确定凸轮轴分型面、加工余量和公差.
车铣技术凸轮轴加工工艺分析
车铣技术凸轮轴加工工艺分析
车铣技术是一种常用的金属加工工艺,可以用于加工各种凸轮轴。
凸轮轴是发动机中
的重要零部件,它承载着与气门、喷油器等相关部件的运动控制功能。
凸轮轴的加工工艺
对于发动机的性能和可靠性起着重要的影响。
本文将对车铣技术加工凸轮轴的工艺进行分析。
凸轮轴的加工工艺主要包括车削和铣削两个步骤。
车削主要是将凸轮轴的外形轮廓加
工出来,而铣削则是在凸轮轴上面加工出凸轮的形状和尺寸。
在车铣过程中,还需要考虑
到材料的选择、刀具的选择和切削参数等因素。
在车削过程中,需要选择适合的车刀和车床来加工凸轮轴的外形轮廓。
车刀的选择要
考虑凸轮轴的材料和尺寸要求,一般选择硬质合金刀具或陶瓷刀具。
对于材料硬度较高的
凸轮轴,还可以选择涂层刀具来提高切削效率和刀具寿命。
车削时,需要控制好切削速度、进给速度和切削深度等参数。
由于凸轮轴形状复杂,
车削过程中可能会产生较大的切削力和振动,因此需要采取一些支撑固定的方式来保持稳
定的加工。
车削过程中还需要进行刀具修整和及时更换,以保持较好的加工质量。
车铣技术可以用于加工凸轮轴,但在加工过程中需要考虑到材料的选择、刀具的选择
和切削参数等因素。
通过合理地选择刀具和调整加工参数,可以提高加工效率和加工质量。
对于较为复杂的凸轮轴形状,还需要采取一些支撑固定的方式来保持稳定的加工。
车铣技
术的应用可以提高凸轮轴加工的精度和效率,对于提高发动机的性能和可靠性起到重要作用。
车床拨叉机械加工工艺规程及工艺装备设计本科学位论文
车床拨叉机械加工工艺规程及工艺装备设计序言机械制造工艺学课程设计是我们学完了大学的全部基础课、技术基础课以及大部分专业课之后进行的.这是我们在进行毕业设计之前对所学各课程的一次深入的综合性的总复习,也是一次理论联系实际的训练,因此,它在我们四年的大学生活中占有重要的地位。
就我个人而言,我希望能通过这次课程设计,了解并认识一般机器零件的生产工艺过程,巩固和加深已学过的技术基础课和专业课的知识,理论联系实际,对自己未来将从事的工作进行一次适应性训练,从中锻炼自己分析问题、解决问题的能力,为今后的工作打下一个良好的基础,并且为后续课程的学习大好基础。
由于能力所限,设计尚有许多不足之处,恳请各位老师给予指导。
图1-1 工件零件图目录1、零件的分析 (4)1.1.零件的作用 (4)1.2.零件的工艺分析 (4)1.3. 确定零件的生产类型 (5)2、确定毛坯、绘制毛坯简图 (5)2.1. 选择毛坯 (5)2.2.确定毛坯加工余量 (5)2.3确定铸件毛坯尺寸 (6)2.4 绘制毛坯图 (7)3、工艺规程设计 (8)3.1. 基面的选择 (9)3.2.制定工艺路线 (9)3.3工序设计 (11)3.4.确定切削用量及基本工时的计算 (13)4、夹具设计 (20)4.1、问题的提出 (20)4.2、确定夹具的结构方案 (21)4.3、切削力及夹紧力计算 (21)4.4、定位误差分析 (23)5、总结 (23)6、参考文献 (24)1、零件的分析1.1.零件的作用题目所给的零件是车床的拨叉。
它位于车床变速机构中,主要起换档,使主轴回转运动按照工作者的要求工作,获得所需的速度和扭矩的作用。
零件左边的Φ14孔与操纵机构相连,右边的Φ40半孔则是用于与所控制齿轮所在的轴或滑移齿轮接触。
通过操纵机构,使拨叉拨动齿轮变速。
为了便于定位加工,两零件的毛坯铸为一体,加工时分开。
1.2.零件的工艺分析零件的材料为ZG45,该材料具有足够的强度、刚度和韧性,适用于承受弯曲应力和冲击载荷作用的工作条件。
铸件加工表面的加工余量的确定和说明
Φ100
G
双侧余量2.5
根据成批生产的加工余量等级(表2.8)为G级,尺寸公差等级为CT10,查表2-10,双侧加工余量为2.5mm,即尺寸为Φ105mm,查表2-7,等尺寸公差为3.6mm,该尺寸及公差为Φ(105±1.8)mm
7
15
G
单侧余量3.5
根据成批生产的加工余量等级(表2.8)为G级,尺寸公差等级为CT10,查表2-10,单侧加工余量为3.5mm,即尺寸为15+3.0+3.5=21.5mm,查表2-7,等尺寸公差为2.4mm,该尺寸及公差为(21.5
10
Φ60
H
双侧余量3.0
根据成批生产的加工余量等级(表2.8)为H级,尺寸公差等级为CT10,查表2-10,双侧加工余量3.0mm,即尺寸为Φ54mm,查表2-7,等尺寸公差为2.8mm,该尺寸及公差为Φ(54±1.4)mm
11
78
G
单侧余量3.5
根据成批生产的加工余量等级(表2.8)为G级,尺寸公差等级为CT10,查表2-10,单侧加工余量为3.5mm,即尺寸为78+3.0-3.5=77.5mm,查表2-7,等尺寸公差为3.2mm,该尺寸及公差为(77.5±1.6)mm
铸件加工表面的加工余量的确定和说明
序号
基本尺寸/mm
加工余量等级
加工余量/mm
选择理由和选择过程说明
1
137
G
双侧余量3.0
根据成批生产的加工余量等级(表2.8)为G级,尺寸公差等级为CT10,查表2-10,双侧加工余量为3mm,即尺寸为143mm,查表2-7,等尺寸公差为3.6mm,该尺寸及公差为(143±1.8)mm
12
Φ155
凸轮轴加工
