半导体温差发电技术

合集下载

半导体温差发电技术应用及研究综述

半导体温差发电技术应用及研究综述

半导体温差发电技术应用及研究综述下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!1. 引言近年来,随着能源危机日益严重,绿色环保能源技术备受关注。

温差发电技术及其一些应用

温差发电技术及其一些应用

温差发电技术及其一些应用来源:能源技术2009-5-121 温差发电的原理温差发电是利用两种连接起来的导电体或者半导体的塞贝克效应(Seebeck Effect),将热能转换成电能的一种技术。

由两种不同类型的半导体构成的回路如图1,当装置的一端处于高温状态另一端置于低温状态下,就会在回路中形成电动势:ε = αs (T1-T2)(1)式中:T1为低温度端温度,K;T2为高温端温度,K;αs为所用热电转换材料的塞贝克系数,V/K。

图1 温差发电原理图(点击图片放大)在应用时多个PN结串联起来,构成一个热电转换模块(见图2),目前已有产品面市。

例如图3为Hi-z公司生产的热电转换模块系列,该模块系列能在-20℃到300℃的温度范围内有效地进行热电转换,输出功率为2.5~19W,负载电压为1.65~3.30V。

图2 热电模块结构示意图(点击图片放大)图3 Hi-z生产的热电转换模块系列(点击图片放大)2 热电材料的研究进展热电转换模块转换的效率很大程度上决定于其组成材料的性能,温差发电的电动势不但取决于材料的塞贝克系数α,而且和高低温端间的温差△T和有关,s从而与材料的导热有关,另外输出电流还与材料的导电率有关,所以常用热电转换材料的优值Z评价材料的热电性能:Z=(αs)2σ/λ (2)式中:αs为塞贝克系数,σ为电导率,λ为热导率。

Z的量纲为K-1,研究分析中优值又常采用优值Z和工作温度T的无量纲ZT 表征。

提高材料的优值是研究开发高效热电转换材料的主要方向,通常有以下几种途径:①选择最佳载流子度;②提高载流子迁移率与晶格热导率的比;③改变晶体取向;④改变颗粒尺度使颗粒间既能导电同时声子散射又比较显著,促使颗粒定向分布;⑤选择最佳的工作温度及材料的禁带宽度。

已有的研究资料表明,在室温下热电转换材料的优值只要能大于3,热电效率就可以达到令人较满意的水平并可以推广应用。

目前热电材料的研究主要集中在以下几个方面。

半导体制冷片温差发电原理

半导体制冷片温差发电原理

半导体制冷片温差发电原理半导体材料是半导体制冷片温差发电原理的核心组成部分。

常见的半导体材料包括硅、锗和硒等。

这些材料具有特殊的电导性,它们的导电性质是介于导体和绝缘体之间的,即在一定温度下,它们既能导电,也能断电。

当一个半导体材料的一端温度高于另一端时,由于温度差异,材料中的电子在移动过程中受到阻碍。

这种阻碍导致电子流向被加热的一端,从而导致电流的产生。

这种产生电流的现象被称为热电效应。

半导体制冷片的结构包括P型半导体和N型半导体。

在P型半导体中,杂质的掺入使得电子的浓度较低,电空穴的浓度较高。

而在N型半导体中,杂质的掺入使得电子的浓度较高,电空穴的浓度较低。

当两种不同类型的半导体材料连接时,形成一个电势差,这个电势差被称为PN结。

当制冷片的一端加热时,热电效应使得热电流从冷端流向热端。

换句话说,由于温度差异,热能通过电子的热电效应转化为电能。

这产生的电能可以用来驱动其他设备工作,如发电机、电池等。

而当制冷片的一端冷却时,热电效应将变为反向流动,即电流会从热端流向冷端。

半导体制冷片温差发电原理可以应用于多种场景。

例如,在蓄电池中,可以利用太阳能或人体发热产生的热能来产生电能,从而延长蓄电池的使用寿命。

此外,在一些微型设备中,如计算机芯片、传感器和手表等,可以应用半导体制冷片温差发电原理来为设备供电和散热。

总之,半导体制冷片温差发电原理是一种利用温度差异产生电能的技术。

通过半导体材料的热电效应,热能可以转化为电能,从而实现对温度差异的直接利用。

这种技术在能源节约和环境保护方面具有广阔的应用前景。

温差能发电原理

温差能发电原理

温差能发电原理
温差能发电的原理是基于热电效应,热电效应是指当两种不同金属(或半导体)的接合处受到温度差异时,将会产生电动势,这个效应被称为塞贝克效应,并且是由于电子在两种金属之间的热运动差异而产生的,温差发电利用这种效应将温度差异转换成电能。

