基于matlab的数字图像处理常用函数
matlab的histeq函数
matlab的histeq函数MATLAB的histeq函数是一种用于图像处理的直方图均衡化函数。
该函数能够将图像的像素值进行均衡化,使得图像的整体亮度变化更加平滑、细腻。
在图像处理、计算机视觉、数字图像处理等领域中,histeq函数是非常重要的一种函数。
在使用histeq函数时,用户需要先将指定图像读取到MATLAB中。
可以通过imread函数将指定图片读取到MATLAB中,代码如下:img=imread('image.jpg');其中,’image.jpg‘指定了图片的路径和名称,使用时需要自定义。
读取图片后,用户可以对图像进行一系列操作,如灰度化处理、自适应对比度增强等。
这里介绍直方图均衡化的操作。
直方图均衡化的过程可以使图像中的灰度值分布呈现更加均匀的状态,因而可以增强图像的亮度和对比度。
直方图均衡化的原理非常简单,主要是通过将像素的灰度值进行均衡化处理,使像素的灰度值分布更加平衡。
在MATLAB中实现直方图均衡化的方法是使用histeq函数,该函数的基本语法如下:out=histeq(in)其中,in是待处理的输入图片,out是经过处理的输出图片。
histeq函数的使用方法非常简单,只需要输入待处理的图片即可。
不过,用户也可以通过一系列可选参数来对函数进行更细致的控制,使其具有更好的适用性。
histeq函数支持的可选参数主要包括以下几个方面:1、灰度级别的调整可以通过在函数中添加灰度级别参数,来调整输出图片的灰度级别。
在MATLAB中,默认的灰度级别是256,该参数可以通过在函数中添加histeq(in,n)来设置。
在该函数中,n是灰度级别的数量。
可以通过将n设为256来保持默认状态,或调整成更小的数字,使输出图片的色调更加细腻。
2、调整灰度分布在histeq函数中,可以通过调整灰度分布参数来控制输出图片的灰度值分布。
该参数可以使用一个由256个元素组成的向量表示。
该向量中的每一个元素对应一个灰度值,每个元素表示输出图片中该灰度值相应的像素数占比。
MATLAB图像处理函数大全
Matlab图像处理函数大全目录图像增强 (3)1. 直方图均衡化的Matlab 实现 (3)1.1 imhist 函数 (3)1.2 imcontour 函数 (3)1.3 imadjust 函数 (3)1.4 histeq 函数 (4)2. 噪声及其噪声的Matlab 实现 (4)3. 图像滤波的Matlab 实现 (4)3.1 conv2 函数 (4)3.2 conv 函数 (5)3.3 filter2函数 (5)3.4 fspecial 函数 (6)4. 彩色增强的Matlab 实现 (6)4.1 imfilter函数 (6)图像的变换 (6)1. 离散傅立叶变换的Matlab 实现 (6)2. 离散余弦变换的Matlab 实现 (7)2.1. dct2 函数 (7)2.2. dict2 函数 (8)2.3. dctmtx函数 (8)3. 图像小波变换的Matlab 实现 (8)3.1 一维小波变换的Matlab 实现 (8)3.2 二维小波变换的Matlab 实现 (9)图像处理工具箱 (11)1. 图像和图像数据 (11)2. 图像处理工具箱所支持的图像类型 (12)2.1 真彩色图像 (12)2.2 索引色图像 (13)2.3 灰度图像 (14)2.4 二值图像 (14)2.5 图像序列 (14)3. MATLAB图像类型转换 (14)4. 图像文件的读写和查询 (15)4.1 图形图像文件的读取 (15)4.2 图形图像文件的写入 (16)4.3 图形图像文件信息的查询imfinfo()函数 (16)5. 图像文件的显示 (16)5.1 索引图像及其显示 (16)5.2 灰度图像及其显示 (16)5.3 RGB 图像及其显示 (17)5.4 二进制图像及其显示 (17)5.5 直接从磁盘显示图像 (18)图像处理函数 (18)图像处理函数详解——strel (18)图像处理函数详解——roipoly (19)图像处理函数详解——roifilt2 (20)图像处理函数详解——roifill (20)图像处理函数详解——roicolor (21)matlab图像处理函数详解——rgb2gray (22)Matlab图像处理函数:regionprops (22)图像处理函数详解——padarray (26)图像处理函数详解——nlfilter (27)图像处理函数详解——montage (27)函数详解——mat2gray (28)图像处理函数详解——imclose (29)图像处理函数详解——imopen (29)图像处理函数详解——imerode (30)图像处理函数详解——imdilate (30)图像处理函数详解——imresize (31)图像处理函数详解——imnoise (32)图像处理函数详解——imhist (32)图像处理函数详解——imfinfo (33)图像处理函数详解——imcomplement (34)图像处理函数详解——imapprox (35)图像处理函数详解——imadjust (35)图像处理函数详解——imadd (36)图像处理函数详解——im2uint8 (36)图像处理函数详解——im2bw (37)图像处理函数详解——histeq (37)图像处理函数详解——dither (38)图像处理函数详解——conv2 (38)图像处理函数详解——colfilt (39)图像处理函数详解——bwperim (39)图像处理函数详解——bwlabel (40)图像处理函数详解——bwareaopen (41)图像增强1. 直方图均衡化的Matlab 实现1.1 imhist 函数功能:计算和显示图像的色彩直方图格式:imhist(I,n)imhist(X,map)说明:imhist(I,n) 其中,n 为指定的灰度级数目,缺省值为256;imhist(X,map) 就算和显示索引色图像 X 的直方图,map 为调色板。
matlab数字图像处理函数大全
Import, Export, and ConversionDisplay and ExplorationGeometric Transformation, Spatial ReferencingImage EnhancementImage AnalysisRead image from graphics fileWrite image to graphics fileInformation about graphics fileRead metadata from National Imagery Transmission Format (NITF) file Read image from NITF fileRead metadata from DPX fileRead DPX imageRead metadata from header file of Analyze 7.5 data setRead image data from image file of Analyze 7.5 data setRead metadata from Interfile fileRead images in Interfile formatAnonymize DICOM fileGet or set active DICOM data dictionaryDisplay DICOM file structureRead metadata from DICOM messageFind attribute in DICOM data dictionaryRead DICOM imageGenerate DICOM unique identifierWrite images as DICOM filesRead high dynamic range (HDR) imageWrite Radiance high dynamic range (HDR) image fileCreate high dynamic range imageRender high dynamic range image for viewingInterface for image I/OCheck if file is R-SetOpen R-Set fileCreate reduced resolution data set from image fileConvert grayscale or binary image to indexed imageConvert indexed image to grayscale imageConvert matrix to grayscale imageConvert RGB image or colormap to grayscaleConvert indexed image to RGB imageConvert label matrix into RGB imageConvert Bayer pattern encoded image to truecolor imageBinarize image by thresholdingQuantize image using specified quantization levels and output values Multilevel image thresholds using Otsu's methodAdaptive image threshold using local first-order statisticsGlobal histogram threshold using Otsu's methodConvert image to binary image, based on thresholdGlobal image threshold using Otsu's methodConvert grayscale image to indexed image using multilevel thresholdingConvert image to double precisionConvert image to 16-bit signed integersConvert image to Java buffered imageConvert image to single precisionConvert image to 16-bit unsigned integersConvert image to 8-bit unsigned integersCreate checkerboard imageCreate head phantom imageAdd noise to imageDisplay imageDisplay multiple image frames as rectangular montage Display multiple images in single figureMake movie from multiframe imagePlay movies, videos, or image sequencesDisplay image as texture-mapped surfaceGet values of Image Processing Toolbox preferencesDisplay Image Processing Toolbox Preferences dialog boxSet Image Processing Toolbox preferences or display valid values Image Viewer appImage Information toolAdjust Contrast toolDisplay Range toolDistance toolPixel Information toolPixel Information tool without text labelPixel Region toolMagnification box for scroll panelOverview tool for image displayed in scroll panelGet values of Image Processing Toolbox preferencesDisplay Image Processing Toolbox Preferences dialog boxSet Image Processing Toolbox preferences or display valid values Image Information toolChoose Colormap toolAdjust Contrast toolCrop imageDisplay Range toolDistance toolPixel Information toolPixel Information tool without text labelPixel Region toolPixel Region tool panelMagnification box for scroll panelOverview tool for image displayed in scroll panelOverview tool panel for image displayed in scroll panelSave Image ToolScroll panel for interactive image navigationCreate draggable ellipseCreate draggable freehand regionCreate draggable, resizable lineCreate draggable pointCreate draggable, resizable polygonCreate draggable rectangleRegion-of-interest (ROI) base classSelect polyline with mouseSpecify points with mouseSpecify rectangle with mouseImage data from axesImage model object from image objectImage Model objectConvert axes coordinates to pixel coordinatesInformation about image attributesGet handle to current axes containing imageGet handle to current figure containing imageOpen Image dialog boxGet all image handlesAdd function handle to callback listCheck validity of handleGet Application Programmer Interface (API) for handleRetrieve pointer behavior from HG objectDirectories containing IPT and MATLAB iconsCreate pointer manager in figureDelete function handle from callback listStore pointer behavior structure in Handle Graphics object Align figure windowsCreate rectangularly bounded drag constraint functionAdjust display size of imagencing, and Image RegistrationCrop imageResize imageRotate imageTranslate imageImage pyramid reduction and expansionApply geometric transformation to imageFit geometric transformation to control point pairsApply 2-D spatial transformation to imageFind output bounds for spatial transformationFlip input and output roles of TFORM structureCreate resampling structureCreate spatial transformation structure (TFORM)Apply spatial transformation to N-D arrayApply forward spatial transformationApply inverse spatial transformationCreate checkerboard image2-D Affine Geometric Transformation3-D Affine Geometric Transformation2-D Projective Geometric Transformation2-D piecewise linear geometric transformation2-D