一.定位基准的选择对于一般的轴类零件来说,其轴线即为它的设计基准。
发动机凸轮轴遵循这一设计基准,由于凸轮轴各表面的加工难以在一次装夹中完成,因此,减小工件在多次装夹中的定位误差,就成为保证凸轮轴加工精度的关键。
采用两顶尖孔作为轴类零件的定位基准,不仅避免了工件在多次装夹中因定位基准的转换而引起的定位误差,也可作为后续工序的定位基准,符合“基准统一原则。
这种方法不仅使工件的装夹方便、可靠。
简化了工艺规程的制定工作使各工序所使用的夹具结构相同或相近,从而减少了设计、制造夹具的时间和费用,而且有可能在一次装夹中加工出更多表面。
这对于大量生产来说,不仅便于采用高效专用机床和设备以提高生产效率,而且也使得所加工的各表面之间具有较高的相互位置精度。
二.凸轮轴的材料凸轮轴的材料:球墨铸铁、合金铸铁、冷激铸铁、中碳钢三.加工阶段的划分粗加工:各支承轴颈、正时齿轮轴颈和螺纹轴颈外圆、车凸轮、偏心轮等半精加工:粗磨凸轮、偏心轮等精加工:精磨正时齿轮轴颈和止推面、四个支承轴颈外圆,精磨凸轮、偏心轮光整加工:抛光支承轴颈、凸轮和偏心轮四.凸轮形面的加工凸轮形面粗加工:按刀具:单刀仿形;多刀仿形按车床:双靠模切削:单靠模切削定位:以一个支承轴颈端面作为轴向定位;以正时齿轮和一个支承轴外圆作为定位基准;加工中采用滚轴式辅助支承。
也可用铣削加工或者磨削加工代替车削凸轮形面精加工:1、双靠模凸轮磨床机床有两套靠模:靠模自动更换,通过对砂轮直径的控制提高凸轮外形的精度。
2、双循环凸轮磨床:可在一次安装后对凸轮轴上全部凸轮连续粗精磨削。
先以60m/s的速度大进给量粗磨全部凸轮,以30m/s 的磨削速度依次精磨全部凸轮,结束后进行修正。
五.凸轮支撑轴颈的磨削采用无心磨床磨削。
无心磨床的磨削方式有2种:贯穿式无心磨削和切入式无心磨削。
贯穿式无心磨削一般用于单砂轮,它的导轮是单叶双曲面,推动凸轮轴沿轴向移动,仅仅用于磨削光轴。
切入式无心磨削是由多砂轮磨削(若是单砂轮磨削,一般砂轮被修整成成型砂轮,如:磨削液压挺柱的球面),如现有480凸轮轴的磨削,可磨削阶梯轴,导轮为多片盘状组合而成,工件不能沿轴向移动,无论是哪一种磨削方式,工件的中心都高于砂轮和导轮的中心,一般切入式磨削都有上料工位、磨削工位、测量工位、卸料工位组成。
凸轮轴加工工艺
凸轮轴加工工艺凸轮轴是发动机中的重要构件之一,它主要起到控制气门开闭时间和气门升程的作用,对于发动机的性能和效率有着重要影响。
因此,凸轮轴的加工工艺十分关键,下面将详细介绍凸轮轴的加工工艺流程。
凸轮轴的加工需要选用高精度的数控机床进行加工。
加工前需要进行工艺规程和工艺卡的编制,明确各道工序的要求和顺序。
在加工过程中,需要使用切削液进行冷却和润滑,以保证加工质量。
第一道工序是凸轮轴的车削。
车削是将原材料的一端固定在机床上,通过机床的主轴旋转,切削刀具在凸轮轴上移动,使工件表面达到所需的形状和尺寸。
车削过程中需要控制切削刀具的进给速度和主轴转速,以保证加工质量和效率。
第二道工序是凸轮轴的铣削。
铣削是使用铣刀进行切削,将凸轮轴上不需要的部分切削掉,以得到凸轮轴的最终形状。
铣削过程中需要控制铣刀的进给速度和主轴转速,同时还需要控制切削刀具的切削深度和切削宽度,以保证加工质量和效率。
第三道工序是凸轮轴的磨削。
磨削是利用磨粒对凸轮轴进行磨削,以提高其表面质量和精度。
磨削过程中需要控制磨粒的种类和大小,磨削速度和磨削压力,以保证加工质量和效率。
第四道工序是凸轮轴的热处理。
热处理是将凸轮轴加热到一定温度,然后进行冷却,以改变其组织结构和性能。
热处理过程中需要控制加热温度和保温时间,冷却速度和冷却介质,以保证加工质量和效果。
第五道工序是凸轮轴的精密磨削。
精密磨削是对凸轮轴进行进一步的磨削,以提高其精度和表面质量。
精密磨削过程中需要使用高精度的磨削设备和磨粒,同时需要控制磨削参数和工艺,以保证加工质量和效率。
进行凸轮轴的检测和组装。
检测是对加工后的凸轮轴进行尺寸和形状的检测,以确保其符合设计要求。
组装是将凸轮轴安装到发动机中,并进行调试和测试,以确保其正常工作。
凸轮轴的加工工艺包括车削、铣削、磨削、热处理、精密磨削、检测和组装等工序。
在加工过程中需要控制各种参数和工艺,以保证加工质量和效率。
只有通过精密的加工工艺,才能制造出高质量的凸轮轴,提高发动机的性能和效率。
车铣技术凸轮轴加工工艺分析
车铣技术凸轮轴加工工艺分析车铣技术是一种将工件固定在机床上,通过旋转切削工具将工件表面削去一层金属的加工方法。
凸轮轴是一种常见的汽车发动机零件,其加工工艺具有一定的复杂性。
下面将对凸轮轴的加工工艺进行分析。
凸轮轴的加工工艺主要包括车削和铣削两个步骤。
首先进行车削工艺,将工件的两端加工成圆柱形,然后在其中一端加工凸出的凸轮部分。
车削过程中,需要根据凸轮的形状和尺寸选择合适的切削刀具,并进行切削参数的调整,以确保切削质量和加工效率。
凸轮轴的加工工艺还涉及到夹持和定位方式的选择。
夹持和定位方式直接影响加工精度和工件的稳定性。
常用的夹持和定位方式包括万向虎钳夹持、磁性夹持和真空吸附夹持等。
根据工件的形状和加工要求选择合适的夹持和定位方式,以确保加工的准确性和稳定性。
凸轮轴的加工工艺还需要考虑切削力和切削振动的控制。