温差能发电原理如下:首先,将两种不同金属(或半导体)连接在一起,这被称为热电偶。

然后,将热电偶的一端暴露在高温环境中,将另一端暴露在低温环境中。

由于高温和低温之间存在明显的温度差异,因此在两个金属之间产生了一个电动势,即温差发电效应。

如果将热电偶的两端连接到一个电路中,就可以将电动势转化为电能,从而实现温差发电。

温差发电的原理是基于能带理论,其关键在于不同材料之间的电子能带结构。

材料的电子能带决定了其导电性能,能够产生热电效应的材料必须具有不同的电子能带结构。

在温度差异下,电子将从高温一侧向低温一侧运动,产生一个电动势。

在实际应用中,为了提高温差发电的效率,通常采用多个热电偶组成的热电堆来实现。

热电堆由多个热电偶串联组成,形成一个电压叠加的结构,可以将电动势累加起来,从而提高输出电压和功率。

此外,还可以采用一些技术手段,如热对流控制、热辐射控制等来提高温差效率。

总之,温差发电是一种将温度差异转换为电能的技术,其原理基于热电效应。

通过使用不同材料之间的热电偶组成的热电堆,可以将电动势累加起来,提高输出电压和功率。

虽然温差发电的效率较低,但其具有长寿命、可靠性高等优点,在某些特定的应用领域有一定的发展前景。

温差发电半导体

温差发电半导体

温差发电半导体
摘要:
1.温差发电半导体的概念和原理
2.温差发电半导体的应用领域
3.我国在温差发电半导体技术方面的研究进展
4.我国在温差发电半导体产业方面的挑战与机遇
5.结论与展望
正文:
温差发电半导体是一种能够将温差转换为电能的材料,其原理基于热电效应。

