1),3 3 亠则b n= S n—S n—1= ^( b n—1) —?(b n —1- 1),整理得b n = 3b n—13当n= 1 时,b1 = ^(匕一1),解得b1= 3 ;故数列{b n}是以3为首项,3为公比的等比数列.b n= 3,设等差数列{a n}的公差为d,由a2= b1= 3, a5= b2= 9,a1 + d = 3,则解得d= 2, a1 = 1,—a n= 2n—1,a1 + 4d= 3,a n= 2n—1,b n= 3.(2)由(1)知C n= a n • b n= (2n —1) • 3n,• T n= 3 + 3 • 32+ 5 • 33+…+ (2 n—1) • 3n,①3T n= 3 2+ 3 • 33+ 5 • 34+…+ (2 n —3) • 3n+ (2n—1) • 3n+1,②由①一②,得—2T n= 3+ 2(3 2+ 33+…+ 3n ) —(2 n—1) • 3n+1【解析】由已知1 n》2时,a n= 2S1-1①当n》3时,①—②整理得a n1,n= 1,=3 ( n》3), • a n = n- 2a n—12X3 ,n》2.1,n= 1,【答a n =n 22X3 ,n》2.(2015 •广东桂城摸底6.a n- 1 = 2S1 -2 ②B. nD.=3+ 2X2 n —1、3 (1 —3 )—(2n—1) 3n+1(2 —2n) • 3n+1—6,)已知各项均为正数的数列{a n }的前n 项和为S,且a :+ a n = 2S .(1) 求a i ;求数列{a n }的通项公式; ⑶若b n=-5n € N*) , T n = b 1+ b 2+・・・+ b n ,求证:T n < -.提示:31 1n "< 2 2n — 1 2n +12【解】(1)当 n = 1 时,a i + a i = 2S ,且 a n > 0,得 a i = 1 ;(2) 当 n 》2 时,a n -1 + a n —1 = 2S -1 ①;且 ai + a n = 2S n ②;由②一①,得(a n +a n — 1)( a n — a n — 1— 1) = 0, 又 a n > 0,贝U a n — a n -1= 1,故数列{a n }是首项为1,公差为1的等差数列;1 1⑶证明:由⑵知,b n = 2=「a n2,5当n = 1时,b 1= 1 <3,不等式成立; 11 41当 n 》2 时,孑< Yl = 4n 2— 1 = 2 乔 12n + 1,n —41 1 12 5• Tn =b1+b+・・+ bn =1+尹尹•••+ 冷v 1 + 2 3—才5—7^+ 冇—市 <1 +3=3, 3 555• Tn < 32 *7. (2015 •大连双基测试)已知数列{a n }的前n 项和S = n +2n +1(n € N),贝U a n= ______________________________ .4, n = 1, 【解析】当 n 》2 时,a n = Si — S n -1 = 2n + 1,当 n = 1 时,a 1 = S = 4去2x 1 + 1,因此 a n =2n +1, n 》2.4, n = 1【答案】2n + 1, n 》21& (2014 •烟台一模)已知数列{a n }前n 项和为S n ,首项为a 1,且刁a n , $成等差数列. (1)求数列{a n }的通项公式;11 1【解】(1) T 2, a n , S 成等差数列,二2a n = S n + 2,t丄11 当 n = 1 时,2a 1 = S + 2,二已1= 2,t丄1 1当 n 》2 时,S n = 2a n — 2, S n - 1 = 2a n — 1 — 2,a n 两式相减得:a n = Si — S —1 = 2a n — 2 a n — 1,「. —= 2,a n — 11 1所以数列{a n }是首项为2,公比为2的等比数列,即a n = 2"n —1 = 2n —2.(2) T b n = (log 2a 2n +1)x (I og 2a 2n + 3)= (log 222n +1—2) x (log 222n +3—2) = (2 n —1)(2 n +1),1 1 1 1 1 1/.——= x =— ,b n 2n — 12n + 12 2n — 1 2n + 11数列 的前n 项和b n1 11 11 111 1111 n1b 1 +b 2+b 3+ +b n 213 + 3 5 ++2n — 12n +12 12n +12n +19. __________________________________________________________________________ (2014 •山西四校联考)已知数列{a n }的前n 项和为S , S= 2a n — n ,贝U a n = ____________________________________________________________ .【解析】当 n 》2 时,a n = S n — S n —1 = 2a n — n — 2an —1 + (n — 1),即 a n = 2a n — 1 + 1, • a n +1 = 2( a n —1 + 1), •数列{a n +1}是首项为a 1+ 1 = 2,公比为2的等比数列,• a n +1 = 2・2 n —1= 2n ,「. a n = 2n — 1.【答案】2n — 1n 2 + n *10. (2014 •湖南卷)已知数列{a n }的前n 项和S= —, n € N .(1)求数列{a n }的通项公式;⑵ 设b n = 2a n + ( — 1)n a n ,求数列{b n }的前2n 项和.【解】(1)当n = 1时, a 1 = S 1 = 1 ;当n 》2时, 22小 cn + n n — 1 + n — 1a n Si Si-12 2 n .又a 1= 1满足上式,故数列{a n }的通项公式为a n = n .(2)由(1)知,b n = 2n + ( — 1)n n ,记数列{b n }的前2n 项和为Tm ,_122n则 T 2n = (2 + 2 +…+ 2 ) + ( — 1 + 2— 3+ 4—…+ 2n ).B= ( — 1 + 2) + ( — 3+ 4) +…+ [ — (2n — 1) + 2n ] = n .故数列{b n }的前 2n 项和 T 2n = A + B= 22n +1 + n — 2.11.已知数列{a n }是各项均为正数的等比数列, a 3= 4, {a n }的前3项和为7.(1)求数列{a n }的通项公式;记 A = 21+ 22 +…+ 22n ,B=— 1 + 2 — 3+ 4-…+ 2n ,则 A =-2n1 —2 1 — 2=22n +1n1111 ⑵ 若ab + a 2b 2 + ・・・+ a n b n = (2 n — 3)2 n + 3,设数列{ b n }的前n 项和为 S,求证:+…+2—- .S 1 S 2Si na*1 q 4,a*1 1,【解】 ⑴ 设数列{a n }的公比为q ,由已知得q >0,且/•a 1 + ag + 4= 7,q = 2.•••数列{a n }的通项公式为a n = 2n —1.(2)【证明】当n = 1时,a1b = 1,且a 1 = 1,解得b 1 = 1.当 n 》2 时,a n b n = (2n — 3)2 n + 3 — (2 n — 2 — 3)2 n — 1 — 3 = (2n — 1)・2 n — 1. a n = 2 1 ,•当 n 》2 时,b n = 2n — 1.■/ b 1= 1 = 2x 1 — 1 满足 b n = 2n — 1,•数列{b n }的通项公式为 b n = 2n —1(n € N *). •数列{b n }是首项为1,公差为2的等差数列.•- S n = nl1 1 •••当 n = 1 时,S = 1 =2 — 1t」1 1 1 1 当 n 》2 时,S = n 2< n (n — 1) =n —1 1 1 1 1 1 1 1 1• ◎+S 2+…+ 亍2—1+厂 2+…+ n — - n =2—n 12.设数列{a n }的前 n 项和为 S , a 1 = 1, a n = + 2 (n — 1) ( n € N). n(1)求证:数列{a n }为等差数列,并分别写出 a n 和S 关于n 的表达式;请说明理由.*【解】(1)由 a n = n + 2( n — 1),得 S = na n — 2n ( n — 1) ( n € N).当 n 》2 时,a n S n — S n — 1 na n — (n — 1) a n — 1 — 4( n — 1),艮卩 a n — a n —1 4, 故数列{a n }是以1为首项,以4为公差的等差数列.a 1 + a n n 2*a n =4n — 3, S = = 2n — n ( n € N).(2)由 S n = na n — 2n ( n — 1),得—=2n — 1 ( n € N),$ S 3 S 1 2 2 2 2又 s+ 2 + 3 +…+ n — (n — 1) = 1 + 3 + 5 + 7+-+ (2n — 1) — (n — 1) = n —(n — 1) = 2n — 1.令2n — 1 = 2 013,得n = 1 007,即存在满足条件的自然数n = 1 007 .(2)是否存在自然数n ,S ? S 3Si…使得S+ 2+ 3+…+ -—(n — 1)2= 2 013?若存在,求出n 的值;若不存在,于是,1. 已知$为正项数列{a n }的前n 项和,且满足 S = 2a n + ?a n (n € N *).⑴求a i , a 2, a 3, a 4的值;⑵求数列{a n }的通项公式.1 2 1 1 2 1【解】(1)由$=,a n + 2a n ,可得a 1 = 2^+空31,解得◎= 1 ;1 2 1S= a + a 2= 2a 2 + g a ?,解得 a 2 = 2;同理,1 2 1当 n 》2 时,S n - 1= 2 a n -1 + ^a n - 1,②①一②得(a n — a n -1 — 1)( a n + a n -1)= 0 .由于 a n + a n -1 工 0,所以 a n — a n -1 = 1, 又由(1)知a 1= 1, 故数列{a n }是首项为1,公差为1的等差数列,故 a n = n .2. 在数列{a n }中,a 1=- 5, a 2=- 2,记 A (n ) = a 1 + 比+…十 a n , B (n ) = a 2 + a 3+・・・+ a n +1, qn ) =a 3+ a 4 + •••+ a n +2(n €N *),若对于任意 n € N *, A (n ) , B ( n ), q n)成等差数列.(1) 求数列{a n }的通项公式; (2) 求数列{| a n |}的前n 项和.【解】(1)根据题意A (n ) ,B (n ),C ( n )成等差数列,二A ( n ) + C ( n ) = 2B ( n ),整理得 a n +2— a n +1 = a 2— a 1 = — 2+ 5 = 3,•••数列{a n }是首项为—5,公差为3的等差数列,a n = — 5 + 3( n — 1) = 3n — 8.—3n + 8, n W 2,(2)| a n | =记数列{| a n |}的前n 项和为S.3n — 8, n 》3,2当 n W2 时,S n =n 5+ 2— 3n = — + 务3 2 13—尹 + 厂,n w 2,3. (2014 •广东卷)设各项均为正数的数列 {a n }的前n 项和为S ,且S 满足S n — (n 2+ n -3)S n — 3( n 2 + n ) = 0, n€ N .(1) 求a 1的值;(2) 求数列{a n }的通项公式;a 3 = 3, a 4= 4.当n 》3时,S n = 7 +n -2 1 + 3n — 8 2普-岭+ 14,2 2综上,S n =|n 2 —爭+ 14, n 》3.1(3)证明:对一切正整数亠 1 1 11n, a 1 a+1 + a 2 a ?+1 + + a n a n +1 <3'【解】(1)由题意知,U — (n 2+ n — 3)S h -3(n 2+ n ) = 0, n € N*. 令 n = 1,有 S — (1 2+ 1— 3) S — 3X (1 2+ 1) = 0,可得 S 1+ S — 6 = 0,解得 S =— 3或 2, 即卩 a 1 =— 3 或 2, 又a n 为正数,所以a 1 = 2.222* __(2)由 S>— ( n + n — 3) Si — 3( n + n ) = 0, n € N 可得,2 2(S + 3)( S — n — n ) = 0,贝U S = n +n 或 $=— 3,又数列{a n }的各项均为正数,2 2S= n + n , S -1 = (n — 1) + (n — 1),当 n 》2 时,a n = S n — S n — 1 = n + n — [( n — 1)2+ (n — 1)] = 2n . 又 a 1= 2 = 2x 1,所以 a n = 2n .1a a+ 1111 111当n ^2时, a na n + 1= 2n 2n + 1 v 2n —12n + 12 2n — 1 —2n + 1 , 1 111 1 1 111 …a 1 a 1+ 1+a 2a 2 + 1 + -••+ a na n + 1+ ■ 6 +2 3 5 + •' '• 2n — 12n + 11 1 11 1 1 1=一 + — —v —+ _ =6 2 3 2n + 1 6 6 3(3)证明:当n = 1时,11+a 2a 2 + 1+…+aT^+所以对一切正整数n,有07葛+• T n= (n—1) 3 n+1+ 3.5.在数列{a n}中,已知a1 =1, a n= 2(a n —1 + a n—2 + — + a2+ a" ( 2, n€N*),则数列的通项公式是_________ .1。
数列中an与Sn的关系
、
,
.
在教学 中 应 对 学 生 加 强 数 学 建 模 训 练 引 导 学 生 自己 运 用 所 学 的 知 识 建 立 基 本 模 型 并 灵 活 的 运 用 举 反 三 达 到事 半 功倍 的效 果 ;这 也 是 培 养 和 提 高学 生 分析 和 解 决 实 际 问题 能力 的最有 效 途径
, ,
, ,
一
,
,
.
A
,
’
’
,
.
.
、
’
一
、
’
’
’
,
=
一
一
,
.
,
障
.
,
.
,
.
A
,
,
则 DE
C D
. .
=
2+ 1
'
=
3 ,C E
—
—
AB
5
.
=
4
,
i
卜.. .
、
. — … … …
一
~
C / E 0 + D E2
=
厂( z )
、
≯ ~/ +
1 +
/( 4
.
一
z
0 ) + 4 的最 小值
葶 } 锐a 甜
7
E
.
节
z 0
曰
’r 一
。
.
。
,
。
,
,
。
,
.
。
.
解 :设 A P
4
一
=
z
,
则 BP
=
D
z
数列中an与sn的关系探究(课堂PPT)
挖掘条件,得到新式(与
间的关an系
S1 Sn
n=1 Sn1 n
2
条件相邻),作差将“和” 转化为“项”之间的关系
直接代入
作差消元
10
类题演练
1、 如 果 数 列 {an}的 前 n项 和 为 Sn=3 2an-3, 则 an
【 答 案 】 an63n1
11
类题演练
2、 数 列 {an}中 , 已 知 a11 2, 其 前 n项 和 为 Sn=n2an, 则 an
南京市第九中学 易雪梅
2
典型例题 例 1: 若 数 列 {an} 的 前 n项 和 Sn3an1 , 求 该 数 列 的 通 项 an 。
3
数学解题的四个步骤: • 理解问题 • 拟定计划 • 实现计划 • 回顾与检验
——乔治·波利亚《怎样解题》
4
例 1: 若 数 列 {an} 的 前 n项 和 Sn3an1 , 求 该 数 列 的 通 项 an 。
这是一个什么类型的问题?
类型
求数列通项an
特征
已 知 条 件 为 a n 与 S n 的 关 系 式
如何实现从条件到结论的转化?
S n 转化 a n
怎样转化?