切削力直接影响工件的加工精度和表面质量,需要通过合理选择切削刀具、切削参数和切削液等方式来控制。
切削振动是指切削过程中工件和刀具之间的相对振动,会导致加工表面的波纹状痕迹和加工精度的下降,需要通过刀具和工件的动态平衡和减振装置来控制。
在凸轮轴的加工工艺中,还需要考虑加工的环境因素。
切削加工会产生大量的切屑和切削液,对加工环境造成污染。
在加工过程中需要采取有效的措施,如切削液回收和处理、工件和刀具的处理等,以确保加工环境的清洁和工作人员的安全。
凸轮轴的加工工艺涉及到车削和铣削两个步骤,需要选择合适的刀具、切削参数和切削液,以确保加工质量和效率。
需要选择合适的夹持和定位方式,控制切削力和切削振动,处理加工环境,以确保加工的准确性和稳定性。
这些工艺控制因素的合理选择和调整,对凸轮轴的加工品质和效率具有重要影响。
凸轮轴机械加工工艺和标准
二、加工阶段的划分与工序顺序的安 排
(二)工序顺序的安排 各支承轴颈、凸轮、偏心轮: 车——粗磨——精磨——抛光 从粗到精,主要表面与次要表面的加工工序交叉进
行。 淬火工序安排在各主要表面的半精加工之前 防止工件经淬火后变形过大造成精加工困难
三、主要表面的加工
(一)凸轮形面的加工
1. 凸轮形面的粗加工 凸轮传统的粗加工方法是采用靠模车床及液压
工序3: 车1、2支承轴颈外圆等 凸轮轴轴颈车床
工序4: 车3、4支承轴颈外圆等 凸轮轴轴颈车床
工序5:钻φ7孔 钻床
工序6:校直 压床
工序7:磨第2、3轴颈外圆 外圆磨床
工序8:车凸轮侧面和连接轴颈等 凸轮轴车床
工序8:车凸轮侧面和连接轴颈等 凸轮轴车床
工序9:校直 压床
工序10:磨正时齿轮轴颈和螺纹轴颈外圆等 外圆端面磨床
第四节 凸轮轴的检验
中间检验 1)由加工阶段和中间检验的性质 、目的、作用所决定,每项检验内容的 中检数量所占百分比不同。 2) 对于单项检验,多使用专用定值量具(如量规),以保证检验的效率 和精度。 3)对于综合检验,(如齿轮的检验), 多使用检验夹具,以保证迅速准确 的反映多参数的测量结果。
最终检验
以CA 6102 发动机为例, 凸轮的升程偏差 为: A、 D 段为±0 . 015mm; B段为±0 . 05mm; C 段为±0 . 025mm。
二、凸轮轴的材料与毛坯
材料: 铸铁:冷硬铸铁、可淬硬的低合金铸铁、球墨铸铁等。 钢: 中碳钢、渗碳钢。
毛坯制造方法: 精铸和精锻。 直接用棒料加工。
a) 车刀
b)工具的安装
2.凸轮形面的精加工
凸轮轴切点跟踪磨削加工
凸轮形面磨削的新技术
凸轮轴凸轮表面测量方法
凸轮轴凸轮表面测量方法一、前言凸轮轴是发动机的重要部件之一,它的设计和制造质量直接影响发动机的性能和寿命。
凸轮轴上的凸轮表面是传递运动和力量的关键部位,因此对于凸轮表面的测量尤为重要。
本文将介绍几种常见的凸轮轴凸轮表面测量方法。
二、工具和设备1. 数字显微镜2. 表面粗糙度仪3. 比较显微镜4. 电子高度计5. CMM(三坐标测量机)三、数字显微镜法测量凸轮表面形状误差数字显微镜法是一种常用的测量方法,它可以快速、精确地测量出凸轮表面形状误差。
具体步骤如下:1. 准备数字显微镜,并根据实际需要选择相应的放大倍数。
2. 将待测凸轮放置在支架上,并调整好位置。
3. 打开数字显微镜并对焦,然后开始进行测量。
4. 依次在不同位置进行测量,并记录下每个位置的数据。
5. 根据所得数据计算出凸轮表面形状误差,并进行分析和判断。
四、表面粗糙度仪法测量凸轮表面粗糙度表面粗糙度是一个重要的技术指标,它直接影响着凸轮轴的使用寿命和性能。
利用表面粗糙度仪可以快速测量出凸轮表面的粗糙度。
具体步骤如下:1. 准备好表面粗糙度仪,并根据实际需要选择相应的探头。
2. 将待测凸轮放置在支架上,并调整好位置。
3. 打开表面粗糙度仪并对焦,然后开始进行测量。
4. 依次在不同位置进行测量,并记录下每个位置的数据。
5. 根据所得数据计算出凸轮表面的平均粗糙度和最大峰值高度。
五、比较显微镜法测量凸轮表面形位误差比较显微镜法是一种常用的测量方法,它可以快速、直观地测量出凸轮表面形位误差。
具体步骤如下:1. 准备好比较显微镜,并根据实际需要选择相应的放大倍数。
2. 将待测凸轮放置在支架上,并调整好位置。
3. 打开比较显微镜并对焦,然后开始进行测量。
4. 依次在不同位置进行测量,并记录下每个位置的数据。
5. 根据所得数据计算出凸轮表面的形位误差,并进行分析和判断。
六、电子高度计法测量凸轮表面高度误差电子高度计法是一种常用的测量方法,它可以快速、精确地测量出凸轮表面高度误差。
gb3803-83汽车发动机凸轮轴修理技术条件
汽车发动机凸轮轴修理技术条件中华人民共和国国家标准GB3803-83 UDC621.431.72-233.004.124本标准适用于汽车发动机钢制和球墨铸铁、合金铸铁制凸轮轴的修理。
修竣的凸轮轴应符合本标准的规定。
1技术要求1.1凸轮表面累积磨损量(包括修理加工磨削量)不超过0.8mmP寸,允许用直接修磨的方法修复凸轮;超过0.8mm需要修理时,可在凸轮的局部或全部表面敷以补偿修复层。
1.2凸轮轮廓的升程曲线应符合原设计规定,但个别区段内的升高量允许有不大于0.02mm的超差。
注:原设计是指制造厂和按规定程序批准的技术文件(下同)。
