空域图像增强实验报告
实验二空域图像增强
实验三空域图像增强一、实验目的与要求1、掌握灰度直方图的概念及其计算方法;2、熟练掌握直力图均衡化和直方图规定化的计算过程;3、熟练掌握空域滤波中常用的平滑和锐化滤波器;4、掌握色彩直方图的概念和计算方法5、利用MATLAB程序进行图像增强。
二、实验内容与步骤1、图像的直方图与直方图均衡方法a. 从硬盘加载cameraman.tif图象(using function imread).b. 显示图象.c. 显示图象的直方图(using function imhist).d. 用直方图均衡方法进行图象增强.e. 对处理后的图象显示其直方图.f. 比较图象的质量并且进行讨论.代码如下:I=imread(‘原图像名.gif); % 读入原图像J=histeq(I); %对原图像进行直方图均衡化处理Imshow(I); %显示原图像Title(‘原图像’); %给原图像加标题名Figure;imshow(J); %对原图像进行屏幕控制;显示直方图均衡化后的图像Title(‘直方图均衡化后的图像’) ; %给直方图均衡化后的图像加标题名Figure; subplot(1,2,1) ;%对直方图均衡化后的图像进行屏幕控制;作一幅子图作为并排两幅图的第1幅图Imhist(I,64); %将原图像直方图显示为64级灰度Title(‘原图像直方图’) ; %给原图像直方图加标题名Subplot(1,2,2); %作第2幅子图Imhist(J,64) ; %将均衡化后图像的直方图显示为64级灰度Title(‘均衡变换后的直方图’) ; %给均衡化后图像直方图加标题名从处理前后的图像可以看出,许多在原始图像中看不清楚的细节在直方图均衡化处理后所得到的图像中都变得十分清晰。
2、对图象加入躁声,改变噪声参数(均值、方差或比例),比较其影响。
使用3x3或7x7的均值滤波器、中值滤波器对不同强度的高斯噪声和椒盐噪声,进行滤波处理;能够正确地评价处理的结果;能够从理论上作出合理的解释。
图像增强(灰度图像-空间域)实验报告
给予二阶微分的图像处理—拉普拉斯算子
0
-1
0
-1
4
-1
0
-1
0
以下两个模板是Sobel算子
-1 -2 -1
0 0 0
1 2 1
-1 0 1
-2ห้องสมุดไป่ตู้0 2
-1 0 1
二:使用Visual C++编写程序,利用对比度拉伸(Contrast stretching)和对数变换(Log transformation)的方法,对本目录下的图gray001.bmp进行操作,以凸显图像中的细节信息。根据图像的具体情况自行选择具体的变换函数,以达到最佳处理效果。
1.(第一组模板用于平滑处理)
3x3
1/9
1/9
1/9
1/9
1/9
1/9
1/9
1/9
1/9
1/16 2/16 1/16
2/16 4/16 2/16
1/16 2/16 1/16
5x5
1/25 1/25 1/25 1/25 1/25
1/25 1/25 1/25 1/25 1/25
1/25 1/25 1/25 1/25 1/25
通过以上实验可知平滑模板可以将原始图像平滑,但是在这三幅图例子中改变很小;锐化模板锐化效果比较明显。
二:对图像gra其中参数选择为第一个坐标点为(40,20)第二个坐标点为(130,150)
与原图像比较可以看到对比度有所增强,细节更突出。
对图像gray001.bmp进行对数变换得到如下图像:
其中对数变换参数选择为C=50,与原图像比较可知图像细节更加突出,特别是图像右下角部分。
通过此实验,掌握了空间域利用模版进行图像平滑和增强的基本方法;对图像平滑和增强的效果建立了直观的印象,加深对图像处理算法原理的理解;通过此次实验,还掌握图像灰度变换的一些基本方法。
图像处理的MATLAB实现实验一 空域图像增强
图像处理的MATLAB 实现实验一 空域图像增强一、实验目的(1)掌握基本的空域图像增强方法,观察图像增强的效果,加深理解;(2)了解空域平滑模板的特性及其对不同噪声的影响;(3)了解空域锐化模板的特性及其对边缘的影响。
二、实验内容(1)直方图处理:直方图均衡(2)空域平滑:均值滤波、中值滤波;三、实验要求(1)用matlab 语言进行仿真实验;(2)递交实验报告,要求给出实验原理、源程序、实验结果及分析。
四、具体实验内容及要求4.1 实验内容4.1.1 直方图均衡(1)读入原图像pollen.png 并显示原图像以及直方图(2)对原图像进行直方图均衡处理(3)显示均衡后图像以及直方图。
4..1.2 图像空域平滑(1)读入原图像lena.bmp 并显示;(2)对原图像分别添加高斯噪声和椒盐噪声,并显示加噪图像;(3)采用均值滤波进行去噪处理,并显示去噪图像;(4)采用中值滤波进行去噪处理,并显示去噪图像。
4.1.3 空域锐化(1)读入原图像bridge.gif 并显示;(2)采用sobel 算子对图像进行处理,并显示结果;(3)尝试采用其他锐化模板进行处理。
4.2 实验原理4.2.1 直方图均衡实验原理对图像像素个数多的灰度级进行展宽,而对图像中像素个数少的灰度级进行压缩。
而且,输入灰度级r 与输出灰度级s 的概率密度函数()r p r 和()s p s 有如下关系()()ds dr r p s p r s = 积分形式如下()()()dw w p L r T s rr ⎰-==01 4.2.2 图像滤波 (1)、椒盐噪声的中值滤波由于椒盐噪声的出现使该点的像素比周围的亮或暗许多,如果在某个模板中,对像素由小到大重新排列,那么最暗或最亮的点一定被排在两侧,取模板中间位置的灰度值像素代替待处理图像像素的灰度值,从而达到滤除噪声的目的。