an
SS1n
n=1 Sn1 n
2
5
例 1: 若 数 列 {an} 的 前 n项 和 Sn3an1 ,
求 该 数 列 的 通 项 an 。
解:当 n 1 时 ,a 1S 1 3 a 1 1 , 得 a 1 12 ; 当 n2 时 ,a nS n S n 13an1(3an11)
7
变 式 : 已 知 正 项 数 列 { a n } 的 前 n 项 和 为 S n , a 1 3 , 且 S n S n -1 = a n ( 2n 2 ) , 求 该 数 列 的 通 项 a n 。
数列Sn与an关系(含详细答案)
数列n s 与n a 关系知识点1.等差数列前n 项和公式:n da n d d n n na a a n S n n )2(22)1(2)(1211-+=-+=+=2. 等比数列前n 项和公式: ⎪⎩⎪⎨⎧≠⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--=--=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=111)1(1111q q q a a q q a q na S n n n3.数列{}n a 是等差数列⇔q p n q pn a n ,),1(≥+=为常数b a n bn an S n ,),1(2≥+=⇔为常数(没有常数项的二次函数)数列{}na 是等比数列⇔n a =m ap (a ≠0)⇔n ns ap r =+(a+r=0) 4.等差数列{}n a 的前n 项和为n S ,n n a n S )12(12-=-5. 数列n s 与n a关系:⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-21,11n S S n S a S n n n n训练题A 组1.设数列{}n a 的前n 项和2n S n =,则8a 的值为( A ) A.15 B.16 C.49 D.642.设数列{}n a 的前n 项和为n S ,)1(13≥-=n S n n ,则=n a ( A ) A.132-⋅n B.46-n C.432-⋅n D.n32⋅3.等差数列{}n a 的前n 项和为n S ,若,2211=S 则=6a ( B ) A.1 B.2 C.3 D.44.数列6.等差数列}{n a 的前n 项和为n S ,若102,a a 是方程08122=-+x x 的两个根, 那么11S 的值为 ( D )A.44B.-44C.66D.-665.若两个等差数列{}n a 与{}n b 的前n 项和分别为n n B A ,,且3233+-=n n B A n n , 则=66b a ( C ) A.23 B.1 C.56 D.23276.(2010辽宁文数)设n S 为等比数列{}n a 的前n 项和,已知3432S a =-,2332S a =-,则公比q =( B )A.3B.4C.5D.67.设n S 是等差数列}{n a 的前n 项和,若==5935,95S S a a ( A ) A.1 B.-1 C.2 D.21 8.{}n a 的前n 项和为n S ,)1(12≥+=n n S n ,则=n a ⎩⎨⎧≥-=21211n n n9.已知数列}{n a 的前n 项和为n S ,))(1(31*N n a S n n ∈-=,则=n a n )21(- 10.数列{}n a 的前n 项和为n S ,且.35-=n n S a 则{}n a 的通项公式是1)41(43--n 11.数列{}n a 前n 项和为n S ,)2(122,121≥-==n S S a a n n n ,则=n S121-n12.等差数列{}n a 的前n 项和为n S ,若,147=S 则=4a 2 13.等比数列}{n a 的前n 项和为n S ,r S n n +=3,则=r -114.数列}{n a 的前n 项和为n S ,且,1≥n 时22nn S n +=(1)求数列{}n a 的通项公式; (2)求992199111S S S T +⋅⋅⋅++=的值. (1))1(≥=∴n n a n(2) 22n n S n +=,)111(2)1(21+-=+=∴n n n n S n⎥⎦⎤⎢⎣⎡-+⋅⋅⋅+-+-=+⋅⋅⋅++=∴)1001991()3121()211(2111992199S S S T 5099)10011(2=-=15.数列{}n a 的前n 项和为n S ,且)1(12≥-=n a S n n ,数列{}n b 满足n n n b a b b +==+11,2 (1) 求数列{}n a 的通项公式; (2) 数列{}n b 的前n 项和为n T ,求n T . (1)11221--=⋅=∴n n n a (2) 121+=∴-n n b)12()12()12(11021++⋅⋅⋅++++=+⋅⋅⋅++=∴-n n n b b b T 122121)222(11-+=+--=++⋅⋅⋅++=-n n n n nn16.数列{}n a 满足条件11131,1--⎪⎭⎫⎝⎛+==n n n a a a ),3,2( =n(1)求;n a(2)求.321n a a a a ++++解:(1)∑∑=--=+=-+=nk k k k nk n a a a a 21121)31(1)(11)31(2123311])31(1[311---=--+=n n(2)43)31(4323])31(4343[23311)31(212123.321-+=--=-⋅--=++++n n n n n n n a a a a17.(2012广东文)设数列{}n a 的前n 项和n s ,数列{}n s 的前n 项和为{}n T ,满足2*2,n n T S n n N =-∈. (1) 求1a 的值;(2) 求数列{}n a 的通项公式.解:(1):21112-=a a ………………………………………………3分11=a …………………………………………………………5分(2)①②…………………………6分①-②得:122+-=n a S n n ……………… ③………………………7分在向后类推一次1)1(2211+--=--n a S n n ……… ④…………………………8分③-④得:2221--=-n n n a a a …………………………………………9分221+=-n n a a …………………………………………………10分 )2(221+=+-n n a a ……………………………………………12分 的数列公比为是以首项为2,32}2{1=++a a n …………13分1232-⨯=+∴n n a2231-⨯=∴-n n a ………………………………………………14分训练题B 组1.数列}{n a 的前n 项和为n S ,当,1≥n 32-=n n a S 则n a = 123-⋅n2.等差数列{}n a 中,已知74a =,则13s= 523.两等差数列}{n a 和}{n b ,前n 项和分别为n n T S ,,且,327++=n n T S n n 则157202b b a a ++等于 241494.等比数列}{n a 的前n 项和为n S ,14n n S r -=+,则=r 14- 5.等差数列{}n a 的前n 项和为n S ,若1114S =,则61411a =22n S T n n -= 211)1(2--=--n S T n n6.已知数列{a n }的前n 项和为S n ,满足log 2(1+S n )=n+1,求数列的通项公式. 解 S n 满足log 2(1+S n )=n+1,∴1+S n =2n+1,∴S n =2n+1-1.∴1=n 时,311==S a ,2≥n 时,a n =S n -S n-1=(2n+1-1)-(2n-1)=2n,∴{a n }的通项公式为a n =⎪⎩⎪⎨⎧≥=).2(2),1(3n n n7.数列{}n a 的前n 项和为n S ,且)1(12≥-=n a S n n ,数列{}n b 满足n n n b a b b +==+11,2 (1) 求数列{}n a 的通项公式; (2) 数列{}n b 的前n 项和为n T ,求n T . (1)11221--=⋅=∴n n n a (2) 121+=∴-n n b)12()12()12(11021++⋅⋅⋅++++=+⋅⋅⋅++=∴-n n n b b b T 122121)222(11-+=+--=++⋅⋅⋅++=-n n n n nn8.数列{}n a 的前n 项和为)()1(*2N n n n a n S n n ∈+++= (1)求通项n a ; (2)设),1111(321nn S S S S T +⋅⋅⋅⋅⋅⋅+++-=求证:1<n T 解:(1) n a n 2-=∴(2)nn n n n n S n n S n a n n n 111)111()1(11),1(,2-+=+--=+-=∴+-=∴-= 1111+-=-∴n n S n )11111(1321nn n S S S S S T ++⋅⋅⋅+++-=∴-n T ∴=1111)111()111()3121()211(<+-=+-+--+⋅⋅⋅+-+-n n n n n *N n ∈ ∴1<n T9.已知等差数列{}n a 中,11=a ,前n 项和nS 满足条件12412+-=-n n SS nn ,( n=1,2,3,┅) (1)求数列{a n }的通项公式;(2)设nn S b 1=,求数列{}n b 的通项公式; (3)数列{}n b 的前n 项和为n T ,若1+<n n a T λ对一切∙∈N n 都成立,求λ的取值范围. 解:(1) 等差数列{}n a 中11=a ,12412+-=-n n SS nn 对于任意正整数都成立, 所以,当n=2时,有21222423=+-⨯=SS ,设数列{}n a 的公差为d ,则d d a S 333313+=+=,d d a S +=+=22212,所以)2(233d d +=+,解得公差1=d ,所以n n a n=-+=)1(11(2)因为()22121nn d n n na S n +=-+=,n n b n +=∴223)由n n b n+=22=()⎪⎭⎫ ⎝⎛+-=+111212n n n n ,得()⎪⎪⎭⎫⎝⎛+++⨯+⨯+⨯=114313212112n n T n ⎪⎭⎫ ⎝⎛+-++-+-+-=111413*********n n 121112+=⎪⎭⎫ ⎝⎛+-=n n n 若1+<n n a T λ对一切∙∈N n 都成立,即)1(12+<+n n n λ,∙∈N n 恒成立, 所以2)1(2+>n nλ,而212122212)1(22=+≤++=+nn n n , (当且仅当n=1时取等号) 所以,λ的取值范围是⎪⎭⎫ ⎝⎛+∞,21.10.已知数列{}n a 是首项为1,公比为2的等比数列,数列{}n b 的前n 项和2n S n =. (1)求数列{}n a 与{}n b 的通项公式; (2)求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和. (1)12n n a -=,21n b n =-. (2)数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和为12362n n -+-. 11.已知数列{}n a 满足21=a ,241+=-n n a S (n=2,3,4,...). (1)证明数列{}n n a a 21-+成等比数列;(2)证明数列⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧n n a 2成等差数列;(3)求数列{}n a 的通项公式n a 和前n 项和n S .(1){}n n a a 21-+是首项为4,公比为2的等比数列, (2)⎭⎬⎫⎩⎨⎧n n a 2是首项为1,公差为1的等差数列. (3)n n n a 2⋅=,12)1(2+⋅-+=n n n S12.已知数列{}n a 满足, *11212,,2n n n a a a a a n N ++=∈’+2==. ()I 令1n n n b a a +=-,证明:{}n b 是等比数列; (Ⅱ)求{}n a 的通项公式。
数列Sn与an关系(含详细答案)
数列n s 与n a 关系知识点1.等差数列前n 项和公式:n da n d d n n na a a n S n n )2(22)1(2)(1211-+=-+=+=2. 等比数列前n 项和公式: ⎪⎩⎪⎨⎧≠⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--=--=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=111)1(1111q q q a a q q a q na S n n n3.数列{}n a 是等差数列⇔q p n q pn a n ,),1(≥+=为常数b a n bn an S n ,),1(2≥+=⇔为常数(没有常数项的二次函数)数列{}na 是等比数列⇔n a =m ap (a ≠0)⇔n ns ap r =+(a+r=0) 4.等差数列{}n a 的前n 项和为n S ,n n a n S )12(12-=-5. 数列n s 与n a关系:⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-21,11n S S n S a S n n n n训练题A 组1.设数列{}n a 的前n 项和2n S n =,则8a 的值为( A ) A.15 B.16 C.49 D.642.设数列{}n a 的前n 项和为n S ,)1(13≥-=n S n n ,则=n a ( A ) A.132-⋅n B.46-n C.432-⋅n D.n32⋅3.等差数列{}n a 的前n 项和为n S ,若,2211=S 则=6a ( B ) A.1 B.2 C.3 D.44.数列6.等差数列}{n a 的前n 项和为n S ,若102,a a 是方程08122=-+x x 的两个根, 那么11S 的值为 ( D )A.44B.-44C.66D.-665.若两个等差数列{}n a 与{}n b 的前n 项和分别为n n B A ,,且3233+-=n n B A n n , 则=66b a ( C ) A.23 B.1 C.56 D.23276.(2010辽宁文数)设n S 为等比数列{}n a 的前n 项和,已知3432S a =-,2332S a =-,则公比q =( B )A.3B.4C.5D.67.设n S 是等差数列}{n a 的前n 项和,若==5935,95S S a a ( A ) A.1 B.-1 C.2 D.21 8.{}n a 的前n 项和为n S ,)1(12≥+=n n S n ,则=n a ⎩⎨⎧≥-=21211n n n9.已知数列}{n a 的前n 项和为n S ,))(1(31*N n a S n n ∈-=,则=n a n )21(- 10.数列{}n a 的前n 项和为n S ,且.35-=n n S a 则{}n a 的通项公式是1)41(43--n 11.数列{}n a 前n 项和为n S ,)2(122,121≥-==n S S a a n n n ,则=n S121-n12.等差数列{}n a 的前n 项和为n S ,若,147=S 则=4a 2 13.等比数列}{n a 的前n 项和为n S ,r S n n +=3,则=r -114.数列}{n a 的前n 项和为n S ,且,1≥n 时22nn S n +=(1)求数列{}n a 的通项公式; (2)求992199111S S S T +⋅⋅⋅++=的值. (1))1(≥=∴n n a n(2) 22n n S n +=,)111(2)1(21+-=+=∴n n n n S n⎥⎦⎤⎢⎣⎡-+⋅⋅⋅+-+-=+⋅⋅⋅++=∴)1001991()3121()211(2111992199S S S T 5099)10011(2=-=15.数列{}n a 的前n 项和为n S ,且)1(12≥-=n a S n n ,数列{}n b 满足n n n b a b b +==+11,2 (1) 求数列{}n a 的通项公式; (2) 数列{}n b 的前n 项和为n T ,求n T . (1)11221--=⋅=∴n n n a (2) 121+=∴-n n b)12()12()12(11021++⋅⋅⋅++++=+⋅⋅⋅++=∴-n n n b b b T 122121)222(11-+=+--=++⋅⋅⋅++=-n n n n nn16.数列{}n a 满足条件11131,1--⎪⎭⎫⎝⎛+==n n n a a a ),3,2( =n(1)求;n a(2)求.321n a a a a ++++解:(1)∑∑=--=+=-+=nk k k k nk n a a a a 21121)31(1)(11)31(2123311])31(1[311---=--+=n n(2)43)31(4323])31(4343[23311)31(212123.321-+=--=-⋅--=++++n n n n n n n a a a a17.(2012广东文)设数列{}n a 的前n 项和n s ,数列{}n s 的前n 项和为{}n T ,满足2*2,n n T S n n N =-∈. (1) 求1a 的值;(2) 求数列{}n a 的通项公式.解:(1):21112-=a a ………………………………………………3分11=a …………………………………………………………5分(2)①②…………………………6分①-②得:122+-=n a S n n ……………… ③………………………7分在向后类推一次1)1(2211+--=--n a S n n ……… ④…………………………8分③-④得:2221--=-n n n a a a …………………………………………9分221+=-n n a a …………………………………………………10分 )2(221+=+-n n a a ……………………………………………12分 的数列公比为是以首项为2,32}2{1=++a a n …………13分1232-⨯=+∴n n a2231-⨯=∴-n n a ………………………………………………14分训练题B 组1.数列}{n a 的前n 项和为n S ,当,1≥n 32-=n n a S 则n a = 123-⋅n2.等差数列{}n a 中,已知74a =,则13s= 523.两等差数列}{n a 和}{n b ,前n 项和分别为n n T S ,,且,327++=n n T S n n 则157202b b a a ++等于 241494.等比数列}{n a 的前n 项和为n S ,14n n S r -=+,则=r 14- 5.等差数列{}n a 的前n 项和为n S ,若1114S =,则61411a =22n S T n n -= 211)1(2--=--n S T n n6.已知数列{a n }的前n 项和为S n ,满足log 2(1+S n )=n+1,求数列的通项公式. 解 S n 满足log 2(1+S n )=n+1,∴1+S n =2n+1,∴S n =2n+1-1.∴1=n 时,311==S a ,2≥n 时,a n =S n -S n-1=(2n+1-1)-(2n-1)=2n,∴{a n }的通项公式为a n =⎪⎩⎪⎨⎧≥=).2(2),1(3n n n7.数列{}n a 的前n 项和为n S ,且)1(12≥-=n a S n n ,数列{}n b 满足n n n b a b b +==+11,2 (1) 求数列{}n a 的通项公式; (2) 数列{}n b 的前n 项和为n T ,求n T . (1)11221--=⋅=∴n n n a (2) 121+=∴-n n b)12()12()12(11021++⋅⋅⋅++++=+⋅⋅⋅++=∴-n n n b b b T 122121)222(11-+=+--=++⋅⋅⋅++=-n n n n nn8.数列{}n a 的前n 项和为)()1(*2N n n n a n S n n ∈+++= (1)求通项n a ; (2)设),1111(321nn S S S S T +⋅⋅⋅⋅⋅⋅+++-=求证:1<n T 解:(1) n a n 2-=∴(2)nn n n n n S n n S n a n n n 111)111()1(11),1(,2-+=+--=+-=∴+-=∴-= 1111+-=-∴n n S n )11111(1321nn n S S S S S T ++⋅⋅⋅+++-=∴-n T ∴=1111)111()111()3121()211(<+-=+-+--+⋅⋅⋅+-+-n n n n n *N n ∈ ∴1<n T9.已知等差数列{}n a 中,11=a ,前n 项和nS 满足条件12412+-=-n n SS nn ,( n=1,2,3,┅) (1)求数列{a n }的通项公式;(2)设nn S b 1=,求数列{}n b 的通项公式; (3)数列{}n b 的前n 项和为n T ,若1+<n n a T λ对一切∙∈N n 都成立,求λ的取值范围. 解:(1) 等差数列{}n a 中11=a ,12412+-=-n n SS nn 对于任意正整数都成立, 所以,当n=2时,有21222423=+-⨯=SS ,设数列{}n a 的公差为d ,则d d a S 333313+=+=,d d a S +=+=22212,所以)2(233d d +=+,解得公差1=d ,所以n n a n=-+=)1(11(2)因为()22121nn d n n na S n +=-+=,n n b n +=∴223)由n n b n+=22=()⎪⎭⎫ ⎝⎛+-=+111212n n n n ,得()⎪⎪⎭⎫⎝⎛+++⨯+⨯+⨯=114313212112n n T n ⎪⎭⎫ ⎝⎛+-++-+-+-=111413*********n n 121112+=⎪⎭⎫ ⎝⎛+-=n n n 若1+<n n a T λ对一切∙∈N n 都成立,即)1(12+<+n n n λ,∙∈N n 恒成立, 所以2)1(2+>n nλ,而212122212)1(22=+≤++=+nn n n , (当且仅当n=1时取等号) 所以,λ的取值范围是⎪⎭⎫ ⎝⎛+∞,21.10.已知数列{}n a 是首项为1,公比为2的等比数列,数列{}n b 的前n 项和2n S n =. (1)求数列{}n a 与{}n b 的通项公式; (2)求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和. (1)12n n a -=,21n b n =-. (2)数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和为12362n n -+-. 11.已知数列{}n a 满足21=a ,241+=-n n a S (n=2,3,4,...). (1)证明数列{}n n a a 21-+成等比数列;(2)证明数列⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧n n a 2成等差数列;(3)求数列{}n a 的通项公式n a 和前n 项和n S .(1){}n n a a 21-+是首项为4,公比为2的等比数列, (2)⎭⎬⎫⎩⎨⎧n n a 2是首项为1,公差为1的等差数列. (3)n n n a 2⋅=,12)1(2+⋅-+=n n n S12.已知数列{}n a 满足, *11212,,2n n n a a a a a n N ++=∈’+2==. ()I 令1n n n b a a +=-,证明:{}n b 是等比数列; (Ⅱ)求{}n a 的通项公式。