1.3以两端支承轴颈的公共轴线为基准,凸轮基圆的径向圆跳动公差为0.05mm1.4凸轮斜角应符合原设计规定。
1.5通过凸轮升程最高点和轴线的平面相对于正时齿轮键槽中心平面的角度偏差不得超过土45‘°1.6同一根凸轮的各支承轴颈的直径应修磨为同一级修理尺寸。
分级修理尺寸见下表。
注:①各级修理尺寸仍采用原设计规定的极限偏差。
②有特殊要求的凸轮轴,按原设计要求执行。
1.7支承轴颈直径缩小量超过使用限度时,可敷以补偿修复层,使轴颈直径恢复至原设计尺寸或修理尺寸。
1.8 支承轴颈的圆柱度公差为0.005mm。
1.9 以两端支承轴颈的公共轴线为基准, 中间各支承轴颈的径向圆跳动公差为0.025mm。
1.10 安装正时齿轮的轴颈, 其尺寸应符合原设计规定。
以两端支承轴颈的公共轴线为基准, 其轴颈的径向圆跳动和轴向止推端面的端面圆跳动公差为0.03mm。
1.11驱动汽油泵的偏心轮直径允许比原设计规定的最小极限尺寸小 1.0m m其偏心距应符合原设计规定。
1.12 机油泵驱动齿轮不得缺损,轮齿工作表面不得有剥落,齿厚不小于原设计规定的最小极限尺寸的0.50mm。
1.13支承轴颈表面光洁度不低于▽ 8;凸轮和驱动汽油泵的偏心轮的表面光洁度不低于▽ 7;轴向止推端面的表面光洁度不低于▽6;其他加工面的表面光洁度应符合原设计规定。
车铣技术凸轮轴加工工艺分析
车铣技术凸轮轴加工工艺分析
凸轮轴是发动机中重要的传动部件,它通过凸轮的形状变化带动气门的开闭,调节进气和排气过程。
凸轮轴的加工工艺直接影响着发动机的性能和可靠性。
本文将对车铣技术凸轮轴加工工艺进行分析。
车铣技术是一种常用的凸轮轴加工方法,该方法结合了车床和铣床的特点,能够实现凸轮轴的高效加工。
该加工工艺在国内外被广泛应用。
车铣技术凸轮轴加工的步骤包括:材料准备、粗车、精车、车辊印记、车削凸轮。
材料准备是凸轮轴加工的第一步,需要选择合适的材料进行加工。
常见的凸轮轴材料有高强度合金钢、铸铁等。
选择材料时需考虑到凸轮轴的工作条件和使用要求。
粗车是加工凸轮轴的第二步,其目的是将材料切削到接近要求尺寸。
粗车时需根据加工图纸进行切削,控制进给速度和加工深度,保证切削质量。
车辊印记是加工凸轮轴的第四步,其目的是在凸轮上车出一系列的印记,以控制气门的开闭时间和幅度。
车辊印记的切削速度和进给速度需要根据加工要求进行调整。
车铣技术凸轮轴加工的优点包括高效、精度高、加工质量好等。
相比于传统的加工方法,车铣技术可以提高生产效率,降低生产成本,提高产品质量。
车铣技术凸轮轴加工也存在一些问题,如加工难度大、设备要求高、操作要求高等。
这就要求加工人员具备专业的技术和经验,能够熟练地操作设备,保证加工质量。
车铣技术是一种高效、精度高的凸轮轴加工工艺,能够满足凸轮轴加工的要求。
加工人员需要具备专业的技术和经验,才能保证加工质量。
未来,随着技术的进步和设备的升级,车铣技术凸轮轴加工将有更广泛的应用前景。
凸轮轴加工工艺
凸轮轴加工工艺凸轮轴是一种重要的机械零件,广泛应用于各种发动机和机械设备中。
为了保证凸轮轴的质量和性能,需要经过一系列的加工工艺。
本文将详细介绍凸轮轴的加工工艺流程和相关注意事项。
一、铸造凸轮轴的制造通常从铸造开始。
铸造是将熔化的金属倒入模具中,经过冷却凝固形成所需形状的工艺过程。
在凸轮轴的铸造中,需要注意以下几点:1.选择适合凸轮轴材料的铸造工艺,常用的有砂型铸造、金属型铸造等。
2.合理设计凸轮轴的模具结构,确保铸件的准确度和表面质量。
3.控制铸造温度和冷却速度,避免产生缩孔、气孔等缺陷。
二、粗加工粗加工是指在铸造出凸轮轴后,进行初步加工的工艺过程。
其主要目的是消除铸件上的缺陷,使凸轮轴达到规定的尺寸和形状精度。
具体的粗加工工艺包括:1.铸件的修整:去除铸件上的毛刺、鳞皮等不规则表面。
2.车削:通过车床等设备,将铸件的直径和长度加工到要求的尺寸。
3.铣削:利用铣床等设备,加工凸轮轴上的平面和凸轮槽。
三、精加工精加工是对凸轮轴进行细致加工的工艺过程,目的是提高凸轮轴的表面质量和精度。
常见的精加工工艺有:1.磨削:利用磨床等设备,对凸轮轴进行表面磨削,使其达到要求的光洁度和精度。
2.镗削:通过镗床等设备,加工凸轮轴上的孔径,确保其尺寸和形状精度。
3.刻槽:根据凸轮轴的设计要求,在凸轮轴上加工凸轮槽和油槽等结构。
四、热处理凸轮轴经过精加工后,需要进行热处理,以提高其硬度和耐磨性。
常见的热处理方法有淬火、回火等。
热处理过程中需要注意以下几点:1.控制热处理的温度和时间,确保凸轮轴的组织结构和硬度达到要求。
2.避免热处理过程中产生过热、过冷等不均匀加热现象,以免导致凸轮轴变形或裂纹。
五、精密加工精密加工是对热处理后的凸轮轴进行细致的修磨和加工,以提高其表面质量和精度。
常见的精密加工工艺包括:1.研磨:利用研磨机等设备,对凸轮轴进行表面研磨,使其达到要求的光洁度和精度。
2.刻度校正:根据凸轮轴的设计要求,对凸轮槽和油槽等结构进行修整和校正。
材料成型与工艺课后答案 1-3,1-4
(4)阶梯式浇注系统 是具有多层内浇道。 优点:兼有底注式和顶 注式的优点,又克服了 两者的缺点,即浇注平 稳,减少了飞溅,又有 利于补缩。 缺点:浇注系统结构复 杂,加大了造型和铸件 清理工作量。 多用于高度较高、型腔 较复杂、收缩率较大或 品质要求较高的铸件。