(2)、高斯噪声的均值滤波均值滤波是一种空域线性的滤波方法,用像素邻域内各像素的灰度平均值代替该像素原来的灰度值;均值滤波采用的是模板操作,将模板在图像中从左到右,从上到下的顺序移动将模板中心与每个像素重合;将模板中个系数与其对应的像素一并相乘,然后再经所有的结果一并相加;将上面相加的结果重新付给模板中心对应的像素点,那么该灰度值,就是经均值滤波后平滑后的灰度值。
实验三 空域图像增强
实验三空域图像增强(灰度变换、直方图处理)一、实验目的1. 掌握灰度变换的基本原理。
2. 掌握直方图处理的基本原理。
3. 掌握Matlab中灰度变换和直方图处理的实现方法。
二、实验内容1. 灰度变换(直接正比变换)。
2. 灰度变换(截取式正比变换)。
3. 灰度变换(反比变换)。
4. 灰度变换(对比拉伸)。
5. 灰度变换(灰度切割)。
6. 灰度变换(对数变换)。
7. 灰度变换(幂次变换)。
8. 直方图处理(直方图均衡化)。
三、实验仪器、设备及材料1. 电脑一台(2G CPU、2GB RAM、50GB Disk及以上)。
2. Windows 2000 / Windows XP / Windows 7。
3. Matlab R2006b及以上版本。
4. 记录用的笔、纸。
四、实验原理1. 灰度变换灰度变换是一种点操作,根据原始图像中每个像素的灰度值,按照某种映射规则将其转化为另一灰度值。
其原理是将原图像f(x , y)中的每个像素的灰度按EH操作直接变换以得到目标图像g(x , y)。
若以s表示f(x , y),以t表示g(x , y),则灰度变换原理如下图所示:2. 直方图处理直方图变换可以清晰图像细节,突出目标物体,改善亮度比例关系,增强图像对比度。
直方图变换基于概率论。
直方图均衡化主要用于增强动态范围偏小的图像的反差。
其基本思想是把原图像的直方图转换为均匀分布的形式,增加像素灰度值的动态范围,增强图像整体对比度。
五、实验步骤1. 灰度变换(直接正比变换)(1) 程序源代码:close allclear15clcdisp('====E4_4_1.m====');I=imread('rice.png');subplot(3,3,1),imshow(I),ylabel('原图像');subplot(3,3,2),imhist(I);%方法1-系统函数J=imadjust(I,[40/255 204/255],[0 1]); %图像的最小灰度值为40,最大灰度值为204subplot(3,3,4),imshow(J),ylabel('变换图像(方法1)');subplot(3,3,5),imhist(J);%方法2-编程实现%把灰度值范围从[40,204]映射到[0,255]f0=0;g0=0; %分段曲线的第1个点f1=40;g1=0; %分段曲线的第2个点f2=204;g2=255; %分段曲线的第3个点f3=255;g3=255; %分段曲线的第4个点subplot(3,3,9),plot([f0,f1,f2,f3],[g0,g1,g2,g3]),xlabel('f'),ylabel('g'),axis([0 255 0 255]);%绘制变换曲线r1=(g1-g0)/(f1-f0); %曲线1的斜率b1=g0-r1*f0; %曲线1的截距r2=(g2-g1)/(f2-f1); %曲线2的斜率b2=g1-r2*f1; %曲线2的截距r3=(g3-g2)/(f3-f2); %曲线3的斜率b3=g2-r3*f2; %曲线3的截距[m,n]=size(I);K=double(I);for i=1:mfor j=1:nf=K(i,j);g(i,j)=0;if(f>=f0)&(f<=f1)g(i,j)=r1*f+b1; %曲线1的方程y=r1*x+b1elseif (f>=f1)&(f<=f2)g(i,j)=r2*f+b2; %曲线2的方程y=r2*x+b2elseif (f>=f2)&(f<=f3)g(i,j)=r3*f+b3; %曲线3的方程y=r3*x+b3endendendendend16subplot(3,3,7),imshow(uint8(g)),ylabel('变换图像(方法2)');subplot(3,3,8),imhist(uint8(g));(2) 观察并记录实验结果:作为实验报告的内容(3) 将“分段曲线的第2个点”更改为“f1=150;g1=0;”,观察并记录实验结果,分析产生该结果的原因:作为实验报告的内容。
《数学实验》实验报告——空域变换在图像增强中的应用
试验过程(含详细试验步骤、程序清单及异常情况记录等)
I=imread('D:\11.jpg'); subplot(2,2,1); imshow(I); 导入图像 title('原始图片'); K=imadd(I,-50); %对图像的每个像素减去一个参数 subplot(2,2,2); 进行代数运算,调整亮度 imshow(K); title('调整亮度的图片'); I=double(I); %对数运算不支持 unit8 类型,将图像转换为 double 类型 J=log(I+1); %进行灰度的对数变换 subplot(2,2,3); 进行对数变换, 调整对比 imshow(mat2gray(J)); title('调整对比度的图片'); x=[35 558 346 103]; y=[253 250 17 148]; %指定 xi 和 yi 的参数,避免交互式的处理模式 subplot(2,2,4); improfile(I,x,y),grid on内容
****
学号
****
姓名 试验 类别
****
成绩 试验 时间 2011.5.20 -2011.5.27
空域变换在图像增强中的应用
自选试验
试验问题:
1)Matlab 在图像处理中有什么显著功能? 2)图像预处理阶段中的数学原理? 3)空域变换在图像处理中反应图像的什么信息?