当两种不同材料的接触处存在温差时,会产生一个电势差,从而产生电流。

温差发电半导体材料主要包括碲化铋、碲化镉等。

温差发电半导体在多个领域具有广泛的应用前景。

首先,它可以用于制作热电发电机,将环境中的温差转换为电能,为小型电子设备、传感器等供电。

其次,温差发电半导体还可应用于汽车尾气废热回收系统、工业余热回收等领域,有助于提高能源利用效率。

此外,航空航天、医疗设备、通信基站等也对温差发电半导体有较高的需求。

我国在温差发电半导体技术方面取得了一定的研究成果。

我国科研团队已经成功研发了高性能碲化铋基温差发电半导体材料,并已申请了多项专利。

此外,我国还积极开展温差发电半导体器件的研究,以提高器件的性能和稳定性。

然而,我国在温差发电半导体产业方面仍面临一些挑战。

首先,高质量温
差发电半导体材料的制备技术和设备主要掌握在国外企业手中,对我国的技术引进和产业发展造成一定的制约。

其次,我国在温差发电半导体器件的设计、制造和应用方面尚处于初级阶段,需要进一步加强研发投入和人才培养。

总之,温差发电半导体技术具有广泛的应用前景和巨大的市场潜力。

半导体温差发电技术

半导体温差发电技术

半导体温差发电技术半导体温差发电技术,它的工作原理是在两块不同性质的半导体两端设置一个温差,于是在半导体两端就产生了直流电压。

温差半导体发电有着无噪音、寿命长、性能稳定等特点。

可在零下40摄氏度的寒冷环境中迅速启动,因此在实际中得到越来越广泛的应用。

温差发电是一种新型的发电方式,利用西伯克效应将热能直接转换为电能。

以半导体温差发电模块制造的半导体发电机,只要有温差存在即能发电。

工作时无噪音、无污染,使用寿命超过十年,免维护,因而是一种应用广泛的便携电源。

半导体温差发电机,目前主要用于油田、野外、军事等领域。

该项目的另一市场化领域在于将发电装置用于太阳能、地热、工业废能等的利用,使热能直接转化为电能。

另外,半导体发电模块体积小,重量轻,便于携带,可广泛用于小家电制造、仪器仪表、玩具及旅游业。

随着保护环境、节约能源的呼声越来越高、利用温差发电可能是发展大方向、从小型器件到大型电站,将越来越多地把实验室理论应用到实践中去。

目前国内市场上,最新开发的半导体温差发电组件,规格40×40×4毫米,其内在0.09欧姆以下,其内阻小、耐高温、长寿命。

完全符合开发温差发电机的需要。

若能使组件两面保持温差摄氏60度,则可发出电压3.5V,电流3A--5A,温差减小电压电流也会随之减小。

使用时注意,温差发电组件的两面与金属散热片之间,最好涂上一层导热硅脂,以利于散热,减小热阻。

另外注意,温差发电组件受热要均匀,不能直接用明火烤发电组件。

要使发电组件平稳贴在高温物体表面,高温热面温度不能超过180度。

其冷面必须加装金属散热片,并采取风冷、水冷、油冷或其它冷却措施,确保能够把热面传过来的热量即时带走,以保持发电组件两面的温差,提高发电效果。

Welcome !!! 欢迎您的下载,资料仅供参考!。

半导体温差发电转换效率研究

半导体温差发电转换效率研究

- 108 -第4期2021年2月No.4February,20210 引言半导体温差发电利用了塞贝克效应(Seebeck Effect )直接将热能转换为电能,在发电时无须先将热能转化为机械能再由机械能转化为电能的间接转换过程,整个发电装置没有活动的机械部分,只要半导体PN 结两端存在温度差就能输出电能,具有无噪音、维护成本低、长寿命等优点,逐渐受到人们的重视[1-5]。

通过选择合适的半导体材料种类,半导体温差发电单元可以在很宽的温度范围内(300K~ 1 400K )实现热能到电能的直接转换。

但由不同半导体材料和装置结构组成的温差发电组件,在相同的温差场条件下,发电组件的输出功率、输出电压、输出电流、稳定性等组件性能参数都存在着较大差异。

因此,优化半导体温差发电组件,提高温差发电组件热电转换效率,探究如何发挥热电组件性能有着重要的现实意义[3-5]。

本文将以半导体温差发电原理为基础,从理论上推导温差发电效率公式并分析其影响因素,最后进行实验探究与验证。

1 半导体温差发电原理塞贝克效应的实质在于两种金属或半导体材料接触时产生了接触电势差,半导体的接触电势差远大于金属导体,因此温差发电的电动势单元一般采用半导体材料制成。

如图1所示,半导体单元从温度为高温热源处吸热,其中部分热量转换为电能向负载输出,另一部分热量向温度为低温热源排放。

在此过程中产生的温差电动势可由(1)式确定。

∆U =αp ,n (T 1-T 2) (1)其中αp ,n 为由半导体材料性质所决定的相对塞贝克系数。

高温端的吸热和低温端的放热可由(2)式描述[3]。

' ' 21,1022,201212p n p nQ IT λT I r Q IT λT I r­°°®°°¯αα (2)基金项目:国家级大学生创新创业训练计划项目;项目名称:影响半导体温差发电输出特性的关键因素研究;项目编号:201910649024。