Polynomial Geometric Transformation2-D Local Weighted Mean Geometric TransformationApply geometric transformation to imageIntensity-based image registrationEstimate geometric transformation that aligns two 2-D or 3-D images Display imageCompare differences between imagesComposite of two imagesReference 2-D image to world coordinatesReference 3-D image to world coordinatesIntensity-based image registrationConfigurations for intensity-based registrationEstimate geometric transformation that aligns two 2-D or 3-D images Estimates geometric transformation that aligns two 2-D images using phase Estimate displacement field that aligns two 2-D or 3-D images Composite of two imagesCompare differences between imagesMattes mutual information metric configuration objectMean square error metric configuration objectRegular step gradient descent optimizer configuration objectOne-plus-one evolutionary optimizer configuration objectControl Point Selection ToolFit geometric transformation to control point pairsTune control-point locations using cross correlationConvert CPSTRUCT to valid pairs of control pointsNormalized 2-D cross-correlationInfer spatial transformation from control point pairsAdjust image intensity values or colormapAdjust Contrast toolSharpen image using unsharp maskingEnhance contrast using histogram equalizationContrast-limited adaptive histogram equalization (CLAHE)Adjust histogram of image to match N-bin histogram of reference image Apply decorrelation stretch to multichannel imageFind limits to contrast stretch imageConvert integer values using lookup tableAdd noise to imageN-D filtering of multidimensional images2-D Gaussian filtering of images3-D Gaussian filtering of 3-D imagesCreate predefined 2-D filterGuided filtering of imagesNormalized 2-D cross-correlation2-D adaptive noise-removal filtering2-D median filtering2-D order-statistic filteringLocal standard deviation of imageLocal range of imageLocal entropy of grayscale imageGeneral sliding-neighborhood operationsCreate Gabor filter or Gabor filter bankApply Gabor filter or set of filters to 2-D image2-D box filtering of images3-D box filtering of 3-D imagesCalculate integral imageCalculate 3-D integral image2-D box filtering of integral images3-D box filtering of 3-D integral imagesExtract objects from binary image by sizeExtract objects from binary image using properties Pad array2-D frequency response2-D FIR filter using frequency sampling2-D FIR filter using frequency transformation2-D FIR filter using 1-D window method2-D FIR filter using 2-D window method2-D convolution matrixBinary hit-miss operationMorphological operations on binary images Ultimate erosionRemove small objects from binary imageBottom-hat filteringSuppress light structures connected to image border Morphologically close imageDilate imageErode imageExtended-maxima transformExtended-minima transformFill image regions and holesH-maxima transformH-minima transformImpose minimaMorphologically open imageMorphological reconstructionRegional maximaRegional minimaTop-hat filteringWatershed transformCreate connectivity arrayCheck validity of connectivity argumentNeighborhood operations on binary images using lookup tables Nonlinear filtering using lookup tablesCreate lookup table for use with bwlookupMorphological structuring elementMorphological offset structuring elementDeblur image using blind deconvolutionDeblur image using Lucy-Richardson methodDeblur image using regularized filterDeblur image using Wiener filterTaper discontinuities along image edgesConvert optical transfer function to point-spread function Convert point-spread function to optical transfer functionPad arraySpecify polygonal region of interest (ROI)Convert region of interest (ROI) polygon to region maskFill in specified regions in image using inward interpolation Select region of interest (ROI) based on colorFilter region of interest (ROI) in imageCreate draggable ellipseCreate draggable freehand regionCreate draggable, resizable polygonCreate draggable rectangleRegion-of-interest (ROI) base classInterface for image I/ODistinct block processing for imageDetermine optimal block size for block processingGeneral sliding-neighborhood operationsRearrange matrix columns into blocksColumnwise neighborhood operationsRearrange image blocks into columnsAbsolute difference of two imagesAdd two images or add constant to imageLinear combination of color channelsComplement imageDivide one image into another or divide image by constant Linear combination of imagesMultiply two images or multiply image by constantSubtract one image from another or subtract constant from image Trace region boundaries in binary imageTrace object in binary imagePlot region boundariesFind edges in intensity imageFind circles using circular Hough transformCreate circleGradient magnitude and direction of an imageDirectional gradients of an imageFind 3-D gradient magnitude and direction of imagesFind the directional gradients of a 3-D imageHough transformExtract line segments based on Hough transformIdentify peaks in Hough transformQuadtree decompositionBlock values in quadtree decompositionSet block values in quadtree decompositionMeasure properties of image regionsArea of objects in binary imageExtract objects from binary image by sizeFind connected components in binary imageGenerate convex hull image from binary imageDistance transform of binary imageGeodesic distance transform of binary imageEuler number of binary imageFind perimeter of objects in binary imageExtract objects from binary image using propertiesSelect objects in binary imageGray-weighted distance transform of grayscale imageCreate contour plot of image dataHistogram of image dataPixel color valuesPixel-value cross-sections along line segments2-D correlation coefficientAverage or mean of matrix elementsStandard deviation of matrix elementsLabel connected components in 2-D binary imageLabel connected components in binary imageCreate label matrix from bwconncomp structurePack binary imageUnpack binary imageEntropy of grayscale imageLocal entropy of grayscale imageLocal range of imageLocal standard deviation of imageCreate gray-level co-occurrence matrix from imageProperties of gray-level co-occurrence matrixMean-squared errorPeak Signal-to-Noise Ratio (PSNR)Structural Similarity Index (SSIM) for measuring image qualitySegment image into foreground and background using active contour Binary image segmentation using Fast Marching MethodSegment image into two or three regions using geodesic distance-based colorCalculate weights for image pixels based on image gradient Calculate weights for image pixels based on grayscale intensity difference Select contiguous image region with similar gray valuesGlobal image threshold using Otsu's methodMultilevel image thresholds using Otsu's methodGlobal histogram threshold using Otsu's methodAdaptive image threshold using local first-order statisticsFind region boundaries of segmentation2-D superpixel oversegmentation of imagesBurn binary mask into 2-D imageConvert label matrix to cell array of linear indicesDistance transform of binary imageGeodesic distance transform of binary imageGray-weighted distance transform of grayscale imageHough transform2-D discrete cosine transformDiscrete cosine transform matrixConvert fan-beam projections to parallel-beamFan-beam transform2-D inverse discrete cosine transformInverse fan-beam transformInverse Radon transformConvert parallel-beam projections to fan-beamRadon transform2-D fast Fourier