等比数列an和sn公式
等比数列an和sn公式等比数列是数学中的一种数列,指的是数列中每一项与它的前一项之比保持恒定。
等比数列的通项公式和前n项和公式是数列中的重要公式。
等比数列的通项公式是指数列中第n项的表达式,通常用an表示。
对于一个等比数列,如果已知第一项a1和公比r,则第n项可以表示为an=a1*r^(n-1)。
其中,a1是第一项,n是项数,r是公比。
等比数列的前n项和公式是指数列中前n项的和的表达式,通常用sn表示。
对于一个等比数列,如果已知第一项a1和公比r,则前n 项的和可以表示为sn=a1*(1-r^n)/(1-r)。
等比数列的通项公式和前n项和公式在数学中有广泛的应用。
它们可以帮助我们计算数列中任意一项的值,以及前n项的和。
在实际问题中,等比数列的应用非常多,例如在金融领域中的复利计算、人口增长模型中的人口预测、科学实验中的数据分析等。
下面通过一些具体例子来说明等比数列的应用。
例1:某项贷款的利率为4%,每年复利计算一次。
假设贷款本金为10000元,需要计算第5年的贷款余额。
这个问题可以转化为一个等比数列的问题。
设第一年的贷款余额为a1=10000元,公比为r=1+4%=1.04,则第5年的贷款余额可以通过通项公式计算得到:a5=10000*(1.04)^(5-1)=10000*1.04^4。
例2:某城市的人口增长模型可以用等比数列来描述。
假设该城市的人口从2000年开始,每年以2%的增长率增长。
第n年的人口可以表示为an=2000*(1.02)^(n-2000)。
我们可以利用这个公式预测未来几年该城市的人口情况。
例3:在科学实验中,一些物理量的变化规律可以用等比数列来描述。
例如,当一种物质在一定条件下进行分解反应时,反应物质的质量随着时间的推移以一定的比率递减。
这个质量变化过程可以用等比数列来描述,其中每一项表示某个时间点的质量,公比表示质量的递减比率。
通过以上例子,我们可以看到等比数列的通项公式和前n项和公式在解决实际问题中的重要性。
数列基本公式
数列基本公式:9、一般数列的通项an与前n项和Sn的关系:an=10、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k 项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。
11、等差数列的前n项和公式:Sn= Sn= Sn=当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。
12、等比数列的通项公式:an= a1 qn-1 an= ak qn-k(其中a1为首项、ak为已知的第k项,an≠0)13、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);当q≠1时,Sn= Sn=三、有关等差、等比数列的结论14、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m -S3m、……仍为等差数列。
15、等差数列{an}中,若m+n=p+q,则16、等比数列{an}中,若m+n=p+q,则17、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m -S3m、……仍为等比数列。
18、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。
19、两个等比数列{an}与{bn}的积、商、倒数组成的数列{an bn}、、仍为等比数列。
20、等差数列{an}的任意等距离的项构成的数列仍为等差数列。
21、等比数列{an}的任意等距离的项构成的数列仍为等比数列。
22、三个数成等差的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d23、三个数成等比的设法:a/q,a,aq;四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?)24、{an}为等差数列,则(c>0)是等比数列。
25、{bn}(bn>0)是等比数列,则{logcbn} (c>0且c 1) 是等差数列。
《数列中an和sn的关系》教案
《数列中an和sn的关系》教学准备学情分析1、知识前的储备:学生已经学习了等差数列和等比数列的定义,通项公式,及其前n项和的求法。
从这两大数列的角度,对于项式an和Sn 之间的关系,已经具备了知识的储备,对进一步掌握两者的关系,学生有了容易接受的心理以及深入探究的兴趣。
2、学生的普遍特征:高中学生的逻辑思维能力日益加强,数学理解能力加强,接受新知识也很快。
学生的整体水平尽管有差异,但探究知识的能力都已经趋向成熟,也能够持之以恒地深入思考,但学生整体上还是具备的由浅入深学习数学的习惯,由特殊到一般学习法是学生的显著特征。
3、本节课知识结构:本节课知识是在等差数列和等比数列已经学完的基础上继续巩固项式与和式之间的关系的一堂课,主要目的是让学生加深数列的理解和应用。
所以本节课的知识学习是有目的性的,课堂设计尽量突出知识结构,使课堂生动吸人、使学生对知识的理解浅显易懂,掌握上变化有序,学习上有深度有广度。
教学工具1、电脑及其投影:投影ppt课件。
2、实物投影仪:投影学生的解题过程。
3、手机及希沃授课助手:拍摄学生解题步骤,投影出来及时点评正确或错误的细节之处。
教案设计教学目标1、知识与技能:(1)加强等差数列,等比数列的定义理解和通项公式的求法;(2)加强对数列项式a n和和式S n的关系进一步掌握;(3)方程消元的思想,迭代的思想,构造新数列的数学方法的应用。
2、过程与方法:本节课通过学生独立思考、小组交流讨论等方式的学习,培养学生的团队合作精神,培养学生的创新意识,提高学生应用数学知识解决实际问题的能力。
使学生学会理解数学,分析数学知识的方法,提高学生的逻辑思维能力。
3、情感、态度和价值观:本节课通过数学的实际应用例子,利用数学建模的思想,激发学生的探究兴趣,科学的创新精神。
让学生形成积极的学习态度,健康向上的人生理想、以及科学精神和正确的人生观、世界观和价值观。
教学重难点重点为利用数列a n与S n的关系,求出a n或者S n难点是间接转化法,是将S n转化为a n还是将a n转化为S n。
高中数学选择性必修二 4 1 2数列的递推公式(知识梳理+例题+变式+练习)(含答案)
4.1.2 数列的递推公式知识点一数列的递推公式如果一个数列的相邻两项或多项之间的关系可以用一个式子来表示,那么这个式子叫做这个数列的递推公式.数列递推公式与通项公式的关系:递推公式表示a n 与它的前一项a n -1(或前n 项)之间的关系,而通项公式表示a n 与n 之间的关系. 要点二 a n 与S n 的关系1.前n 项和S n :把数列{a n }从第1项起到第n 项止的各项之和,称为数列{a n }的前n 项和,记作S n ,即S n =12n a a a +++ 2.a n 与S n 的关系:a n =11,1,2n n S n S S n -=⎧⎨-≥⎩【基础自测】1.判断正误(正确的画“√”,错误的画“×”) (1)根据通项公式可以求出数列的任意一项.( ) (2)有些数列可能不存在最大项.( ) (3)递推公式是表示数列的一种方法.( ) (4)所有的数列都有递推公式.( ) 【答案】(1)√(2)√(3)√(4)×2.数列{a n }中,a n +1=a n +2-a n ,a 1=2,a 2=5,则a 5=( ) A .-3 B .-11 C .-5 D .19 【答案】D【解析】a 3=a 2+a 1=5+2=7,a 4=a 3+a 2=7+5=12,a 5=a 4+a 3=12+7=19,故选D. 3.数列{a n }中,a n =2n 2-3,则125是这个数列的第几项( ) A .4 B .8 C .7 D .12 【答案】B【解析】令2n 2-3=125得n =8或n =-8(舍),故125是第8项.故选B. 4.已知数列{a n }的前n 项和为S n =n 2,则a n =________. 【答案】2n -1【解析】当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=n 2-n 2+2n -1=2n -1.当n =1时,a 1=S 1=1满足上式,所以{a n }的通项公式为a n =2n -1.题型一 数列中项与项数关系的判断(1)写出数列的一个通项公式,并求出它的第20项;(2)判断42和10是不是该数列中的项?若是,指出是数列的第几项,若不是,请说明理由.【解析】(1)由于22=8,所以该数列前4项中,根号下的数依次相差3,所以它的一个通项公式为a n =3n -1;a 20=3×20-1=59.(2)令3n -1=42,两边平方得3n =33,解得n =11,是正整数令3n -1=10,两边平方得n =1013,不是整数.∴42是数列的第11项,10不是数列中的项. 【方法归纳】(1)由通项公式写出数列的指定项,主要是对n 进行取值,然后代入通项公式,相当于函数中,已知函数解析式和自变量的值求函数值.(2)判断一个数是否为该数列中的项,其方法是可由通项公式等于这个数求方程的根,根据方程有无正整数根便可确定这个数是否为数列中的项.(3)在用函数的有关知识解决数列问题时,要注意它的定义域是N *(或它的有限子集{1,2,3,…,n })这一约束条件.【跟踪训练1】已知数列{a n }的通项公式为a n =3n 2-28n . (1)写出此数列的第4项和第6项;(2)问-49是否是该数列的一项?如果是,应是哪一项?68是否是该数列的一项呢? 【解析】(1)a 4=3×42-28×4=-64, a 6=3×62-28×6=-60.(2)由3n 2-28n =-49解得n =7或n =73(舍去),所以-49是该数列的第7项.由3n 2-28n =68解得n =-2或n =343,所以68不是该数列的一项.题型二 已知S n 求a n例2 设S n 为数列{a n }的前n 项和,S n =2n 2-30n .求a n . 【解析】当n ≥2时,a n =S n -S n -1=2n 2-30n -[2(n -1)2-30(n -1)]=4n -32 当n =1时,a 1=S 1=-28,适合上式, 所以a n =4n -32.借助a n =⎩⎪⎨⎪⎧S 1,(n =1)S n -S n -1(n ≥2)【变式探究1】将本例中的“S n =2n 2-30n ”换为“S n =2n 2-30n +1”,求a n . 【解析】当n =1时,a 1=S 1=2×1-30×1+1=-27. 当n ≥2时,a n =S n -S n -1=2n 2-30n +1-[2(n -1)2-30(n -1)+1] =4n -32.验证当n =1时,上式不成立∴a n =⎩⎪⎨⎪⎧-27,n =14n -32,n ≥2.方法归纳已知数列{a n }的前n 项和公式S n ,求通项公式a n 的步骤: (1)当n =1时,a 1=S 1.(2)当n ≥2时,根据S n 写出S n -1,化简a n =S n -S n -1.(3)如果a 1也满足当n ≥2时,a n =S n -S n -1的通项公式,那么数列{a n }的通项公式为a n =S n -S n -1;如果a 1不满足当n ≥2时,a n =S n -S n -1的通项公式,那么数列{a n }的通项公式要分段表示为a n =⎩⎪⎨⎪⎧S 1,n =1S n -S n -1,n ≥2.【跟踪训练2】已知数列:a 1+3a 2+32a 3+…+3n -1a n =n 3,求a n .【解析】当n ≥2时,由a 1+3a 2+32a 3+…+3n -1a n =n 3,得a 1+3a 2+32a 3+…+3n -2a n -1=n -13,两式相减得3n -1a n =n 3-n -13=13,则a n =13n .当n =1时,a 1=13,满足a n =13n ,所以a n =13n .题型三 由数列递推公式求通项公式【例3】已知数列{a n }中,a 1=1,a n +1=a n +n +1,则a n =________.【答案】n (n +1)2【解析】∵a n +1=a n +n +1,a 1=1,∴a n +1-a n =n +1, ∴a n -a n -1=n ,a n -1-a n -2=n -1,…,a 2-a 1=2 以上式子相加得: a n -a 1=2+3+…+n∴a n =1+2+3+…+n =n (n +1)2.变形为:a n +1-a n =n +1,照此递推关系写出前n 项中任意相邻两项的关系,这些式子两边分别相加可求. 【变式探究2】若将“a n +1=a n +n +1”改为“a n +1=nn +1a n”,则a n =________.【答案】1n【解析】∵a n +1=n n +1a n ,a 1=1,∴a n +1a n =nn +1,∴a n a n -1=n -1n ,a n -1a n -2=n -2n -1,…,a 2a 1=12,以上式子两边分别相乘得:a n a 1=n -1n ×n -2n -1×…×12=1n∴a n =1n a 1=1n .【方法归纳】由数列的递推公式求通项公式时,若递推关系为a n +1=a n +f (n )或a n +1=g (n )·a n ,则可以分别通过累加法或累乘法求得通项公式,即:(1)累加法:当a n =a n -1+f (n )时,常用a n =a n -a n -1+a n -1-a n -2+…+a 2-a 1+a 1求通项公式.(2)累乘法:当a n a n -1=g (n )时,常用a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1求通项公式.【跟踪训练3】在数列{a n }中,a 1=2,a n +1=a n +ln ⎝⎛⎭⎫1+1n ,则a n =( ) A .2+ln n B .2+(n -1)ln n C .2+n ln n D .1+n +ln n 【答案】A【解析】∵在数列{a n }中,a n +1-a n =ln ⎝⎛⎭⎫1+1n =ln n +1n∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=ln n n -1+ln n -1n -2+…+ln 21+2=ln ⎝⎛⎭⎪⎫n n -1·n -1n -2·…·21+2=2+ln n .故选A.【易错辨析】数列中忽视n 的限制条件致误【例4】设S n 为数列{a n }的前n 项和,log 2(S n +1)=n +1,则a n =________.【答案】⎩⎪⎨⎪⎧3,n =12n ,n ≥2【解析】由log 2(S n +1)=n +1得S n +1=2n +1,∴S n =2n +1-1当n ≥2时a n =S n -S n -1=2n +1-1-2n +1=2n .当n =1时,a 1=S 1=3.经验证不符合上式.∴a n =⎩⎪⎨⎪⎧3,n =12n ,n ≥2.【易错警示】1. 出错原因忽视n =1的情况致错,得到错误答案:a n =2n . 2. 纠错心得已知a n 与S n 的关系求a n 时,常用a n =S n -S n -1(n ≥2)来求a n ,但一定要注意n =1的情况.一、单选题1.设数列{}n a 的前n 项和为n S ,11a =,2(1)nn S a n n =+-,(*n N ∈),若()22112n S S S n n+++--2013=,则n 的值为( ). A .1007 B .1006 C .2012 D .2014【答案】A 【分析】根据数列n a 与n S 的关系证得数列n S n ⎧⎫⎨⎬⎩⎭是以1为首项,以2为公差的等差数列,利用等差数列的前n 项和公式求出题中的式子,化简计算即可. 【解析】2(1)nn S a n n=+-, 12(1)(2)nn n S S S n n n-∴-=+-, 整理可得,1(1)2(1)n n n S nS n n ---=-, 两边同时除以(1)n n -可得12(2)1n n S S n n n --=-,又111S = ∴数列n S n ⎧⎫⎨⎬⎩⎭是以1为首项,以2为公差的等差数列,2321(1)23nS S S S n n∴++++-- 2(1)12(1)2n n n n -=⨯+⨯-- 22(1)n n =--21n =-,由题意可得,212013n -=, 解得1007n =. 故选:A .2.南宋数学家杨辉在《解析九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列,如数列1,3,6,10,前后两项之差得到新数列2,3,4,新数列2,3,4为等差数列,这样的数列称为二阶等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为3,4,6,9,13,18,24,则该数列的第19项为( ) A .171 B .190 C .174 D .193【答案】C 【分析】根据题意可得数列3,4,6,9,13,18,24,⋯,满足:11(2)n n a a n n --=-,13a =,从而利用累加法即可求出n a ,进一步即可得到19a 的值. 【解析】3,4,6,9,13,18,24,后项减前项可得1,2,3,4,5,6,所以()1112,3n n a a n n a --=-≥=, 所以()()()112211n n n n n a a a a a a a a ---=-+-++-+()()1213n n =-+-+++()()()111133,222n n n n n -+⋅--=+=+≥.所以19191831742a ⨯=+=. 故选:C3.在数列{}n a 中,11a =,121nn n a a +-=-,则9a =( )A .512B .511C .502D .503【答案】D 【分析】利用累加法先求出通项即可求得答案. 【解析】因为11a =,121nn n a a +-=-,所以()()()121321n n n a a a a a a a a -=+-+-++-=()()()21211(21)21211222(1)2n n n n n --+-+-++-=++++--=-,所以9929503a =-=.故选:D. 4.数列23,45,69,817,1033,…的一个通项公式为( )A .221n n n a =+ B .2221n n n a +=+ C .1121n n n a ++=-D .12222n n n a ++=+【答案】A 【分析】根据数列中项的规律可总结得到通项公式. 【解析】1221321⨯=+,2422521⨯=+,3623921⨯=+,48241721⨯=+,510253321⨯=+, ∴一个通项公式为:221n nna =+. 故选:A.5.下列命题不正确的是( )A 的一个通项公式是n aB .已知数列{},3n n a a kn =-,且711a =,则1527a =C .已知数列{}n a 的前n 项和为()*,25n n n S S n N =-∈,那么123是这个数列{}n a 的第7项D .已知()*1n n a a n n N +=+∈,则数列{}n a 是递增数列【答案】C 【分析】A:根据被开方数的特征进行判断即可;B:运用代入法进行求解判断即可;C:根据前n项和与第n项之间的关系进行求解判断即可;D:根据递增数列的定义进行判断即可.【解析】对于A31⇒⨯na⇒=A正确;对于B,3na kn=-,且7151122327na k a n a=⇒=⇒=-⇒=,B正确;对于C,()*25nnS n N=-∈,13a=-,当2,n n N*≥∈时,111222n n nn n na S S---=-=-=,12127n-=,无正整数解,所以123不是这个数列{}n a的第7项,C错误;对于D.由()*11,0n n n na a n n N a a n++=+∈-=>,易知D正确,故选:C.6.已知数列{}n a的前n项和2nS n=,则数列11n na a+⎧⎫⎨⎬⎩⎭的前99项和为()A.1168B.1134C.198199D.99199【答案】D【分析】先根据11,2,1n nnS S naS n--≥⎧=⎨=⎩,求出21na n=-,然后利用裂项相消求和法即可求解.【解析】解:因为数列{}n a的前n项和2nS n=,2121nS n n-=-+,两式作差得到21(2)na n n=-≥,又当1n=时,21111a S===,符合上式,所以21na n=-,111111(21)(21)22121n na a n n n n+⎛⎫==-⎪-+-+⎝⎭,所以12233411111n na a a a a a a a+++++=111111111111233557212122121n n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++-=-= ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥-+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, 所以12233499100111199992991199a a a a a a a a ++++==⨯+. 故选:D.7.数列{}n a 中的前n 项和22nn S =+,数列{}2log n a 的前n 项和为n T ,则20T =( ).A .190B .192C .180D .182【答案】B 【分析】根据公式1n n n a S S -=-计算通项公式得到14,12,2n n n a n -=⎧=⎨≥⎩,故2,11,2n n b n n =⎧=⎨-≥⎩,求和得到答案.【解析】当1n =时,111224a S ==+=;当2n ≥时,()11112222222n n n n n n n n a S S ----=-=+-+=-=,经检验14a =不满足上式,所以14,12,2n n n a n -=⎧=⎨≥⎩, 2log n n b a =,则2,11,2n n b n n =⎧=⎨-≥⎩,()201911921922T ⨯+=+=. 故选:B.8.已知数列{}n a 满足11a =,()()()11*12n n n n a a a a n N n n ++-=∈++,则10a 的值为( )A .1231B .2231C .1D .2【答案】B 【分析】首先根据已知条件得到1111112n n a a n n +-=-++,再利用累加法求解即可. 【解析】 因为()()()*1112n n n n a a n n n N a a ++++=∈-,所以()()()*11112nn n n a a n N a a n n ++-=∈++, 所以()()111111212n n n n a a a a n n n n ++-==-++++,即1111112n n a a n n +-=-++,当2n ≥时,11221111111n n n n a a a a a a ---⎛⎫⎛⎫⎛⎫-+-+⋯+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1111111123n n n n ⎛⎫⎛⎫⎛⎫=-+-+⋯+- ⎪⎪+ ⎪ ⎝⎭⎝⎭-⎝⎭, 1111121n a a n -=-+,解得()11131122122n n n a n n +=-+=≥++ 当1n =时,上式成立,故2231n n a n +=+,故102022230131a +==+. 故选:B二、多选题9.