半导体温差发电原理

半导体温差发电原理

半导体温差发电原理半导体温差发电是一种利用温差产生电能的技术。

它是基于热电效应的原理,通过将两种不同材料的半导体连接在一起,利用它们在温差作用下产生的电压差,实现能量的转换。

这项技术在能源领域具有重要的应用前景,可以用于自动化控制系统、传感器、微型制冷设备等领域。

半导体温差发电的原理是基于热电效应。

热电效应是指当两种不同材料的导电性能不同时,当它们的一端受热而另一端冷却时,会产生电压差。

这个现象被称为塞贝克效应。

塞贝克效应是热电效应的一种,它是由于材料内部的载流子在受热作用下产生迁移而形成的。

在半导体温差发电装置中,通常会使用两种不同的半导体材料,它们分别被称为P型半导体和N型半导体。

P型半导体中的载流子主要是正电荷,而N型半导体中的载流子主要是负电荷。

当这两种材料连接在一起时,它们的界面会形成一个电势差。

当一端受热而另一端冷却时,热量会导致P型半导体中的载流子向N型半导体迁移,从而在界面处产生电势差,这就是塞贝克效应的产生。

利用这种原理,可以设计出各种形式的半导体温差发电装置。

最常见的是热电偶,它由一对P型和N型半导体材料组成。

当一端受热时,另一端冷却,就会产生电势差,从而产生电流。

这种装置可以用于测量温度,也可以用于一些低功率电子设备的供电。

除了热电偶,还可以利用半导体温差发电原理设计出更复杂的装置,比如热电模块。

热电模块由多个热电偶组成,可以实现更大功率的发电。

这种装置在一些需要小型化、高效能的应用中具有重要的意义,比如在航天器、卫星等领域。

总的来说,半导体温差发电原理是一种利用温差产生电能的重要技术。

它基于热电效应,通过将两种不同材料的半导体连接在一起,利用它们在温差作用下产生的电压差,实现能量的转换。

这项技术在能源领域具有广阔的应用前景,可以用于自动化控制系统、传感器、微型制冷设备等领域。

随着科学技术的不断发展,相信半导体温差发电技术将会得到更广泛的应用,为人类社会的可持续发展做出更大的贡献。

半导体温差发电机原理及制作

半导体温差发电机原理及制作

编辑:文章来源:网络我们无意侵犯您的权益,如有侵犯请[联系我们]半导体温差发电机原理及制作笔者以蜂窝煤热水炉的进出水为温差源,制作了一台半导体温差发电装置,原理框图见上图。

半导体温差发电是一种将温差能(热能)转化成电能的固体状态能量转化方式。

发电装置无化学反应和机械运动,无噪声、无污染、无磨损、寿命长。

它的核心部件是半导体温差电偶模块(因多用于制冷,亦称半导体致冷片,电子元器件市场大多有售)。

将它的两根引出线连接到万用表的电压或电流挡,用体温传导到它的一个面,使其两面形成温差,指针就会偏转,实实在在的温差发电就展现在你的面前。

但是,目前半导体温差电偶模块热电转化效率低,近年有研究表明最高不到5%,这是半导体温差发电实用化的最大障碍。

制作半导体温差发电装置的第一件事是选择温差源。

供一个家庭利用的温差源十分有限,可说说也挺多。

一是炊事温差,烧天然气、石油液化气、煤炭、沼气等等产生高温;二是空调、暖气温差;三是地温温差,庭院井水、溪水与地表的温差;四是太阳能温差,用太阳能热水器、太阳灶获得热量;五是冬季冰雪与室内、地下的温差,等等。

但是,利用起来必须满足方便获得、经济、持续和有足够的能量的要求。

实验表明,对目前通常的半导体温差发电模块每提供摄氏1度的温差可相应产生约电压,可见温差小就没有实际利用价值。

本人之所以选择蜂窝煤热水炉的进出水为温差源,是因为炉火昼夜不熄,炉灶热水与进水(自来水)的温差大,夏季摄氏60多度,冬季可达摄氏90多度,且比较稳定。

同时利用自来水的压力解决了能量无耗输送的难题,只要家庭成员洗菜、洗碗、洗手、洗脸、洗澡等一用热水,就能获得理想的温差。

特别需要强调的是,半导体温差电偶模块是良好的导热体,如果两面没有高低温两种能量的输送,温差就不能维持,保温做得再好,模块两面的温度接近也是枉然。

这是许多失败案例的根本原因。

本发电装置用的是“过路水”,能耗视同为零,同时对热水的降温也不十分明显。

新型半导体温差发电技术在实验室中的实现

新型半导体温差发电技术在实验室中的实现

新型半导体温差发电技术在实验室中的实现温差半导体发电技术的原理主要来源于塞贝克(Seebeck)效应,将P型和N型两种不同类型的热电材料(P型是富空穴材料,N型是富电子材料)一端相连形成一个PN结,置于高温状态,另一端形成低温,则由于热激发作用,P(N)型材料高温端空穴(电子)浓度高于低温端,因此在这种浓度梯度的驱动下,空穴和电子就开始向低温端扩散,从而形成电动势,这样热电材料就通过高低温端间的温差完成了将高温端输入的热能直接转化成电能的过程。