transformShift zero-frequency component to center of spectrum2-D inverse fast Fourier transformInverse FFT shiftConvert RGB to CIE 1976 L*a*b*Convert RGB color values to NTSC color spaceConvert RGB to CIE 1931 XYZConvert RGB color values to YCbCr color spaceConvert CIE 1976 L*a*b* to RGBConvert CIE 1976 L*a*b* to CIE 1931 XYZConvert CIE 1931 XYZ to CIE 1976 L*a*b*Convert CIE 1931 XYZ to RGBConvert YCbCr color values to RGB color spaceConvert NTSC values to RGB color spaceConvert L*a*b* data to doubleConvert L*a*b* data to uint16Convert L*a*b* data to uint8Convert XYZ color values to doubleConvert XYZ color values to uint16Search for ICC profilesRead ICC profileFind system default ICC profile repositoryWrite ICC color profile to disk fileTrue for valid ICC color profileCreate color transformation structureApply device-independent color space transformation Approximate indexed image by reducing number of colors XYZ color values of standard illuminantsAdaptive image threshold using local first-order statistics Find region boundaries of segmentationRemove small objects from binary imageTrace region boundaries in binary imageFind connected components in binary imageDistance transform of binary imageEuler number of binary imageLabel connected components in 2-D binary image Nonlinear filtering using lookup tables Morphological operations on binary imagesPack binary imageFind perimeter of objects in binary imageSelect objects in binary imageTrace object in binary imageUnpack binary imageCreate connectivity arrayConvert Bayer pattern encoded image to truecolor image Find edges in intensity imageFit geometric transformation to control point pairs Create predefined 2-D filterDefault display range of image based on its classSelect contiguous image region with similar gray values Enhance contrast using histogram equalizationHough transformExtract line segments based on Hough transform Identify peaks in Hough transformConvert HSV colormap to RGB colormapConvert image to double precisionConvert image to 16-bit signed integersConvert image to single precisionConvert image to 16-bit unsigned integersConvert image to 8-bit unsigned integersAbsolute difference of two imagesAdjust image intensity values or colormapBinarize image by thresholdingBottom-hat filtering2-D box filtering of imagesSuppress light structures connected to image border Morphologically close imageComplement imageCrop imageDilate imageErode imageExtended-maxima transformExtended-minima transformFill image regions and holesN-D filtering of multidimensional imagesFind circles using circular Hough transformApply Gabor filter or set of filters to 2-D image2-D Gaussian filtering of imagesFind 3-D gradient magnitude and direction of imagesFind the directional gradients of a 3-D imageHistogram of image dataH-maxima transformH-minima transformLinear combination of imagesMean-squared errorMorphologically open imageBurn binary mask into 2-D imageImage pyramid reduction and expansionQuantize image using specified quantization levels and output values Read image from graphics fileMorphological reconstructionRegional maximaRegional minimaResize imageRotate imageTop-hat filteringTranslate imageApply geometric transformation to image2-D box filtering of integral imagesCalculate integral imageConvert integer values using lookup tableCheck validity of colormapCheck validity of connectivity argumentConvert CIE 1976 L*a*b* to RGBConvert label matrix into RGB imageConvert label matrix to cell array of linear indicesAverage or mean of matrix elements2-D median filteringMultilevel image thresholds using Otsu's method2-D order-statistic filteringGlobal histogram threshold using Otsu's methodPad arrayPeak Signal-to-Noise Ratio (PSNR)Measure properties of image regionsConvert RGB image or colormap to grayscaleConvert RGB colormap to HSV colormapConvert RGB to CIE 1976 L*a*b*Convert RGB color values to YCbCr color spaceFind limits to contrast stretch image2-D superpixel oversegmentation of imagesWatershed transformConvert YCbCr color values to RGB color spaceReference 2-D image to world coordinatesReference 3-D image to world coordinates2-D Affine Geometric Transformation2-D Projective Geometric TransformationMorphological structuring elementMorphological offset structuring elementDistance transform of binary imageLabel connected components in 2-D binary image Nonlinear filtering using lookup tablesMorphological operations on binary images2-D correlation coefficientFind edges in intensity imageEnhance contrast using histogram equalizationConvert image to double precisionConvert image to single precisionConvert image to 8-bit unsigned integersConvert image to 16-bit unsigned integersAbsolute difference of two imagesAdjust image intensity values or colormapBottom-hat filteringMorphologically close imageComplement imageDilate imageErode imageFill image regions and holesN-D filtering of multidimensional imagesGradient magnitude and direction of an image Directional gradients of an imageHistogram of image dataLinear combination of imagesAdd noise to imageConvert YCbCr color values to RGB color space Morphologically open imageMorphological reconstructionEstimate displacement field that aligns two 2-D or 3-D images Resize imageRotate imageDisplay imageTop-hat filteringInverse Radon transformConvert matrix to grayscale imageAverage or mean of matrix elements2-D median filteringNormalized 2-D cross-correlationPad arrayRadon transformMeasure properties of image regionsConvert RGB image or colormap to grayscaleConvert RGB color values to YCbCr color spaceStandard deviation of matrix elementsLocal standard deviation of imageFind limits to contrast stretch image从图形文件读取图像写入图像到图形文件关于图形文件的信息从国家图像传输格式的元数据(NITF)文件从NITF文件读取图像读取DPX文件元数据读取DPX图像从分析7.5数据集的头文件读取元数据从分析7.5数据集的图像文件中读取图像数据从归档文件元数据在内部文件格式读取图像匿名DICOM文件获取或设置活动DICOM数据字典显示DICOM文件结构读取DICOM消息元数据发现在DICOM数据字典属性读取DICOM图像生成DICOM的唯一标识符写图像的DICOM文件读高动态范围(HDR)图像写下光辉的高动态范围(HDR)图像文件创建高动态范围图像用于观看的高动态范围图像图像I / O接口检查文件是否存在与r-组开放与r-组文件从图像文件创建减少的分辨率数据集将灰度或二值图像转换为索引图像将索引图像转换为灰度图像转换矩阵到灰度图像将RGB图像的灰度或颜色表索引图像的RGB图像转换转换成RGB图像标签矩阵Bayer编码图像转换为彩色图像二值化图像的阈值分割量化图像使用指定的量化电平和输出值采用多级图像阈值Otsu方法采用局部一阶统计的自适应图像阈值使用全局直方图阈值Otsu方法基于阈值的图像转换成二值图像使用全局阈值Otsu方法采用多层阈值化方法将灰度图像转换为索引图像将图像转换为双精度将图像转换为16位有符号整数将图像转换成java缓冲图像将图像转换为单精度将图像转换为16位无符号整数将图像转换为8位无符号整数创建棋盘格图像创建头部影像添加噪声到图像显示图像显示多个图像帧矩形蒙太奇在单个图形中显示多个图像从多帧图像的电影播放电影、视频或图像序列显示图像作为纹理映射的表面获取图像处理工具箱的首选项显示图像处理工具箱首选项对话框设置图像处理工具箱的首选项或显示有效值图像查看器应用程序图像信息的工具对比度调整工具显示范围的工具距离工具像素信息的工具无文本标签的像素信息工具像素区域的工具用于滚动面板的放大盒在滚动面板中显示的图像的概述工具获取图像处理工具箱的首选项显示图像处理工具箱首选项对话框设置图像处理工具箱的首选项或显示有效值图像信息的工具选择映射工具对比度调整工具作物图像显示范围的工具距离工具像素信息的工具无文本标签的像素信息工具像素区域的工具像素区域工具面板用于滚动面板的放大盒在滚动面板中显示的图像的概述工具滚动面板中显示的图像的工具面板保存图像的工具用于交互式图像导航的滚动面板创建可拖动椭圆创建可拖动自由区域创建可拖动,可调整大小的线创建可拖动点创建可拖动,可调整大小的多边形创建可拖动矩形感兴趣区域(感兴趣区域)基类用鼠标选择多段线用鼠标指定点用鼠标指定矩形从轴的图像数据图像对象的图像模型对象图像模型对象将坐标轴转换为像素坐标关于图像属性的信息获取当前包含图像的轴的句柄获取当前图像包含图像的句柄打开图像对话框获取所有图像处理添加函数句柄到回调列表检查处理的有效性获取处理的应用程序程序员接口(接口)从汞对象检索指针行为目录包含了IPT和Matlab的图标创建图形中的指针管理器从回调列表中删除函数句柄句柄图形对象中的存储指针行为结构排列图的窗口创建矩形拖动约束函数有界调整图像的显示大小作物图像调整图像大小旋转图像转换图像图像金字塔的还原与扩展将几何变换应用于图像拟合控制点对的几何变换二维空间变换在图像中的应用查找空间变换的输出范围输入和输出翻转平台结构的作用创建重采样结构创造空间转换结构(平台)将空间变换N-D数组应用前向空间变换应用逆空间变换创建棋盘格图像二维仿射几何变换三维仿射几何变换二维射影几何变换二维分段线性几何变换二维多项式几何变换二维局部加权平均几何变换将几何变换应用于图像基于强度的图像配准估计对齐两个二维或三维图像的几何变换显示图像比较图像之间的差异两幅图像的复合参考二维图像到世界坐标参考三维图像到世界坐标基于强度的图像配准基于强度的注册的配置估计对齐两个二维或三维图像的几何变换使用相位相关的两个二维图像的几何变换估计估计对齐两个二维或三维图像的位移场两幅图像的复合比较图像之间的差异Mattes互信息度量的配置对象均方误差度量配置对象正规步长梯度下降优化配置对象一加一进化优化配置对象控制点选择工具拟合控制点对的几何变换使用交叉相关的调整控制点位置cpstruct转换控制点的有效对标准化二维互相关从控制点对的空间变换调整图像的灰度值或颜色表对比度调整工具利用反锐化掩模图像锐化采用直方图均衡化增强对比度对比度自适应直方图均衡化(CLAHE)调整直方图的图像与参考图像n-bin直方图申请去相关拉伸的多通道图像查找对比度拉伸图像的限制使用查找表转换整数值添加噪声到图像N维的多维图像滤波二维图像的二维高斯滤波三维图像的三维高斯滤波创建预定义的二维滤波器图像引导滤波标准化二维互相关二维自适应噪声滤除二维中值滤波二维阶统计滤波图像局部标准偏差局部图像范围灰度图像局部熵一般滑动邻域运算Gabor滤波器和Gabor滤波器组的创建应用Gabor滤波器或滤波器组二维图像二维图像的二维图像滤波三维图像的三维盒滤波计算积分图像计算三维积分图像积分图像的二维箱滤波三维整体图像的三维箱滤波通过大小从二值图像中提取对象使用属性从二值图像中提取对象焊盘阵列二维频率响应采用频率采样的二维滤波器采用频率变换的二维滤波器二维FIR滤波器采用一维窗口的方法采用二维窗法的二维二维滤波器二维卷积矩阵二进制命中错误操作二值图像的形态学运算终极侵蚀从二值图像中删除小对象帽子底部过滤抑制连接到图像边缘的光结构形态接近的图像放大图像腐蚀图像扩展极大值变换扩展最小变换填充图像区域和孔h-maxima变换利用H-minima变换强制最小形态上打开的图像形态重构区域极值局部极小顶帽滤波分水岭变换创建连接的阵列检查连通性参数的有效性使用查找表的二值图像的邻域运算使用查找表的非线性滤波创建bwlookup使用查找表形态学结构元素形态学偏移结构元素利用盲反卷积去模糊图像用露西理查德森的方法去模糊图像利用正则化滤波复原图像使用维纳滤波复原图像沿图像边缘的锥度不连续性将光学传递函数转换为点扩散函数转换点扩展函数到光传输函数焊盘阵列指定感兴趣区域(投资回报率)将感兴趣区域(感兴趣区域)的多边形转换为区域掩模用内插法填充图像中的指定区域基于颜色的选择感兴趣区域(感兴趣区域)图像中的感兴趣区域(感兴趣区域)创建可拖动椭圆创建可拖动自由区域创建可拖动,可调整大小的多边形创建可拖动矩形感兴趣区域(感兴趣区域)基类图像I / O接口图像的不同块处理确定块处理的最佳块大小一般滑动邻域运算将矩阵列重新排列成块纵列邻域操作将图像块重新排列成列两幅图像的绝对差添加两个图像或添加常量到图像彩色通道的线性组合补充图像用常数将一幅图像分割成另一幅图像图像的线性组合用常数相乘的两幅图像或多幅图像从另一个或减去一个图像减去一个图像二元图像中的迹区域边界二进制图像中的跟踪对象绘图区域的边界在强度图像中查找边缘发现使用Hough变换圆创建圈子图像的梯度幅值和方向图像的方向梯度查找图像的三维梯度幅值和方向查找三维图像的方向梯度Hough变换基于Hough变换提取直线段确定峰Hough变换四叉树分解在四叉树分解块值在四叉树分解模块设置的值图像区域的测量特性二值图像中的对象区域通过大小从二值图像中提取对象查找二进制图像中的连接组件从二值图像生成凸壳图像二值图像的距离变换二值图像的测地距离变换二值图像的欧拉数在二值图像中查找对象的周长使用属性从二值图像中提取对象在二值图像中选择对象灰度图像的灰度加权距离变换创建图像数据的等高线图图像数据直方图像素的颜色值沿线段的像素值的横截面二维相关系数矩阵元素的平均值或平均值矩阵元素的标准偏差二维二值图像中的标签连接部件二值图像中的标签连接组件从bwconncomp创建标签矩阵结构包的二进制图像打开二进制图像灰度图像熵灰度图像局部熵局部图像范围图像局部标准偏差从图像创建灰度共生矩阵灰度共生矩阵的性质均方误差峰值信噪比(PSNR)结构相似性指数(SSIM)测量图像质量用主动轮廓分割成前景和背景的图像采用快速行进法的二值图像分割用基于测地距离的彩色分割的两个或三个区域的分割图像基于图像梯度的图像像素权重计算基于灰度强度差的图像像素权重计算选择具有相似灰度值的连续图像区域使用全局阈值Otsu方法采用多级图像阈值Otsu方法使用全局直方图阈值Otsu方法采用局部一阶统计的自适应图像阈值查找区域边界的分割二维超像素oversegmentation的图像将二元掩模烧成二维图像将标签矩阵转换为线性指标的单元阵列图像变换二值图像的距离变换二值图像的测地距离变换灰度图像的灰度加权距离变换Hough变换二维离散余弦变换离散余弦变换矩阵将扇形束投影转换成平行光束扇束变换二维逆离散余弦变换逆扇形束变换逆Radon变换将平行光束投影转换成扇形光束Radon变换二维快速傅立叶变换将零频分量移到光谱中心二维逆快速傅立叶变换逆FFT转换颜色转换转换RGB与CIE 1976 L*a*b*将RGB颜色值的NTSC色彩空间转换RGB与CIE 1931 XYZ转换到YCbCr色彩空间RGB颜色值1976将CIE L*a*b*到RGB1976将CIE L*a*b*到CIE 1931 XYZ将CIE 1931 XYZ CIE 1976 L*a*b*CIE 1931 XYZ到RGB的转换YCbCr颜色值转换到RGB颜色空间转换成NTSC值RGB颜色空间将L * A * B *数据转换为双将L*a*b*数据uint16将L*a*b*数据卡片XYZ颜色值转换为双将XYZ颜色值uint16搜索国际商会简介读的ICC配置文件查找系统默认的国际刑事法院配置文件库将颜色配置文件写入磁盘文件真正的有效的国际刑事法院颜色配置文件创建颜色转换结构应用设备独立的颜色空间变换通过减少颜色数的近似索引图像标准照明体XYZ颜色值generation采用局部一阶统计的自适应图像阈值查找区域边界的分割从二值图像中删除小对象二元图像中的迹区域边界查找二进制图像中的连接组件二值图像的距离变换二值图像的欧拉数二维二值图像中的标签连接部件使用查找表的非线性滤波二值图像的形态学运算包的二进制图像在二值图像中查找对象的周长在二值图像中选择对象二进制图像中的跟踪对象打开二进制图像创建连接的阵列Bayer编码图像转换为彩色图像在强度图像中查找边缘拟合控制点对的几何变换创建预定义的二维滤波器基于它的类的图像的默认显示范围选择具有相似灰度值的连续图像区域采用直方图均衡化增强对比度Hough变换基于Hough变换提取直线段确定峰Hough变换转换到RGB的色度HSV颜色图将图像转换为双精度将图像转换为16位有符号整数将图像转换为单精度将图像转换为16位无符号整数将图像转换为8位无符号整数两幅图像的绝对差调整图像的灰度值或颜色表二值化图像的阈值分割帽子底部过滤二维图像的二维图像滤波抑制连接到图像边缘的光结构形态接近的图像补充图像作物图像放大图像腐蚀图像扩展极大值变换扩展最小变换填充图像区域和孔N维的多维图像滤波发现使用Hough变换圆应用Gabor滤波器或滤波器组二维图像二维图像的二维高斯滤波查找图像的三维梯度幅值和方向查找三维图像的方向梯度图像数据直方图h-maxima变换利用H-minima变换图像的线性组合均方误差形态上打开的图像将二元掩模烧成二维图像图像金字塔的还原与扩展量化图像使用指定的量化电平和输出值从图形文件读取图像形态重构区域极值局部极小调整图像大小旋转图像顶帽滤波转换图像将几何变换应用于图像积分图像的二维箱滤波计算积分图像使用查找表转换整数值检查的有效性信息检查连通性参数的有效性1976将CIE L*a*b*到RGB转换成RGB图像标签矩阵将标签矩阵转换为线性指标的单元阵列矩阵元素的平均值或平均值二维中值滤波采用多级图像阈值Otsu方法二维阶统计滤波使用全局直方图阈值Otsu方法焊盘阵列峰值信噪比(PSNR)图像区域的测量特性将RGB图像的灰度或颜色表将RGB颜色表HSV色图转换RGB与CIE 1976 L*a*b*转换到YCbCr色彩空间RGB颜色值查找对比度拉伸图像的限制二维超像素oversegmentation的图像分水岭变换YCbCr颜色值转换到RGB颜色空间参考二维图像到世界坐标参考三维图像到世界坐标二维仿射几何变换二维射影几何变换形态学结构元素形态学偏移结构元素GPU 计算二值图像的距离变换二维二值图像中的标签连接部件使用查找表的非线性滤波二值图像的形态学运算二维相关系数在强度图像中查找边缘采用直方图均衡化增强对比度将图像转换为双精度将图像转换为单精度将图像转换为8位无符号整数将图像转换为16位无符号整数两幅图像的绝对差调整图像的灰度值或颜色表帽子底部过滤形态接近的图像补充图像放大图像腐蚀图像填充图像区域和孔N维的多维图像滤波图像的梯度幅值和方向图像的方向梯度图像数据直方图图像的线性组合添加噪声到图像YCbCr颜色值转换到RGB颜色空间形态上打开的图像形态重构估计对齐两个二维或三维图像的位移场调整图像大小旋转图像显示图像顶帽滤波逆Radon变换转换矩阵到灰度图像矩阵元素的平均值或平均值二维中值滤波标准化二维互相关焊盘阵列Radon变换图像区域的测量特性将RGB图像的灰度或颜色表转换到YCbCr色彩空间RGB颜色值矩阵元素的标准偏差图像局部标准偏差查找对比度拉伸图像的限制。
Matlab中常用的数学函数介绍与应用
Matlab中常用的数学函数介绍与应用引言:Matlab是一种强大的数学计算工具,它提供了丰富的函数库,可以方便地进行各种数学运算和数据分析。
本文将介绍一些常用的Matlab数学函数,并讨论它们的具体应用场景和用法。
一、线性代数函数1.1 dot函数dot函数用于计算两个向量的点积。
在向量计算中,点积可以帮助我们判断两个向量之间的夹角以及它们的相似程度。
例如,我们可以使用dot函数来计算两个特征向量之间的相似性,从而实现图像分类或者特征匹配。
具体用法:C = dot(A,B),其中A和B是两个向量。
计算结果将存储在变量C 中。
1.2 inv函数inv函数用于计算一个矩阵的逆矩阵。
在线性代数中,逆矩阵对于求解线性方程组、求解最小二乘问题以及确定矩阵的特征值等具有重要作用。
通过使用inv函数,我们可以方便地求解这些问题。
具体用法:B = inv(A),其中A是输入的矩阵,B是其逆矩阵。
1.3 eig函数eig函数用于计算一个矩阵的特征值和特征向量。
在许多数学和物理问题中,特征值和特征向量都具有重要的意义。
例如,在图像压缩和图像处理中,特征值分解可以帮助我们找到最佳的基向量,从而实现更好的图像压缩效果。
具体用法:[V,D] = eig(A),其中A是输入的矩阵,V是特征向量矩阵,D是特征值对角矩阵。
二、微积分函数2.1 diff函数diff函数用于计算一个函数的导数。
在微积分中,导数表示函数在某一点的变化率,具有重要的应用价值。
通过使用diff函数,我们可以方便地计算函数的导数,从而求解一些最优化问题、优化算法以及信号处理等领域的相关问题。
具体用法:Y = diff(X),其中X是输入的函数,Y是其导数。
2.2 int函数int函数用于计算一个函数的不定积分。
在微积分中,不定积分表示函数在某一区间上的面积或体积,对于求解曲线下面积、计算变量间的相关性以及估计概率密度分布等问题非常有用。
通过使用int函数,我们可以轻松地计算函数的不定积分。
matlab数字图像处理intrans函数学习笔记
matlab数字图像处理intrans函数学习笔记intrans函数如下:function g = intrans(f,varargin)error (nargchk(2,4,nargin))%check inputclassin = class(f);%stroe the class of the input for use later.if strcmp(class(f),'double') & max(f(:))>1 & ~strcmp(varargin{1},'log')f = mat2gray(f);%if all the 3 conditions is filling the need .else% make sure the class(f) is in the class of double , f(:) means all the% elemnets in the martix F, and the max(f(:))>1 means if the max(f(:))>1 so% convert them into double , in this way they are all less then1.% strcmp(varargin[1],'log') is the string compare, and the varargin {1}% compares with log.f = im2double(f);endmethod = varargin{1};switch methodcase 'neg'g = imcomplement(f);case 'log'if length(varargin) == 1c = 1;elseif length(varargin) == 2c = varargin{2};elseif length(varargin) == 3c = varargin{2};classin = varargin{3};elseerror('Incorrect number of input for the log option.')endg = c*(log(1+double(f)));case 'gamma'if length(varargin) < 2error('not enough input for the gamma option')endgam = varargin{2};g = imadjust (f, [], [], gam);case 'stretch'if length(varargin) == 1%defaults vaulem = mean2(f);E = 4.0;elseif length(varargin) == 3m = varargin{2};E = varargin{3};else error('incorrect number of inputs for the srtetch option.')endg = 1./(1 + (m./(f+eps)).^E);otherwiseerror('unkown enhancement method.')end% g = changeclass(classin , g);说实话,对matlab的代码风格不是很习惯,后来看着看着感觉和才⾮常相似,也就看起来舒服多了这段代码刚开始没看懂,尤其是varargin{}的⼀直不明⽩,但加断点后,将整个程序跑了⼀遍,基本就明⽩了,这⾥不得不说,中⽂版书上将的不是很明⽩。
MATLAB图像处理函数大全
Matlab数字数字图像处理函数汇总:1、数字数字图像的变换①fft2:fft2函数用于数字数字图像的二维傅立叶变换,如:i=imread('104_8.tif'); j=fft2(i);②ifft2::ifft2函数用于数字数字图像的二维傅立叶反变换,如:i=imread('104_8.tif');j=fft2(i);k=ifft2(j);2、模拟噪声生成函数和预定义滤波器①imnoise:用于对数字数字图像生成模拟噪声,如:i=imread('104_8.tif');j=imnoise(i,'gaussian',0,0.02);%模拟高斯噪声②fspecial:用于产生预定义滤波器,如:h=fspecial('sobel');%sobel水平边缘增强滤波器h=fspecial('gaussian');%高斯低通滤波器h=fspecial('laplacian');%拉普拉斯滤波器h=fspecial('log');%高斯拉普拉斯(LoG)滤波器h=fspecial('average');%均值滤波器2、数字数字图像的增强①直方图:imhist函数用于数字数字图像的直方图显示,如:i=imread('104_8.tif');imhist(i);②直方图均化:histeq函数用于数字数字图像的直方图均化,如:i=imread('104_8.tif');j=histeq(i);③对比度调整:imadjust函数用于数字数字图像的对比度调整,如:i=imread('104_8.tif');j=imadjust(i,[0.3,0.7],[]);④对数变换:log函数用于数字数字图像的对数变换,如:i=imread('104_8.tif');j=double(i);k=log(j);⑤基于卷积的数字数字图像滤波函数:filter2函数用于数字数字图像滤波,如:i=imread('104_8.tif');h=[1,2,1;0,0,0;-1,-2,-1];j=filter2(h,i);⑥线性滤波:利用二维卷积conv2滤波, 如:i=imread('104_8.tif');h=[1,1,1;1,1,1;1,1,1];h=h/9;j=conv2(i,h);⑦中值滤波:medfilt2函数用于数字数字图像的中值滤波,如:i=imread('104_8.tif');j=medfilt2(i);⑧锐化(1)利用Sobel算子锐化数字数字图像, 如:i=imread('104_8.tif');h=[1,2,1;0,0,0;-1,-2,-1];%Sobel算子j=filter2(h,i);(2)利用拉氏算子锐化数字数字图像, 如:i=imread('104_8.tif');j=double(i);h=[0,1,0;1,-4,0;0,1,0];%拉氏算子k=conv2(j,h,'same');m=j-k;3、数字数字图像边缘检测①sobel算子如:i=imread('104_8.tif');如有帮助,欢迎支持。
matlab灰度变换函数
Matlab灰度变换函数简介灰度变换是一种常用的图像处理技术,在数字图像处理中具有广泛的应用。
灰度变换函数是实现灰度变换的一种方式,可以通过该函数将图像的灰度级进行变换,以达到图像增强、对比度调整等目的。
本文将详细介绍灰度变换函数在Matlab中的使用方法及其原理,以便读者能够了解并灵活运用该函数进行图像处理。