试验目的:
1)利用 MATLAB 程序进行图像增强; 2)掌握空域变换的概念及其原理; 3)熟练对数变换和图像加法的计算过程; 4)理解强度描述图的含义。
问题分析(可含问题的背景、相关知识、数学建模与求解的方法等) :
图像处理系统可以分为三个阶段,在获取原始图像后,首先是图像的预处理阶段,第 二是特征抽取阶段,第三是识别分析阶段。图像预处理尤为重要,而图像增强是图像预处 理中的重要方法。 图像增强是指按特定的需要突出一幅图像中的某些信息,同时,消弱或去除某些不需 要的信息的处理方法。其主要目的是处理后的图像对某些特定的应用比原来的图像更加有 效。图像增强技术主要有空域增强方法与频域增强方法。本实验以几类空域增强方法为主, 探讨对图像处理的应用。 空域增强方法指的是直接在图像所在的空间进行处理,也就是在像素组成的空间里直 接对像素进行操作。而空域增强方法又分有两类:1.基于像素点;2.基于模板。 强度描述图是将红绿蓝三色分离,各自均表达独立的线条,Matlab 图像处理工具箱提 供了 improfile 函数用于得到图像中的一条线段或多条线段强度值,并绘制图形。 对图像增加对比度有很多方法,如直方图、对数变换、gramma 等。这里只讨论对数变 换可以扩展低值灰度,压缩高值灰度,这样可以使低值灰度的图像细节更容易看清楚。对 数变换的灰度映像采用的表达式是 g x, y log( f ( x, y) 1) 。 代数运算也可以实现图像的增强,代数运算是指对两幅图像进行像素点对像素点的加 减乘除或计算而得到输出图像的运算。对于相加和相乘的情况,可以不仅有两幅图像参加 运算。 Matlab 提供了一些函数来进行图像的代数运算, 这里只探讨最基础的运算——加减。
数字图像处理实验报告——图像增强实验
实验报告课程名称数字图像处理导论专业班级_______________姓名_______________学号_______________电气与信息学院和谐勤奋求是创新2.编写函数w = genlap lacia n(n),自动产生任一奇数尺寸n的拉普拉斯算子,如5×5的拉普拉斯算子w = [ 1 1 1 1 11 1 1 1 11 1 -24 1 11 1 1 1 14.采用不同的梯度算子对b lurry_moon.tif进行锐化滤波,并比较其效果。
[I,m ap]=im read('trees.tif');I=double(I);subplo t(2,3,1)imshow(I,m ap);title(' Original Im age');[Gx,Gy]=gradie nt(I); % gradie n t calcul ationG=sqrt(Gx.*Gx+Gy.*Gy); % matrixJ1=G; % gradie nt1subplo t(2,3,2)imshow(J1,m ap);title(' Operator1 Im age');J2=I; % gradie nt2 K=find(G>=7);J2(K)=G(K);subplo t(2,3,3)im show(J2,m ap);title(' Operator2 Im age');J3=I; % gradie n t3 K=find(G>=7);J3(K)=255;subplo t(2,3,4)im show(J3,m ap);title(' Operator3 Im age');J4=I; % gradie n t4 K=find(G<=7);J4(K)=255;subplo t(2,3,5)im show(J4,m ap);title(' Operator4 Im age');J5=I; % gradie nt5 K=find(G<=7);J5(K)=0;Q=find(G>=7);J5(Q)=255;subplo t(2,3,6)im show(J5,m ap);title(' Operator5 Im age');5.自己设计锐化空间滤波器,并将其对噪声图像进行处理,显示处理后的图像;附录:可能用到的函数和参考结果**************报告里不能用参考结果中的图像1)采用3×3的拉普拉斯算子w = [ 1, 1, 1; 1 – 8 1; 1, 1, 1]滤波I=im read('moon.tif');T=double(I);subplo t(1,2,1),im show(T,[]);title('Origin al Im age');w =[1,1,1;1,-8,1;1,1,1];K=conv2(T,w,'sam e');subplo t(1,2,2)im show(K);title('Laplacian Transf orm ation');图2.9 初始图像与拉普拉斯算子锐化图像2)编写函数w = genlap lacia n(n),自动产生任一奇数尺寸n的拉普拉斯算子,如5×5的拉普拉斯算子:w = [ 1 1 1 1 11 1 1 1 11 1 -24 1 11 1 1 1 11 1 1 1 1]functi on w = genlap lacia n(5)%Com put es the Laplac ian operat orw = ones(n);x = ceil(n/2);w(x, x) = -1 * (n * n - 1);3)分别采用5×5,9×9,15×15和25×25大小的拉普拉斯算子对blurry_mo on.tif进行锐化滤波,并利用式完成图像的锐化增强,观察其有何不同,要求在同一窗口中显示。
实验二 图像空域锐化增强
数字图像处理实验报告姓名:田蕾 学号:20091202098 专业:信号与信息处理 年级:09实验二 图像空域平滑滤波一、 实验目的理解图象锐化的概念,掌握常用空域锐化增强技术。
进一步加深理解和掌握图像锐化的原理和具体算法。
理解图象锐化增强的处理过程和特点。
二、 实验内容1、一阶微分锐化增强设计程序,分别实现Roberts 、Sobel 、Priwitt 算子的锐化处理。
观察处理前后图像效果,分析实验结果和算法特点。
2、拉普拉斯锐化增强设计程序,实现拉普拉斯图像和原始图像叠加的增强处理,即{22(,)(,)(,)(,)(,)f x y f x y f x y f x yg x y -+∇∇ (拉普拉斯模板中心系数为负和拉普拉斯模板中心系数为正) 观察处理前后图像效果,分析实验结果和算法特点。