单独的一个PN结可形成的电动势很小,而如果将很多这样的PN结串联起来,就可以得到足够高的电压,成为一个温差发电器。

我们选取热电转换效率较高的材料,进行实验,具体实验如下所述。

一、实验的物理模型每种热电材料在一定的温度变化范围内具有较高的热电转换效率,我们在选择实验材料的时候首先考虑了材料的优值系数,最终我们选用Bi2Te3,因为在中低温区域,它的优值系数的平均值高且稳定。

实验模型由1对碲化铋基p-n热电元件、铜制导电片(即电极)和导热基底组成温差发电模块物理模型,结构如图1所示,更高的输出功率可由这样的单元串联得到。

p型和n型热电元件均采用长宽高分别为0.7mm、0.7mm、1.2mm的立方体,2种热电元件由铜制导电片(.4mm)串联联结,两原件间隔1mm,上、下陶瓷导热基底(1mm)起绝缘及导热作用,热源和热沉的温度分别为tn=100℃(沸水加热)和tc=0℃(冰水混合物水冷系统)。

二、实验测试为验证物理模型,本文建立了简易的实验测试装置。

该装置包含比例积分微分(PID)热电器件、电加热板、可调负载电阻、循环水冷却单元(包括储水箱、循环泵、热沉(水冷头))、热电偶和测温仪表、电压计和电流计、导电线路等,其基本结构如图2所示,热电器件采用商用TEHP1-12635-1.2 型,通过调节冷却水的流量实现冷端温度的控制。