数列{a n }的前n 项和为S n ,()*111,2N n n a a S n +==∈,则有( )A .S n =3n -1B .{S n }为等比数列C .a n =2·3n -1D .21,123,2n n n a n -=⎧=⎨⋅≥⎩【答案】ABD 【分析】根据11,1,2n n n S n a S S n -=⎧=⎨-≥⎩求得n a ,进而求得n S 以及判断出{}n S 是等比数列.【解析】依题意()*111,2N n n a a S n +==∈,当1n =时,2122a a ==, 当2n ≥时,12n n a S -=,11222n n n n n a a S S a +--=-=,所以13n n a a +=,所以()2223232n n n a a n --=⋅=⋅≥,所以21,123,2n n n a n -=⎧=⎨⋅≥⎩. 当2n ≥时,1132n n n a S -+==;当1n =时,111S a ==符合上式,所以13n n S -=.13n nS S +=,所以数列{}n S 是首项为1,公比为3的等比数列. 所以ABD 选项正确,C 选项错误.故选:ABD10.已知数列{}n a 的前n 项和22n n nS +=,数列{}n b 满足1n n b a =,若n b ,2n b +,n k b +(k *∈N ,2k >)成等差数列,则k 的值不可能是( ) A .4 B .6 C .8 D .10【答案】AD 【分析】利用n a 与n S 的关系,求得n a ,进而求得n b ,然后根据n b ,2n b +,n k b +(k *∈N ,2k >)成等差数列,得到n 与k 的关系,进而求得答案.【解析】当1n =时,11212a S ===,当2n ≥时,()()2211122n n n n n n n a S S n --+++=-=-=,故n a n =(N n *∈),11n n b a n ==(N n *∈).因为n b ,2n b +,n k b +(N k *∈,2k >)成等差数列,所以22n n n k b b b ++=+,即2112n n n k=+++,所以48422n k n n ==+--,(2k >,N k *∈),从而2n -的取值为1,2,4,8,则对应的k 的值为12,8,6,5,所以k 的值不可能是4,10, 故选:AD .第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题11.数列{}n a 的前n 项的和231n S n n =++,n a =________.【分析】利用2n 时,1n n n a S S -=-求n a ,同时注意11a S =. 【解析】解析:由题可知,当2n 时,1n n n a S S -=-22313(1)(1)1n n n n ⎡⎤=++--+-+⎣⎦62n =-,当1n =时,113115a S ==++=,故答案为:5,162,2n n n =⎧⎨-⎩.12.设数列{a n }的前n 项和为S n =2n -3,则a n =________.【答案】【解析】解析 当n ≥2时,a n =S n -S n -1=(2n -3)-[2(n -1)-3]=2,又a 1=S 1=2×1-3=-1,故a n =13.已知数列{}n a 的前n 项和为n S ,若n n a b S +=,2414a a =,则数列{}n a 的通项公式为___________. 【答案】212n -⎛⎫ ⎪⎝⎭或212n -⎛⎫- ⎪⎝⎭【分析】 由n n a b S +=可得数列{}n a 是公比为12的等比数列,然后根据2414a a =求出21a =即可. 【解析】因为n n a b S +=,所以当1n =时,1112b a S a +==,即12b a = 当2n ≥时,11n n b a S --+=,然后可得10n n n a a a --+=,即()1122n n a a n -=≥ 所以数列{}n a 是公比为12的等比数列 所以21124b a a ==,4111816a a b ==, 因为22411644a ab ==,所以4b =±, 当4b =时, 21a =,2221122n n n a a --⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭当4b =-时, 21a =-,2221122n n n a a --⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭故答案为:212n -⎛⎫ ⎪⎝⎭或212n -⎛⎫- ⎪⎝⎭四、解答题 14.已知数列{}n a 的前n 项和()2*2n S n kn k N =-+∈,且n S 的最大值为4.(1)求常数k 及n a ;(2)设()17n n b n a =-,求数列{}n b 的前n 项和n T . 【答案】(1)2k =,25n a n =-+ (2)2(1)n n T n =+ 【分析】(1)由于()222*2()n S n kn n k k k N =-+=--+∈,则可得24k =,从而可求出2k =,然后利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩求出n a , (2)由(1)可得11121n b n n ⎛⎫=- ⎪+⎝⎭,然后利用裂项相消求和法求解即可 (1)因为()222*2()n S n kn n k k k N =-+=--+∈,所以当n k =时,n S 取得最大值2k , 所以24k =,因为*k N ∈,所以2k =,所以24n S n n =-+,当1n =时,11143a S ==-+=,当2n ≥时,2214[(1)4(1)]25n n n a S S n n n n n -=-=-+---+-=-+,13a =满足上式,所以25n a n =-+(2)由(1)可得()()11111177252(1)21n n b n a n n n n n n ⎛⎫====- ⎪-+-++⎝⎭, 所以1111111112222321n T n n ⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⋅⋅⋅+⨯- ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭ 111212(1)n n n ⎛⎫=-= ⎪++⎝⎭ 15.已知数列{}n a 满足()23*1232222n n a a a a n n N ++++=∈,求数列{}n a 的通项公式.【答案】12n na =【分析】 先根据前n 项和与通项的关系得12n n a =,再检验1n =时也满足条件即可求得答案. 【解析】因为23*1232222()n n a a a a n n N ++++=∈①, 所以()2311231222212n n a a a x a n n --++++=-≥②, ①-②得21(2)n n a n =≥,即 12n n a =, 当1n =时,112a =,满足12n n a =, 所以12n na = 16.已知数列{}n a 的前n 项和112n n S ⎛⎫=+ ⎪⎝⎭,求数列{}n a 的通项公式. 【答案】312122n n n a n ⎧=⎪⎪=⎨⎛⎫⎪-≥ ⎪⎪⎝⎭⎩ 【分析】根据n S 与n a 的关系式,求解数列的通项公式即可.需要注意验证首项.【解析】()111111222n n n n S S n --⎛⎫⎛⎫=+∴=+≥ ⎪ ⎪⎝⎭⎝⎭①②-①②得()122n n a n ⎛⎫=-≥ ⎪⎝⎭ 根据题意,1111311222a S ⎛⎫==+=≠- ⎪⎝⎭ 所以数列的通项公式为312122n n n a n ⎧=⎪⎪=⎨⎛⎫⎪-≥ ⎪⎪⎝⎭⎩。
等差数列sn和an的关系
等差数列sn和an的关系全文共四篇示例,供读者参考第一篇示例:等差数列是数学中非常常见且重要的数列之一,其中每一项与前一项之差都相等。
在等差数列中,我们常使用两种常见的记号:S_n和a_n。
S_n表示等差数列的前n项和,而a_n表示等差数列的第n项。
本文将详细探讨S_n和a_n之间的关系。
我们来看S_n和a_n之间的关系。
设等差数列的首项为a_1,公差为d,则等差数列的第n项可以表示为a_n=a_1+(n-1)d。
而S_n表示等差数列的前n项和,即S_n=a_1+a_2+...+a_n。
接下来,我们来看一些具体的例子来说明S_n和a_n之间的关系。
假设我们有一个等差数列的首项a_1=2,公差d=3,我们来求该等差数列的前5项和S_5。
首先确定等差数列的第5项:a_5=2+(5-1)\times 3=14。
然后利用前面推导的公式计算前5项和S_5:S_5=\frac{5}{2}(2\times2+(5-1)\times 3)=5\times 8=40。
所以,当等差数列的首项为2,公差为3时,它的前5项和为40。
通过这个例子,我们可以看到S_n和a_n之间的关系是非常紧密和重要的。
在实际生活和工作中,等差数列的概念和相关公式会被广泛应用。
比如在金融领域中,等差数列常用来描述递增或递减的收入或支出情况;在物理学中,等差数列可以用来描述匀速运动的距离随时间的变化等问题。
S_n和a_n之间的关系是数学中一个非常重要的概念,对于理解等差数列的性质和应用起着至关重要的作用。
希望通过本文的介绍,读者能够更加深入地理解等差数列及其相关知识,从而更好地应用于实际问题中。
【2000字】第二篇示例:等差数列,顾名思义,就是数列中相邻两项之间的差值是相同的。
在数学中,我们常用字母a表示等差数列的首项,d表示公差,n表示项数,数列的一般形式可以表示为:an = a + (n-1)d,其中an表示第n项,a表示首项,d表示公差。
sn与an的转化二级结论
sn与an的转化二级结论
在数学中,特别是关于数列的部分,我们常常遇到两种不同的数列表示方式:sn 和 an。
其中,sn 通常表示数列的前 n 项和,而 an 表示数列的第 n 项。
这两种表示方式在数列的研究中各有其用途,并且它们之间存在着紧密的关系。
首先,让我们明确这两种表示方式的概念。
sn,即数列的前 n 项和,是指数列中前 n 个数相加得到的和。
而 an,即数列的第 n 项,是指数列中第 n 个位置的数。
在等差数列和等比数列中,这两种表示方式之间有着明确的转化关系。
对于等差数列,其前 n 项和 sn 可以通过公式 sn = n/2 * (2a1 + (n-1)d) 来计算,其中 a1 是首项,d 是公差。
而等差数列的第 n 项 an 可以通过公式 an = a1 + (n-1)d 来计算。
通过这两个公式,我们可以轻松地在 sn 和 an 之间进行转化。
对于等比数列,情况稍有不同。
其前 n 项和 sn 可以通过公式 sn = a1 * (1 - q^n) / (1 - q) 来计算,其中 a1 是首项,q 是公比。
而等比数列的第 n 项 an 可以通过公式 an = a1 * q^(n-1) 来计算。
同样,这两个公式为我们提供了在 sn 和 an 之间进行转化的方法。
理解并掌握 sn 和 an 之间的转化关系,对于研究数列的性质和规律至关重要。
通过这种转化,我们可以更方便地理解和分析数列的特性,从而在数学研究和应用中取得更好的效果。
数列与推理证明——学生版
第1讲 等差数列、等比数列【高考考情解读】 高考对本讲知识的考查主要是以下两种形式:1.以填空题的形式考查,主要利用等差、等比数列的通项公式、前n 项和公式及其性质解决与项、和有关的计算问题,属于基础题;2.以解答题的形式考查,主要是等差、等比数列的定义、通项公式、前n 项和公式及其性质等知识交汇综合命题,考查用数列知识分析问题、解决问题的能力,属低、中档题.1. a n 与S n 的关系S n =a 1+a 2+…+a n ,a n =⎩⎪⎨⎪⎧S 1, n =1,S n -S n -1, n ≥2.2. 等差数列和等比数列等差数列 等比数列 定义 a n -a n -1=常数(n ≥2) a na n -1=常数(n ≥2) 通项公式a n =a 1+(n -1)da n =a 1q n -1(q ≠0)判定方法(1)定义法(2)中项公式法:2a n +1=a n +a n +2(n ≥1)⇔{a n }为等差数列(3)通项公式法:a n =pn +q (p 、q 为常数)⇔{a n }为等差数列(4)前n 项和公式法:S n =An 2+Bn (A 、B 为常数)⇔{a n }为等差数列(5){a n }为等比数列,a n >0⇔{log a a n }为等差数列 (1)定义法(2)中项公式法:a 2n +1=a n ·a n +2 (n ≥1)(a n ≠0) ⇔{a n }为等比数列(3)通项公式法:a n =c ·q n (c 、q 均是不为0的常数,n ∈N *)⇔{a n }为等比数列(4){a n }为等差数列⇔{aa n }为等比数列(a >0且a ≠1)性质(1)若m 、n 、p 、q ∈N *,且m +n =p +q ,则a m +a n =a p +a q (2)a n =a m +(n -m )d(3)S m ,S 2m -S m ,S 3m -S 2m ,…仍成等差数列(1)若m 、n 、p 、q ∈N *,且m +n =p +q ,则a m ·a n =a p ·a q (2)a n =a m q n-m(3)等比数列依次每n 项和(S n ≠0)仍成等比数列 前n 项和S n =n (a 1+a n )2=na 1+n (n -1)2d(1)q ≠1,S n =a 1(1-q n )1-q =a 1-a n q1-q(2)q =1,S n =na 1考点一 与等差数列有关的问题例1 在等差数列{a n }中,满足3a 5=5a 8,S n 是数列{a n }的前n 项和.(1)若a 1>0,当S n 取得最大值时,求n 的值;(2)若a 1=-46,记b n =S n -a nn ,求b n 的最小值.(1)(2012·浙江改编)设S n 是公差为d (d ≠0)的无穷等差数列{a n }的前n 项和,则下列命题错误..的是________.(填序号)①若d <0,则数列{S n }有最大项;②若数列{S n }有最大项,则d <0;③若数列{S n }是递增数列,则对任意n ∈N *,均有S n >0;④若对任意n ∈N *,均有S n >0,则数列{S n }是递增数列.(2)(2013·课标全国Ⅰ改编)设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则m =________.考点二 与等比数列有关的问题例2 (1)(2012·课标全国改编)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=________.(2)(2012·浙江)设公比为q (q >0)的等比数列{a n }的前n 项和为S n .若S 2=3a 2+2,S 4=3a 4+2,则q =________.(2013·湖北)已知S n 是等比数列{a n }的前n 项和,S 4,S 2,S 3成等差数列,且a 2+a 3+a 4=-18.(1)求数列{a n }的通项公式;(2)是否存在正整数n ,使得S n ≥2 013?若存在,求出符合条件的所有n 的集合;若不存在,说明理由.考点三 等差数列、等比数列的综合应用 例3 已知等差数列{a n }的公差为-1,且a 2+a 7+a 12=-6. (1)求数列{a n }的通项公式a n 与前n 项和S n ;(2)将数列{a n }的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{b n }的前3项,记{b n }的前n 项和为T n ,若存在m ∈N *,使对任意n ∈N *,总有S n <T m +λ恒成立,求实数λ的取值范围.已知数列{a n }满足a 1=3,a n +1-3a n =3n (n ∈N *),数列{b n }满足b n =3-n a n .(1)求证:数列{b n }是等差数列;(2)设S n =a 13+a 24+a 35+…+a n n +2,求满足不等式1128<S n S 2n <14的所有正整数n 的值.1. 在等差(比)数列中,a 1,d (q ),n ,a n ,S n 五个量中知道其中任意三个,就可以求出其他两个.解这类问题时,一般是转化为首项a 1和公差d (公比q )这两个基本量的有关运算.2. 等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形. 3. 等差、等比数列的单调性(1)等差数列的单调性d >0⇔{a n }为递增数列,S n 有最小值.d <0⇔{a n }为递减数列,S n 有最大值.d =0⇔{a n }为常数列.(2)等比数列的单调性当⎩⎪⎨⎪⎧ a 1>0,q >1或⎩⎪⎨⎪⎧ a 1<0,0<q <1时,{a n }为递增数列,当⎩⎪⎨⎪⎧ a 1>0,0<q <1或⎩⎪⎨⎪⎧a 1<0,q >1时,{a n }为递减数列. 4. 常用结论(1)若{a n },{b n }均是等差数列,S n 是{a n }的前n 项和,则{ma n +kb n },{S nn }仍为等差数列,其中m ,k 为常数.(2)若{a n },{b n }均是等比数列,则{ca n }(c ≠0),{|a n |},{a n ·b n },{ma n b n }(m 为常数),{a 2n },{1a n }等也是等比数列.(3)公比不为1的等比数列,其相邻两项的差也依次成等比数列,且公比不变,即a 2-a 1,a 3-a 2,a 4-a 3,…成等比数列,且公比为a 3-a 2a 2-a 1=(a 2-a 1)qa 2-a 1=q .(4)等比数列(q ≠-1)中连续k 项的和成等比数列,即S k ,S 2k -S k ,S 3k -S 2k ,…成等比数列,其公差为q k . 等差数列中连续k 项的和成等差数列,即S k ,S 2k -S k ,S 3k -S 2k ,…成等差数列,公差为k 2d . 5. 易错提醒(1)应用关系式a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2时,一定要注意分n =1,n ≥2两种情况,在求出结果后,看看这两种情况能否整合在一起.(2)三个数a ,b ,c 成等差数列的充要条件是b =a +c2,但三个数a ,b ,c 成等比数列的必要条件是b 2=ac .1. 已知等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 8+a 9a 6+a 7=________.2. 已知正项等比数列{a n }满足a 7=a 6+2a 5,若存在两项a m ,a n 使得a m a n =4a 1,则1m +4n 的最小值为________.3. 已知等差数列{a n }的前n 项的和为S n ,等比数列{b n }的各项均为正数,公比是q ,且满足:a 1=3,b 1=1,b 2+S 2=12,S 2=b 2q .(1)求a n 与b n ;(2)设c n =3b n -λ·2a n3,若数列{c n }是递增数列,求λ的取值范围.(推荐时间:60分钟)一、填空题1. (2013·江西改编)等比数列x,3x +3,6x +6,…的第四项等于________.2. (2013·课标全国Ⅱ改编)等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1=________. 3. 等差数列{a n }前9项的和等于前4项的和.若a 4+a k =0,则k =________.4. 已知等比数列{a n }为递增数列.若a 1>0,且2(a n +a n +2)=5a n +1,则数列{a n }的公比q =________.5. 已知{a n }是等差数列,S n 为其前n 项和,若S 21=S 4 000,O 为坐标原点,点P (1,a n ),Q (2 011,a 2 011),则OP →·OQ →=________.6. 数列{a n }的首项为3,{b n }为等差数列且b n =a n +1-a n (n ∈N *).若b 3=-2,b 10=12,则a 8等于________. 7. 各项均为正数的等比数列{a n }的公比q ≠1,a 2,12a 3,a 1成等差数列,则a 3a 4+a 2a 6a 2a 6+a 4a 5=________.8. 在等差数列{a n }中,a n >0,且a 1+a 2+…+a 10=30,则a 5·a 6的最大值等于________.9. 已知数列{a n }的首项为a 1=2,且a n +1=12(a 1+a 2+…+a n ) (n ∈N *),记S n 为数列{a n }的前n 项和,则S n =________,a n =________. 二、解答题10.已知{a n }是以a 为首项,q 为公比的等比数列,S n 为它的前n 项和.(1)当S 1,S 3,S 4成等差数列时,求q 的值;(2)当S m ,S n ,S l 成等差数列时,求证:对任意自然数k ,a m +k ,a n +k ,a l +k 也成等差数列.11.设数列{a n }是公比大于1的等比数列,S n 为数列{a n }的前n 项和.已知S 3=7且a 1+3,3a 2,a 3+4构成等差数列.(1)求数列{a n }的通项公式;(2)令b n =ln a 3n +1,n =1,2,…,求数列{b n }的前n 项和T n .12.(2013·湖北)已知等比数列{a n }满足:|a 2-a 3|=10,a 1a 2a 3=125.(1)求数列{a n }的通项公式; (2)是否存在正整数m ,使得1a 1+1a 2+…+1a m ≥1?若存在,求m 的最小值;若不存在,说明理由.第2讲数列求和及数列的综合应用【高考考情解读】高考对本节知识主要以解答题的形式考查以下两个问题:1.以递推公式或图、表形式给出条件,求通项公式,考查学生用等差、等比数列知识分析问题和探究创新的能力,属中档题.2.通过分组、错位相减等转化为等差或等比数列的求和问题,考查等差、等比数列求和公式及转化与化归思想的应用,属中档题.1.数列求和的方法技巧(1)分组转化法:有些数列,既不是等差数列,也不是等比数列,若将数列通项拆开或变形,可转化为几个等差、等比数列或常见的数列,即先分别求和,然后再合并.(2)错位相减法:这是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{a n·b n}的前n项和,其中{a n},{b n}分别是等差数列和等比数列.(3)倒序相加法:这是在推导等差数列前n项和公式时所用的方法,也就是将一个数列倒过来排列(反序),当它与原数列相加时若有公式可提,并且剩余项的和易于求得,则这样的数列可用倒序相加法求和.(4)裂项相消法:利用通项变形,将通项分裂成两项或n项的差,通过相加过程中的相互抵消,最后只剩下有限项的和.这种方法,适用于求通项为1a n a n+1的数列的前n项和,其中{a n}若为等差数列,则1a n a n+1=1d⎝⎛⎭⎫1a n-1a n+1.常见的拆项公式:①1n(n+1)=1n-1n+1;②1n(n+k)=1k(1n-1n+k);③1(2n-1)(2n+1)=12(12n-1-12n+1);④1n+n+k=1k(n+k-n).2.数列应用题的模型(1)等差模型:如果增加(或减少)的量是一个固定量时,该模型是等差模型,增加(或减少)的量就是公差.(2)等比模型:如果后一个量与前一个量的比是一个固定的数时,该模型是等比模型,这个固定的数就是公比.