三、 实验原理Roberts 、Sobel 、Priwitt 算子都是突出图像的细节或者是增强被模糊了的细节。
因此要对图像实现锐化处理,可以用空间微分来完成,但是,这样图像的微分增强了边缘和其他的突变(如噪声)并削弱了灰度变化缓慢区域。
拉普拉斯算子具有各向同性的特点,这种滤波器的响应与滤波器作用的图像的突变方向无关。
即各向同性滤波器旋转不变,原图像旋转后进行滤波后处理给出的结果与先对图像滤波然后再进行旋转地结果相同。
四、 算法设计(含程序设计流程图)五、 实验结果及分析(需要给出原始图像和处理后的图像)原图Roberts 算子锐化处理后图像叠加图原图sobel 算子锐化处理后图像叠加图原图P r w t t 算子锐化处理后的图像叠加图原图L a p a c e 算子锐化处理后图像叠加图实验结果分析:(1)Roberts 算子,Sobel 算子和Priwitt 算子用来实现消除图像模糊地增强的方法。
即“锐化”。
此处理是为了加强图像的边界和细节。
Roberts 算子提出的是在2*2的邻域上计算对角导数,Sobel 算子提出了一种将方向差分局部均匀相结合的方法。
实验一空域图像增强技术
实验一空域图像增强技术实验一、空域图像增强技术班级: 学号: 姓名:实验时间: 实验学时:2学时一、实验目的1、结合实例学习如何在视频显示程序中增加图像处理算法;2、理解和掌握图像的线性变换和直方图均衡化的原理和应用;3、了解平滑处理的算法和用途,学习使用均值滤波、中值滤波和拉普拉斯锐化进行图像增强处理的程序设计方法;4、了解噪声模型及对图像添加噪声的基本方法。
二、实验原理1、灰度线性变换就是将图像中所有点的灰度按照线性灰度变换函数进行变换。
)],([),(y x f T y x g =⎪⎩⎪⎨⎧<≤+-<≤+-≤≤=255),(]),([),( ]),([),(0 ),(),(y x f b g b y x f by x f a g a y x f a y x f y x f y x g b a γβαn y m x ΛΛ,2,1 ,,,2,1== 2、直方图均衡化通过点运算将输入图像转换为在每一级上都有相等像素点数的输出图像。
按照图像概率密度函数PDF 的定义:1,...,2,1,0 )(-==L k n n r p k k r通过转换公式获得:1,...,2,1,0 )()(00-====∑∑==L k n n r p r T s k j k j j j r k k3、均值(中值)滤波是指在图像上,对待处理的像素给定一个模板,该模板包括了其周围的临近像素。
将模板中的全体像素的均值(中值)来代替原来像素值的方法。
4、拉普拉斯算子如下:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--------111181111拉普拉斯算子首先将自身与周围的8个像素相减,表示自身与周围像素的差异,再将这个差异加上自身作为新像素的灰度。
三、 实验步骤1、启动MATLAB 程序,对图像文件分别进行灰度线性变换(参考教材50页,例4.1)、直方图均衡化(参考教材56页,例4.6)、均值滤波(参考教材60页,例4.9)、中值滤波(参考教材64页,例4.11)和梯度锐化操作(参考教材66页,例4.12)。
实验四、图像增强实验报告
桂林理工大学实验报告班级软件15-1班学号3152012011124 姓名周奎良同组实验者实验名称实验四图像增强日期2018年11月18 日一、实验目的1掌握灰度直方图的概念及其计算方法;2熟练掌握直力图均衡化和直方图规定化的计算过程;3熟练掌握空域滤波中常用的平滑和锐化滤波器;4掌握色彩直方图的概念和计算方法5利用MATLAB程序进行图像增强。
二、实验原理图像增强是指按特定的需要突出一幅图像中的某些信息,同时,削弱或去除某些不需要的信息的处理方法。
其主要目的是处理后的图像对某些特定的应用比原来的图像更加有效。
图像增强技术主要有直方图修改处理、图像平滑化处理、图像尖锐化处理和彩色处理技术等。
本实验以直方图均衡化增强图像对比度的方法为主要内容,其他方法同学们可以在课后自行联系。
直方图是多种空间域处理技术的基础。
直方图操作能有效地用于图像增强。
除了提供有用的图像统计资料外,直方图固有的信息在其他图像处理应用中也是非常有用的,如图像压缩与分割。
直方图在软件中易于计算,也适用于商用硬件设备,因此,它们成为了实时图像处理的一个流行工具。
直方图是图像的最基本的统计特征,它反映的是图像的灰度值的分布情况。
直方图均衡化的目的是使图像在整个灰度值动态变化范围内的分布均匀化,改善图像的亮度分布状态,增强图像的视觉效果。
灰度直方图是图像预处理中涉及最广泛的基本概念之一。
图像的直方图事实上就是图像的亮度分布的概率密度函数,是一幅图像的所有象素集合的最基本的统计规律。
直方图反映了图像的明暗分布规律,可以通过图像变换进行直方图调整,获得较好的视觉效果。
直方图均衡化是通过灰度变换将一幅图像转换为另一幅具有均衡直方图,即在每个灰度级上都具有相同的象素点数的过程。
处理后的图像直方图分布更均匀了,图像在每个灰度级上都有像素点。
从处理前后的图像可以看出,许多在原始图像中看不清楚的细节在直方图均衡化处理后所得到的图像中都变得十分清晰。
图像空域增强
本科生实验报告(二)姓名:学院:专业:信息安全班级:信息安全实验课程名称:数字图像处理与分析实验日期:2013 年 4 月 25 日指导教师及职称:王云峰实验成绩:开课时间:2012-2013 学年第 2 学期甘肃政法学院实验管理中心印制灰度变换(对数变换)2. 空域滤波空域滤波:基于邻域处理,应用某一模板对每个像素及其周围邻域的所有像含噪声的图像三阶Butterworth原图加噪图常用的两种非线性扩展方法:(1)对数扩展:基本形式: g(x,y)=lg[f(x,y)]实际应用中一般取自然对数变换,具体形式如下:g(x,y)=C•ln[f(x,y)+1][f(x,y)+1]是为了避免对零求对数,C为尺度比例系数,用于调节动态范围。
变换函数曲线:(2)指数扩展:基本形式: g(x,y)=bf(x,y)实际应用中,为了增加变换的动态范围,一般需要加入一些调制参数。