一、定义和原理灰度变换函数是指通过对图像的像素点灰度值进行线性或非线性变换,来实现对图像灰度级的调整。
其一般形式为:g(x,y)=T(f(x,y))其中,f(x,y)为原始图像的灰度像素值,g(x,y)为变换后的图像的灰度像素值,T 为灰度变换函数。
灰度变换函数可以通过如下两种方式来实现:1.线性灰度变换函数:g(x,y)=a⋅f(x,y)+b,其中,a和b为常数,通过调整a和b的值可以实现对图像灰度级的线性变换。
2.非线性灰度变换函数:g(x,y)=T(f(x,y)),其中,T(⋅)为非线性函数,通过调整函数T的形式和参数可以实现对图像灰度级的非线性变换。
二、Matlab中的灰度变换函数在Matlab中,可以使用以下两种函数来实现灰度变换:1.imadjust函数:该函数使用线性灰度变换函数对图像进行灰度级的调整。
J = imadjust(I,[low_in high_in],[low_out high_out])其中,I为输入图像,low_in和high_in为输入图像的灰度级范围,low_out 和high_out为输出图像的灰度级范围。
函数将图像的灰度级从[low i n,ℎigℎi n]映射到[low o ut,ℎigℎo ut]范围内。
2.stretchlim函数和imadjust函数:这种方式是通过非线性灰度变换函数来实现对图像的灰度级调整。
J = imadjust(I,stretchlim(I),[])函数内部使用stretchlim函数计算输入图像的灰度级范围,然后再使用imadjust函数对图像进行灰度级调整。
Matlab中图像处理常用函数的用法
Matlab中常见函数的用法1 size()函数1)s=size(A),当只有一个输出参数时,返回一个行向量,该行向量的第一个元素时矩阵的行数,第二个元素是矩阵的列数。
2)[r,c]=size(A),当有两个输出参数时,size函数将矩阵的行数返回到第一个输出变量r,将矩阵的列数返回到第二个输出变量c。
3)size(A,n)如果在size函数的输入参数中再添加一项n,并用1、2或者3为n赋值,则 size将返回矩阵的行数或列数。
其中r=size(A,1)该语句返回的时矩阵A的行数, c=size(A,2) 该语句返回的时矩阵A的列数。
如果A为一个二维数组,则可以将其看成一个第三维为1的数组,即size(A,3)的返回值为1。
2 padarray()函数B = padarray(A,padsize,padval,direction)A为输入图像,B为填充后的图像,padsize给出了给出了填充的行数和列数,通常用[r c]来表示。
padval和direction分别表示填充方法和方向。
它们的具体值和描述如下:Padval选项:'symmetric'表示图像大小通过围绕边界进行镜像反射来扩展;'replicate'表示图像大小通过复制外边界中的值来扩展;'circular'图像大小通过将图像看成是一个二维周期函数的一个周期来进行扩展。
Direction选项:'pre'表示在每一维的第一个元素前填充;'post'表示在每一维的最后一个元素后填充;'both'表示在每一维的第一个元素前和最后一个元素后填充,此项为默认值。
若参量中不包括direction,则默认值为'both';若参量中不包含padval,则默认用0来填充。
若参量中不包括任何参数,则默认填充为零且方向为'both'。
matlab图像处理函数大全
matlab图像处理函数大全Matlab是一种强大的科学计算软件,广泛应用于各个领域,包括图像处理。
在Matlab中,有许多内置的图像处理函数,可以帮助我们实现各种图像处理任务。
本文将介绍一些常用的Matlab图像处理函数,帮助您更好地理解和运用这些函数。
1. imread函数imread函数用于读取图像文件,并将其存储为Matlab的图像矩阵。
它可以读取多种图像格式,如JPEG、PNG、BMP等。
例如,可以使用以下代码读取名为"image.jpg"的图像文件:```matlabimage = imread('image.jpg');```2. imshow函数imshow函数用于显示图像。
它可以接受一个图像矩阵作为输入,并将其显示在Matlab的图像窗口中。
例如,可以使用以下代码显示之前读取的图像:```matlabimshow(image);```3. imresize函数imresize函数用于调整图像的大小。
它可以接受一个图像矩阵和目标大小作为输入,并返回调整大小后的图像矩阵。
例如,可以使用以下代码将图像调整为200x200的大小:```matlabresized_image = imresize(image, [200, 200]);```4. rgb2gray函数rgb2gray函数用于将彩色图像转换为灰度图像。
它可以接受一个彩色图像矩阵作为输入,并返回一个灰度图像矩阵。
例如,可以使用以下代码将彩色图像转换为灰度图像:```matlabgray_image = rgb2gray(image);```5. imadjust函数imadjust函数用于调整图像的对比度和亮度。
它可以接受一个灰度图像矩阵和目标对比度和亮度范围作为输入,并返回调整后的图像矩阵。
例如,可以使用以下代码增加图像的对比度和亮度:```matlabadjusted_image = imadjust(gray_image, [0.2, 0.8], [0, 1]);```6. imfilter函数imfilter函数用于对图像进行滤波操作。
Matlab常见函数汇总
Matlab常见函数汇总colorbar显示彩条getimage由坐标轴得到图像数据ice(DIPUM)交互彩色编辑image创建和显示图像对象imagesc缩放数据并显示为图像immovie由多帧图像制作电影imshow显示图像imview在ImageViewer中显示图像montage将多个图像帧显示为矩阵蒙太奇movie播放录制的电影帧rgbcube显示一个彩色RGB立方体subimage在单个图形中显示多幅图像truesize调整图像的显示尺寸warp将图像显示为纹理映射的表面图像文件输入/输出Diinfo从一条DI消息中读取元数据Diread读一幅DI图像Diwrite写一幅DI图像Di-dict.txt包含DI数据字典的文本文件Diuid产生DI唯一的识别器Imfinfo返回关于图像的文件的信息Imread读图像文件Imwrite写图像文件图像算术Imabsdiff计算两幅图像的绝对差Imadd两幅图像相加或把常数加到图像上Implement图像求补Imdivide两幅图像相除,或用常数除图像Imlinb计算图像的线性组合Immultiply两幅图像相乘或用常数乘图像Imsubtract两幅图像相减,或从图像中减去常数几何变换Checkerboard创建棋盘格图像Findbounds求几何变换的输出范围Fliptform颠倒TFORM结构的输入/输出Imcrop修剪图像Imresize调整图像大小Imrotate旋转图像Imtransform对图像应用几何变换Intline整数坐标线绘制算法Makersampler创建重取样器结构Maketform创建几何变换结构(TFORM)Pixeldup(DIPUM)在两个方向上复制图像的像素Tformarray对N-D数组应用几何变换Tformfwd应用正向几何变换Tforminv应用反向几何变换Vstformfwd(DIPUM)可视化正向几何变换图像匹配Cpstruct2pairs将CPSTRUCT转换为有效的控制点对Cp2tform由控制点对推断几何变换Cpcorr使用互相关校准控制点位置Cpselect控制点选择工具Normxcorr2归一化二维互相关像素值及统计Corr2计算二维相关系数Covmatrix(DIPUM)计算向量族的协方差矩阵Imcontour创建图像数据的轮廓线Imhist显示图像数据的直方图Impixel确定像素的彩色点Improfile计算沿着线段的像素值横截面Mean2计算矩阵元素的均值Pixval显示关于像素的信息Regionprops测量图像区域的属性Statmoments(DIPUM)计算一幅图像直方图的统计中心距Std2计算矩阵元素的标准偏差图像分析(包括分割、描述和识别)Bayesgauss(DIPUM)高斯模式的贝叶斯分类器Bound2eight(DIPUM)将4连接边界转换为8连接边界Bound2four(DIPUM)将8连接边界转换为4连接边界Bwboundaries追踪区域边界Bwtraceboundary追踪单个边界Bound2im(DIPUM)将边界转换为图像Boundaries(DIPUM)追踪区域边界Bsubsamp(DIPUM)对边界二次取样Colorgrad(DIPUM)计算一幅RGB图像的向量梯度Colorseq(DIPUM)分割一幅彩色图像Connectpoly(DIPUM)连接多边形的顶点Diameter(DIPUM)测量图像区域的直径Edge(DIPUM)在一幅亮度图像中寻找边缘Fchcode(DIPUM)计算边界的freeman链码Frdescp(DIPUM)计算傅里叶描绘子Graythresh使用Ostu方法计算图像的全局阈值Hough(DIPUM)Hough变换Houghlines(DIPUM)基于Hough变换提取线段Houghpeaks(DIPUM)在Hough变换中检测峰值Houghpixels(DIPUM)计算属于Hough变换bin的图像像素Ifrdescp(DIPUM)计算逆傅里叶描绘子Imstack2vectors(DIPUM)从图像堆栈提取向量Invmoments(DIPUM)计算图像不变距Mahalanobis(DIPUM)计算Mahalanobis距离Minperpoly(DIPUM)计算最小周长多边形Polyangles(DIPUM)计算多边形内角Prinp(DIPUM)得到主分量向量和相关量QtdepQtgetblkQtsetblkRandvertex(DIPUM)Regiongrow(DIPUM)Signature(DIPUM)Specxture(DIPUM)Splitmerge(DIPUM)Statxture(DIPUM)Strsimilarity(DIPUM)X2majoraxis(DIPUM)图像压缩pare(DIPUM)Entropy(DIPUM)Huff2mat(DIPUM)Huffman(DIPUM)Im2jpeg(DIPUM)执行四叉树分解得到四叉树分解中的块值在四叉树中设置块值随机置换多边形顶点由区域生长来执行分割计算边界的标记计算图像的谱纹理使用分离-合并算法分割图像计算图像中纹理的统计度量两个串间的相似性度量以区域的主轴排列坐标x计算和显示两个矩阵间的误差计算矩阵的熵的一阶估计解码霍夫曼编码矩阵为符号源建立一个变长霍夫曼码使用JPEG近似压缩一幅图像。
数字图像处理及MATLAB实现实验四——图像变换
数字图像处理及MATLAB实现实验四——图像变换1.图像的傅⾥叶变换⼀(平移性质)傅⾥叶变换的平移性质表明了函数与⼀个指数项相乘等于将变换后的空域中⼼移到新的位置,并且平移不改变频谱的幅值。
I=imread('1.bmp');figure(1)imshow(real(I));I=I(:,:,3);fftI=fft2(I);sfftI=fftshift(fftI); %求离散傅⾥叶频谱%对原始图像进⾏⼆维离散傅⾥叶变换,并将其坐标原点移到频谱图中央位置RRfdp1=real(sfftI);IIfdp1=imag(sfftI);a=sqrt(RRfdp1.^2+IIfdp1.^2);a=(a-min(min(a)))/(max(max(a))-min(min(a)))*225;figure(2)imshow(real(a));I=imread('2.bmp');figure(1)imshow(real(I));I=I(:,:,3);fftI=fft2(I);sfftI=fftshift(fftI); %求离散傅⾥叶频谱%对原始图像进⾏⼆维离散傅⾥叶变换,并将其坐标原点移到频谱图中央位置RRfdp1=real(sfftI);IIfdp1=imag(sfftI);a=sqrt(RRfdp1.^2+IIfdp1.^2);a=(a-min(min(a)))/(max(max(a))-min(min(a)))*225;figure(2)imshow(real(a));I=imread('3.bmp');figure(1)imshow(real(I));I=I(:,:,3);fftI=fft2(I);sfftI=fftshift(fftI); %求离散傅⾥叶频谱%对原始图像进⾏⼆维离散傅⾥叶变换,并将其坐标原点移到频谱图中央位置RRfdp1=real(sfftI);IIfdp1=imag(sfftI);a=sqrt(RRfdp1.^2+IIfdp1.^2);a=(a-min(min(a)))/(max(max(a))-min(min(a)))*225;figure(2)imshow(real(a));实验结果符合傅⾥叶变换平移性质2.图像的傅⾥叶变换⼆(旋转性质)%构造原始图像I=zeros(256,256);I(88:168,124:132)=1; %图像范围是256*256,前⼀值是纵向⽐,后⼀值是横向⽐imshow(I)%求原始图像的傅⾥叶频谱J=fft2(I);F=abs(J);J1=fftshift(F);figureimshow(J1,[550])%对原始图像进⾏旋转J=imrotate(I,90,'bilinear','crop');figureimshow(J)%求旋转后图像的傅⾥叶频谱J=fft2(I);F=abs(J);J2=fftshift(F);figureimshow(J2,[550])3.图像的离散余弦变换⼀%对cameraman.tif⽂件计算⼆维DCT变换RGB=imread('cameraman.tif');figure(1)imshow(RGB)I=rgb2gray(RGB);%真彩⾊图像转换成灰度图像J=dct2(I);%计算⼆维DCT变换figure(2)imshow(log(abs(J)),[])%图像⼤部分能量集中在左上⾓处figure(3);J(abs(J)<10)=0;%把变换矩阵中⼩于10的值置换为0,然后⽤idct2重构图像K=idct2(J)/255;imshow(K)4.图像的离散余弦变换⼆% I=imread('1.bmp');% figure(1)% imshow(real(I));% I=I(:,:,3);% fftI=fft2(I);% sfftI=fftshift(fftI); %求离散傅⾥叶频谱% %对原始图像进⾏⼆维离散傅⾥叶变换,并将其坐标原点移到频谱图中央位置% RRfdp1=real(sfftI);% IIfdp1=imag(sfftI);% a=sqrt(RRfdp1.^2+IIfdp1.^2);% a=(a-min(min(a)))/(max(max(a))-min(min(a)))*225;% figure(2)% imshow(real(a));% I=imread('2.bmp');% figure(1)% imshow(real(I));% I=I(:,:,3);% fftI=fft2(I);% sfftI=fftshift(fftI); %求离散傅⾥叶频谱% %对原始图像进⾏⼆维离散傅⾥叶变换,并将其坐标原点移到频谱图中央位置% RRfdp1=real(sfftI);% IIfdp1=imag(sfftI);% a=sqrt(RRfdp1.^2+IIfdp1.^2);% a=(a-min(min(a)))/(max(max(a))-min(min(a)))*225;% figure(2)% imshow(real(a));% I=imread('3.bmp');% figure(1)% imshow(real(I));% I=I(:,:,3);% fftI=fft2(I);% sfftI=fftshift(fftI); %求离散傅⾥叶频谱% %对原始图像进⾏⼆维离散傅⾥叶变换,并将其坐标原点移到频谱图中央位置% RRfdp1=real(sfftI);% IIfdp1=imag(sfftI);% a=sqrt(RRfdp1.^2+IIfdp1.^2);% a=(a-min(min(a)))/(max(max(a))-min(min(a)))*225;% figure(2)% imshow(real(a));% %构造原始图像% I=zeros(256,256);% I(88:168,124:132)=1; %图像范围是256*256,前⼀值是纵向⽐,后⼀值是横向⽐% imshow(I)% %求原始图像的傅⾥叶频谱% J=fft2(I);% F=abs(J);% J1=fftshift(F);figure% imshow(J1,[550])% %对原始图像进⾏旋转% J=imrotate(I,90,'bilinear','crop');% figure% imshow(J)% %求旋转后图像的傅⾥叶频谱% J=fft2(I);% F=abs(J);% J2=fftshift(F);figure% imshow(J2,[550])% %对cameraman.tif⽂件计算⼆维DCT变换% RGB=imread('cameraman.tif');% figure(1)% imshow(RGB)% I=rgb2gray(RGB);% %真彩⾊图像转换成灰度图像% J=dct2(I);% %计算⼆维DCT变换% figure(2)% imshow(log(abs(J)),[])% %图像⼤部分能量集中在左上⾓处% figure(3);% J(abs(J)<10)=0;% %把变换矩阵中⼩于10的值置换为0,然后⽤idct2重构图像% K=idct2(J)/255;% imshow(K)RGB=imread('cameraman.tif');I=rgb2gray(RGB);I=im2double(I); %转换图像矩阵为双精度型T=dctmtx(8); %产⽣⼆维DCT变换矩阵%矩阵T及其转置T'是DCT函数P1*X*P2的参数B=blkproc(I,[88],'P1*x*P2',T,T');maxk1=[ 1111000011100000110000001000000000000000000000000000000000000000 ]; %⼆值掩模,⽤来压缩DCT系数B2=blkproc(B,[88],'P1.