(3)混合模型:在一个问题中同时涉及等差数列和等比数列的模型.(4)生长模型:如果某一个量,每一期以一个固定的百分数增加(或减少),同时又以一个固定的具体量增加(或减少)时,我们称该模型为生长模型.如分期付款问题,树木的生长与砍伐问题等.(5)递推模型:如果容易找到该数列任意一项a n与它的前一项a n-1(或前n项)间的递推关系式,我们可以用递推数列的知识来解决问题.考点一分组转化求和法例1等比数列{a n}中,a1,a2,a3分别是下表第一、二、三行中的某一个数,且a1,a2,a3中的任何两个数不在下表的同一列.第一列 第二列 第三列 第一行 3 2 10 第二行 6 4 14 第三行9818(1)求数列{a n }的通项公式;(2)若数列{b n }满足:b n =a n +(-1)n ln a n ,求数列{b n }的前n 项和S n .(2013·安徽)设数列{a n }满足a 1=2,a 2+a 4=8,且对任意n ∈N *,函数f (x )=(a n -a n +1+a n +2)x +a n+1cos x -a n +2sin x 满足f ′⎝⎛⎭⎫π2=0.(1)求数列{a n }的通项公式;(2)若b n =2⎝⎛⎭⎫a n +12a n,求数列{b n }的前n 项和S n .考点二 错位相减求和法例2 (2013·山东)设等差数列{a n }的前n 项和为S n ,且S 4=4S 2,a 2n =2a n +1.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1a 1+b 2a 2+…+b n a n =1-12n ,n ∈N *,求{b n }的前n 项和T n .设数列{a n}满足a1=2,a n+1-a n=3·22n-1.(1)求数列{a n}的通项公式;(2)令b n=na n,求数列{b n}的前n项和S n.考点三裂项相消求和法例3(2013·广东)设各项均为正数的数列{a n}的前n项和为S n,满足4S n=a2n+1-4n-1,n∈N*, 且a2,a5,a14构成等比数列.(1)证明:a2=4a1+5;(2)求数列{a n}的通项公式;(3)证明:对一切正整数n,有1a1a2+1a2a3+…+1a n a n+1<12.已知x,f(x)2,3(x≥0)成等差数列.又数列{a n}(a n>0)中,a1=3,此数列的前n项和为S n,对于所有大于1的正整数n都有S n=f(S n-1).(1)求数列{a n}的第n+1项;(2)若b n是1a n+1,1a n的等比中项,且T n为{b n}的前n项和,求T n.考点四 数列的实际应用例4 (2012·湖南)某公司一下属企业从事某种高科技产品的生产.该企业第一年年初有资金2 000万元,将其投入生产,到当年年底资金增长了50%,预计以后每年资金年增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金d 万元,并将剩余资金全部投入下一年生产.设第n 年年底企业上缴资金后的剩余资金为a n 万元.(1)用d 表示a 1,a 2,并写出a n +1与a n 的关系式;(2)若公司希望经过m (m ≥3)年使企业的剩余资金为4 000万元,试确定企业每年上缴资金d 的值(用m 表示).某产品在不做广告宣传且每千克获利a 元的前提下,可卖出b 千克.若做广告宣传,广告费为n (n ∈N *)千元时比广告费为(n -1)千元时多卖出b2n 千克.(1)当广告费分别为1千元和2千元时,用b 表示销售量S ;(2)试写出销售量S 与n 的函数关系式;(3)当a =50,b =200时,要使厂家获利最大,销售量S 和广告费n 分别应为多少?1. 数列综合问题一般先求数列的通项公式,这是做好该类题型的关键.若是等差数列或等比数列,则直接运用公式求解,否则常用下列方法求解:(1)a n =⎩⎪⎨⎪⎧S 1(n =1)S n -S n -1(n ≥2).(2)递推关系形如a n +1-a n =f (n ),常用累加法求通项.(3)递推关系形如a n +1a n=f (n ),常用累乘法求通项.(4)递推关系形如“a n +1=pa n +q (p 、q 是常数,且p ≠1,q ≠0)”的数列求通项,此类通项问题,常用待定系数法.可设a n +1+λ=p (a n +λ),经过比较,求得λ,则数列{a n +λ}是一个等比数列.(5)递推关系形如“a n +1=pa n +q n (q ,p 为常数,且p ≠1,q ≠0)”的数列求通项,此类型可以将关系式两边同除以q n 转化为类型(4),或同除以p n+1转为用迭加法求解.2. 数列求和中应用转化与化归思想的常见类型:(1)错位相减法求和时将问题转化为等比数列的求和问题求解.(2)并项求和时,将问题转化为等差数列求和. (3)分组求和时,将问题转化为能用公式法或错位相减法或裂项相消法或并项法求和的几个数列的和求解. 提醒:运用错位相减法求和时,相减后,要注意右边的n +1项中的前n 项,哪些项构成等比数列,以及两边需除以代数式时注意要讨论代数式是否为零.3. 数列应用题主要考查应用所学知识分析和解析问题的能力.其中,建立数列模型是解决这类问题的核心,在试题中主要有:一是,构造等差数列或等比数列模型,然后用相应的通项公式与求和公式求解;二是,通过归纳得到结论,再用数列知识求解.1. 在一个数列中,如果∀n ∈N *,都有a n a n +1a n +2=k (k 为常数),那么称这个数列为等积数列,称k 为这个数列的公积.已知数列{a n }是等积数列,且a 1=1,a 2=2,公积为8,则a 1+a 2+a 3+…+a 12=________.2. 秋末冬初,流感盛行,特别是甲型H1N1流感.某医院近30天每天入院治疗甲流的人数依次构成数列{a n },已知a 1=1,a 2=2,且a n +2-a n =1+(-1)n (n ∈N *),则该医院30天入院治疗甲流的人数为________.3. 已知公差大于零的等差数列{a n }的前n 项和S n ,且满足:a 2·a 4=65,a 1+a 5=18. (1)若1<i <21,a 1,a i ,a 21是某等比数列的连续三项,求i 的值;(2)设b n =n(2n +1)S n ,是否存在一个最小的常数m 使得b 1+b 2+…+b n <m 对于任意的正整数n 均成立,若存在,求出常数m ;若不存在,请说明理由.(推荐时间:60分钟)一、填空题1. 已知数列112,314,518,7116,…,则其前n 项和S n =________.2. 在等差数列{a n }中,a 1=-2 013,其前n 项和为S n ,若S 1212-S 1010=2,则S 2 013的值等于________.3. 对于数列{a n },a 1=4,a n +1=f (a n ),n =1,2,…,则a 2 013=________.x 1 2 3 4 5 f (x )543124. 设{a n }是以2为首项,1为公差的等差数列,{b n }是以1为首项,2为公比的等比数列,记M n =ab 1+ab 2+…+ab n ,则数列{M n }中不超过2 013的项的个数为________.5. 在等差数列{a n }中,其前n 项和是S n ,若S 15>0,S 16<0,则在S 1a 1,S 2a 2,…,S 15a 15中最大的是________.6. 数列{a n }满足a 1=1,且对任意的m ,n ∈N *都有a m +n =a m +a n +mn ,则1a 1+1a 2+1a 3+…+1a 2 012=________.7. 已知函数f (n )=⎩⎪⎨⎪⎧n 2(n 为奇数),-n 2(n 为偶数),且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 2 012=________.8. 数列{a n }中,已知对任意n ∈N *,a 1+a 2+a 3+…+a n =3n -1,则a 21+a 22+a 23+…+a 2n =________.9. 已知数列{a n }满足3a n +1+a n =4(n ≥1)且a 1=9,其前n 项之和为S n ,则满足不等式|S n -n -6|<1125的最小整数n 是________.10.气象学院用3.2万元买了一台天文观测仪,已知这台观测仪从启用的第一天起连续使用,第n 天的维修保养费为n +4910(n ∈N *)元,使用它直至报废最合算(所谓报废最合算是指使用这台仪器的平均耗资最少),一共使用了________天.二、解答题11.已知等差数列{a n}满足:a5=9,a2+a6=14.(1)求数列{a n}的通项公式;(2)若b n=a n+qa n(q>0),求数列{b n}的前n项和S n.12.将函数f(x)=sin 14x·sin14(x+2π)·sin12(x+3π)在区间(0,+∞)内的全部极值点按从小到大的顺序排成数列{a n}(n∈N*).(1)求数列{a n}的通项公式;(2)设b n=2n a n,数列{b n}的前n项和为T n,求T n的表达式.13.在等比数列{a n}中,a2=14,a3·a6=1512.设b n=log2a2n2·log2a2n+12,T n为数列{b n}的前n项和.(1)求a n和T n;(2)若对任意的n∈N*,不等式λT n<n-2(-1)n恒成立,求实数λ的取值范围.第3讲推理与证明【高考考情解读】 1.高考主要考查对合情推理和演绎推理的理解及应用;直接证明和间接证明的考查主要作为证明和推理数学命题的方法,常与函数、数列、不等式、解析几何等综合命题.考查“归纳—猜想—证明”的模式,常与数列结合考查.2.归纳推理和类比推理等主要是和数列、不等式等内容联合考查,多以填空题的形式出现,难度中等;而考查证明问题的知识面广,涉及知识点多,题目难度较大,主要考查逻辑推理能力、归纳能力和综合能力,难度较大.1. 合情推理(1)归纳推理①归纳推理是由部分到整体、由个别到一般的推理.②归纳推理的思维过程如下:实验、观察→概括、推广→猜测一般性结论 (2)类比推理①类比推理是由特殊到特殊的推理②类比推理的思维过程如下:观察、比较→联想、类推→猜测新的结论 2. 演绎推理(1)“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般性原理.②小前提——所研究的特殊情况.③结论——根据一般原理,对特殊情况做出的判断.(2)合情推理与演绎推理的区别归纳和类比是常用的合情推理,从推理形式上看,归纳是由部分到整体、个别到一般的推理;类比是由特殊到特殊的推理;而演绎推理是由一般到特殊的推理.从推理所得的结论来看,合情推理的结论不一定正确,有待进一步证明;演绎推理在大前提、小前提和推理形式都正确的前提下,得到的结论一定正确. 3. 直接证明(1)综合法:用P 表示已知条件、已有的定义、定理、公理等,Q 表示所要证明的结论,则综合法可用框图表示为P ⇒Q 1→Q 1⇒Q 2→Q 2⇒Q 3→…→Q n ⇒Q(2)分析法:用Q 表示要证明的结论,则分析法可用框图表示为 Q ⇐P 1→P 1⇐P 2→P 2⇐P 3→…→ 得到一个明显成立的条件4. 间接证明:反证法的证明过程可以概括为“否定——推理——否定”,即从否定结论开始,经过正确的推理,导致逻辑矛盾,从而达到新的否定(即肯定原命题)的过程.用反证法证明命题“若p 则q ”的过程可以用如图所示的框图表示.考点一 归纳推理例1 (2013·湖北)古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n 个三角形数为n (n +1)2=12n 2+12n ,记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式:三角形数 N (n,3)=12n 2+12n ,正方形数 N (n,4)=n 2, 五边形数 N (n,5)=32n 2-12n ,六边形数N (n,6)=2n 2-n………………………………………可以推测N (n ,k )的表达式,由此计算N (10,24)=____________.(1)在数列{a n }中,若a 1=2,a 2=6,且当n ∈N *时,a n +2是a n ·a n +1的个位数字,则a 2 014=________.(2)(2012·江西改编)观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=________.考点二 类比推理例2 (1)在平面几何中有如下结论:若正三角形ABC 的内切圆面积为S 1,外接圆面积为S 2,则S 1S 2=14.推广到空间几何可以得到类似结论:若正四面体ABCD 的内切球体积为V 1,外接球体积为V 2,则V 1V 2=________.(2)椭圆与双曲线有许多优美的对偶性质,如对于椭圆有如下命题:AB 是椭圆x 2a 2+y 2b 2=1(a >b >0)的不平行于对称轴且不过原点的弦,M 为AB 的中点,则k OM ·k AB =-b 2a 2.那么对于双曲线则有如下命题:AB 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的不平行于对称轴且不过原点的弦,M 为AB 的中点,则k OM ·k AB =________.(1)现有一个关于平面图形的命题,如图,同一个平面内有两个边长都是a 的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为a 24.类比到空间,有两个棱长均为a 的正方体,其中一个的某顶点在另一个中心,则这两个正方体重叠部分的体积恒为________. (2)命题p :已知椭圆x 2a 2+y 2b 2=1(a >b >0),F 1、F 2是椭圆的两个焦点,P 为椭圆上的一个动点,过F 2作∠F 1PF 2的外角平分线的垂线,垂足为M ,则OM 的长为定值.类比此命题,在双曲线中也有命题q :已知双曲线x 2a 2-y 2b 2=1(a >b >0),F 1、F 2是双曲线的两个焦点,P 为双曲线上的一个动点,过F 2作∠F 1PF 2的________的垂线,垂足为M ,则OM 的长为定值________.考点三 直接证明与间接证明例3 已知数列{a n }满足:a 1=12,3(1+a n +1)1-a n =2(1+a n )1-a n +1,a n a n +1<0 (n ≥1);数列{b n }满足:b n =a 2n +1-a 2n (n ≥1). (1)求数列{a n },{b n }的通项公式;(2)证明:数列{b n }中的任意三项不可能成等差数列.已知数列{a n }和{b n }满足:a 1=λ,a n +1=23a n +n -4,b n =(-1)n (a n -3n +21),其中λ为实数,n 为正整数.(1)对任意实数λ,证明:数列{a n }不是等比数列;(2)试判断数列{b n }是否为等比数列.1. 合情推理的精髓是“合情”,即得到的结论符合“情理”,其中主要是归纳推理与类比推理.归纳推理是由部分得到整体的一种推理模式.类比推理是由此及彼的推理模式;演绎推理是一种严格的证明方式.2. 直接证明的最基本的两种证明方法是综合法和分析法,这两种方法也是解决数学问题时常见的思维方式.在实际解题时,通常先用分析法寻求解题思路,再用综合法有条理地表述解题过程.1. 将全体正奇数排成一个三角形数阵:按照以上排列的规律,第45行从左向右的第17个数为________.2. 在计算“1×2+2×3+…+n (n +1)”时,某同学学到了如下一种方法:先改写第k 项,k (k +1)=13[k (k +1)(k+2)-(k -1)k (k +1)],由此得1×2=13(1×2×3-0×1×2),2×3=13(2×3×4-1×2×3),…n (n +1)=13[n (n +1)(n +2)-(n -1)n (n +1)].相加,得1×2+2×3+…+n (n +1)=13n (n +1)(n +2).类比上述方法,计算“1×2×3+2×3×4+…+n (n +1)(n +2)”的结果为________.(推荐时间:60分钟)一、填空题1. 下列关于五角星的图案构成一个数列,该数列的一个通项公式是________.2. 已知结论:在正三角形ABC 中,若D 是边BC 的中点,G 是三角形ABC 的重心,则AGGD=2.若把该结论推广到空间中,则有结论:在棱长都相等的四面体ABCD 中,若△BCD 的中心为M ,四面体内部一点O 到四面体各面的距离都相等,则AOOM等于________. 3. 已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个数对是________.4. 已知正三角形内切圆的半径是其高的13,把这个结论推广到空间正四面体,类似的结论是________________________________________________________________________.5. 把非零自然数按一定的规则排成了如图所示的三角形数表(每行比上一行多一个数).设a ij (i 、j ∈N *)是位于这个三角形数表中从上往下数第i 行、从左往右数第j 个数,如a 42=8,若a ij =2 014,则i ,j 的值的和为________.6. 有一个奇数列1,3,5,7,9,…,现在进行如下分组:第一组含一个数{1},第二组含两个数{3,5},第三组含三个数{7,9,11},第四组含四个数{13,15,17,19},…,现观察猜想每组内各数之和为a n 与其组的编号数n 的关系为________.7. (2013·陕西)观察下列等式:(1+1)=2×1(2+1)(2+2)=22×1×3(3+1)(3+2)(3+3)=23×1×3×5 …照此规律,第n 个等式可为______________.8. 如图所示的三角形数阵叫“莱布尼兹调和三角形”,它们是由整数的倒数组成的,第n 行有n 个数,且两端的数均为1n ,每个数是它下一行左右相邻两数的和,如11=12+12,12=13+16,13=14+112,…,则第10行第3个数(从左往右数)为________.9. 对大于1的自然数m 的三次幂可用奇数进行以下方式的“分裂”:23⎩⎨⎧35,33⎩⎪⎨⎪⎧7911,43⎩⎪⎨⎪⎧13151719,….仿此,若m 3的“分裂数”中有一个是59,则m 的值为________. 二、解答题10.已知a >0且a ≠1,f (x )=1a x +a.(1)求值:f (0)+f (1),f (-1)+f (2);(2)由(1)的结果归纳概括对所有实数x 都成立的一个等式,并加以证明; (3)若n ∈N *,求和:f (-(n -1))+f (-(n -2))+…+f (-1)+f (0)+f (1)+…+f (n ).11.等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2.(1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S nn (n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列.12.已知数列{a n }有a 1=a ,a 2=p (常数p >0),对任意的正整数n ,S n =a 1+a 2+…+a n ,并有S n 满足S n =n (a n -a 1)2.(1)求a 的值并证明数列{a n }为等差数列;(2)令p n =S n +2S n +1+S n +1S n +2,是否存在正整数M ,使不等式p 1+p 2+…+p n -2n ≤M 恒成立,若存在,求出M 的最小值;若不存在,说明理由.。
数列中an及Sn的关系
课题浅谈数列中a n 与S n 的递推公式的应用对于任意一个数列,当定义数列的前n 项和通常用S n 表示时,记作S n =a 1+a 2+…+a n ,此时通项公式a n =⎩⎨⎧S 1,n =1,S n -S n -1,n ≥2.而对于不同的题目中的a n 与S n 的递推关系,在解题时又应该从哪些方向去灵活应用a n =S n -S n -1(n ≥2)去解决不同类型的问题呢?我们将从下面三个角度去探索在各类考试中出现的a n 与S n 相关的问题:归纳起来常见的角度有:角度一:直观运用已知的S n ,求a n ;角度二:客观运用a n =S n -S n -1(n ≥2),求与a n ,S n 有关的结论; 角度三:a n 与S n 的延伸应用.角度一:直观运用已知的S n ,求a n方法:已知S n 求a n 的三个步骤(此时S n 为关于n 的代数式): (1)先利用a 1=S 1求出a 1;(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式;(3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段来写.同时,在部分题目中需要深刻理解“数列的前n 项和”的实际意义,对“和的式子”有本质的认识,这样才能更好的运用S n 求解.如:a 1+2a 2+3a 3+…+na n =2n -1,其中a 1+2a 2+3a 3+…+na n 表示数列{na n }的前n 项和.1.已知数列{a n }的前n 项和S n =n 2-2n +2,则数列{a n }的通项公式为( ) A .a n =2n -3 B .a n =2n +3C .a n =⎩⎨⎧ 1,n =12n -3,n ≥2D .a n =⎩⎨⎧1,n =12n +3,n ≥2【解析】当n ≥2时,a n =S n -S n -1=2n -3.当n =1时,a 1=S 1=1,不满足上式. 【答案】C2.(2015·河北石家庄一中月考)数列{a n }满足:a 1+3a 2+5a 3+…+(2n -1)·a n =(n -1) ·3n +1+3(n ∈N *),则数列的通项公式a n = .【解析】当n ≥2时,a 1+3a 2+5a 3+…+(2n -3)·a n -1=(n -2) ·3n +3;则用已知等式减去上式得(2n -1)·a n =(2n -1)·3n ,得a n =3n ;当n =1时,a 1=3,满足上式;故a n =3n .【答案】a n =3n3.(2015·天津一中月考)已知{a n }的前n 项和为S n ,且满足log 2(S n +1)=n +1,则a n = . 【解析】由已知得S n +1=2n +1,则S n =2n +1-1;当n ≥2时,a n =S n -S n -1=2n +1-1-2n +1=2n ;当n =1时,a 1=S 1=3,不满足上式;故a n =⎩⎨⎧3,n =12n ,n ≥2.【答案】a n =⎩⎨⎧3,n =12n ,n ≥24.(2015·四川成都树德期中)已知{a n }是一个公差大于0的等差数列,且满足a 3a 5=45,a 2+a 6=14.(1)求{a n }的通项公式; (2)若数列{b n }满足:b 12+b 222+…+b n2n=a n +1(n ∈N *),求{b n }的前n 项和.【解】(1)设等差数列{a n }的公差为d ,则d >0, 由a 2+a 6=14,可得a 4=7由a 3a 5=45,得(7-d )(7+d )=45,解得d =2 或d =-2(舍) ∴a n =a 4+(n -4)d =7+2(n -4),即a n =2n -1.(2)令c n =b n2n,则c 1+c 2+c 3+…+c n =a n +1=2n ①当n ≥2时,c 1+c 2+c 3+…+c n -1=2(n -1) ②由①-②得,c n =2,当n =1时,c 1=2,满足上式;则c n =2(n ∈N *),即b n2n =2,∴b n =2n +1,故数列{b n }是首项为4,公比为2得等比数列, ∴数列{b n }的前n 项和S n =4(1-2n )1-2=2n +2-4.