3. 内浇道与铸件型腔连接位置的选择原则
2)铸件的大平面应朝下,减少辐射,防开裂夹渣。
3)面积较大的薄壁部分应置于铸型下部或垂直、 倾斜位置。防止产生浇不足、冷隔。
4)易形成缩孔的铸件,较厚部分置于上部或 侧面。考虑安放冒口利于补缩。
5) 应尽量减少型芯的数量。
6)要便于安放型芯、固定和排气。
Back to page-4
浇注位置
内浇道的位置、数目应服从所选定的凝固顺序和补缩方法。
内浇道在铸件上开设位置的选择可遵循如下原则:
1.为使铸件实现同时凝固,对壁厚均匀的铸件,可选用多个内
浇道分散引入金属液。对壁厚不太均匀的铸件,内浇道应开设 在薄壁处。
2.为使铸件实现顺序凝固,内浇道应设在有冒口的厚壁处,
从厚壁处引入金属液,形成铸件从薄壁至厚壁,最后到冒口的 凝固顺序。
分型面
浇注位置和分型面选择总原则: 优先保证铸件质量为主
操作便捷为辅:造型、起模、下芯、合箱
不可牺牲铸件质量来满足操作便利
四、铸造工艺参数的确定
铸造工艺参数包括收缩余量、加工余量、起模斜度、 铸造圆角、型芯和芯头等。 1)收缩余量 模样比铸件图纸尺寸增大的数值称收缩余量。 在制作模样和芯盒时,模样和芯盒的制造尺寸应比铸件 放大一个该合金的线收缩率。这个线收缩率称为铸造收缩 率: ∑=(L模-L铸件)/ L模*100% 通常,灰铸铁的铸造收缩率为0.7%~1.0%,铸造碳钢的 铸造收缩率为1.3%~2.0%,铝硅合金的铸造收缩率为0.8 %~1.2%,锡青铜的铸造收缩率为1.2%~1.4%。
发动机凸轮轴孔的设计与加工工艺安排
扫码了解更多本文从发动机正时传动问题出发,介绍柴油机和轿车用汽油机正时传动各自在设计、结构上的特点及把握工艺要点,加工方法优劣比较,可作为发动机建生产线选择设备、刀具的参考。
对目前中国轿车用动力的发展方向及趋势作了浅释。
1.现状分析20世纪中国发动机大都为工作机提供动力,如为船舶、重型汽车、工程机械和谷物加工机械等提供动力,以中低速柴油机为主。
凸轮轴孔几乎都设计在缸体上,因为在同一个零件上便于工艺安排,而且凸轮轴孔和曲轴孔同在一个缸体上,距离较近,用齿轮传动,使设计结构紧凑,加工精度也便于控制。
通过曲轴齿轮传动椭轮齿轮再传动凸轮轴齿2018年第8期2018年第8期冷加工5T O P I C A L R E V I E W专题综述精度,也大大降低了发动机整体的噪声。
进、排气凸轮轴之间采用了有消除传动间隙作用的可调辅助齿轮和齿轮组合传动(降低齿轮传动的噪声)。
本文以M R479Q发动机缸盖双凸轮轴孔加工工艺安排为例,对加工工艺方法作探讨。
M R479Q发动机缸盖上进、排气凸轮轴孔为分别由凸轮轴盖与缸盖所构成的五档不连续的孔,孔径都是φ(23+0.023)m m,除了它们之间的中心距(112±0.020)m m有严格要求外,进、排气凸轮轴孔中心轴线也要求相互平行,平行度控制在0.030mm范围内。
2.缸盖上进、排气凸轮轴孔目前的两种加工方法(1)加工中心机床加工。
①采用粗铰刀分别对进气凸轮轴孔和排气凸轮轴孔的第1档凸轮轴孔(作为刀具工艺导向孔)做粗铰加工,完成后,退出工件,粗铰刀直接返回刀库。
②进入下一工步,采用粗、精铰复合刀完成凸轮轴孔的精铰孔工序。
刀具呈前小后大的阶梯形,包括粗铰刀、精铰刀和导向条等(见图1)。
首先粗铰刀进入第1档粗铰凸轮轴孔(此时不切削)实现刀具导向,随着刀具慢速工进,粗铰刀粗铰第2档凸轮轴孔,同时精铰刀,精铰第1档(已粗铰)的凸轮轴孔尺寸至φ(23+0.023)m m。
车铣技术凸轮轴加工工艺分析
车铣技术凸轮轴加工工艺分析凸轮轴是发动机的核心部件之一,直接影响发动机的性能和可靠性。
车铣技术在凸轮轴加工中起到重要的作用。
在本文中,我们将从凸轮轴加工的工艺流程、车铣技术及其应用、如何提高凸轮轴加工效率等方面进行分析。
一、凸轮轴加工工艺流程凸轮轴加工主要包括车削、铣削、磨削、热处理及精加工等过程。
1.车削:车削一般用于加工凸轮轴的轴颈、支承面等精度要求较高的部位。
3.磨削:磨削是最常用的加工方法,一般用于加工凸轮轴的主轴颈、凸轮等高精度部位。
磨削能够使凸轮轴的精度达到0.001mm内。
4.热处理:热处理主要包括淬火和回火两个过程,目的是提高凸轮轴的强度和硬度,保证其工作性能。
5.精加工:精加工主要是对热处理后的凸轮轴进行表面处理,使用研磨机对凸轮轴进行超精密抛光,以保证凸轮轴表面的光洁度和精度。
二、车铣技术及其应用1.数控车铣技术数控车铣技术是凸轮轴加工中最常用的技术之一,其优点是准确度高、效率高、直观易懂。
数控车铣机通过程序控制,可以完成复杂曲线轮廓的加工,满足凸轮轴加工中的高精度、高效率要求。
2.滚压削铣技术滚压削铣技术是一种全新的加工技术,其主要优点是削铣同时完成,效率和加工精度都很高。
加工时,凸轮轴固定在机床上,刀具则通过滚压削铣加工的方式完成凸轮轴的加工。
三、如何提高凸轮轴加工效率1.合理选择加工工艺和机床设备不同的凸轮轴加工工艺和机床设备,其效率和成本也有着不同的标准。
因此,在实际生产加工过程中,需要根据凸轮轴加工的具体要求,选择合适的加工工艺和机床设备,以保证加工效率和加工质量。
2.缩短生产加工周期生产加工周期不仅直接影响成本和效率,还会影响到生产中的实时监控和生产安排。