设置数值计算中单元模块几何构型与商用器件的相同,单元模块输出功率的计算结果乘以商用器件中的单元数量(126 对)即为实际输出功率。

废热半导体温差发电技术的研究与开发

废热半导体温差发电技术的研究与开发

废热半导体温差发电技术的研究与开发1. 本文概述随着全球能源需求的不断增长和环境保护的日益重视,可再生能源的利用成为了研究的热点。

废热半导体温差发电技术作为一种能够将低品位热能直接转换为电能的新型能源转换技术,受到了广泛关注。

本文旨在研究和开发废热半导体温差发电技术,以实现高效、环保的能源利用。

本文将介绍废热半导体温差发电技术的基本原理和特点,包括热电效应、温差发电器的结构和工作原理等。

本文将分析废热半导体温差发电技术的关键影响因素,如热电材料的性能、温差发电器的结构设计等,并探讨如何优化这些因素以提高发电效率。

接着,本文将介绍废热半导体温差发电技术的应用领域,包括工业废热回收、汽车尾气余热利用、太阳能热发电等。

通过实际案例分析,本文将展示废热半导体温差发电技术在各个领域的应用潜力和优势。

2. 废热半导体温差发电技术原理废热半导体温差发电技术是一种利用热能差异转化为电能的技术。

其核心原理基于热电效应,特别是塞贝克效应(Seebeck Effect)和珀尔帖效应(Peltier Effect)。

这种技术主要利用了半导体材料在温度梯度下产生的电势差,从而实现了热能到电能的转换。

塞贝克效应是指当两种不同的导体或半导体连接成一个闭合回路,如果两个接点的温度不同,则回路中就会产生电流。

废热半导体温差发电系统利用这一效应,通过将高温热源和低温热源分别连接到半导体材料的两端,形成温度梯度,从而在材料中激发电子运动,产生电势差和电流。

半导体材料的选择对于温差发电效率至关重要。

理想的半导体材料应具备高塞贝克系数、高热稳定性和良好的电导率。

同时,为了优化系统性能,还需要对材料的微观结构、载流子浓度和能带结构进行精确调控。

除了半导体材料的选择,温差发电系统的热设计和热管理也是关键。

有效的热设计能够确保热量在系统中高效传递,降低热损失,提高温差发电效率。

热管理技术还能够防止系统过热,保证系统稳定可靠运行。

废热半导体温差发电技术不仅适用于大型工业废热回收,还可以应用于汽车尾气、太阳能集热器等领域。

半导体温差发电

半导体温差发电

半导体温差发电
半导体温差发电(或称温差电池)是一种能够将温差能转化为电能的技术。

它利用半导体材料的特性,在两个不同温度的热源之间形成温差,从而产生电能。

具体来说,半导体温差发电器件通常由两个不同的半导体材料构成。

其中一个材料被加热,另一个材料被冷却。

由于半导体材料的特性,两个材料之间会形成由电荷搬运而产生的电势差。

这个电势差可以被接在外部电路上,形成电能输出。

相比于传统的热电发电技术,半导体温差发电有以下几个优点:体积小、效率高、响应速度快、寿命长。

它可以应用于各种场合,如碳化物炉、节能采暖、太阳能发电、核能发电等。

值得注意的是,目前半导体温差发电的效率还比较低,研究人员正在努力探索新的材料和技术以提高效率。

半导体温差发电器件的应用及其市场调研(doc9页)

半导体温差发电器件的应用及其市场调研(doc9页)

半导体温差发电器件的应用及其市场调研(doc9页)半导体温差发电器件的应用及其市场调研(doc 9页)部门: xxx时间: xxx整理范文,仅供参考,可下载自行编辑半导体温差发电器件的应用及市场调研学生:指导老师:(厦门理工学院机械工程系,厦门 361024)【摘要】:随着工业化的高速发展,全球性的环境恶化和能源危机正威胁着人类的长期稳定发展,各国政府对绿色环保技术的研究与利用给予了前所未有的关注和支持。

半导体温差发电是一种全固态能量转换方式,无需化学反应或流体介质,因而在发电过程中具有无噪音、无磨损、无介质泄露、体积小、重量轻、移动方便、使用寿命长等优点,因此备受关注。

本文调研了目前半导体温差发电器件的发展现状以及其性能应用,分析了其未来走势,以及提出了一些设想。

【关键词】:半导体温差发电现状设想1 前言温差发电又叫热电发电,是一种绿色环保的发电方式。

温差发电技术具有结构简单,坚固耐用,无运动部件,无噪声,使用寿命长等优点。

可以合理利用太阳能、地热能、工业余热废热用寿命长等优点。

可以合理利用太阳能、地热能、工业余热废热等低品位能源转化成电能。

温差发电技术的研究最早开始于20世纪40年代[1]。

由于其显著的优点,温差发电在航空、军事等领域得到了广泛的应用,美国,前苏联先后研发了数千个放射性同位素或核反应堆温差发电器用作空间、海洋装置的电源。

随着化石能源的日趋枯竭,美国、日本、欧盟等发达国家更加重视温差发电技术在民用领域的研究,并取得了长足的进展。

国内温差发电方面的研究,主要集中在发电器理论和热电材料制备方面的研究,旨在为温差发电器的优化提供理论指导和制备性能优良的热电材料,虽然我国是世界上最大的半导体究还很欠缺,因此研究温差发电有着非常现实的意义。

本调研报告的研究内容就是针对市场的一些温差发电有关公司的产品价格等相关事项进行了调研。

2 半导体温差发电器件的工作原理及应用温差发电是基于热电材料的塞贝克效应发展起来的一种发电技术,将P型和N型两种不同类型的热电材料(P型是富空穴材料,N型是富电子材料)一端相连形成一个PN 结如图1,置于高温状态,另一端形成低温,则由于热激发作用,P(N)型材料高温端空穴(电子)浓度高于低温端,因此在这种浓度梯度的驱动下,空穴和电子就开始向低温端扩散,从而形成电动势,这样热电材料就通过高低温端间的温差完成了将高温端输入的热能直接转化成电能的过程。