此类题目中,已知条件往往是一个关于a n 与S n 的等式,问题则是求解与a n ,S n 有关联的结论.那么我们需要通过对所求问题进行客观分析后,判定最后的结果中是保留a n ,还是S n .那么,主要从两个方向利用a n =S n -S n -1(n ≥2):方向一:若所求问题是与a n 相关的结论,那么用S n -S n -1=a n (n ≥2)消去等式中所有S n 与S n -1,保留项数a n ,在进行整理求解;1.(2015·广州潮州月考)数列{a n }的前n 项和记为S n ,a 1=1,a n +1=2S n +1(n ≥1,n ∈N *),则数列的通项公式是 .【解析】当n ≥2时,a n =2S n -1+1,两式相减得a n +1-a n =2(S n -S n -1),即a n +1-a n =2a n ,得a n+1=3a n ;当n =1时,a 2=3,则a 2=3a 1,满足上式;故{a n }是首项为1,公比为3得等比数列,∴a n=3n -1.【答案】a n =3n -12.数列{a n }的前n 项和为S n ,若a n +1=-4S n +1,a 1=1. (1)求数列{a n }的通项公式;(2)设b n =na n ,求数列{b n }的前n 项和T n .【解】(1)当n ≥2时,a n =-4S n -1+1,又a n +1=-4S n +1,∴a n +1-a n =-4a n ,即a n +1a n=-3(n ≥2), 又a 2=-4a 1+1=-3,a 1=1,∴数列{a n }是首项为a 1=1,公比为q =-3的等比数列, ∴a n =(-3)n -1.(2)由(1)可得b n =n ·(-3)n -1,T n =1·(-3)0+2·(-3)1+3·(-3)2+…+(n -1)·(-3)n -2+n ·(-3)n -1,-3T n =1·(-3)1+2·(-3)2+…+(n -2)·(-3)n -2+(n -1)·(-3)n -1+n (-3)n , ∴4T n =1+(-3)1+(-3)2+…+(-3)n -1-n ·(-3)n , 所以,T n =1-(4n +1)(-3)n16.方向二:若所求问题是与S n 相关的结论,那么用a n =S n -S n -1(n ≥2)消去等式中所有项数a n ,保留S n 与S n -1,在进行整理求解.1.已知数列{a n }的前n 项和为S n 且满足a n +2S n ·S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1S n 是等差数列;(2)求a n 的表达式.【解】(1)证明:∵a n =S n -S n -1(n ≥2),又a n =-2S n ·S n -1,∴S n -1-S n =2S n ·S n -1,S n ≠0.因此1S n -1S n -1=2(n ≥2).故由等差数列的定义知⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1S n 是以1S 1=1a 1=2为首项,2为公差的等差数列.(2)由(1)知1S n =1S 1+(n -1)d =2+(n -1)×2=2n ,即S n =12n .当n ≥2时,a n =-2S n ·S n -1=-12n (n -1),又∵a 1=12,不适合上式.∴a n=⎩⎪⎨⎪⎧12,n =1,-12n (n -1),n ≥2.2.(2015·江西名校联盟调考)已知正项数列{a n }的前n 项和为S n ,且a 2n -2S n a n +1=0. (1)求数列{S n }的通项公式;(2)求证:1S 1+1S 2+…+1S n>2(S n+1-1).(提示:1n >2n +1+n)【解】(1)∵a n =S n -S n -1(n ≥2),由a 2n -2S n a n +1=0,得(S n -S n -1)2-2S n (S n -S n -1)+1=0,整理得S 2n -S 2n -1=1.当n =1时,a 21-2S 1a 1+1=0,且a 1>0,解得a 1=1, 故由等差数列的定义知{S 2n }是以1为首项,1为公差的等差数列. ∴S 2n =n ,则S n =n .(2)由(1)知1S n =1n =22n >2n +1+n=2(n +1-n ),∴1S 1+1S 2+…+1S n >2(2-1)+2(3-2)+…+2(n +1-n )=2(n +1-1)即1S 1+1S 2+…+1S n>2(S n +1-1) .【总结】此类题目往往伴随着等差、等比数列的判定,所以需要对数列的判定方法熟练掌握.解此类题目中不仅需要深刻理解“数列的前n 项和”的实际意义,还需要对a n =⎩⎨⎧S 1,n =1,S n -S n -1,n ≥2关系式的形式结构很熟练的掌握,这样才能在题目中对已知等式灵活地变换.当然在解决问题的时候仍然需要从求谁的角度出发分析,确定等式的变换方向. 方向一:关于双重前n 项和此类题目中一般出现“数列{a n }的前n 项和为S n ,数列{S n }的前n 项和为T n ”的条件,在解答时需要确定清楚求的是与a n ,S n ,T n 中谁相关的问题,确定已知等式的运用方向.但一般是求解最底层的a n .1.(2015·湖北武汉质检)设数列{a n }的前n 现和为S n ,数列{S n }的前n 项和为T n ,满足T n =2S n -n 2,n ∈N *.(1)求a 1的值;(2)求数列{a n }的通项公式.【解】(1)当n =1时,T 1=2S 1-1,且T 1=S 1=a 1,解得a 1=1,(2)当n ≥2时,S n =T n -T n -1=2S n -n 2-[2S n -1-(n -1)2]=2S n -2S n -1-2n +1 ∴S n =2S n -1+2n -1 ① 则S n +1=2S n +2n +1 ② 由②-①,得a n +1=2a n +2,∴a n +1+2=2(a n +2),即a n +1+2a n +2=2(n ≥2),易求得,a 1+2=3,a 2+2=6,则a 2+2a 1+2=2,∴数列{a n +2}是首项为3,公比为2的等比数列,∴a n +2=3·2n -1,则a n =3·2n -1-2(n ∈N *).2.(2015·安徽滁州期末联考)设数列{a n }的前n 项和为S n ,数列{S n }的前n 项和为T n ,且2T n =4S n-(n 2+n ),n ∈N *.(1)证明:数列{a n +1}为等比数列;(2)设b n =n +1a n +1,证明:b 1+b 2+…+b n <3. 【解】(1)当n =1时,2T 1=4S 1-2,且T 1=S 1=a 1,解得a 1=1,当n =2时,2T 2=2(a 1+a 1+a 2)=4(a 1+a 2)-6,解得a 2=3, 当n ≥2时,2T n -1=4S n -1-[(n -1)2+(n -1)]∴2S n =2T n -2T n -1=4S n -(n 2+n )-4S n -1+[(n -1)2+(n -1)] 整理得S n =2S n -1+n ① 则S n +1=2S n +n +1 ② 由②-①,得a n +1=2a n +1, ∴a n +1+1=2(a n +1),即a n +1+1a n +1=2(n ≥2),显然a 2+1a 1+1=2,∴数列{a n +1}是首项为2,公比为2的等比数列,(2)由(1)知,a n +1=2n ,则b n =n +12n.则b 1+b 2+…+b n =22+322+423…+n +12n ,令T n =22+322+423…+n +12n ,①则12T n = 222+323+424…+n 2n +n +12n +1,② 由①-②,得12T n =1+122+123+124…+12n -n +12n +1=1+122(1-12n -1)1-12-n +12n +1=32-n +32n +1<32则T n <3,即b 1+b 2+…+b n <3. 方向二:已知等式在整理过程中需要因式分解此类问题大多数时候会伴随“各项均为正数的数列{a n }”这样的条件,运用在因式分解后对因式进行符号的判定,对因式进行的取舍.1.(2015·山东青岛一模)各项均为正数的数列{a n }满足a 2n =4S n -2a n -1(n ∈N *),其中S n 为{a n }的前n 项和.(1)求a 1,a 2的值; (2)求数列{a n }的通项公式.【解】(1)当n =1时,T 1=2S 1-1;又T 1=S 1=a 1,则a 1=2a 1-1,解得a 1=1;(2)当n ≥2时,S n =T n -T n -1=(2S n -n 2)-[2S n -1-(n -1)2]=2S n -2S n -1-2n +1, 整理得S n =2S n -1+2n -1 ① ∴S n +1=2S n +2n +1 ② 由②-①,得a n +1=2a n +2 ∴a n +1+2=2(a n +2),即a n +1+2a n +2=2(n ≥2)又T 2=2S 2-4;得a 2=4当n =1时,a 1+2=3,a 2+2=6,则a 1+2a 2+2=2,∴数列{a n +2}是以3为首项,2为公比的等比数列. 则a n +2=3·2n -1,所以a n =3·2n -1-2.2.已知数列{a n }的各项均为正数,前n 项和为S n ,且S n =a n (a n +1)2,n ∈N *.(1)求证:数列{a n }是等差数列;(2)设b n =12S n,T n =b 1+b 2+…+b n ,求T n .【解】(1)由已知得,当n =1时,a 1=S 1=a 1(a 1+1)2(a n >0),∴a 1=1.当n ≥2时,由⎩⎨⎧2S n =a 2n +a n ,2S n -1=a 2n -1+a n -1得2a n =a 2n +a n -a 2n -1-a n -1. 即(a n +a n -1)(a n -a n -1-1)=0,∵a n +a n -1>0,∴a n -a n -1=1(n ≥2).所以数列{a n }是以1为首项,1为公差的等差数列. (2)由(1)可得a n =n ,S n =n (n +1)2,b n =12S n =1n (n +1)=1n -1n +1.∴T n =b 1+b 2+b 3+…+b n =1-12+12-13+…+1n -1n +1=1-1n +1=nn +1.方向三:需对已知等式变形后,再求解1.(2015·江西五校联考)已知正项数列{a n }中,其前n 项和为S n ,且a n =2S n -1. (1)求数列{a n }的通项公式; (2)设b n =1a n ·a n+1,T n =b 1+b 2+b 3+…+b n ,求T n .【解】(1)由已知得,4S n =(a n +1)2.当n ≥2时,4S n -1=(a n -1+1)2,则4S n -4S n -1=(a n +1)2-(a n -1+1)2,整理得 (a n -1)2-(a n -1+1)2=0, ∴(a n -a n -1-2)(a n +a n -1)=0 又a n >0,则a n -a n -1=2,当n =1时,4S 1=(a 1+1)2,得a 1=1; 故数列{a n }是首项为1,公差为2的等差数列; ∴a n =2n -1.(2)由(1)可得b n =1a n ·a n+1=12n -1×12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1,∴T n =1b 1+1b 2+1b 3+…+1b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=12⎝⎛⎭⎪⎫1-12n +1=n 2n +1. 2.(2015·浙江温州中学月考)设数列{a n }的前n 项和为S n ,已知a 1=2,a 2=8,S n +1+4S n -1=5S n (n ≥2),T n 是数列{log 2a n }的前n 项和.(1)求数列{a n }的通项公式; (2)求T n .【解】(1)当n ≥2时,S n +1+4S n -1=5S n ,∴S n +1-S n =4(S n -S n -1),即a n +1=4a n , 当n =1时,a 2=4a 1;故数列{a n }是以2为首项,4为公比的等比数列. ∴a n =2·4n -1=22n -1.(2)由(1)可知log 2a n =log 222n -1=2n -1, ∴T n =log 2a 1+log 2a 2+log 2a 3+…+log 2a n=1+3+5+…+2n -1 =n (1+2n -1)2=n 2.3.(2015·江西三县联考)已知数列{a n }的各项均为正数,记A (n )=a 1+a 2+…+a n ,B (n )=a 2+a 3+…+a n +1,C (n )=a 3+a 4+…+a n +2,其中n ∈N *.(1)若a 1=1,a 2=5,且对任意n ∈N *,三个数A (n ),B (n ),C (n )依次组成等差数列,求数列{a n }的通项公式;(2) a 1=1,对任意n ∈N *,三个数A (n ),B (n ),C (n )依次组成公比为q 的等比数列,求数列{a n }的前n 项和A n .【解】(1)∵任意n ∈N *,三个数A (n ),B (n ),C (n )依次组成等差数列,∴B (n )-A (n )=C (n )-B (n ),则a n +1-a 1=a n +2-a 2,即a n +2-a n +1=a 2-a 1=4, 故数列{a n }是首项为1,公差为4的等差数列; ∴a n =1+(n -1)×4=4n -3.(2)若对任意n ∈N *,三个数A (n ),B (n ),C (n )依次组成公比为q 的等比数列, ∴B (n )=qA (n ),C (n )=qB (n ), 则C (n )-B (n )=q [B (n )-A (n )],得a n +2-a 2=q (a n +1-a 1),即a n +2-qa n +1=a 2-qa 1, 当n =1时,由B (1)=qA (1),可得a 2=qa 1; 则a n +2-qa n +1=a 2-qa 1=0,又a n >0,则a n +2a n +1=a 2a 1=q , 故数列{a n }是以1为首项,q 为公比的等比数列.∴A n =⎩⎪⎨⎪⎧n ,q =1,1-q n1-q,q ≠1.4.(2015·辽宁沈阳诊断考试)设数列{a n }的前n 项和为S n ,a 1=10,a n +1=9S n +10. (1)求证:{lg a n }是等差数列;(2)设T n 是数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫3(lg a n )(lg a n +1)的前n 项和,求T n ; (3)求使T n >14(m 2-5m )对所有的n ∈N *恒成立的整数m 的取值集合.【解】(1)证明:当n ≥2时,a n =9S n -1+10,∴a n +1-a n =9(S n -S n -1),则a n +1=10a n ,即a n +1a n=10, 当n =1时,a 2=9a 1+10=100,则a 2a 1=10, 故数列{a n }是以10为首项,10为公比的等比数列. ∴a n =10n ,则lg a n =n , ∴lg a n +1-lg a n =n +1-n =1,故数列{lg a n }是首项为1,公差为1的等差数列.(2)解:由(1)知3(lg a n )(lg a n +1)=3n n +1=3⎝ ⎛⎭⎪⎫1n -1n +1,∴T n =3⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=3⎝ ⎛⎭⎪⎫1-1n +1=3n n +1. (3)∵T n =3n n +1=3-3n +1, ∴当n =1时,T n 取最小值32.依题意有32>14(m 2-5m ),解得-1<m <6,故整数m 的取值集合为{0,1,2,3,4,5}.1.(2015·江苏扬州外国语中学模拟)已知数列{a n }的前n 项和S n =2n -3,则数列{a n }的通项公式为 .【解析】当n ≥2时,a n =S n -S n -1=2n -3-2n -1+3=2n -1.当n =1时,a 1=S 1=-1,不满足上式.【答案】a n =⎩⎨⎧-1,n =12n -1,n ≥22.(2015·辽宁沈阳二中月考)已知数列{a n }满足a 1+a 22+…+a nn=a 2n -1,求数列{a n }的通项公式. 【解】当n ≥2时,a 1+a 22+…+a n -1n -1=a 2n -2-1 由已知等式减去上式,得a nn=a 2n -1-a 2n -2+1=(a 2-1)a 2n -2, ∴a n =n (a 2-1)a 2n -2,当n =1时,a 1=a 2-1,满足上式; ∴a n =n (a 2-1)a 2n -2.3.(2015·安徽江淮十校联考)已知函数f (x )是定义在(0,+∞)上的单调函数,且对任意的正数x ,y 都有f (x ·y )= f (x )+f (y ),若数列{a n }的前n 项和为S n ,且满足f (S n +2)-f (a n )= f (3)(n ∈N *),则a n 为( )A .2n -1B .nC .2n -1D .⎝ ⎛⎭⎪⎫32n -1【解析】由f (x ·y )= f (x )+f (y ),f (S n +2)-f (a n )= f (3),得S n +2=3a n ,S n -1+2=3a n -1(n ≥2),两式相减得2a n =3a n -1;当n =1时,S 1+2=3a 1=a 1+2,则a 1=1.所以数列{a n }是首项为1,公比为32的等比数列.【答案】a n =⎝ ⎛⎭⎪⎫32n -14.(2015·辽宁鞍山二中期中)设数列{a n }是等差数列,数列{b n }的前n 项和S n 满足S n =32(b n -1),且a 2=b 1,a 5=b 2.(1)求数列{a n }和{b n }的通项公式;(2)设c n =a n ·b n ,T n 为{c n }的前n 项和,求T n . 【解】(1)当n ≥2时,S n -1=32(b n -1-1),则b n =S n -S n -1=32(b n -1)-32(b n -1-1),整理得b n =3b n -1,当n =1时,b 1=32(b 1-1),解得b 1=3;故数列{b n }是以3为首项,3为公比的等比数列. ∴b n =3n ,设等差数列{a n }的公差为d ,由a 2=b 1=3,a 5=b 2=9,则⎩⎨⎧a 1+d =3,a 1+4d =3,解得d =2,a 1=1,∴a n =2n -1,∴a n =2n -1,b n =3n .(2)由(1)知c n =a n ·b n =(2n -1)·3n ,∴T n =3+3·32+5·33+…+(2n -1)·3n ,①3T n = 32+3·33+5·34+…+(2n -3)·3n +(2n -1)·3n +1,② 由①-②,得-2T n =3+2(32+33+…+3n )-(2n -1)·3n +1=3+2×32(1-3 n -1)1-3-(2n -1)·3n +1=(2-2n )·3n +1-6,∴T n =(n -1) 3n +1+3.5.在数列{a n }中,已知a 1=1,a n =2(a n -1+a n -2+…+a 2+a 1) (n ≥2,n ∈N *),则数列的通项公式是 .【解析】由已知n ≥2时,a n =2S n -1 ①;当n ≥3时,a n -1=2S n -2 ②①-②整理得a n a n -1=3 (n ≥3),∴a n =⎩⎨⎧1, n =1,2×3n -2, n ≥2.【答案】a n =⎩⎨⎧1, n =1,2×3n -2, n ≥2. 6.(2015·广东桂城摸底)已知各项均为正数的数列{a n }的前n 项和为S n ,且a 2n +a n =2S n . (1)求a 1;(2)求数列{a n }的通项公式;(3)若b n =1a 2n (n ∈N *),T n =b 1+b 2+…+b n ,求证:T n <53.⎝ ⎛⎭⎪⎫提示:1n 2<2⎝ ⎛⎭⎪⎫12n -1-12n +1【解】(1)当n =1时,a 21+a 1=2S 1,且a n >0,得a 1=1;(2)当n ≥2时,a 2n -1+a n -1=2S n -1 ①;且a 2n +a n =2S n ②;由②-①,得(a n +a n -1)(a n -a n -1-1)=0, 又a n >0,则a n -a n -1=1,故数列{a n }是首项为1,公差为1的等差数列; ∴a n =n .(3)证明:由(2)知,b n =1a 2n =1n2,当n =1时,b 1=1<53,不等式成立;当n ≥2时,1n 2<1n 2-14=44n 2-1=2⎝ ⎛⎭⎪⎫12n -1-12n +1, ∴T n =b 1+b 2+…+b n =1+122+132+…+1n 2<1+2⎝ ⎛⎭⎪⎫13-15+15-17…+12n -1-12n +1<1+23=53, ∴T n <537.(2015·大连双基测试)已知数列{a n }的前n 项和S n =n 2+2n +1(n ∈N *),则a n =________. 【解析】当n ≥2时,a n =S n -S n -1=2n +1,当n =1时,a 1=S 1=4≠2×1+1,因此a n =⎩⎨⎧4,n =1,2n +1,n ≥2. 【答案】⎩⎨⎧4,n =12n +1,n ≥28.(2014·烟台一模)已知数列{a n }前n 项和为S n ,首项为a 1,且12,a n ,S n 成等差数列.(1)求数列{a n }的通项公式;(2)数列{b n }满足b n =(log 2a 2n +1)×(log 2a 2n +3),求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1b n 的前n 项和.【解】(1)∵12,a n ,S n 成等差数列,∴2a n =S n +12,当n =1时,2a 1=S 1+12,∴a 1=12,当n ≥2时,S n =2a n -12,S n -1=2a n -1-12,两式相减得:a n =S n -S n -1=2a n -2a n -1,∴a na n -1=2, 所以数列{a n }是首项为12,公比为2的等比数列,即a n =12×2n -1=2n -2.(2)∵b n =(log 2a 2n +1)×(log 2a 2n +3)=(log 222n +1-2)×(log 222n +3-2)=(2n -1)(2n +1), ∴1b n =12n -1×12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1,∴数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1b n 的前n 项和T n =1b 1+1b 2+1b 3+…+1b n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=12⎝ ⎛⎭⎪⎫1-12n +1=n2n +1.9.(2014·山西四校联考)已知数列{a n }的前n 项和为S n ,S n =2a n -n ,则a n =________. 