具体形式如下:g(x,y)=bc[f(x,y)-a]-1 ,参数a可以改变曲线的起始位置,参数c可以改变曲线的变化速率.指数扩展可以对图像的高亮度区进行大幅扩展.灰度直方图灰度直方图是灰度值的函数,它描述了图像中各灰度值的像素个数。
通常用横坐标表示像素的灰度级别,纵坐标表示对应的灰度级出现的频率(像素的个数)。
频率的计算公式为:p(r)=nr ,nr是图像中灰度为r的像素数。
常用的直方图是规格化和离散化的,即纵坐标用相对值表示。
设图像总像素为N,某一级灰度像素数为nr,则直方图表示为:p(r)= nr /N 灰度直方图反映了一幅图像的灰度分布情况。
直方图均衡化通过把原图像的直方图通过变换函数修正为分布比较均匀的直方图,从而改的反变换用下式表示.。
图像增强—空域滤波实验报告
图像增强—空域滤波实验报告篇一:5.图像增强—空域滤波 - 数字图像处理实验报告计算机与信息工程学院验证性实验报告一、实验目的进一步了解MatLab软件/语言,学会使用MatLab对图像作滤波处理,使学生有机会掌握滤波算法,体会滤波效果。
了解几种不同滤波方式的使用和使用的场合,培养处理实际图像的能力,并为课堂教学提供配套的实践机会。
二、实验要求(1)学生应当完成对于给定图像+噪声,使用平均滤波器、中值滤波器对不同强度的高斯噪声和椒盐噪声,进行滤波处理;能够正确地评价处理的结果;能够从理论上作出合理的解释。
(2)利用MATLAB软件实现空域滤波的程序:I=imread('electric.tif');J = imnoise(I,'gauss',0.02); %添加高斯噪声 J = imnoise(I,'salt & pepper',0.02); %添加椒盐噪声ave1=fspecial('average',3); %产生3×3的均值模版ave2=fspecial('average',5); %产生5×5的均值模版 K = filter2(ave1,J)/255; %均值滤波3×3 L = filter2(ave2,J)/255; %均值滤波5×5 M = medfilt2(J,[3 3]);%中值滤波3×3模板 N = medfilt2(J,[4 4]); %中值滤波4×4模板 imshow(I);figure,imshow(J); figure,imshow(K); figure,imshow(L); figure,imshow(M); figure,imshow(N);三、实验设备与软件(1) IBM-PC计算机系统(2) MatLab软件/语言包括图像处理工具箱(Image Processing Toolbox) (3) 实验所需要的图片四、实验内容与步骤a) 调入并显示原始图像Sample2-1.jpg 。
数字图像实验报告图像增强实验
数字图像实验报告图像增强实验一、实验目的熟悉并掌握MATLAB图像处理工具箱的使用;理解并掌握常用的图像的空域增强技术。
二、实验内容对一幅图像分别添加高斯、椒盐和斑点噪声,并分别进行均值和中值滤波处理,显示处理前后的图像。
三、实验方法及程序学生自行编程实现提示:1.加入高斯噪声的函数调用。
I_noise =imnoise(I,’gaussian’,0,0.1)2.加入椒盐噪声的函数调用。
I_noise = imnoise(I,’salt&pepper’,0.06)3.加入斑点噪声的函数调用。
I_noise= imnoise(I,’speckle’,0.1)4.均值滤波的函数调用。
I_smooth=imfilter(I_noise,fspecial(‘average’,5))5.中值滤波的函数调用。
I_smooth=medfilt2(I_noise,[3 3])A=imread('toyobjects.png');B=imnoise(A,'gaussian',0,0.1);%加入高斯噪声C=imnoise(A,'salt & pepper',0.05);%加入椒盐噪声D=imnoise(A,'speckle',0.05);%加入斑点噪声I1=imfilter(B,fspecial('average',5));I2= medfilt2(B);%高斯中值处理K1=imfilter(C,fspecial('average',5));K2= medfilt2(C);%椒盐中值处理G1=imfilter(D,fspecial('average',5));G2= medfilt2(D);%斑点噪声中值处理figure(1);imshow(A);title('原图像');figure(2);subplot(1,3,1);imshow(B);title('高斯噪声'); subplot(1,3,2);imshow(I1);title('高斯均值滤波处理'); subplot(1,3,3);imshow(I2);title('高斯中值滤波处理'); figure(3);subplot(1,3,1);imshow(C);title('椒盐噪声'); subplot(1,3,2);imshow(K1);title('椒盐均值处理'); subplot(1,3,3);imshow(K2);title('椒盐中值处理'); figure(4);subplot(1,3,1);imshow(D);title('斑点噪声'); subplot(1,3,2);imshow(G1);title('斑点噪声均值处理'); subplot(1,3,3);imshow(G2);title('斑点噪声中值处理');四、实验结果与分析分别运用B=imnoise(A,'gaussian',0,0.1)C=imnoise(A,'salt & pepper',0.05)D=imnoise(A,'speckle',0.05);三个函数啊加入不同的噪声,再用I_smooth=imfilter(I_noise,fspecial(‘average’,5))I_smooth=medfilt2(I_noise,[3 3])对加入噪声的图像进行处理,比较不同的处理方式对加入噪声后的图像处理后的清晰度。
遥感图像空间域增强处理实验报告