因此,缩短生产加工周期对于凸轮轴加工具有重要的意义。
3.设计满足自动化加工的凸轮轴结构在设计凸轮轴结构时,需要考虑到自动化加工:保证各个关键尺寸精度,适当增大轴承支承直径,从而提高轴承支承精度和生产加工效率。
总之,在凸轮轴加工中,需要选择适当的工艺和机床设备,尽可能缩短生产加工周期,设计合理的凸轮轴结构,以提高加工效率和成本优势,从而提升凸轮轴的工作性能和可靠性。
凸轮轴加工工艺
凸轮轴加工工艺凸轮轴是一种重要的机械传动装置,用于将来自引擎的旋转运动转化为线性运动,驱动汽车等机械设备的运行。
凸轮轴的加工工艺对于其性能和质量起着重要的影响。
本文将详细介绍凸轮轴加工的工艺过程和注意事项。
1.工艺流程凸轮轴加工的工艺流程包括以下几个关键步骤:1.1 材料准备:选择适合的材料对凸轮轴的性能和耐用性至关重要。
常见的材料有碳钢、合金钢等。
在材料准备阶段,需要对材料进行检验和筛选,确保其质量符合要求。
1.2 成品设计:根据汽车或机械设备的需求,通过CAD软件进行凸轮轴的设计。
设计包括凸轮的形状、凸轮的数量和位置等。
1.3 粗加工:将材料锯断成合适的长度,并进行外形修整。
粗加工通常采用车床等机床进行,以确保凸轮轴的整体形状和尺寸符合设计要求。
1.4 精加工:精加工是凸轮轴加工的重要环节。
其中包括车削、铣削、钻孔等工艺。
通过这些工艺,将凸轮轴的各个部位进行加工,使其形成凸轮和轴颈等特殊结构。
1.5 热处理:热处理是为了提高凸轮轴的硬度和强度,以增加其使用寿命和耐磨性。
常见的热处理方法包括淬火、回火等。
1.6 表面处理:为了提高凸轮轴的表面质量和耐腐蚀性,常常需要进行表面处理。
常见的表面处理方法有镀铬、喷涂等。
1.7 检验和调整:在加工完成后,需要对凸轮轴进行检验和调整,以确保其质量和性能符合要求。
常见的检验方法有尺寸测量、硬度测试等。
2.注意事项凸轮轴加工过程中需要注意以下几个方面:2.1 切削参数的选择:切削参数的选择直接影响凸轮轴的加工质量和效率。
不同的材料和工艺要求需要选择不同的切削速度、进给量和切削深度等参数。
2.2 工具的选择和磨具的修整:工具的选择和磨具的修整对于凸轮轴的加工精度和表面质量起着决定性的作用。
需要选择适合的工具和磨具,并进行定期的修整和更换。
2.3 温度控制:加工过程中需要控制好温度,避免过热或过冷对凸轮轴的影响。
特别是热处理过程中,需要控制好加热温度和冷却速度,以确保凸轮轴的性能和硬度符合要求。
车铣技术凸轮轴加工工艺分析
车铣技术凸轮轴加工工艺分析车铣技术是一种将工件放置在机床上,通过车铣刀具的切削力和机床的移动来加工工件的技术。
凸轮轴是一种具有复杂曲线轮廓的机械零件,其加工工艺分析对于保证产品质量和提高生产效率具有重要意义。
本文将从工艺流程、工艺参数和工艺装备三个方面对凸轮轴的加工工艺分析进行详细阐述。
一、工艺流程:凸轮轴的加工工艺流程一般包括零件的选择、工艺设计、工艺装备准备、加工工序和质量检验等几个主要环节。
工艺设计是关键的环节,它直接决定了后续加工工序的选择和加工工艺的确定。
1、零件的选择:凸轮轴的加工工艺分析首先需要根据设计要求选择合适的零件。
在选择零件时,应考虑到凸轮轴所承受的载荷、工作环境及材料的性能等因素,以确保最终产品的质量和可靠性。
2、工艺设计:在工艺设计环节中,需要对凸轮轴的加工工艺进行规划和组织。
根据凸轮轴的结构特点和加工要求,确定凸轮轴的加工工序、加工顺序和加工方法,并确定对应的切削参数和加工配方。
3、工艺装备准备:准备好所需的加工设备和工装夹具,对机床进行调整和检修,确保其正常工作状态。
还需准备好所需的刀具、测量工具和辅助设备,以便进行加工和检测。
4、加工工序:根据工艺设计确定的加工工序和工艺流程进行加工。
一般来说,凸轮轴的加工工序包括车削、铣削、钻削、砂轮修整等。
在每个工序中,都需要合理选择刀具、确定切削速度和进给量,控制切削力和加工精度,以确保加工质量和降低生产成本。
5、质量检验:在加工完成后,需要对凸轮轴进行质量检验,以确保其满足设计要求和产品标准。
质量检验的内容主要包括尺寸精度、表面质量、材料性能和装配性能等。
根据检验结果,可对加工工艺进行调整和改进,以提高产品的质量和性能。
二、工艺参数:凸轮轴的加工工艺分析还需要确定一系列的加工参数,包括切削速度、进给量、切削厚度和切削角度等。
这些参数直接影响到加工效率和加工质量。
1、切削速度:切削速度是指切削刀具在加工过程中的移动速度。
它是决定切削力大小和切削温度高低的主要参数之一。
机械加工余量和锻件尺寸公差的确定解读
机械加工余量和锻件尺寸公差的确定(一)主要参数及影响因素1.锻件重量(G1)根据锻件图的尺寸计算锻件的重量。
对于杆部不参与变形(不锻棒料部分)的平锻件重量只计算镦锻部分(见图2a)。
若不锻棒料部分的长度与其直径之比小于2时,可看作一个完整的锻件来计算其重量(见图2b)。
若平锻件的两端分两次镦锻时,前一道镦锻成形部分连同不锻棒料杆部部分,视为第二道镦锻部分的不锻棒料部分(见图2c)。
2.锻件形状复杂系数(S)锻件形状复杂系数为锻件重量(G1)与相应的锻件外廓包容体重量(G2)的比值。