【解析】当n ≥2时,a n =S n -S n -1=2a n -n -2a n -1+(n -1),即a n =2a n -1+1,∴a n +1=2(a n -1+1),∴数列{a n +1}是首项为a 1+1=2,公比为2的等比数列,∴a n +1=2·2n -1=2n ,∴a n =2n -1.【答案】2n -110.(2014·湖南卷)已知数列{a n }的前n 项和S n =n 2+n2,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和. 【解】(1)当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2+n2-n -12+n -12=n .又a 1=1满足上式,故数列{a n }的通项公式为a n =n . (2)由(1)知,b n =2n +(-1)n n ,记数列{b n }的前2n 项和为T 2n , 则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ).记A =21+22+ (22),B =-1+2-3+4-…+2n ,则A =21-22n1-2=22n +1-2,B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n .故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2.11.已知数列{a n }是各项均为正数的等比数列,a 3=4,{a n }的前3项和为7. (1)求数列{a n }的通项公式;(2)若a 1b 1+a 2b 2+…+a n b n =(2n -3)2n +3,设数列{b n }的前n 项和为S n ,求证:1S 1+1S 2+…+1S n≤2-1n.【解】(1)设数列{a n }的公比为q ,由已知得q >0,且⎩⎨⎧ a 1q 2=4,a 1+a 1q +4=7,∴⎩⎨⎧a 1=1,q =2.∴数列{a n }的通项公式为a n =2n -1.(2)【证明】当n =1时,a 1b 1=1,且a 1=1,解得b 1=1.当n ≥2时,a n b n =(2n -3)2n +3-(2n -2-3)2n -1-3=(2n -1)·2n -1.∵a n =2n -1,∴当n ≥2时,b n =2n -1. ∵b 1=1=2×1-1满足b n =2n -1, ∴数列{b n }的通项公式为b n =2n -1(n ∈N *). ∴数列{b n }是首项为1,公差为2的等差数列. ∴S n =n 2.∴当n =1时,1S 1=1=2-11.当n ≥2时,1S n =1n 2<1n (n -1)=1n -1-1n.∴1S 1+1S 2+…+1S n ≤2-11+11-12+…+1n -1-1n =2-1n . 12.设数列{a n }的前n 项和为S n ,a 1=1,a n =S nn+2 (n -1) (n ∈N *). (1)求证:数列{a n }为等差数列,并分别写出a n 和S n 关于n 的表达式;(2)是否存在自然数n ,使得S 1+S 22+S 33+…+S nn -(n -1)2=2 013?若存在,求出n 的值;若不存在,请说明理由.【解】(1)由a n =S n n+2(n -1),得S n =na n -2n (n -1) (n ∈N *).当n ≥2时,a n =S n -S n -1=na n -(n -1)a n -1-4(n -1),即a n -a n -1=4, 故数列{a n }是以1为首项,以4为公差的等差数列. 于是,a n =4n -3,S n =a 1+a n n2=2n 2-n (n ∈N *).(2)由S n =na n -2n (n -1),得S nn=2n -1 (n ∈N *),又S 1+S 22+S 33+…+S nn -(n -1)2=1+3+5+7+…+(2n -1)-(n -1)2=n 2-(n -1)2=2n -1.令2n -1=2 013,得n =1 007,即存在满足条件的自然数n =1 007.1.已知S n 为正项数列{a n }的前n 项和,且满足S n =12a 2n +12a n (n ∈N *). (1)求a 1,a 2,a 3,a 4的值; (2)求数列{a n }的通项公式.【解】(1)由S n =12a 2n +12a n ,可得a 1=12a 21+12a 1,解得a 1=1; S 2=a 1+a 2=12a 22+12a 2,解得a 2=2;同理,a 3=3,a 4=4.(2)S n =12a 2n +12a n,①当n ≥2时,S n -1=12a 2n -1+12a n -1,②①-②得(a n -a n -1-1)(a n +a n -1)=0. 由于a n +a n -1≠0,所以a n -a n -1=1, 又由(1)知a 1=1,故数列{a n }是首项为1,公差为1的等差数列,故a n =n .2.在数列{a n }中,a 1=-5,a 2=-2,记A (n )=a 1+a 2+…+a n ,B (n )=a 2+a 3+…+a n +1,C (n )=a 3+a 4+…+a n +2(n ∈N *),若对于任意n ∈N *,A (n ),B (n ),C (n )成等差数列.(1)求数列{a n }的通项公式; (2)求数列{|a n |}的前n 项和.【解】(1)根据题意A (n ),B (n ),C (n )成等差数列,∴A (n )+C (n )=2B (n ),整理得a n +2-a n +1=a 2-a 1=-2+5=3, ∴数列{a n }是首项为-5,公差为3的等差数列, ∴a n =-5+3(n -1)=3n -8.(2)|a n |=⎩⎨⎧-3n +8,n ≤2,3n -8,n ≥3,记数列{|a n |}的前n 项和为S n .当n ≤2时,S n =n 5+8-3n2=-3n 22+132n ;当n ≥3时,S n =7+n -21+3n -82=3n 22-132n +14,综上,S n=⎩⎪⎨⎪⎧-32n 2+132n ,n ≤2,32n 2-132n +14,n ≥3.3.(2014·广东卷)设各项均为正数的数列{a n } 的前n 项和为S n ,且 S n 满足 S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N *.(1)求a 1 的值;(2)求数列{a n } 的通项公式;(3)证明:对一切正整数n ,有1a 1a 1+1+1a 2a 2+1+…+1a n a n +1<13.【解】(1)由题意知,S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N *.令n =1,有S 21-(12+1-3)S 1-3×(12+1)=0,可得S 21+S 1-6=0,解得S 1=-3或2,即a 1=-3或2, 又a n 为正数,所以a 1=2.(2)由S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N *可得,(S n +3)(S n -n 2-n )=0,则S n =n 2+n 或S n =-3, 又数列{a n }的各项均为正数,∴S n =n 2+n ,S n -1=(n -1)2+(n -1),当n ≥2时,a n =S n -S n -1=n 2+n -[(n -1)2+(n -1)]=2n . 又a 1=2=2×1,所以a n =2n . (3)证明:当n =1时,1a 1a 1+1=12×3=16<13成立;当n ≥2时,1a n a n +1=12n 2n +1<12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1,∴1a 1a 1+1+1a 2a 2+1+…+1a n a n +1<16+12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=16+12⎝ ⎛⎭⎪⎫13-12n +1<16+16=13. 所以对一切正整数n ,有1a 1a 1+1+1a 2a 2+1+…+1a n a n +1<13.。
公开课数列an与sn关系
数列中a n 与S n 的关系【使用说明及学法指导】1.复习后完成导学案,不做达标检测和拓展训练部分;2.找出自己的疑惑和需要讨论的问题准备课上讨论质疑;3.必须记住的内容:等差数列通项公式,等比数列通项公式和a n 与S n 的关系的公式。
【学习目标】学习目标:熟练运用S n 与a n 关系,学会S n 与a n 互化。
学习重点:理解S n 与a n 关系。
学习难点:熟练运用S n 与a n 关系,培养利用已知条件建立或推导递推关系的能力,进一步体会方程,化归和类比等数学思想,逐步落实逻辑推理和数学运算核心素养。
【复习回顾,学情自测】一、如何证明一个数列是等差数列,如何证明一个数列是等比数列?二、你能列举出典型的递推式及其求通项公式的方法吗?三、项式a n 与和式S n 的关系的公式__________.基础小测:1(2020安徽)设数列{a n }的前n 项和S n =n 2,则a 8的值为()A .15B .16C .49D .642.已知数列{a n }的前n 项和S n =2n ,则a 3+a 4=__________.3.(2017全国Ⅲ)设数列{}n a 满足123(21)2n a a n a n +++-= .求{}n a 的通项公式;4.根据数列前几项,写出下列数列的一个通项公式:(1)1,3,9,27,81,…(2)2,3,9,27,81,…四、回顾项式a n 与和式S n 的关系常考形式有哪些,条件通常会如何变化,体会不同条件下的联系与区别,易错点有哪些?【变式探究,例题精讲】一.设数列{a n }的前n 项和为S n ,求S n .【例1】(2015课标Ⅱ)设S n 是数列{a n }的前n 项和,且a 1=1,a n+1=-S n S n+1,则S n =.二.设下列数列{a n }的前n 项和为S n ,求a n .【例2】(2021全国)12++=n n S n ;【例3】(1)32-+=n a S n n ;(2)n n n a S 22-=;(3)12+=n n a S 思考:题目求解过程中综合了哪些知识与方法?【变式1】(2021辽宁改编)112,1+==n n a S a ;思考:体会与例3(3)之间的区别与联系,需要注意易错点有哪些?【变式2】1112,2++==n n a S a .【达标检测】1.(2021浙江)已知数列{}n a 的前n 项和为n S ,194a =-,且1439n n S S +=-,求数列{}n a 的通项。
数列“Sn与an的关系”求解 专题课件-高二上学期数学人教A版(2019)选择性必修第二册
【课本P40,3】已知数列 { } 满足 = +1,求出
当n=1时,1 =21 +1
1 = −1
≥ 2时, =2 − − + 1
= 2−1 − 1
+ = 2(−1 + )
设,
= 2−1 + 即=-1
− 1 = 2(−1 − 1)
S1 ,
an
S n S n 1 , n≥2.
【练习金版P11,例3】 根据下面数列 {an } 的前n项和 ,求出{an } 的通项公式
(1) = 22 − 3nΒιβλιοθήκη (2) = 3 + 1
Sn是关于n
的代数式
写出Sn-1
相减得到
an(n≥2)
Sn与an的关系
2 数列的前n项和
n = 1,
S1 ,
an
S n S n 1 , n≥2.
【练习金版P11,例3】 根据下面数列 {an } 的前n项和 ,求出{an } 的通项公式
(1) = 22 − 3n
≥ 2时,−1 =2( − 1)2 −3 − 1
=22 −7n+5
= − −1 = 22 − 3n −(22 −7n+5)
1 −1
−1×( ) ,
2
1 −1
−( )
2
∈ +
+ 2, ∈ +
Sn与an的关系
3 数列的前n项和
根据 与�� 的关系求数列的通项公式的常见类型及解法
n = 1,
S1 ,
(1)若 是关于n的代数式,则可直接利用 an
S n S n 1 , n≥2.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对于任意一个数列,当定义数列的前n 项和通常用S n 表示时,记作S n =a 1+a 2+…+a n ,此时通项公式a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.而对于不同的题目中的a n 与S n 的递推关系,在解题时又应该从哪些方向去灵活应用a n =S n -S n -1(n ≥2)去解决不同类型的问题呢?我们将从下面三个角度去探索在各类考试中出现的a n 与S n 相关的问题:归纳起来常见的角度有:角度一:直观运用已知的S n ,求a n ;角度二:客观运用a n =S n -S n -1(n ≥2),求与a n ,S n 有关的结论; 角度三:a n 与S n 的延伸应用.方法:已知S n 求a n 的三个步骤(此时S n 为关于n 的代数式): (1)先利用a 1=S 1求出a 1;(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式; (3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段来写.同时,在部分题目中需要深刻理解“数列的前n 项和”的实际意义,对“和的式子”有本质的认识,这样才能更好的运用S n 求解.如:a 1+2a 2+3a 3+…+na n =2n -1,其中a 1+2a 2+3a 3+…+na n 表示数列{na n }的前n 项和.1.已知数列{a n }的前n 项和S n =n 2-2n +2,则数列{a n }的通项公式为( ) A .a n =2n -3 B .a n =2n +3C .a n =⎩⎪⎨⎪⎧1,n =12n -3,n ≥2 D .a n =⎩⎪⎨⎪⎧1,n =12n +3,n ≥2【解析】当n ≥2时,a n =S n -S n -1=2n -3.当n =1时,a 1=S 1=1,不满足上式. 【答案】C2.(2015·河北石家庄一中月考)数列{a n }满足:a 1+3a 2+5a 3+…+(2n -1)·a n =(n -1) ·3n +1+3(n ∈N *),则数列的通项公式a n = .【解析】当n ≥2时,a 1+3a 2+5a 3+…+(2n -3)·a n -1=(n -2) ·3n+3;则用已知等式减去上式得(2n -1)·a n =(2n -1)·3n ,得a n =3n ;当n =1时,a 1=3,满足上式;故a n =3n.【答案】a n =3n3.(2015·天津一中月考)已知{a n }的前n 项和为S n ,且满足log 2(S n +1)=n +1,则a n = . 【解析】由已知得S n +1=2n +1,则S n =2n +1-1;当n ≥2时,a n =S n -S n -1=2n +1-1-2n +1=2n;当n=1时,a 1=S 1=3,不满足上式;故a n =⎩⎪⎨⎪⎧3,n =12n,n ≥2.【答案】a n =⎩⎪⎨⎪⎧3,n =12n,n ≥24.(2015·四川成都树德期中)已知{a n }是一个公差大于0的等差数列,且满足a 3a 5=45,a 2+a 6=14. (1)求{a n }的通项公式;(2)若数列{b n }满足:b 12+b 222+…+b n2n =a n +1(n ∈N *),求{b n }的前n 项和.【解】(1)设等差数列{a n }的公差为d ,则d >0, 由a 2+a 6=14,可得a 4=7由a 3a 5=45,得(7-d )(7+d )=45,解得d =2 或d =-2(舍) ∴a n =a 4+(n -4)d =7+2(n -4),即a n =2n -1.(2)令c n =b n2n ,则c 1+c 2+c 3+…+c n =a n +1=2n ①当n ≥2时,c 1+c 2+c 3+…+c n -1=2(n -1) ②由①-②得,c n =2,当n =1时,c 1=2,满足上式;则c n =2(n ∈N *),即b n2n =2,∴b n =2n +1,故数列{b n }是首项为4,公比为2得等比数列, ∴数列{b n }的前n 项和S n =4(1-2n)1-2=2n +2-4.此类题目中,已知条件往往是一个关于a n 与S n 的等式,问题则是求解与a n ,S n 有关联的结论.那么我们需要通过对所求问题进行客观分析后,判定最后的结果中是保留a n ,还是S n .那么,主要从两个方向利用a n =S n -S n -1(n ≥2):方向一:若所求问题是与a n 相关的结论,那么用S n -S n -1=a n (n ≥2)消去等式中所有S n 与S n -1,保留项数a n ,在进行整理求解;1.(2015·广州潮州月考)数列{a n }的前n 项和记为S n ,a 1=1,a n +1=2S n +1(n ≥1,n ∈N *),则数列的通项公式是 .【解析】当n ≥2时,a n =2S n -1+1,两式相减得a n +1-a n =2(S n -S n -1),即a n +1-a n =2a n ,得a n +1=3a n ;当n =1时,a 2=3,则a 2=3a 1,满足上式;故{a n }是首项为1,公比为3得等比数列,∴a n =3n -1.【答案】a n =3n -12.数列{a n }的前n 项和为S n ,若a n +1=-4S n +1,a 1=1. (1)求数列{a n }的通项公式;(2)设b n =na n ,求数列{b n }的前n 项和T n .【解】(1)当n ≥2时,a n =-4S n -1+1,又a n +1=-4S n +1,∴a n +1-a n =-4a n ,即a n +1a n=-3(n ≥2), 又a 2=-4a 1+1=-3,a 1=1,∴数列{a n }是首项为a 1=1,公比为q =-3的等比数列, ∴a n =(-3)n -1.(2)由(1)可得b n =n ·(-3)n -1,T n =1·(-3)0+2·(-3)1+3·(-3)2+…+(n -1)·(-3)n -2+n ·(-3)n -1,-3T n =1·(-3)1+2·(-3)2+…+(n -2)·(-3)n -2+(n -1)·(-3)n -1+n (-3)n,∴4T n =1+(-3)1+(-3)2+…+(-3)n -1-n ·(-3)n,所以,T n =1-(4n +1)(-3)n16.方向二:若所求问题是与S n 相关的结论,那么用a n =S n -S n -1(n ≥2)消去等式中所有项数a n ,保留S n与S n -1,在进行整理求解.1.已知数列{a n }的前n 项和为S n 且满足a n +2S n ·S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 是等差数列;(2)求a n 的表达式.【解】(1)证明:∵a n =S n -S n -1(n ≥2),又a n =-2S n ·S n -1,∴S n -1-S n =2S n ·S n -1,S n ≠0. 因此1S n -1S n -1=2(n ≥2).故由等差数列的定义知⎩⎨⎧⎭⎬⎫1S n 是以1S 1=1a 1=2为首项,2为公差的等差数列.(2)由(1)知1S n =1S 1+(n -1)d =2+(n -1)×2=2n ,即S n =12n .当n ≥2时,a n =-2S n ·S n -1=-12n (n -1),又∵a 1=12,不适合上式.∴a n=⎩⎪⎨⎪⎧12,n =1,-12n (n -1),n ≥2.2.(2015·江西名校联盟调考)已知正项数列{a n }的前n 项和为S n ,且a 2n -2S n a n +1=0. (1)求数列{S n }的通项公式;(2)求证:1S 1+1S 2+…+1S n>2(S n+1-1).(提示:1n >2n +1+n)【解】(1)∵a n =S n -S n -1(n ≥2),由a 2n -2S n a n +1=0,得(S n -S n -1)2-2S n (S n -S n -1)+1=0,整理得S 2n -S 2n -1=1. 当n =1时,a 21-2S 1a 1+1=0,且a 1>0,解得a 1=1,故由等差数列的定义知{S 2n }是以1为首项,1为公差的等差数列. ∴S 2n =n ,则S n =n .(2)由(1)知1S n =1n =22n >2n +1+n=2(n +1-n ),∴1S 1+1S 2+…+1S n >2(2-1)+2(3-2)+…+2(n +1-n )=2(n +1-1)即1S 1+1S 2+…+1S n>2(S n +1-1) .【总结】此类题目往往伴随着等差、等比数列的判定,所以需要对数列的判定方法熟练掌握.解此类题目中不仅需要深刻理解“数列的前n 项和”的实际意义,还需要对a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2关系式的形式结构很熟练的掌握,这样才能在题目中对已知等式灵活地变换.当然在解决问题的时候仍然需要从求谁的角度出发分析,确定等式的变换方向. 方向一:关于双重前n 项和此类题目中一般出现“数列{a n }的前n 项和为S n ,数列{S n }的前n 项和为T n ”的条件,在解答时需要确定清楚求的是与a n ,S n ,T n 中谁相关的问题,确定已知等式的运用方向.但一般是求解最底层的a n .1.(2015·湖北武汉质检)设数列{a n }的前n 现和为S n ,数列{S n }的前n 项和为T n ,满足T n =2S n -n 2,n ∈N *.(1)求a 1的值;(2)求数列{a n }的通项公式.【解】(1)当n =1时,T 1=2S 1-1,且T 1=S 1=a 1,解得a 1=1,(2)当n ≥2时,S n =T n -T n -1=2S n -n 2-[2S n -1-(n -1)2]=2S n -2S n -1-2n +1∴S n =2S n -1+2n -1 ① 则S n +1=2S n +2n +1 ② 由②-①,得a n +1=2a n +2, ∴a n +1+2=2(a n +2),即a n +1+2a n +2=2(n ≥2), 易求得,a 1+2=3,a 2+2=6,则a 2+2a 1+2=2,∴数列{a n +2}是首项为3,公比为2的等比数列,∴a n +2=3·2n -1,则a n =3·2n -1-2(n ∈N *).2.(2015·安徽滁州期末联考)设数列{a n }的前n 项和为S n ,数列{S n }的前n 项和为T n ,且2T n =4S n -(n 2+n ),n ∈N *.(1)证明:数列{a n +1}为等比数列;(2)设b n =n +1a n +1,证明:b 1+b 2+…+b n <3. 【解】(1)当n =1时,2T 1=4S 1-2,且T 1=S 1=a 1,解得a 1=1,当n =2时,2T 2=2(a 1+a 1+a 2)=4(a 1+a 2)-6,解得a 2=3, 当n ≥2时,2T n -1=4S n -1-[(n -1)2+(n -1)]∴2S n =2T n -2T n -1=4S n -(n 2+n )-4S n -1+[(n -1)2+(n -1)] 整理得S n =2S n -1+n ① 则S n +1=2S n +n +1 ② 由②-①,得a n +1=2a n +1, ∴a n +1+1=2(a n +1),即a n +1+1a n +1=2(n ≥2), 显然a 2+1a 1+1=2,∴数列{a n +1}是首项为2,公比为2的等比数列,(2)由(1)知,a n +1=2n,则b n =n +12n.