一、实验名称遥感图像空间域增强处理二、实验目的对图像数据采用各种图形增强算法,提高图像的目视效果,方便人工目视解译、图像分类中的样本选取等,方便以后的图像解译。
学会使用ENVI软件对遥感影像进行分析增强处理,初步掌握各种图像增强方法,并对其结果进行比较,观察增强效果。
三、实验原理空间域增强处理是通过直接改变图像中的单个像元及相邻像元的灰度值来增强图像,包括直方图增强及邻域增强。
直方图增强主要有图像拉伸、图像均衡化以及直方图规定化。
拉伸是最基本的图像处理方法,主要用于改善图像显示的对比度。
如果拉伸后的图像不理想,可以通过直方图均衡化做适当修改。
邻域增强主要通过定义卷积模板对图像进行滤波处理。
卷积滤波是通过消除特定的空间频率来增强图像,可分为低通率波、带通滤波和高通滤波,还有增强图像某些方向特征的方向滤波等。
四、数据来源本次实验所用数据来自于国际数据服务平台;landsat4-5波段30米分辨率TM影像,投影为WGS-84,影像主要为山西省大同市恒山地区,中心纬度:38.90407 中心经度:113.11840。
五、实验过程1、灰度拉伸1)打开并显示TM影像文件,从ENVI 主菜单中,选择File →Open Image File选择影像,点击Load Band 在主窗口加载影像。
2)在图像的主菜单上单击ENHANCE菜单,在下拉菜单中选择INTERECTIVE STRETCHING 菜单,在弹出的对话框的主菜单上单击STRETCH_TYPE菜单。
3)线性拉伸:单击linear,再在STRETCH对应的两个文本框中输入需要拉伸的范围,然后单击对话框上的APPLY按钮,图像显示为线性拉伸后的效果。
如图所示:4) 分段线性拉伸:单击Piecewise linear通过使用鼠标在输入直方图中放置几个点交互地限定,各点之间的部分采用线性拉伸。
如图所示:5)高斯拉伸:选择Stretch_Type>Gaussian.输入拉伸的最小和最大值,要手动地输入所需要的标准差值,选择Options > SetGaussian Stdv。
实验四图像增强
实验四-图像增强信息工程学院实验报告课程名称:数字图像处理班级: 姓名: 学号:一、实验目的1.了解图像增强的目的及意义,加深对图像增强的感性认识,巩固所学理论知识。
2. 掌握图像空域增强算法的基本原理。
3. 掌握图像空域增强的实际应用及MATLAB 实现。
4. 掌握频域滤波的概念及方法。
5. 熟练掌握频域空间的各类滤波器。
6.掌握怎样利用傅立叶变换进行频域滤波。
7. 掌握图像频域增强增强的实际应用及MATLAB 实现。
二、实验步骤及结果分析1. 基于幂次变换的图像增强 程序代码:clear all ; close all ;I{1}=double(imread('fig534b.tif')); I{1}=I{1}/255;figure,subplot(2,4,1);imshow(I{1},[]);hold on I{2}=double(imread('room.tif')); I{2}=I{2}/255;subplot(2,4,5);imshow(I{2},[]);hold on for m=1:2 Index=0;for lemta=[0.5 5] Index=Index+1;F{m}{Index}=I{m}.^lemta;subplot(2,4,(m-1)*4+Index+1),imshow(F{m}{Index},[]) end end成 绩:指导老师(签名):执行结果:图1 幂次变换增强结果实验结果分析:由实验结果可知,当r<1时,黑色区域被扩展,变的清晰;当r>1时,黑色区域被压缩,变的几乎不可见。
2.直方图规定化处理程序代码:clear allclcclose all%0.读图像I=double(imread('lena.tiff'));subplot(2,4,1);imshow(I,[]);title('原图')N=32;Hist_image=hist(I(:),N);Hist_image=Hist_image/sum(Hist_image);Hist_image_cumulation=cumsum(Hist_image);%累计直方图subplot(245);stem(0:N-1,Hist_image);title('原直方图');%1.设计目标直方图Index=0:N-1;%正态分布直方图Hist{1}=exp(-(Index-N/2).^2/N);Hist{1}=Hist{1}/sum(Hist{1});Hist_cumulation{1}=cumsum(Hist{1});subplot(242);stem([0:N-1],Hist{1});title('规定化直方图1');%倒三角形状直方图Hist{2}=abs(2*N-1-2*Index);Hist{2}=Hist{2}/sum(Hist{2});Hist_cumulation{2}=cumsum(Hist{2});subplot(246);stem(0:N-1,Hist{2});title('规定化直方图2');%2. 规定化处理Project{1}=zeros(N);Project{2}=zeros(N);Hist_result{1}=zeros(N);Hist_result{2}=zeros(N);for m=1:2Image=I;%SML 处理(SML,Single Mapping Law 单映射规则 for k=1:NTemp=abs(Hist_image_cumulation(k)-Hist_cumulation{m});[Temp1,Project{m}(k)]=min(Temp); end%2.2 变换后直方图 for k=1:NTemp=find(Project{m}==k); if isempty(Temp) Hist_result{m}(k)=0; elseHist_result{m}(k)=sum(Hist_imag e(Temp)); end endsubplot(2,4,(m-1)*4+3); stem(0:N-1,Hist_result{m}); title(['变换后的直方图',num2str(m)]); %2.3结果图 Step=256/N; for K=1:NIndex=find(I>=Step*(k-1)&I<Step *k);Image(Index)=Project{m}(k); endsubplot(2,4,(m-1)*4+4),imshow(I mage,[]);title(['变换后的结果图',num2str(m)]); end执行结果:原图0.020.040.060.080.100.020.040.060.080.100.020.040.060.08规定化直方图220400.050.10.150.2变换后的直方图1变换后的结果图1020400.020.040.060.080.10.12变换后的直方图2变换后的结果图2图2 直方图规定化实验结果分析:由实验结果可知,采用直方图规定化技术后,原图的直方图逼近规定化的直方图,从而有相应的变换后的结果图1和变换后的结果图2。