即:S=图2 镦锻件重量计算特点a)一头一长杆;b)一头一短杆;c)二头一杆;A 镦锻部分;B 不锻棒料部分;C 第一道成形圆形锻件的外廓包容体重量(见图3):式中:ρ—密度(7.85/cm3)图3 圆形锻件的外廓包容体非圆形锻件外廓包容体重量(见图4):图4 非圆形锻件外廓包容体锻件形状复杂系数分为四级:简单:S1>0.63~1一般:S2>0.32~0.63较复杂:S3>0.16~0.32复杂:S4≤0.16特例:当锻件为薄形圆盘或法兰件(见图5a),其圆盘厚度和直径之比L/d≤0.2时,取形状复杂系数S4。
当L1/d1≤0.2或L2/d2>4时(见图5b),采用形状复杂系数S4。
当冲孔深度大于直径的1.5倍时,形状复杂系数提高一级。
图5 锻件形状复杂特例3.锻件的材质系数锻件的材质系数分为二级:M1:钢的含碳量小于0.65%的碳钢,或合金元素总含量小于3.0%的合金钢。
M2:钢的含碳量大于或等于0.65%的碳钢,或合金元素总含量大于或等于3.0%的合金钢。
4.零件的机械加工精度零件表面粗糙度低于Ra 1.6,机械加工余量从余量表查得;粗糙度高于Ra1.6,加工余量要适当加大;对扁薄截面或在锻件相邻部位截面变化较大的零件(如图6),在长度L范围内应适当加大局部的余量。
图6 应局部增大余量的零件5.加热条件采用煤气或油炉加热钢坯时,机械加工余量和公差从余量表和公差表查得;当采用煤加热钢坯,或经二火进行加热时,适当增大加工余量和公差。
凸轮轴的检测方法的综述3
凸轮轴的检测方法的综述 3 凸轮轴的升程公差,常用的有两种标注方法:①标注的是带正负号的公差值,公差带的位置由凸轮轴升程的理论正确尺寸确定,且公差带位置是固定的,升程公差控制的仅是实际凸轮的轮廓尺寸。
这时,凸轮轴的升程误差应按尺寸公差来处理:凸轮轴的升程公差要求,设定了两个极限尺寸——最大实体尺寸(MMS)和最小实体尺寸(LMS)来限制升程的实际尺寸,要求凸轮轴升程的任一局部尺寸不得超出两个极限尺寸;②标注的是不带正负号的公差值,公差带的方向随凸轮的实际形状而定(变动),公差带的位置是浮动的,升程公差控制要素是实际凸轮轴的轮廓形状。
这时,凸轮的升程误差应按形位公差来处理(升程误差的测量数据,应按“最小条件”要求进行评定):凸轮的升程公差要求,设定了两个平行(或等距)的界面或界线,构成形状公差带来限制实际被测要素。
凸轮测量数据按尺寸公差要求处理时,应把升程误差与升程公差联系起来,最大限度的保证凸轮升程的合格(图2);凸轮测量数据按形位公差要求处理时,应把升程误差与“最小条件”联系起来,保证凸轮升程误差(包容区域的宽度)的最大值为最小(图3)。
处理时可根据设计要求,选择相应的处理方法。
在此应强调指出:当凸轮异侧(左、右侧)升程公差相等时,“等距”误差点也是“等值”误差点。
尺寸误差和形位误差数据的处理方法相一致。
所不同的只是,形位公差带位置浮动,尺寸公差带位置固定。
5 凸轮轴测量仪的工作原理凸轮轴的测量是二维测量系统。
目前凸轮轴测量仪的分度装置大都采用圆光栅编码器测量系统,线值装置采用直线光栅测量系统。
凸轮轴测量仪的原理框图[3] 如图4所示:由计算机发出的控制信号启动直流同步电机旋转,由驱动机构带动被测凸轮轴转动,通过Y轴圆光栅传感器,X轴直线光栅传感器分别将凸轮轴的角位移、径向、轴向位移转换成明暗条纹的光强变化信号,经光电转换电路转换成电压信号,再经前置放大和整形滤波,形成角度脉冲和径向位移脉冲经T/C计数板送入计算机。
凸轮轮廓曲线精度表示
凸轮轮廓曲线精度表示
在机械制造或工程模型中,凸轮轮廓曲线的精度表示通常使用以下几种方法:
1.尺寸公差:可以通过指定凸轮的关键尺寸公差来控制凸轮的
精度。
这包括凸轮的直径、半径、轮缘宽度等尺寸的公差要求。
2.几何公差:凸轮轮廓曲线的几何形状也可以通过公差来表示。
这包括凸轮曲线的凸度、倾斜度、曲率半径等几何特征的控制。
3.表面质量:除了尺寸和几何公差外,凸轮的表面质量也是衡
量其精度的重要指标。
可以通过指定表面光洁度、粗糙度和平面度等参数来表示凸轮表面的质量。
4.轨迹误差:凸轮轮廓曲线的精度还可以通过轨迹误差来表示。
轨迹误差是指实际凸轮轨迹与设计轨迹之间的偏差,可以通过测量实际曲线和理论曲线之间的差异来评估凸轮的精度。
综上所述,凸轮轮廓曲线的精度可以通过尺寸公差、几何公差、表面质量和轨迹误差等多种参数来表示。
具体的精度要求取决于具体应用和制造工艺的要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.2 5.6
5.6
10.0
10.0
20.0
2.0~2.5 2.3~3.0
2.0~2.5
2.0~2.7
2.3~3.0 2.7~4.0 2.7~4.0 3.0~4.5 3.0~4.5 3.5~4.5 3.5~4.5 4.0~5.5
20.0 50.0
50.0 150.0 250.0
2.0~3.0 2.5~3.5
厚度方向公差为
水平方向公差为
其他金属材料成型技术课程
职业教育材料成型与控制技术专业教学资源库
锻件重量 (kg) 一 般 加 工 精 度 F1 磨 削 加 工 精 度 F2
锻件形状 复杂系数 S1S1 S3S4
厚度 (直径) 方 向
锻 件 单 边 余 量 (mm) 水 平 方 向 大 于 至 0 315 315 400 400 630 630 800 800 1250 1250 1600 1600 2500