温差发电半导体

温差发电半导体

温差发电半导体
【原创版】
目录
1.温差发电半导体的定义和原理
2.温差发电半导体的应用领域
3.温差发电半导体的发展前景
正文
一、温差发电半导体的定义和原理
温差发电半导体,顾名思义,是一种能够利用温差产生电能的半导体材料。

其原理基于热电效应,即当两种不同材料的温度差存在时,会产生电子流动,从而形成电流。

温差发电半导体材料在这个过程中起到关键作用,它需要具备较高的热电性能,即在温差存在时能产生较大的热电势差。

二、温差发电半导体的应用领域
温差发电半导体在众多领域具有广泛的应用前景。

以下列举几个典型的应用领域:
1.绿色能源:温差发电半导体可应用于废热回收系统,将工业生产、汽车尾气等排放的废热转化为电能,从而提高能源利用效率。

2.便携式电子设备:温差发电半导体可为便携式电子设备提供自给电能,如可穿戴设备、便携式电源等。

3.航天与军事领域:温差发电半导体在航天器、军事设施等特殊环境中具有重要应用价值,可为这些设备提供稳定的电源。

三、温差发电半导体的发展前景
随着科技的发展和人类对能源需求的增长,温差发电半导体在能源领域的应用将越来越广泛。

同时,研究和开发高效热电材料也是温差发电半
导体发展的关键。

目前,我国已经在温差发电半导体领域取得了一定的研究成果,但在提高热电性能、降低成本等方面仍需进一步努力。

总之,温差发电半导体作为一种绿色、高效的能源技术,具有广泛的应用前景和发展潜力。

新型半导体温差发电技术在实验室中的实现

新型半导体温差发电技术在实验室中的实现

048作者简介:王 伟(1996—),男,河北唐山人,本科,研究方向:控制工程。

通信作者:王湘江,教授,博士,南华大学创新创业学院院长。

新型半导体温差发电技术在实验室中的实现温差半导体发电技术的原理主要来源于塞贝克(Seebeck)效应,将P 型和N 型两种不同类型的热电材料(P 型是富空穴材料,N 型是富电子材料)一端相连形成一个PN 结,置于高温状态,另一端形成低温,则由于热激发作用,P(N)型材料高温端空穴(电子)浓度高于低温端,因此在这种浓度梯度的驱动下,空穴和电子就开始向低温端扩散,从而形成电动势,这样热电材料就通过高低温端间的温差完成了将高温端输入的热能直接转化成电能的过程。

单独的一个PN 结可形成的电动势很小,而如果将很多这样的PN 结串联起来,就可以得到足够高的电压,成为一个温差发电器。

我们选取热电转换效率较高的材料,进行实验,具体实验如下所述。

一、实验的物理模型每种热电材料在一定的温度变化范围内具有较高的热电转换效率,我们在选择实验材料的时候首先考虑了材料的优值系数,最终我们选用Bi2Te3,因为在中低温区域,它的优值系数的平均值高且稳定。

实验模型由1对碲化铋基p-n 热电元件、铜制导电片(即电极)和导热基底组成温差发电模块物理模型,结构如图1所示,更高的输出功率可由这样的单元串联得到。

p 型和n 型热电元件均采用长宽高分别为0.7mm、0.7mm、1.2mm 的立方体,2种热电元件由铜制导电片(.4mm)串联联结,两原件间隔1mm,上、下陶瓷导热基底(1mm)起绝缘及导热作用,热源和热沉的温度分别为tn=100℃(沸水加热)和tc=0℃(冰水混合物水冷系统)。

二、实验测试为验证物理模型,本文建立了简易的实验测试装置。

该装置包含比例积分微分(PID)热电器件、电加热板、可调负载电阻、循环水冷却单元(包括储水箱、循环泵、热沉(水冷头))、热电偶和测温仪表、电压计和电流计、导电线路等,其基本结构如图2所示,热电器件采用商用TEHP1-12635-1.2 型,通过调节冷却水的流量实现冷端温度的控制。