空域图像增强报告
实验报告实验课程:光电图像处理姓名:学号:实验地点:指导老师:实验时间:一.实验名称:空间图象增强(一)二. 实验目的1. 熟悉和掌握利用matlab 工具进行数字图像的读、写、显示、像素处理等数字图像处理的基本步骤和流程。
2. 熟练掌握各种空间域图像增强的基本原理及方法。
3. 熟悉通过灰度变换方式进行图像增强的基本原理、方法和实现。
4. 熟悉直方图均衡化的基本原理、方法和实现。
三. 实验原理(一)数字图像的灰度变换1、线性灰度变换令原图像灰度范围由[a,b]线性变换后图像灰度范围[c,d],以便于提升原图像的对比度。
线性灰度变换公式如下:()(,),[(,)](,)(,)d f x y b d c g x y f x y a c a f x y b b a cf x y a >⎧⎪-⎪=-+≤≤⎨-⎪<⎪⎩ (1) 其中,f (x,y)为原始图像,灰度范围为[a,b],g(x,y)为增强后的数字图像,灰度范围为[c,d]。
注:实验中[a,b]可由实际图像来确定,[c,d]可视具体情况人为给定。
2、非线性灰度变换(对数变换或幂律变换选作其一)非线性拉伸不是对图像的灰度值进行扩展,而是有选择地对某一灰度范围进行扩展,其他范围的灰度值则可能被压缩。
常用的非线性变换:对数变换和指数变换。
即对数变换公式为:()(,)log 1(,)g x y c f x y =+幂律(伽马)变换为:(,)(,)g x y cf x y γ=(二)直方图处理对图像2种定义下的直方图统计统计,并分别画出两种定义下的直方图。
直方图均衡化主要用于增强动态范围偏小的图像的反差。
该方法的基本思想是把原始的直方图变换为均匀分布的形状,这样就增加了像素灰度值的动态范围,从而达到增强图像整体对比度的效果。
四. 实验步骤(一)数字图像的灰度变换1、线性灰度变换1)读取一幅对比度低的灰度图像并显示。
2)以m 文件形式编写matlab 代码,实现数字图像的灰度范围由[a,b]到[c,d]的线性拉伸,以便于提升原图像的对比度。
图像增强实验报告
图像增强实验报告篇一:图像处理实验报告——图像增强实验报告学生姓名:刘德涛学号:2010051060021指导老师:彭真明日期:2013年3月31日一、实验室名称:光电楼329、老计算机楼309机房二、实验项目名称:图像增强三、实验原理:图像增强是为了使受到噪声等污染图像在视觉感知或某种准则下尽量的恢复到原始图像的水平之外,还需要有目的性地加强图像中的某些信息而抑制另一些信息,以便更好地利用图像。
图像增强分频域处理和空间域处理,这里主要用空间域的方法进行增强。
空间域的增强主要有:灰度变换和图像的空间滤波。
1.灰度变换灰度变换主要有线性拉伸、非线性拉伸等。
灰度图像的线性拉伸是将输入图像的灰度值的动态范围按线性关系公式拉伸到指定范围或整个动态范围。
令原图像f(x,y)的灰度变化范围为[a,b],线性变换后图像g(x,y)的范围为[a',b'],线性拉伸的公式为:b'?a'g(x,y)?a?[f(x,y)?a] b?a灰度图像的非线性拉伸采用的数学函数是非线性的。
非线性拉伸不是对图像的灰度值进行扩展,而是有选择地对某一灰度范围进行扩展,其他范围的灰度值则可能被压缩。
常用的非线性变换:对数变换和指数变换。
对数变换的一般形式:g(x,y)?a?ln[f(x,y)?1] blnc指数变换的一般形式:g(x,y)?bc[f(x,y)?a]?1(a,b,c用于调整曲线的位置和形状的参数。
)2.图像的空间滤波图像的空间滤波主要有图像的空域平滑和锐化。
图像的平滑是一种消除噪声的重要手段。
图像平滑的低频分量进行增强,同时抑制高频噪声,空域中主要的方法有领域平均、中值滤波、多帧相加平均等方法。
图像锐化能使图像的边缘、轮廓处的灰度具有突变特性。
图像的锐化主要有微分运算的锐化,包括梯度法和拉普拉斯法算子。
四、实验目的:1.熟悉和掌握利用Matlab工具进行数字图像的读、写、显示等数字图像处理基本步骤。
昆明理工大学数字图像处理空域图像增强
昆明理工大学信息工程与自动化学院学生实验报告实验一、空域图像增强一、实验目的1、理解空域图像增强的概念;2、掌握灰度线性变换和非线性变换的图像增强方法及应用;3、掌握灰度直方图均衡化的图像增强方法及应用;4、掌握平滑空域滤波器方法,并会用其来消除图像噪声;5、掌握锐化空域滤波器方法,并会用其来增强图像细节。
二、实验原理及基本技术路线图(方框原理图)术语“空域”指的是图像平面本身。
在空域上,图像处理方法是通过直接对图像像素的处理来实施的。
图像增强是将原来不清晰的画面变得清晰或强调某些关注的特征,抑制非关注的特征,使之改善视觉质量、丰富信息量,加强图像判读和识别效果的图像处理方法。
空域处理方法可分为两种:灰度级变换与空域滤波。
空域技术所使用的对像素的直接操作可用下式表示:()[]),(xg=,yTxf,y其中f(x,y)为输入图像,g(x,y)为输出图像,T是对图像f进行处理的操作符,它定义在像素点(x,y)所指定的空间邻近像区(简称为邻域)内。
定义像素点(x,y)的邻域的主要方法是,使用以(x,y)为中心的方形或矩形像区。
当这样的邻域的中心从左上角原点的开始遍历像素点时,将覆盖图像中不同的像区。
当T应用于每个被遍历的像素点f(x,y)时,便得到在该像素点的输出图像g(x,y)。
在计算g(x,y)时,只使用在(x,y)邻域中的像素。