*x',mask1); %只保留DCT变换的10个系数I2=blkproc(B2,[88],'P1*x*P2',T',T); %重构图像figure,imshow(T);figure,imshow(B2);figure,imshow(I2);RGB=imread('cameraman.tif');I=rgb2gray(RGB);I=im2double(I); %转换图像矩阵为双精度型T=dctmtx(8); %产⽣⼆维DCT变换矩阵%矩阵T及其转置T'是DCT函数P1*X*P2的参数B=blkproc(I,[88],'P1*x*P2',T,T');maxk1=[ 1111000011100000100000000000000000000000000000000000000000000000 ]; %⼆值掩模,⽤来压缩DCT系数B2=blkproc(B,[88],'P1.*x',mask1); %只保留DCT变换的10个系数I2=blkproc(B2,[88],'P1*x*P2',T',T); %重构图像figure,imshow(T);figure,imshow(B2);figure,imshow(I2);5.图像的哈达玛变换cr=0.5;I=imread('cameraman.tif');I=im2double(I)/255; %将读⼊的unit8类型的RGB图像I转换为double类型的数据figure(1),imshow(I);%显⽰%求图像⼤⼩[m_I,n_I]=size(I); %提取矩阵I的⾏列数,m_I为I的⾏数,n_I为I的列数sizi=8;snum=64;%分块处理t=hadamard(sizi) %⽣成8*8的哈达码矩阵hdcoe=blkproc(I,[sizi sizi],'P1*x*P2',t,t');%将图⽚分成8*8像素块进⾏哈达码变换%重新排列系数CE=im2col(hdcoe,[sizi,sizi],'distinct');%将矩阵hdcode分为8*8互不重叠的⼦矩阵,再将每个⼦矩阵作为CE的⼀列[Y Ind]=sort(CE); %对CE进⾏升序排序%舍去⽅差较⼩的系数,保留原系数的⼆分之⼀,即32个系数[m,n]=size(CE);%提取矩阵CE的⾏列数,m为CE的⾏数,n为CE的列数snum=snum-snum*cr;for i=1:nCE(Ind(1:snum),i)=0;end%重建图像re_hdcoe=col2im(CE,[sizi,sizi],[m_I,n_I],'distinct');%将矩阵的列重新组织到块中re_I=blkproc(re_hdcoe,[sizi sizi],'P1*x*P2',t',t);%进⾏反哈达码变换,得到压缩后的图像re_I=double(re_I)/64; %转换为double类型的数据figure(2);imshow(re_I);%计算原始图像和压缩后图像的误差error=I.^2-re_I.^2;MSE=sum(error(:))/prod(size(re_I));。
matlab中imbilatfilt函数
近些年来,数字图像处理在科研和工程领域被广泛应用,而MATLAB 作为一种强大的数字图像处理工具使用广泛,其提供了许多函数用于图像处理。
imbilatfilt函数就是其中之一,该函数主要用于对图像进行双边滤波处理。
本文将对imbilatfilt函数进行详细介绍和应用实例分析。
一、imbilatfilt函数概述imbilatfilt函数是MATLAB中用于图像处理的一个重要函数,其功能是对图像进行双边滤波。
双边滤波是一种同时考虑空间和像素不同性的滤波方法,可以有效地去除图像中的噪声,同时保持图像的边缘信息。
imbilatfilt函数实现了双边滤波的功能,是图像去噪和边缘保持处理中常用的工具之一。
二、imbilatfilt函数的语法imbilatfilt函数在MATLAB中的语法如下:J = imbilatfilt(I)J = imbilatfilt(I,Name,Value)其中,I代表输入的图像,J代表输出的图像,Name-Value对是用来指定参数的可选输入参数。
三、imbilatfilt函数的参数imbilatfilt函数有多个参数可以设置,常用的参数包括:1. RR是一个正数,用来指定双边滤波器的空间标准差。
R越大,滤波器的范围越大,可以平滑较大范围内的像素值。
2. AlphaAlpha是一个正数,用来指定双边滤波器的强度标准差。
Alpha越大,滤波器对强度的影响越大,可以保持边缘的锐利度。
3. OffsetOffset是一个与图像强度相关的偏差,用来指定对强度的调节。
通常可以设置为0。
四、imbilatfilt函数的应用实例下面通过一个实例来演示imbilatfilt函数的使用:```matlab读取图像I = imread('cameraman.tif');对图像进行双边滤波处理J = imbilatfilt(I);显示原始图像和处理后的图像subplot(1,2,1),imshow(I),title('Original Image');subplot(1,2,2),imshow(J),title('Bilateral Filtered Image');```在这个实例中,我们首先读取了一张灰度图像,然后使用imbilatfilt 函数对图像进行双边滤波处理,最后显示原始图像和处理后的图像。
matlab对数变换函数
matlab对数变换函数在数字图像处理中,对数变换函数是一种常用的灰度变换方法。
它可以将原始图像的灰度值进行非线性变换,从而增强图像的对比度和亮度。
在matlab中,可以使用log函数来实现对数变换。
对数变换函数的数学表达式为:s = c * log(1 + r),其中s为输出图像的灰度值,r为输入图像的灰度值,c为常数。
对数变换函数的作用是将输入图像的灰度值r进行对数变换,使得输出图像的灰度值s 更加均匀分布,从而增强图像的对比度和亮度。
在matlab中,可以使用log函数来实现对数变换。
具体实现方法如下:1. 读取原始图像2. 将原始图像转换为灰度图像3. 对灰度图像进行对数变换4. 显示对数变换后的图像下面是一个简单的matlab代码示例:% 读取原始图像img = imread('lena.jpg');% 将原始图像转换为灰度图像gray_img = rgb2gray(img);% 对灰度图像进行对数变换c = 1;log_img = c * log(1 + double(gray_img));% 显示对数变换后的图像imshow(uint8(log_img));在上面的代码中,我们首先读取了一张原始图像,并将其转换为灰度图像。
然后,我们使用log函数对灰度图像进行对数变换,并将结果保存在log_img变量中。
最后,我们使用imshow函数显示对数变换后的图像。
需要注意的是,在进行对数变换时,我们需要将灰度图像的数据类型转换为double类型,以避免数据溢出。
同时,我们还需要选择合适的常数c来控制对数变换的强度。
对数变换函数是一种常用的灰度变换方法,可以有效地增强图像的对比度和亮度。
在matlab中,我们可以使用log函数来实现对数变换,并通过调整常数c来控制变换的强度。
MATLAB的常用函数
MATLAB的常用函数一、MATLAB常用的基本数学函数abs(x):纯量的绝对值或向量的长度angle(z):复数z的相角(Phase angle)sqrt(x):开平方real(z):复数z的实部imag(z):复数z的虚部conj(z):复数z的共轭复数round(x):四舍五入至最近整数fix(x):无论正负,舍去小数至最近整数floor(x):地板函数,即舍去正小数至最近整数ceil(x):天花板函数,即加入正小数至最近整数rat(x):将实数x化为分数表示rats(x):将实数x化为多项分数展开sign(x):符号函数 (Signum function)。
当x<0时,sign(x)=-1;当x=0时,sign(x)=0;当x>0时,sign(x)=1。
rem(x,y):求x除以y的馀数gcd(x,y):整数x和y的最大公因数lcm(x,y):整数x和y的最小公倍数exp(x):自然指数pow2(x):2的指数log(x):以e为底的对数,即自然对数或log2(x):以2为底的对数log10(x):以10为底的对数二、MATLAB常用的三角函数sin(x):正弦函数cos(x):馀弦函数tan(x):正切函数asin(x):反正弦函数acos(x):反馀弦函数atan(x):反正切函数atan2(x,y):四象限的反正切函数sinh(x):超越正弦函数cosh(x):超越馀弦函数tanh(x):超越正切函数asinh(x):反超越正弦函数acosh(x):反超越馀弦函数atanh(x):反超越正切函数三、适用於向量的常用函数有:min(x): 向量x的元素的最小值max(x): 向量x的元素的最大值mean(x): 向量x的元素的平均值median(x): 向量x的元素的中位数std(x): 向量x的元素的标准差diff(x): 向量x的相邻元素的差sort(x): 对向量x的元素进行排序(Sorting)length(x): 向量x的元素个数norm(x): 向量x的欧氏(Euclidean)长度sum(x): 向量x的元素总和prod(x): 向量x的元素总乘积cumsum(x): 向量x的累计元素总和cumprod(x): 向量x的累计元素总乘积dot(x, y): 向量x和y的内积cross(x, y): 向量x和y的外积四、MATLAB的永久常数i或j:基本虚数单位(即)eps:系统的浮点(Floating-point)精确度inf:无限大,例如1/0nan或NaN:非数值(Not a number),例如0/0 pi:圆周率 p(= 3.1415926...)realmax:系统所能表示的最大数值realmin:系统所能表示的最小数值nargin: 函数的输入引数个数nargin: 函数的输出引数个数五、MATLAB基本绘图函数plot: x轴和y轴均为线性刻度(Linear scale)loglog: x轴和y轴均为对数刻度(Logarithmic scale)semilogx: x轴为对数刻度,y轴为线性刻度semilogy: x轴为线性刻度,y轴为对数刻度六、plot绘图函数的叁数字元颜色字元图线型态y 黄色 . 点k 黑色 o 圆w 白色 x xb 蓝色 + +g 绿色 * *r 红色 - 实线c 亮青色 : 点线m 锰紫色 -. 点虚线-- 虚线七、注解xlabel('Input Value'); % x轴注解ylabel('Function Value'); % y轴注解title('Two Trigonometric Functions'); % 图形标题legend('y = sin(x)','y = cos(x)'); % 图形注解grid on; % 显示格线八、二维绘图函数bar 长条图errorbar 图形加上误差范围fplot 较精确的函数图形polar 极座标图hist 累计图rose 极座标累计图stairs 阶梯图stem 针状图fill 实心图feather 羽毛图compass 罗盘图quiver 向量场图附录Ⅰ 工具箱函数汇总Ⅰ.1 统计工具箱函数表Ⅰ-1 概率密度函数函数名对应分布的概率密度函数betapdf 贝塔分布的概率密度函数binopdf 二项分布的概率密度函数chi2pdf 卡方分布的概率密度函数exppdf 指数分布的概率密度函数fpdf f分布的概率密度函数gampdf 伽玛分布的概率密度函数geopdf 几何分布的概率密度函数hygepdf 超几何分布的概率密度函数normpdf 正态(高斯)分布的概率密度函数lognpdf 对数正态分布的概率密度函数nbinpdf 负二项分布的概率密度函数ncfpdf 非中心f分布的概率密度函数nctpdf 非中心t分布的概率密度函数ncx2pdf 非中心卡方分布的概率密度函数poisspdf 泊松分布的概率密度函数raylpdf 雷利分布的概率密度函数tpdf 学生氏t分布的概率密度函数unidpdf 离散均匀分布的概率密度函数unifpdf 连续均匀分布的概率密度函数weibpdf 威布尔分布的概率密度函数表Ⅰ-2 累加分布函数函数名对应分布的累加函数betacdf 贝塔分布的累加函数binocdf 二项分布的累加函数chi2cdf 卡方分布的累加函数expcdf 指数分布的累加函数fcdf f分布的累加函数gamcdf 伽玛分布的累加函数geocdf 几何分布的累加函数hygecdf 超几何分布的累加函数logncdf 对数正态分布的累加函数nbincdf 负二项分布的累加函数ncfcdf 非中心f分布的累加函数nctcdf 非中心t分布的累加函数ncx2cdf 非中心卡方分布的累加函数normcdf 正态(高斯)分布的累加函数poisscdf 泊松分布的累加函数raylcdf 雷利分布的累加函数tcdf 学生氏t分布的累加函数unidcdf 离散均匀分布的累加函数unifcdf 连续均匀分布的累加函数weibcdf 威布尔分布的累加函数表Ⅰ-3 累加分布函数的逆函数函数名matlab函数汇总22007-10-17 10:27/diaryIndex.b 表Ⅰ-11 线性模型函数函数描述anova1 单因子方差分析anova2 双因子方差分析anovan 多因子方差分析aoctool 协方差分析交互工具dummyvar 拟变量编码friedman Friedman检验glmfit 一般线性模型拟合kruskalwallis Kruskalwallis检验leverage 中心化杠杆值lscov 已知协方差矩阵的最小二乘估计manova1 单因素多元方差分析manovacluster 多元聚类并用冰柱图表示multcompare 多元比较多项式评价及误差区间估计polyfit 最小二乘多项式拟合polyval 多项式函数的预测值polyconf 残差个案次序图regress 多元线性回归regstats 回归统计量诊断续表函数描述Ridge 岭回归rstool 多维响应面可视化robustfit 稳健回归模型拟合stepwise 逐步回归x2fx 用于设计矩阵的因子设置矩阵表Ⅰ-12 非线性回归函数函数描述nlinfit 非线性最小二乘数据拟合(牛顿法)nlintool 非线性模型拟合的交互式图形工具nlparci 参数的置信区间nlpredci 预测值的置信区间nnls 非负最小二乘表Ⅰ-13 试验设计函数函数描述cordexch D-优化设计(列交换算法)daugment 递增D-优化设计dcovary 固定协方差的D-优化设计ff2n 二水平完全析因设计fracfact 二水平部分析因设计fullfact 混合水平的完全析因设计hadamard Hadamard矩阵(正交数组)rowexch D-优化设计(行交换算法)表Ⅰ-14 主成分分析函数函数描述barttest Barttest检验pcacov 源于协方差矩阵的主成分pcares 源于主成分的方差princomp 根据原始数据进行主成分分析表Ⅰ-15 多元统计函数函数描述classify 聚类分析mahal 马氏距离manova1 单因素多元方差分析manovacluster 多元聚类分析表Ⅰ-16 假设检验函数函数描述ranksum 秩和检验signrank 符号秩检验signtest 符号检验ttest 单样本t检验ttest2 双样本t检验ztest z检验matlab函数汇总32007-10-17 10:27表Ⅰ-17 分布检验函数函数描述jbtest 正态性的Jarque-Bera检验kstest 单样本Kolmogorov-Smirnov检验kstest2 双样本Kolmogorov-Smirnov检验lillietest 正态性的Lilliefors检验表Ⅰ-18 非参数函数函数描述friedman Friedman检验kruskalwallis Kruskalwallis检验ranksum 秩和检验signrank 符号秩检验signtest 符号检验表Ⅰ-19 文件输入输出函数函数描述caseread 读取个案名casewrite 写个案名到文件tblread 以表格形式读数据tblwrite 以表格形式写数据到文件tdfread 从表格间隔形式的文件中读取文本或数值数据表Ⅰ-20 演示函数函数描述aoctool 协方差分析的交互式图形工具disttool 探察概率分布函数的GUI工具glmdemo 一般线性模型演示randtool 随机数生成工具polytool 多项式拟合工具rsmdemo 响应拟合工具robustdemo 稳健回归拟合工具你可以通过这个链接引用该篇文章:/tb.b?diaryId=15962478附录1 常用命令附录1.1 管理用命令函数名功能描述函数名功能描述addpath 增加一条搜索路径 rmpath 删除一条搜索路径demo 运行Matlab演示程序 type 列出.M文件doc 装入超文本文档 version 显示Matlab的版本号help 启动联机帮助 what 列出当前目录下的有关文件lasterr 显示最后一条信息 whatsnew 显示Matlab的新特性lookfor 搜索关键词的帮助 which 造出函数与文件所在的目录path 设置或查询Matlab路径附录1.2管理变量与工作空间用命令函数名功能描述函数名功能描述clear 删除内存中的变量与函数 pack 整理工作空间内存disp 显示矩阵与文本 save 将工作空间中的变量存盘length 查询向量的维数 size 查询矩阵的维数load 从文件中装入数据 who,whos 列出工作空间中的变量名附录1.3文件与操作系统处理命令函数名功能描述函数名功能描述cd 改变当前工作目录 edit 编辑.M文件delete 删除文件 matlabroot 获得Matlab的安装根目录diary 将Matlab运行命令存盘 tempdir 获得系统的缓存目录dir 列出当前目录的内容 tempname 获得一个缓存(temp)文件! 