查表1
取为2.5mm。 水平方向为2.0~4.5mm,
根据长度不同,取不同的值。
其他金属材料成型技术课程
职业教育材料成型与控制技术专业教学资源库
2.确定锻件的公差
锻件重: 6.7kg
形状复杂系数: S3 材质系数: M1 分型面形状:平直分形面 精度等级: F1
查表2 查表3
职业教育材料成型与控制技术专业教学资源库
该锻件材料为42CrMo,合金元素量小于3%,故 其材质系数为M1
其他金属材料成型技术课程
职业教育材料成型与控制技术专业教学资源库
6.确定锻件机械加工精度
因为该零件的表面加工粗糙度大于3.2um,故属
一般加工精度F1。
其他金属材料成型技术课程
职业教育材料成型与控制技术专业教学资源库
2.5~3.0 2.5~3.5
2.5~3.5 2.7~3.5
2.5~3.2
3.0~4.0
2.5~3.5
2.5~3.5
2.7~4.0
3.0~4.5
3.0~4.5
3.5~5.0
4.0~5.5
150.0
3.5~4.5 4.0~5.5
2.7~3.5 2.7~4.0
2.7~3.5 3.0~4.0
3.0~4.0 3.0~4.5职Biblioteka 教育材料成型与控制技术专业教学资源库
4.确定锻件复杂系数s
S=G1/G2=6.7/23.61=0.28 简单: S1>0.63~1
S=0.28 故锻件复杂系数为S3
一般: S2>0.32~0.63
较复杂:S3>0.16~0.32
复杂: S4>0~0.16
管接头属于较复杂锻件
3.0~4.5 3.5~4.5
3.5~5.0 3.5~5.0
4.0~5.0 4.0~5.5
4.5~6.0 4.5~6.0
职业教育材料成型与控制技术专业教学资源库
其他金属材料成型技术课程
确定凸轮轴分型面、加工 余量和公差
主讲教师:田芳
包头职业技术学院
职业教育材料成型与控制技术专业教学资源库
目
1 1 2
13
录
凸轮轴产品介绍
确定凸轮轴分型面 确定凸轮轴加工余量和公差的主要参数 确定凸轮轴加工余量和公差
4
其他金属材料成型技术课程
大于
至
表1 模锻 件内 外表 面加 工余 量
0
0.4
1.0 1 1.8
1.0~1.5
1.5~2.0 1.5~2.0 1.7~2.2 1.7~2.2 2.0~2.5
1.0~1.5
1.5~2.0 1.5~2.0 1.7~2.2 1.7~2.2 2.0~2.5
1.5~2.0
1.5~2.0 1.5~2.0 2.0~2.5 2.0~2.5 2.0~2.5
职业教育材料成型与控制技术专业教学资源库
一、凸轮轴产品介绍
材料:42CrMo 形状:如右图所示 结构:属于长杆类锻件
凸轮轴产品图
其他金属材料成型技术课程
职业教育材料成型与控制技术专业教学资源库
二、确定凸轮轴分型面
分模面形状:平面分模 分模面位置:分模线位于 杆部高度中央,如右图
分模图
其他金属材料成型技术课程
职业教育材料成型与控制技术专业教学资源库
三、确定凸轮轴加工余量和公差的主要参数
1.主要参数介绍
锻件质量与锻件包容质量
锻件材质
零件表面粗糙度
模锻件的精度 锻件分模线的形状
其他金属材料成型技术课程
锻件的形状复杂系数S
职业教育材料成型与控制专业教学资源库
2.确定锻件质量
根据零件名义尺寸估算锻件体积V1 头部截面如图所示,查得头部截
2.0~2.5
2.0~2.5 2.0~2.7 2.0~2.7 2.0~2.7 2.3~3.0 2.5~3.5 2.7~4.0 3.0~4.5
0.4 1.0
2.0~3.0
2.0~3.0 2.0~3.0 2.5~3.5 2.5~3.5 2.5~3.5 2.5~4.0 2.7~4.0 3.0~4.5
1.8 3.2
7.确定锻件分模线形状
如右图所示,锻件的分 模线属于平直分模线。
其他金属材料成型技术课程
职业教育材料成型与控制技术专业教学资源库
四、确定凸轮轴加工余量和公差
1.确定锻件的加工余量
锻件重: 6.7kg 厚度方向2.0~2.5mm,
形状复杂系数: S3 材质系数: M1 精度等级: F1
面积6744.9mm2
头部截面积图
V1≈头部截面积×(44.5+42tg7/2)+(π/4)×572×(58.544.5)+(π/4)×512×(300-58.5+51×tg7/2)
=317539.6+35706.51+499483.92=852730.03mm3
锻件重量( G1 ) G1=V1×7.85×10-6≈6.7Kg
其他金属材料成型技术课程
职业教育材料成型与控制技术专业教学资源库
3.确定锻件包容质量
根据右图计算锻件包容体积V2
V2=LxBxH =302x120x83=3007920mm3 锻件包容体重量( G2 )
锻件外廓包容体图
G2=V2×ρ =3007920×7.85×10-6=23.61Kg
其他金属材料成型技术课程
其他金属材料成型技术课程
职业教育材料成型与控制技术专业教学资源库
5.确定锻件的材质系数
锻件材质系数分为两级:M1和M2 M1
M2
最高含碳量大于或等 于0.65%的碳素钢
最高含碳量小于0.65%
的碳素钢 合金元素总含量小于 3.0%的合金钢
合金元素总含量大于或
等于3.0%的合金钢
其他金属材料成型技术课程