在处理灰度图像并且当邻域大小为1×1时,T的形式最简单,它成为一个灰度(或亮度)级的变化函数(即,灰度变换)。
此时,g(x,y)的值仅由在(x,y)处的亮度f(x,y)来决定。
由于灰度变换T仅取决于灰度的值,与(x,y)无关,所以T可写成如下的简单形式:()r Ts=,其中,r表示图像f中相应点(x,y)的灰度,s表示图像g中相应点(x,y)的灰度。
灰度变换T通常包括灰度变换增强与直方图增强。
灰度变换增强可以通过改变图象的灰度范围及分布来实现。
在实际应用中,为了突出图像中感兴趣的研究对象,常常要求局部扩展拉伸某一范围的灰度值,或对不同范围的灰度值进行不同的拉伸处理,即分段拉伸。
数字图像处理实验报告 空域图像增强技术
课程名称:实验项目:实验地点:专业班级:学号:学生姓名:指导教师:2012年月日实验一 空域图像增强技术一、 实验目的1结合实例学习如何在视频显示程序中增加图像处理算法;2理解和掌握图像的线性变换和直方图均衡化的原理和应用;3了解平滑处理的算法和用途,学习使用均值滤波、中值滤波和拉普拉斯锐化进行图像增强处理的程序设计方法;4 了解噪声模型及对图像添加噪声的基本方法。
二、 实验原理1 灰度线性变换就是将图像中所有点的灰度按照线性灰度变换函数进行变换。
)],([),(y x f T y x g =⎪⎩⎪⎨⎧<≤+-<≤+-≤≤=255),(]),([),( ]),([),(0 ),(),(y x f b g b y x f b y x f a g a y x f a y x f y x f y x g b a γβαn y m x ,2,1 ,,,2,1==2 直方图均衡化通过点运算将输入图像转换为在每一级上都有相等像素点数的输出图像。
按照图像概率密度函数PDF 的定义:1,...,2,1,0 )(-==L k nn r p k k r 通过转换公式获得:1,...,2,1,0 )()(00-====∑∑==L k n n r p r T s k j k j j j r k k3 均值(中值)滤波是指在图像上,对待处理的像素给定一个模板,该模板包括了其周围的临近像素。
将模板中的全体像素的均值(中值)来代替原来像素值的方法。
4 拉普拉斯算子如下:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--------111181111 拉普拉斯算子首先将自身与周围的8个像素相减,表示自身与周围像素的差异,再将这个差异加上自身作为新像素的灰度。
三、 实验步骤1 启动MA TLAB 程序,对图像文件分别进行灰度线性变换(参考教材57页,例4.1)、直方图均衡化、均值滤波、中值滤波和梯度锐化操作。
添加噪声,重复上述过程观察处理结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、实验名称:空域图像增强
二、实验目的:掌握Matlab语言图像工具箱中空域图像增强的实现
三、实验要求:
在掌握图像灰度调整、直方图修正和图像锐化的指令基础上,编写程序实现图像的灰度变换,直方图均衡和图像锐化的处理
四、实验仪器和设备:计算机,Matlab软件
五、实验原理:
1、亮度变换S=T(r)点对点的变换(灰度级对灰度级的变换)matlab函数:imadjust()
亮度变换的基本函数g=imadjust(f,[low in high in],[low out high out],gamma); low in and high in 参数分别指定输入图像需要映射的灰度空间范围,low out 和high out 参数分别指定输出图像所在的灰度范围。
GAMMA表示曲线的形状,描述输入输出图像之间的关系。
如果GAMMA小于1,则映射的权重趋势向更亮输出,如果GAMMA大于1,则趋向更暗的输出。
默认值为1。
2、直方图均衡化
直方图是多种空间域处理技术的基础,能有效用于图像增强,是实时图像处理的流行工具,直方图均衡化的目的是使图像在整个灰度值动态变化范围内分布均匀化,改善图像的亮度分布状态,增强视觉效果。
直方图均衡化是通过灰度变换将一幅图像转换程另一幅具有均衡性的直方图。
即在每个灰度级上都具有相同的像素点数的过程。
3、空域滤波
手工滤波与函数提供滤波器的比较
六、实验步骤:
1、将待处理图片拷到matlab软件’work’文件夹
2、实行亮度变换
3、对图像进行直方图均衡处理
4、空域滤波
5、记录实验结果并分析
七、实验程序及结果记录:
1、亮度变换
I=imread(‘E:\fig308.tif’);
Imshow(I);
Figure,imhist(I);
J=imadjust(I,[0.5 0.9],[0,1]);
Figure;
imshow(J);
Figure;
imhist(J)
2、直方图均衡化
I=imread(‘E:\fig308.tig’);
J=histea(I);
Imshow(I);
Title(‘原图像’);
Figure;
Imshow(J);
Title(‘直方图均衡化后的图像’);
Figure;
Subplot(1,2,1);
Imhist(I,64);
Title(‘原图像直方图’);
Subplot(1,2,2);
Imhist(J,64);
Title(‘均衡变换后的直方图’);
Subplot(1,2,2);
Imhist(J,64);
Title(‘均衡变换后的直方图’);
2、空域滤波
F=imread(‘E:\fig3016.tif’);
W4=fspecial(‘laplacian’,1);
W8=[1 1 1;-8 1;1 1 1];
F=im2double(f);
G4=f_imfilter(f,w4,’replicate’);
G8=f_imfilter(f,w8,’replicate’);
Figure;
Subplot(1,3,1);
Imshow(f);
Title(‘原图’);
Subplot(1,3,2);
Imshow(g4);
Title(‘中心为-4拉普拉斯的效果’);
Subplot(1,3,3);
Imshow(g8);
Title(‘中心为-8拉普拉斯的效果’);
八、实验结果分析:
亮度变换直方图均衡化可以对图像进行处理,进行空域图像增强。