执行操作系统命令附录1.4窗口控制命令函数名功能描述函数名功能描述echo 显示文件中的Matlab中的命令 more 控制命令窗口的输出页面format 设置输出格式附录1.5启动与退出命令函数名功能描述函数名功能描述matlabrc 启动主程序 quit 退出Matlab环境startupMatlab自启动程序附录2 运算符号与特殊字符附录2.1运算符号与特殊字符函数名功能描述函数名功能描述+ 加 ... 续行标志- 减 , 分行符(该行结果不显示)* 矩阵乘 ; 分行符(该行结果显示).* 向量乘 % 注释标志^ 矩阵乘方 ! 操作系统命令提示符.^ 向量乘方矩阵转置kron 矩阵kron积 . 向量转置\ 矩阵左除 = 赋值运算/ 矩阵右除 == 关系运算之相等.\ 向量左除 ~= 关系运算之不等./ 向量右除 < 关系运算之小于: 向量生成或子阵提取 <= 关系运算之小于等于() 下标运算或参数定义 > 关系运算之大于[] 矩阵生成 >= 关系运算之大于等于{} & 逻辑运算之与. 结构字段获取符 | 逻辑运算之或. 点乘运算,常与其他运算符联合使用(如.\) ~ 逻辑运算之非xor 逻辑运算之异成附录2.2逻辑函数函数名功能描述函数名功能描述all 测试向量中所用元素是否为真 is*(一类函数)检测向量状态.其中*表示一个确定的函数(isinf)any 测试向量中是否有真元素*isa 检测对象是否为某一个类的对象exist 检验变量或文件是否定义 logical 将数字量转化为逻辑量find 查找非零元素的下标附录3 语言结构与调试附录3.1编程语言函数名功能描述函数名功能描述builtin 执行Matlab内建的函数 global 定义全局变量eval 执行Matlab语句构成的字符串 nargchk 函数输入输出参数个数检验feval 执行字符串指定的文件 script Matlab语句及文件信息function Matlab函数定义关键词附录3.2控制流程函数名功能描述函数名功能描述break 中断循环执行的语句 if 条件转移语句case 与switch结合实现多路转移otherwise 多路转移中的缺省执行部分else 与if一起使用的转移语句 return 返回调用函数elseif 与if一起使用的转移语句 switch 与case结合实现多路转移end 结束控制语句块 warning 显示警告信息error 显示错误信息 while 循环语句for 循环语句附录3.3交互输入函数名功能描述函数名功能描述input 请求输入 menu 菜单生成keyboard 启动键盘管理 pause 暂停执行附录3.4面向对象编程函数名功能描述函数名功能描述class 生成对象 isa 判断对象是否属于某一类double 转换成双精度型 superiorto 建立类的层次关系inferiorto 建立类的层次关系 unit8 转换成8字节的无符号整数inline 建立一个内嵌对象附录3.5调试函数名功能描述函数名功能描述dbclear 清除调试断点 dbstatus 列出所有断点情况dbcont 调试继续执行 dbstep 单步执行dbdown 改变局部工作空间内存 dbstop 设置调试断点dbmex 启动对Mex文件的调试sbtype 列出带命令行标号的.M 文件dbquit 退出调试模式 dbup 改变局部工作空间内容dbstack 列出函数调用关系附录4 基本矩阵与矩阵处理附录4.1基本矩阵函数名功能描述函数名功能描述eye 产生单位阵 rand 产生随机分布矩阵linspace 构造线性分布的向量 randn 产生正态分布矩阵logspace 构造等对数分布的向量 zeros 产生零矩阵ones 产生元素全部为1的矩阵 : 产生向量附录4.2特殊向量与常量函数名功能描述函数名功能描述ans 缺省的计算结果变量 non 非数值常量常由0/0或Inf/Inf获得computer 运行Matlab的机器类型 nargin 函数中参数输入个数eps 精度容许误差(无穷小) nargout 函数中输出变量个数flops 浮点运算计数 pi 圆周率i 复数单元 realmax 最大浮点数值inf 无穷大 realmin 最小浮点数值inputname 输入参数名 varargin 函数中输入的可选参数j 复数单元 varargout 函数中输出的可选参数附录4.3时间与日期函数名功能描述函数名功能描述calender 日历 eomday 计算月末clock 时钟 etime 所用时间函数cputime 所用的CPU时间 now 当前日期与时间date 日期 tic 启动秒表计时器datenum 日期(数字串格式) toc 读取秒表计时器datestr 日期(字符串格式) weekday 星期函数datevoc 日期(年月日分立格式)附录4.4矩阵处理函数名功能描述函数名功能描述cat 向量连接 reshape 改变矩阵行列个数diag 建立对角矩阵或获取对角向量 rot90 将矩阵旋转90度fliplr 按左右方向翻转矩阵元素 tril 取矩阵的下三角部分flipud 按上下方向翻转矩阵元素 triu 取矩阵的上三角部分repmat 复制并排列矩阵函数附录5 特殊矩阵函数名功能描述函数名功能描述compan 生成伴随矩阵 invhilb 生成逆hilbert矩阵gallery 生成一些小的测试矩阵 magic 生成magic矩阵hadamard 生成hadamard矩阵 pascal 生成pascal矩阵hankel 生成hankel矩阵 toeplitz 生成toeplitz矩阵hilb 生成hilbert矩阵 wilkinson 生成wilkinson特征值测试矩阵附录6 数学函数附录6.1三角函数函数名功能描述函数名功能描述sin/asin 正弦/反正弦函数 sec/asec 正割/反正割函数sinh/asinh 双曲正弦/反双曲正弦函数 sech/asech 双曲正割/反双曲正割函数cos/acos 余弦/反余弦函数 csc/acsc 余割/反余割函数cosh/acosh 双曲余弦/反双曲余弦函数csch/acsch 双曲余割/反双曲余割函数tan/atan 正切/反正切函数 cot/acot 余切/反余切函数tanh/atanh 双曲正切/反双曲正切函数coth/acoth 双曲余切/反双曲余切函数atan2 四个象限内反正切函数附录6.2指数函数函数名功能描述函数名功能描述exp 指数函数 log10 常用对数函数log 自然对数函数 sqrt 平方根函数附录6.3复数函数函数名功能描述函数名功能描述abs 绝对值函数 imag 求虚部函数angle 角相位函数 real 求实部函数conj 共轭复数函数附录6.4数值处理函数名功能描述函数名功能描述fix 沿零方向取整 round 舍入取整floor 沿-∞方向取整 rem 求除法的余数ceil 沿+∞方向取整 sign 符号函数附录6.5其他特殊数学函数函数名功能描述函数名功能描述airy airy函数 erfcx 比例互补误差函数besselh bessel函数(hankel函数) erfinv 逆误差函数bessili 改进的第一类bessel函数 expint 指数积分函数besselk 改进的第二类bessel函数 gamma gamma函数besselj 第一类bessel函数 gammainc 非完全gamma函数bessely 第二类bessel函数 gammaln gamma对数函数beta beta函数 gcd 最大公约数betainc 非完全的beta函数 lcm 最小公倍数betaln beta对数函数 log2 分割浮点数elipj Jacobi椭圆函数 legendre legendre伴随函数ellipke 完全椭圆积分 pow2 基2标量浮点数erf 误差函数 rat 有理逼近erfc 互补误差函数 rats 有理输出Matlab中有没有画圆或椭圆的函数?没有,Matlab没有提供直接绘圆的图元函数,需要自己写代码,其实就两句:sita=0:pi/20:2*pi;plot(r*cos(sita),r*sin(sita)); %半径为r的圆plot(a*cos(sita+fi),b *sin(sita+fi)); %椭圆如果是单位圆,可以使用rectangle('Curvature', [1 1])。
数字图像处理(Matlab复习代码)
双线性插值法I_=imread('test.jpg');I=rgb2gray(I_);A=0.7;B=0.7;%失真像素坐标[i,j]=size(I);m=round(i*A);n=round(j*B);temp=zeros(m,n);%产生m*n矩阵G=[A 0;0 B];for x=1:mfor y=1:nab=[x,y]/G;%取得x/A,y/Ba=ab(1)-floor(ab(1));%权值b=ab(2)-floor(ab(2));%防溢出处理if ab(1)<1ab(1)=1;endif ab(1)>iab(1)=i;endif ab(2)<1ab(2)=1;endif ab(2)>jab(2)=j;end%定义内插值坐标ab11=[floor(ab(1)) floor(ab(2))];ab12=[floor(ab(1)) ceil(ab(2))];ab21=[ceil(ab(1)) floor(ab(2))];ab22=[ceil(ab(1)) ceil(ab(2))]; temp(x,y)=(1-a)*(1-b)*I(ab11(1),ab11(2))+... a*(1-b)*I(ab12(1),ab12(2))+...(1-a)*b*I(ab21(1),ab21(2))+...a*b*I(ab22(1),ab22(2));endendimshow(uint8(temp)),title('0.7倍双线性'); 最近邻法I_=imread('test.jpg');%读入原始图像I1=rgb2gray(I_);[i,j]=size(I1);m=round(i*1.5);n=round(j*1.5);m_=round(i*0.7);n_=round(j*0.7);% 1.5倍最邻近TEMP=zeros(m,n);%产生m*n矩阵for i = 1:mfor j = 1:nTEMP(i,j)=I1(round(i/1.5),round(j/1.5));endendsubplot(1,3,1) ,imshow(I1),title('原图')TEMP1_5=uint8(TEMP);subplot(1,3,2),imshow(TEMP1_5),title('1.5倍最邻近')全局预测下的图像分割I_=imread('test.jpg');I=rgb2gray(I_);[m,n]=size(I);% 统计直方图zhifangtu=zeros(1,255);%for i=1:1:mfor j=1:1:nzhifangtu(I(i,j)+1)=zhifangtu(I(i,j)+1)+1;endendplot(zhifangtu);%阈值处理final=zeros(m,n);for x=1:1:mfor y=1:1:nAA=I(x,y);if AA > 120final(x,y)=255;elsefinal(x,y)=0;endendendimshow(uint8(final));高通滤波(锐化)Sobel算子O=imread('test.jpg');I=rgb2gray(O);imshow(I);title('锐化前的原始图像');[m,n]=size(I);TEMP=zeros(m+2,n+2);%避免边界为空,用0像素值填充for i=1:1:mfor j=1:1:nTEMP(i+1,j+1)=I(i,j);endend%定义所需的空间vertical=zeros(m,n);horize=zeros(m,n);for x=2:1:m+1for y=2:1:n+1%上下水平模板vertical(x-1,y-1)=[-TEMP(x-1,y-1)+TEMP(x-1,y+1)-TEMP(x,y-1)+ TEMP(x,y+1)-TEMP(x+1,y-1)+TEMP(x+1,y+1)]; %左右垂直模板horize(x-1,y-1)=[-TEMP(x-1,y-1)-TEMP(x-1,y)-TEMP(x-1,y+1)+ TEMP(x+1,y-1)+TEMP(x+1,y)+TEMP(x+1,y+1)];endendfigure;imshow(vertical);title('垂直模板锐化'); figure;imshow(vertical_);title('阈值处理后的垂直模板锐化');figure;imshow(horize);title('水平模板锐化'); figure;imshow(horize_);title('阈值处理后的水平模板锐化');低通滤波:线性滤波(邻域平均法)I=imread('eight.tif');%读入原始图像[m n]=size(I);a_ = imnoise(I,'salt & pepper',0.04);%对图像加椒盐噪声,噪声强度为0.04a=double(a_);%先将uint8转换为double类型,以免数据溢出TEMP=zeros(m+2,n+2);%数值填充,产生一个临时的空间for i=1:1:mfor j=1:1:nTEMP(i+1,j+1)=a(i,j);endendfinal=zeros(m,n);for x=2:1:m+1for y=2:1:n+1final(x-1,y-1)=[TEMP(x-1,y-1)+TEMP(x-1,y)+TEMP(x-1,y+1)+ TEMP(x,y-1)+TEMP(x,y)+TEMP(x,y+1)+TEMP(x+ 1,y-1)+TEMP(x+1,y)+TEMP(x+1,y+1)]/9;endendfinal2=uint8(final)非线性滤波(中值滤波)I=imread('eight.tif');%读入原始图像[m n]=size(I);a_ = imnoise(I,'salt & pepper',0.04);%对图像加椒盐噪声,噪声强度为0.04TEMP=zeros(m+2,n+2);%数值填充,产生一个临时的空间for i=1:1:mfor j=1:1:nTEMP(i+1,j+1)=a_(i,j);endend%中值滤波final=zeros(m,n);% zeros(m,n)产生m×n的零矩阵for x=2:1:m+1for y=2:1:n+1final(x-1,y-1)=median([TEMP(x-1,y-1),TEMP(x-1,y),TEMP(x-1,y +1),TEMP(x,y-1),TEMP(x,y),TEMP(x,y+1),TEMP( x+1,y-1),TEMP(x+1,y),TEMP(x+1,y+1)]);endend图像直方图I=imread('test.jpg'); J=rgb2gray(I);figure,subplot(2,2,1) H=zeros(1,256);% zeros(m,n)产生m ×n 的零矩阵 [m n]=size(J); for i=1:m for j=1:nH(J(i,j)+1)=H(J(i,j)+1)+1; %从第一个开始,并统计灰度值 end endplot(H);stem(H);%绘制二维离散数据的火柴杆图 %归一化直方图N=numbel(J );%统计图像像素的总数 for i=1:m for j=1:nH2(J(i,j)+1)=[H2(J(i,j)+1)+1]/N; end end %图像均衡化%一,图像的预处理,读入彩色图像将其灰度化 cd d:I=imread('test.jpg'); H=rgb2gray(I); imshow(H);%二,绘制直方图[m,n]=size(H); %测量图像尺寸参数GL=zeros(1,256); %预创建存放灰度出现概率的向量 for k=0:255GL(k+1)=length(find(H==k))/(m*n); %计算每级灰度出现的概率,将其存入GP 中相应位置 endfigure,bar(0:255,GL,'g') %绘制直方图 title('原图像直方图') xlabel('灰度值') ylabel('出现概率')%三,直方图均衡化S1=zeros(1,256); % zeros(m,n)产生m ×n 的零矩阵 for i=1:256 for j=1:iS1(i)=GL(j)+S1(i); %计算变换函数Sk end endS2=round((S1*256)+0.5); %将Sk 归到相近级的灰度 for i=1:256GLPeq(i)=sum(GL(find(S2==i))); %计算现有每个灰度级出现的概率 endfigure,bar(0:255,GLPeq,'b') %显示均衡化后的直方图 title('均衡化后的直方图') xlabel('灰度值') ylabel('出现概率') %显示均衡化后的图像title('均衡化后图像')imwrite(PA,'JUNHENGHUA.bmp');。