半导体温差发电技术及在船舶中的应用探讨

半导体温差发电技术及在船舶中的应用探讨

第17卷 第1期 中 国 水 运 Vol.17 No.1 2017年 1月 China Water Transport January 2017收稿日期:2016-11-20作者简介:郭江荣(1964-),男,宁波大学海运学院,副教授。

研究方向为船舶能源利用与机电控制。

申俊锋(1996-),男,宁波大学海运学院,轮机工程本科生。

基金项目:浙江省教育厅科研计划项目,项目编号:Y201121006。

半导体温差发电技术及在船舶中的应用探讨郭江荣,申俊锋(宁波大学海运学院,浙江 宁波 315211)摘 要:半导体温差发电机的发电原理是通过全固态对能量进行转换的一种方式,不需要任何的流体介质或者化学反应,其特点是尺寸小、噪音低、使用寿命长。

本文介绍了半导体温差发电技术基本原理及研究现状。

分析了温差发电技术的基本元件及特点,阐述了船舶柴油机大温差余热回收的特点。

在此基础上对分析了半导体热电材料最佳工作温度区间特性。

探讨了温差发电技术在船舶中应用的可行性,并提出了优化方案。

关键词:温差发电;废热回收;塞贝克效应中图分类号:TM911 文献标识码:A 文章编号:1006-7973(2017)01-0106-04一、温差发电技术的基本原理 1.塞贝克效应如图下图1所示,A、B 这两种不相同的材料在工作的过程中所形成的回路,各接点存在温差时,回路中产生电流,这就是塞贝克(Seebeck)效应。

图1 塞贝克(Seebeck)效应示意图如果接头1与2的温度不同,分别是T 1和T 2,且 (T 1>T 2)。

导体A 开路的位置将会出现一个电位差,这就是塞贝克电压。

其数值为)(21T T V AB XY −∗=Δα (1)如果两个接头之间的温差相差不远,那么该常数可作为这两个导体的塞贝克系数,其具有线性,即AB α为常数。

即XY AB dV =α/dT (2)一般情况下塞贝克系数这个数值是相对较小的,因此更经常使用的单位是u V /K 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

半导体温差发电技术
(总2页)
-CAL-FENGHAI.-(YICAI)-Company One1
-CAL-本页仅作为文档封面,使用请直接删除
半导体温差发电技术
半导体温差发电技术,它的工作原理是在两块不同性质的半导体两端设置一个温差,于是在半导体两端就产生了直流电压。

温差半导体发电有着无噪音、寿命长、性能稳定等特点。

可在零下40摄氏度的寒冷环境中迅速启动,因此在实际中得到越来越广泛的应用。

温差发电是一种新型的发电方式,利用西伯克效应将热能直接转换为电能。

以半导体温差发电模块制造的半导体发电机,只要有温差存在即能发电。

工作时无噪音、无污染,使用寿命超过十年,免维护,因而是一种应用广泛的便携电源。

半导体温差发电机,目前主要用于油田、野外、军事等领域。

该项目的另一市场化领域在于将发电装置用于太阳能、地热、工业废能等的利用,使热能直接转化为电能。

另外,半导体发电模块体积小,重量轻,便于携带,可广泛用于小家电制造、仪器仪表、玩具及旅游业。

随着保护环境、节约能源的呼声越来越高、利用温差发电可能是发展大方向、从小型器件到大型电站,将越来越多地把实验室理论应用到实践中去。

目前国内市场上,最新开发的半导体温差发电组件,规格40×4 0×4毫米,其内在0.09欧姆以下,其内阻小、耐高温、长寿命。

完全符合开发温差发电机的需要。

若能使组件两面保持温差摄氏60
度,则可发出电压3.5V,电流3A--5A,温差减小电压电流也会随之减小。

使用时注意,温差发电组件的两面与金属散热片之间,最好涂上一层导热硅脂,以利于散热,减小热阻。

另外注意,温差发电组件受热要均匀,不能直接用明火烤发电组件。

要使发电组件平稳贴在高温物体表面,高温热面温度不能超过180度。

其冷面必须加装金属散热片,并采取风冷、水冷、油冷或其它冷却措施,确保能够把热面传过来的热量即时带走,以保持发电组件两面的温差,提高发电效果。

相关文档
最新文档