则b 1+b 2+…+b n =22+322+423…+n +12n ,令T n =22+322+423…+n +12n ,①则12T n = 222+323+424…+n 2n +n +12n +1,② 由①-②,得12T n =1+122+123+124…+12n -n +12n +1=1+122(1-12n -1)1-12-n +12n +1=32-n +32n +1<32则T n <3,即b 1+b 2+…+b n <3. 方向二:已知等式在整理过程中需要因式分解此类问题大多数时候会伴随“各项均为正数的数列{a n }”这样的条件,运用在因式分解后对因式进行符号的判定,对因式进行的取舍.1.(2015·山东青岛一模)各项均为正数的数列{a n }满足a 2n =4S n -2a n -1(n ∈N *),其中S n 为{a n }的前n 项和.(1)求a 1,a 2的值; (2)求数列{a n }的通项公式.【解】(1)当n =1时,T 1=2S 1-1;又T 1=S 1=a 1,则a 1=2a 1-1,解得a 1=1;(2)当n ≥2时,S n =T n -T n -1=(2S n -n 2)-[2S n -1-(n -1)2]=2S n -2S n -1-2n +1, 整理得S n =2S n -1+2n -1 ① ∴S n +1=2S n +2n +1 ② 由②-①,得a n +1=2a n +2 ∴a n +1+2=2(a n +2),即a n +1+2a n +2=2(n ≥2) 又T 2=2S 2-4;得a 2=4当n =1时,a 1+2=3,a 2+2=6,则a 1+2a 2+2=2, ∴数列{a n +2}是以3为首项,2为公比的等比数列. 则a n +2=3·2n -1,所以a n =3·2n -1-2.2.已知数列{a n }的各项均为正数,前n 项和为S n ,且S n =a n (a n +1)2,n ∈N *.(1)求证:数列{a n }是等差数列;(2)设b n =12S n,T n =b 1+b 2+…+b n ,求T n .【解】(1)由已知得,当n =1时,a 1=S 1=a 1(a 1+1)2(a n >0),∴a 1=1.当n ≥2时,由⎩⎪⎨⎪⎧2S n =a 2n +a n ,2S n -1=a 2n -1+a n -1得2a n =a 2n +a n -a 2n -1-a n -1. 即(a n +a n -1)(a n -a n -1-1)=0, ∵a n +a n -1>0,∴a n -a n -1=1(n ≥2).所以数列{a n }是以1为首项,1为公差的等差数列. (2)由(1)可得a n =n ,S n =n (n +1)2,b n =12S n =1n (n +1)=1n -1n +1.∴T n =b 1+b 2+b 3+…+b n =1-12+12-13+…+1n -1n +1=1-1n +1=nn +1.方向三:需对已知等式变形后,再求解1.(2015·江西五校联考)已知正项数列{a n }中,其前n 项和为S n ,且a n =2S n -1. (1)求数列{a n }的通项公式; (2)设b n =1a n ·a n+1,T n = b 1+b 2+b 3+…+b n ,求T n . 【解】(1)由已知得,4S n =(a n +1)2.当n ≥2时,4S n -1=(a n -1+1)2,则4S n -4S n -1=(a n +1)2-(a n -1+1)2,整理得 (a n -1)2-(a n -1+1)2=0, ∴(a n -a n -1-2)(a n +a n -1)=0 又a n >0,则a n -a n -1=2,当n =1时,4S 1=(a 1+1)2,得a 1=1; 故数列{a n }是首项为1,公差为2的等差数列; ∴a n =2n -1. (2)由(1)可得b n =1a n ·a n+1=12n -1×12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1,∴T n =1b 1+1b 2+1b 3+…+1b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1 =12⎝ ⎛⎭⎪⎫1-12n +1=n 2n +1. 2.(2015·浙江温州中学月考)设数列{a n }的前n 项和为S n ,已知a 1=2,a 2=8,S n +1+4S n -1=5S n (n ≥2),T n 是数列{log 2a n }的前n 项和.(1)求数列{a n }的通项公式; (2)求T n .【解】(1)当n ≥2时,S n +1+4S n -1=5S n ,∴S n +1-S n =4(S n -S n -1),即a n +1=4a n , 当n =1时,a 2=4a 1;故数列{a n }是以2为首项,4为公比的等比数列. ∴a n =2·4n -1=22n -1.(2)由(1)可知log 2a n =log 222n -1=2n -1,∴T n =log 2a 1+log 2a 2+log 2a 3+…+log 2a n=1+3+5+…+2n -1 =n (1+2n -1)2=n 2.3.(2015·江西三县联考)已知数列{a n }的各项均为正数,记A (n )=a 1+a 2+…+a n ,B (n )=a 2+a 3+…+a n +1,C (n )=a 3+a 4+…+a n +2,其中n ∈N *.(1)若a 1=1,a 2=5,且对任意n ∈N *,三个数A (n ),B (n ),C (n )依次组成等差数列,求数列{a n }的通项公式;(2) a 1=1,对任意n ∈N *,三个数A (n ),B (n ),C (n )依次组成公比为q 的等比数列,求数列{a n }的前n 项和A n .【解】(1)∵任意n ∈N *,三个数A (n ),B (n ),C (n )依次组成等差数列,∴B (n )-A (n )=C (n )-B (n ),则a n +1-a 1=a n +2-a 2,即a n +2-a n +1=a 2-a 1=4, 故数列{a n }是首项为1,公差为4的等差数列; ∴a n =1+(n -1)×4=4n -3.(2)若对任意n ∈N *,三个数A (n ),B (n ),C (n )依次组成公比为q 的等比数列, ∴B (n )=qA (n ),C (n )=qB (n ), 则C (n )-B (n )=q [B (n )-A (n )],得a n +2-a 2=q (a n +1-a 1),即a n +2-qa n +1=a 2-qa 1, 当n =1时,由B (1)=qA (1),可得a 2=qa 1; 则a n +2-qa n +1=a 2-qa 1=0,又a n >0,则a n +2a n +1=a 2a 1=q , 故数列{a n }是以1为首项,q 为公比的等比数列.∴A n =⎩⎪⎨⎪⎧n ,q =1,1-q n1-q,q ≠1.4.(2015·辽宁沈阳诊断考试)设数列{a n }的前n 项和为S n ,a 1=10,a n +1=9S n +10. (1)求证:{lg a n }是等差数列; (2)设T n 是数列⎩⎨⎧⎭⎬⎫3(lg a n )(lg a n +1)的前n 项和,求T n ;(3)求使T n >14(m 2-5m )对所有的n ∈N *恒成立的整数m 的取值集合.【解】(1)证明:当n ≥2时,a n =9S n -1+10,∴a n +1-a n =9(S n -S n -1),则a n +1=10a n ,即a n +1a n=10, 当n =1时,a 2=9a 1+10=100,则a 2a 1=10, 故数列{a n }是以10为首项,10为公比的等比数列. ∴a n =10n,则lg a n =n , ∴lg a n +1-lg a n =n +1-n =1,故数列{lg a n }是首项为1,公差为1的等差数列. (2)解:由(1)知3(lg a n )(lg a n +1)=3n n +1=3⎝ ⎛⎭⎪⎫1n -1n +1,∴T n =3⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=3⎝ ⎛⎭⎪⎫1-1n +1=3n n +1. (3)∵T n =3n n +1=3-3n +1, ∴当n =1时,T n 取最小值32.依题意有32>14(m 2-5m ),解得-1<m <6,故整数m 的取值集合为{0,1,2,3,4,5}.1.(2015·江苏扬州外国语中学模拟)已知数列{a n }的前n 项和S n =2n-3,则数列{a n }的通项公式为 .【解析】当n ≥2时,a n =S n -S n -1=2n-3-2n -1+3=2n -1.当n =1时,a 1=S 1=-1,不满足上式.【答案】a n =⎩⎪⎨⎪⎧-1,n =12n -1,n ≥22.(2015·辽宁沈阳二中月考)已知数列{a n }满足a 1+a 22+…+a nn =a 2n-1,求数列{a n }的通项公式.【解】当n ≥2时,a 1+a 22+…+a n -1n -1=a2n -2-1由已知等式减去上式,得a nn=a 2n-1-a 2n -2+1=(a 2-1)a2n -2,∴a n =n (a 2-1)a2n -2,当n =1时,a 1=a 2-1,满足上式; ∴a n =n (a 2-1)a 2n -2.3.(2015·安徽江淮十校联考)已知函数f (x )是定义在(0,+∞)上的单调函数,且对任意的正数x ,y 都有f (x ·y )= f (x )+f (y ),若数列{a n }的前n 项和为S n ,且满足f (S n +2)-f (a n )= f (3)(n ∈N *),则a n为( )A .2n -1B .nC .2n -1D .⎝ ⎛⎭⎪⎫32n -1【解析】由f (x ·y )= f (x )+f (y ),f (S n +2)-f (a n )= f (3),得S n +2=3a n ,S n -1+2=3a n -1(n ≥2),两式相减得2a n =3a n -1;当n =1时,S 1+2=3a 1=a 1+2,则a 1=1.所以数列{a n }是首项为1,公比为32的等比数列.【答案】a n =⎝ ⎛⎭⎪⎫32n -14.(2015·辽宁鞍山二中期中)设数列{a n }是等差数列,数列{b n }的前n 项和S n 满足S n =32(b n -1),且a 2=b 1,a 5=b 2.(1)求数列{a n }和{b n }的通项公式;(2)设c n =a n ·b n ,T n 为{c n }的前n 项和,求T n . 【解】(1)当n ≥2时,S n -1=32(b n -1-1),则b n =S n -S n -1=32(b n -1)-32(b n -1-1),整理得b n =3b n -1,当n =1时,b 1=32(b 1-1),解得b 1=3;故数列{b n }是以3为首项,3为公比的等比数列. ∴b n =3n,设等差数列{a n }的公差为d ,由a 2=b 1=3,a 5=b 2=9,则⎩⎪⎨⎪⎧a 1+d =3,a 1+4d =3,解得d =2,a 1=1,∴a n =2n -1,∴a n =2n -1,b n =3n.(2)由(1)知c n =a n ·b n =(2n -1)·3n,∴T n =3+3·32+5·33+…+(2n -1)·3n,①3T n = 32+3·33+5·34+…+(2n -3)·3n +(2n -1)·3n +1,②由①-②,得-2T n =3+2(32+33+ (3))-(2n -1)·3n +1=3+2×32(1-3 n -1)1-3-(2n -1)·3n +1=(2-2n )·3n +1-6,∴T n =(n -1) 3n +1+3.5.在数列{a n }中,已知a 1=1,a n =2(a n -1+a n -2+…+a 2+a 1) (n ≥2,n ∈N *),则数列的通项公式是 .【解析】由已知n ≥2时,a n =2S n -1 ①;当n ≥3时,a n -1=2S n -2 ②①-②整理得a na n -1=3 (n ≥3),∴a n =⎩⎪⎨⎪⎧1, n =1,2×3n -2, n ≥2.【答案】a n =⎩⎪⎨⎪⎧1, n =1,2×3n -2, n ≥2.6.(2015·广东桂城摸底)已知各项均为正数的数列{a n }的前n 项和为S n ,且a 2n +a n =2S n . (1)求a 1;(2)求数列{a n }的通项公式;(3)若b n =1a 2n (n ∈N *),T n =b 1+b 2+…+b n ,求证:T n <53.⎝ ⎛⎭⎪⎫提示:1n 2<2⎝ ⎛⎭⎪⎫12n -1-12n +1【解】(1)当n =1时,a 21+a 1=2S 1,且a n >0,得a 1=1; (2)当n ≥2时,a 2n -1+a n -1=2S n -1 ①;且a 2n +a n =2S n ②; 由②-①,得(a n +a n -1)(a n -a n -1-1)=0, 又a n >0,则a n -a n -1=1,故数列{a n }是首项为1,公差为1的等差数列; ∴a n =n .(3)证明:由(2)知,b n =1a 2n =1n2,当n =1时,b 1=1<53,不等式成立;当n ≥2时,1n 2<1n 2-14=44n 2-1=2⎝ ⎛⎭⎪⎫12n -1-12n +1,∴T n =b 1+b 2+…+b n =1+122+132+…+1n 2<1+2⎝ ⎛⎭⎪⎫13-15+15-17…+12n -1-12n +1<1+23=53, ∴T n <537.(2015·大连双基测试)已知数列{a n }的前n 项和S n =n 2+2n +1(n ∈N *),则a n =________.【解析】当n ≥2时,a n =S n -S n -1=2n +1,当n =1时,a 1=S 1=4≠2×1+1,因此a n =⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥2.【答案】⎩⎪⎨⎪⎧4,n =12n +1,n ≥28.(2014·烟台一模)已知数列{a n }前n 项和为S n ,首项为a 1,且12,a n ,S n 成等差数列.(1)求数列{a n }的通项公式;(2)数列{b n }满足b n =(log 2a 2n +1)×(log 2a 2n +3),求数列⎩⎨⎧⎭⎬⎫1b n 的前n 项和.【解】(1)∵12,a n ,S n 成等差数列,∴2a n =S n +12,当n =1时,2a 1=S 1+12,∴a 1=12,当n ≥2时,S n =2a n -12,S n -1=2a n -1-12,两式相减得:a n =S n -S n -1=2a n -2a n -1,∴a na n -1=2, 所以数列{a n }是首项为12,公比为2的等比数列,即a n =12×2n -1=2n -2.(2)∵b n =(log 2a 2n +1)×(l og 2a 2n +3)=(log 222n +1-2)×(log 222n +3-2)=(2n -1)(2n +1),∴1b n =12n -1×12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1,∴数列⎩⎨⎧⎭⎬⎫1b n 的前n 项和T n =1b 1+1b 2+1b 3+…+1b n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=12⎝ ⎛⎭⎪⎫1-12n +1=n 2n +1.9.(2014·山西四校联考)已知数列{a n }的前n 项和为S n ,S n =2a n -n ,则a n =________.【解析】当n ≥2时,a n =S n -S n -1=2a n -n -2a n -1+(n -1),即a n =2a n -1+1,∴a n +1=2(a n -1+1), ∴数列{a n +1}是首项为a 1+1=2,公比为2的等比数列,∴a n +1=2·2n -1=2n ,∴a n =2n-1.【答案】2n-110.(2014·湖南卷)已知数列{a n }的前n 项和S n =n 2+n2,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =2a n +(-1)na n ,求数列{b n }的前2n 项和. 【解】(1)当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2+n2-n -12+n -12=n .又a 1=1满足上式,故数列{a n }的通项公式为a n =n . (2)由(1)知,b n =2n +(-1)nn ,记数列{b n }的前2n 项和为T 2n , 则T 2n =(21+22+ (22))+(-1+2-3+4-…+2n ). 记A =21+22+ (22),B =-1+2-3+4-…+2n ,则A =21-22n1-2=22n +1-2,B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n .故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2.11.已知数列{a n }是各项均为正数的等比数列,a 3=4,{a n }的前3项和为7. (1)求数列{a n }的通项公式;(2)若a 1b 1+a 2b 2+…+a n b n =(2n -3)2n+3,设数列{b n }的前n 项和为S n ,求证:1S 1+1S 2+…+1S n ≤2-1n.【解】(1)设数列{a n }的公比为q ,由已知得q >0,且⎩⎪⎨⎪⎧a 1q 2=4,a 1+a 1q +4=7,∴⎩⎪⎨⎪⎧a 1=1,q =2.∴数列{a n }的通项公式为a n =2n -1.(2)【证明】当n =1时,a 1b 1=1,且a 1=1,解得b 1=1. 当n ≥2时,a n b n =(2n -3)2n+3-(2n -2-3)2n -1-3=(2n -1)·2n -1.∵a n =2n -1,∴当n ≥2时,b n =2n -1.∵b 1=1=2×1-1满足b n =2n -1, ∴数列{b n }的通项公式为b n =2n -1(n ∈N *). ∴数列{b n }是首项为1,公差为2的等差数列. ∴S n =n 2.∴当n =1时,1S 1=1=2-11.当n ≥2时,1S n =1n2<1n (n -1)=1n -1-1n.∴1S 1+1S 2+…+1S n ≤2-11+11-12+…+1n -1-1n =2-1n . 12.设数列{a n }的前n 项和为S n ,a 1=1,a n =S nn+2 (n -1) (n ∈N *). (1)求证:数列{a n }为等差数列,并分别写出a n 和S n 关于n 的表达式;(2)是否存在自然数n ,使得S 1+S 22+S 33+…+S nn -(n -1)2=2 013?若存在,求出n 的值;若不存在,请说明理由.【解】(1)由a n =S n n+2(n -1),得S n =na n -2n (n -1) (n ∈N *).当n ≥2时,a n =S n -S n -1=na n -(n -1)a n -1-4(n -1),即a n -a n -1=4, 故数列{a n }是以1为首项,以4为公差的等差数列. 于是,a n =4n -3,S n =a 1+a n n2=2n 2-n (n ∈N *).(2)由S n =na n -2n (n -1),得S nn=2n -1 (n ∈N *),又S 1+S 22+S 33+…+S nn -(n -1)2=1+3+5+7+…+(2n -1)-(n -1)2=n 2-(n -1)2=2n -1.令2n -1=2 013,得n =1 007,即存在满足条件的自然数n =1 007.1.已知S n 为正项数列{a n }的前n 项和,且满足S n =12a 2n +12a n (n ∈N *).(1)求a 1,a 2,a 3,a 4的值; (2)求数列{a n }的通项公式.【解】(1)由S n =12a 2n +12a n ,可得a 1=12a 21+12a 1,解得a 1=1;S 2=a 1+a 2=12a 22+12a 2,解得a 2=2;同理,a 3=3,a 4=4.(2)S n =12a 2n +12a n ,①当n ≥2时,S n -1=12a 2n -1+12a n -1,②①-②得(a n -a n -1-1)(a n +a n -1)=0. 由于a n +a n -1≠0,所以a n -a n -1=1, 又由(1)知a 1=1,故数列{a n }是首项为1,公差为1的等差数列,故a n =n .2.在数列{a n }中,a 1=-5,a 2=-2,记A (n )=a 1+a 2+…+a n ,B (n )=a 2+a 3+…+a n +1,C (n )=a 3+a 4+…+a n +2(n ∈N *),若对于任意n ∈N *,A (n ),B (n ),C (n )成等差数列.(1)求数列{a n }的通项公式; (2)求数列{|a n |}的前n 项和.【解】(1)根据题意A (n ),B (n ),C (n )成等差数列,∴A (n )+C (n )=2B (n ),整理得a n +2-a n +1=a 2-a 1=-2+5=3, ∴数列{a n }是首项为-5,公差为3的等差数列, ∴a n =-5+3(n -1)=3n -8.(2)|a n |=⎩⎪⎨⎪⎧-3n +8,n ≤2,3n -8,n ≥3,记数列{|a n |}的前n 项和为S n .当n ≤2时,S n =n 5+8-3n2=-3n 22+132n ;当n ≥3时,S n =7+n -21+3n -82=3n 22-132n +14,综上,S n=⎩⎪⎨⎪⎧-32n 2+132n ,n ≤2,32n 2-132n +14,n ≥3.3.(2014·广东卷)设各项均为正数的数列{a n } 的前n 项和为S n ,且 S n 满足 S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N *.(1)求a 1 的值;(2)求数列{a n } 的通项公式;(3)证明:对一切正整数n,有1a1a1+1+1a2a2+1+…+1a n a n+1<13.【解】(1)由题意知,S2n-(n2+n-3)S n-3(n2+n)=0,n∈N*.令n=1,有S21-(12+1-3)S1-3×(12+1)=0,可得S21+S1-6=0,解得S1=-3或2,即a1=-3或2,又a n为正数,所以a1=2.(2)由S2n-(n2+n-3)S n-3(n2+n)=0,n∈N*可得,(S n+3)(S n-n2-n)=0,则S n=n2+n或S n=-3,又数列{a n}的各项均为正数,∴S n=n2+n,S n-1=(n-1)2+(n-1),当n≥2时,a n=S n-S n-1=n2+n-[(n-1)2+(n-1)]=2n.又a1=2=2×1,所以a n=2n.(3)证明:当n=1时,1a1a1+1=12×3=16<13成立;当n≥2时,1a n a n+1=12n2n+1<12n-12n+1=12⎝⎛⎭⎪⎫12n-1-12n+1,∴1a1a1+1+1a2a2+1+…+1a n a n+1<16+12⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫13-15+…+⎝⎛⎭⎪⎫12n-1-12n+1=16+12⎝⎛⎭⎪⎫13-12n+1<16+16=13.所以对一切正整数n,有1a1a1+1+1a2a2+1+…+1a n a n+1<13.。