Matlab中的数字图像编码方法
Matlab中的数字图像编码方法随着数字图像处理技术的不断发展,数字图像编码变得越来越重要。
而Matlab 作为一种强大的数学软件,提供了许多数字图像编码方法的实现。
本文将介绍一些常见的Matlab中的数字图像编码方法,并讨论它们的原理及应用。
一、JPEG图像编码JPEG是一种常用的基于DCT(离散余弦变换)的图像压缩方法。
其基本原理是将图像分块,并对每个分块进行离散余弦变换。
通过舍弃高频系数,可以实现图像的有损压缩。
在Matlab中,可以使用JPEG编码库实现JPEG图像编码。
这种编码方法被广泛应用于数字图像的存储和传输。
二、JPEG2000图像编码JPEG2000是JPEG的一种改进版本,采用了基于小波的图像压缩技术。
与JPEG相比,JPEG2000具有更高的压缩比和更好的视觉质量。
在Matlab中,可以使用JPEG2000编码库实现JPEG2000图像编码。
这种编码方法在医学图像、卫星图像等领域有着广泛的应用。
三、Run-Length编码Run-Length编码是一种简单有效的无损图像压缩技术。
其原理是统计连续出现的像素值的个数,然后将像素值和个数进行编码。
在Matlab中,可以使用rle编码函数实现Run-Length编码。
这种编码方法常用于二值图像和灰度图像的压缩。
四、Huffman编码Huffman编码是一种根据字符出现频率制定的可变长度编码方法。
其原理是通过构建霍夫曼树,将出现频率较高的字符用较短的编码表示,出现频率较低的字符用较长的编码表示。
在Matlab中,可以使用huffmanenco和huffmandeco函数实现Huffman编码。
这种编码方法常用于对图像的灰度级进行编码。
五、LZW编码LZW编码是一种无损的字典编码方法,常用于无损图像压缩。
其原理是通过利用字典表存储已出现的字符和对应的编码,从而实现对连续出现的字符序列进行编码。
在Matlab中,可以使用lzwenco和lzwdeco函数实现LZW编码。
使用Matlab进行图像处理的常用函数介绍
使用Matlab进行图像处理的常用函数介绍引言:图像处理是计算机科学和电子工程领域中的重要分支,它利用数字技术对图像进行各种操作和改变,以实现图像的增强、分割、恢复等目标。
而Matlab作为一种功能强大的科学计算软件,被广泛应用于图像处理领域。
本文将介绍几个常用的Matlab图像处理函数,并结合实例进行详解。
一、图像读取与显示函数1. imread函数imread函数是Matlab中用于读取图像的函数,它可以读取各种图像格式(如JPEG、PNG、BMP等)的图像文件,并将其转换为Matlab中的矩阵形式。
示例:```img = imread('image.jpg');```2. imshow函数imshow函数用于在Matlab中显示图像,它可以接受矩阵形式的图像作为输入,并在新窗口中显示出来。
此外,imshow函数还可以对显示的图像进行一些调整,如调整图像的亮度、对比度等参数。
示例:```imshow(img); % 显示读取的图像```二、图像增强函数1. imadjust函数imadjust函数可以调整图像的亮度和对比度,以增强图像的视觉效果。
它通过对图像的像素值进行映射,将原始图像灰度值的范围进行调整,从而使图像的显示效果更好。
示例:```img_adjusted = imadjust(img, [0.2 0.8], [0 1]);```2. histeq函数histeq函数可以进行直方图均衡化处理,使图像的像素值在不同灰度级之间更均匀分布,从而增强图像的对比度和细节。
示例:```img_equalized = histeq(img);```三、图像滤波函数1. imfilter函数imfilter函数实现了不同类型的图像滤波算法,包括平滑滤波、锐化滤波等。
它可以对图像的每个像素点进行卷积运算,以消除噪声、增强边缘等。
示例:```filter = fspecial('average', [5 5]); % 创建一个平滑滤波器img_filtered = imfilter(img, filter); % 对图像进行平滑滤波```2. medfilt2函数medfilt2函数是一种中值滤波算法,它可以有效地去除图像中的椒盐噪声、脉冲噪声等。
第11讲 Matlab数字图像处理
表 11.1 函数 imfinfo 返回的结构数组基本内容
结构数组成员名 Filename FileMoDate FileSize Format FormatVersion Width Height BitDepth ColorType 所代表函数 文件名称 文件最后修改日期和时间 文件大小(单位是字节) 文件格式或扩展名(tif、jpf 和 png 等) 文件格式版本号 图像文件的宽度,单位为像素 图像文件的高度,单位为像素 图像文件中每一个像素所占位宽(真彩色图像每个像素占 24 位) 图像类型(grayscale-灰度图像,truecolor-RGB 图像,indexed-索引图像)
表111函数imfinfo返回的结构数组基本内容结构数组成员名所代表函数filename文件名称filemodate文件最后修改日期和时间filesize文件大小单位是字节format文件格式或扩展名tifjpf和pngformatversion文件格式版本号width图像文件的宽度单位为像素height图像文件的高度单位为像素bitdepth图像文件中每一个像素所占位宽真彩色图像每个像素占24colortype图像类型grayscale灰度图像truecolorrgb图像indexed索引图像函数imtool利用函数imtool可以将图像在图像工具浏览器中:该函数是利用颜色映射表 map 的逆算法,将 RGB 图像转换为索引 图像。 例11.3 将 RGB 图像转换为索引图像。 RGB = imread('ngc6543a.jpg'); %Matlab 工具箱中的图像文件 subplot(131), imagesc(RGB), zoom(4) %图像放大 4 倍 [IND,map]=rgb2ind(RGB,32); subplot(132), image(IND), colormap(map), zoom(4) subplot(133), imshow(RGB) %不带坐标轴刻度的显示,图像不放大 例 11.4 将 RGB 图像转换为索引图像。 clc, clear a=imread('football.jpg'); %Matlab 工具箱中的图像文件 [x1,m1]=rgb2ind(a,128); %将 RGB 图像转换成索引图像,颜色种数 N 至多 128 种 [x2,m2]=rgb2ind(a,0.1); %将 RGB 图像转换成索引图像,颜色种数 N 至多 11^3 种 m3=colorcube(128); %创建一个指定颜色数目的 RGB 颜色映射表 x3=rgb2ind(a,m3); subplot(131), imshow(x1,m1) %显示用最小方差法转换后的索引图像 subplot(132), imshow(x2,m2) %显示用均匀量化法转换后的索引图像 subplot(133), imshow(x3,m3) %显示用颜色近似法转换后的索引图像 3. 索引图像转换为 RGB 图像 在 Matlab 中,利用函数 ind2rgb 函数可以将索引图像转换为 RGB 图像。其调用格式为 RGB=ind2rgb(X,map):其中[X,map]指向索引图像,RGB 指向转换后的真彩色图像。 例 11.5 将索引图像转换为真彩色图像。 clc, clear [x,a]=imread('kids.tif'); %Matlab 工具箱中的图像文件 b=ind2rgb(x,a); %将索引图像转换为真彩色图像 subplot(121), imshow(x,a), subplot(122), imshow(b) 11.2.2 Matlab 图像工具箱中的几个函数介绍 1.imread 和 imwrite imread 函数是从图像文件读图像,它的一般调用格式为 A=imread(filename) 返回值 A 为矩阵,当图像是黑白和灰度图像时,A 为二维矩阵,当图像是彩色图像时,A 是三维矩阵,即 A 为 3 个二维矩阵,分别为 R、G、B 的像素值。 imwrite 函数是把图像写到图像文件中,它的一般调用格式为 imwrite(A,filename) 把图像 A(二维矩阵或三维矩阵)写到图像文件 filename 中。 例 11.6 读入一个 bmp 图像,然后再把图像保存成 jpg 格式。 clc, clear a=imread('data6.bmp'); %非工具箱图像文件 imwrite(a,'data7.jpg') %把图像保存成 jpg 格式 subplot(121), imshow(a) %显示原图像 subplot(122), imshow('data7.jpg') %显示 jpg 图像 2. 文件信息读取函数 imfinfo 在 Matlab 中,对图像进行操作和处理时,经常需要知道图像文件的文件名、文件格式、 图像大小、图像类型和数据类型等信息,可以直接调用 Matlab 函数 imfinfo 来读取图像文件 的信息。其调用格式如下。 info=imfinfo(filename):该函数读取文件 filename 的信息。其中,filename 指的是图像 文件的“文件名” (包括后缀名) 。info 是一个结构数组。不同格式的文件最终得到的 info 所包含的结构成员不同,但基本都包含前 9 个结构成员,具体如表 11.1 所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本界面
1-1、基本运算与函数
在MATLAB下进行基本数学运算,只需将运算式直接打入提示号(>>)之後,并按入Enter键即可。
例如:
>> (5*2+1.3-0.8)*10/25
ans =4.2000
MATLAB会将运算结果直接存入一变数ans,代表MATLAB运算後的答案(Answer)并显示其数值於萤幕上。
小提示:">>"是MATLAB的提示符号(Prompt),但在PC中文视窗系统下,由於编码方式不同,此提示符号常会消失不见,但这并不会影响到MATLAB的运算结果。
我们也可将上述运算式的结果设定给另一个变数x:
x = (5*2+1.3-0.8)*10^2/25
x = 42
若要输入矩阵,则必须在每一列结尾加上分号(;),如下例:
A = [1 2 3 4; 5 6 7 8; 9 1011 12];
A =
1 2 3 4
5 6 7 8
9 10 11 12
同样地,我们可以对矩阵进行各种处理:
A(2,3) = 5 % 改变位於第二列,第三行的元素值
A =
1 2 3 4
5 6 5 8
9 10 11 12
B = A(2,1:3) % 取出部份矩阵B
B = 5 6 5
A = [A B'] % 将B转置後以列向量并入A
A =
1 2 3 4 5
5 6 5 8 6
9 10 11 12 5
A(:, 2) = [] % 删除第二行(:代表所有列)
A =
1 3 4 5
5 5 8 6
9 11 12 5
A = [A; 4 3 2 1] % 加入第四列
A =
1 3 4 5
5 5 8 6
9 11 12 5
4 3 2 1
A([1 4], :) = [] % 删除第一和第四列(:代表所有行)
A =
5 5 8 6
9 11 12 5
这几种矩阵处理的方式可以相互叠代运用,产生各种意想不到的效果,就看各位的巧思和创意。
小提示:在MATLAB的内部资料结构中,每一个矩阵都是一个以行为主(Column-oriented )的阵列(Array)因此对於矩阵元素的存取,我们可用一维或二维的索引(Index)来定址。
举例来说,在上述矩阵A中,位於第二列、第三行的元素可写为A(2,3) (二维索引)或A(6)(一维索引,即将所有直行进行堆叠後的第六个元素)。
此外,若要重新安排矩阵的形状,可用reshape命令:
B = reshape(A, 4, 2) % 4是新矩阵的行数,2是新矩阵的列数
B =
5 8
9 12
5 6
11 5
小提示:A(:)就是将矩阵A每一行堆叠起来,成为一个列向量,而这也是MATLAB变数的内部储存方式。
以前例而言,reshape(A, 8, 1)和A(:)同样都会产生一个8x1的矩阵。
1,图像的读入和显示:
(1)图像读入:A=imread('文件名',文件格式)
[X,map]=imread('文件名') %X代表索引图像矩阵,map为颜色映射表
(2)图像显示:image(A);
2. 图像写回
A=imwrite('文件名',文件格式)
[X,map]=imwrite('文件名')%注意,当只写文件名时,它应带有扩展名
3.获取图像信息
info=imfinfo('文件名') 4.标准图像显示技术
(1)imshow(I,n)%显示灰度图像,n为灰度级数
(2)imshow(I,[low,high])%[low,high]为图像数据的值域(可为空[ ])
(3)imshow(BW)%显示二值图像
(4)imshow(X,map)%显示索引色图像
5.图像的运算
(1)Z=imadd(X,Y)%图像的加运算,X,Y是输入的两幅图像,其中一个可以是常数
(2)Z=imsubtract(X,Y)%图像的减运算,Y可以是常数
(3)Z=immiltiply(X,y)%图像的乘运算,Y也可以是常数
(4)Z=imdivide(X,y)%图像的除运算,Y也可以是常数
6.图像的类型转换
(1)RGB=ind2rgb(X,map)%索引图转换为真彩色图
(2)I=mat2gray(A)%将一个数据矩阵转换为灰度图
(3)I=rgb2gray(RGB)%将一副灰度图转换为真彩色图
(4)[X,map]=rgb2ind(RGB,n)%将RGB图转换为索引色图
(5)BW=im2bw(I,level)%将真彩色图或灰度图转换为二值图,level为阈值
BW=im2bw(X,map,level)%将索引色图转换为二值图
(6)I=ind2gray(X,map)%将索引色图转换为灰度图
7.傅里叶变换
(1)Y=fft2(x,m,n)%二维离散傅里叶快速变换,x为要进行傅里叶变换的矩阵,m、n是返回的变换矩阵Y的行数和列数。
(2)Y=ifft2(x,m,n)%二维离散傅里叶反变换
(3)Y1=fftshift(Y)%把傅里叶变换操作得到的结果中零频率成分移到矩阵中心,这样利于观察频谱。
8.离散余弦变换
(1)D=dct2(A,m,n)%二维离散余弦变换,A是输入图像,B是返回的DCT变换系数,m、n为D的行数和列数(2)D=idct(A,m,n)%e二维离散余弦逆变换。
(3)D=dctmtx(n)%返回DCT变换矩阵
9.Radon变换
[R,xp]=radon(I,theta)%I为图像矩阵,theta为角度
I=iradon(R,thrta)%逆Radon变换
10.图像的增强(1)
(1)imhist(I)%显示一副图像的直方图
(2)J=histeq(I)%直方图均衡化
(3)J=imadjust(I,[low_in;high_in],[low_out;high_out],gamma)%调整图像灰度值
(4)J=adapthisteq(I)%有限对比自适应直方图均衡化
(5)S=decorrestretch(I)%去相关色度拉伸
11.图像的增强(2)
B=imfilter(A,H,option1,option2,...)
A是输入图像,H是卷积核或相关核,option是一些可选参数。
注:权重矩阵称为卷积核,也称为滤波器。
卷积核是相关核旋转180度得到的,可选参数参看help
其中H也用H=fspecial(type,parameters)可自定义
12.中值滤波器
B=medfilt2(A,[m,n])%A是输入的图像,[m,n]是邻域的大小
13.自适应滤波器
B=wiener2(A,[m,n])
14.图像的分析
P=impixel(I)%交互式获取图像像素值
P=impixel(I,c,r)%指定点坐标像素值,c、r为行坐标和列坐标
C=improfile(I,xi,yi,n,method)%创建图像强度曲线,n规定了计算图像强度点的个数,xi、yi规定了空间直线端点坐标,method是插值方法(nearest,bilinrar,bicubic)
imcontour(I,n,linespec)%显示图像数据的等值线图
15.图像的统计信息
B=mean(A)%计算A的均值
b=std2(A)%计算A的标准差
r=corr2(A,B)%A,B为输入二维矩阵,r是返回的协方差系数
a=rgb2gray()。