理想气体状态方程典型例题解析

合集下载

理想气体状态方程典型例题解析

理想气体状态方程典型例题解析

理想气体状态方程·典型例题解析【例1】某房间的容积为20m 3,在温度为17℃,大气压强为74 cm Hg 时,室内空气质量为25kg ,则当温度升高到27℃,大气压强变为76 cm Hg 时,室内空气的质量为多少千克解析:以房间内的空气为研究对象,是属于变质量问题,应用克拉珀龙方程求解,设原质量为m ,变化后的质量为m ′,由克拉珀龙方程pV RT =可得:m M m m m m 25kg 24.81kg =……①′=……②②÷①得:=∴′==×××=.MpV RT Mp V RT m m p T p T p T p T 122211221127629074300点拨:对于变质量的问题,应用克拉珀龙方程求解的比较简单.【例2】向汽车轮胎充气,已知轮胎内原有空气的压强为个大气压,温度为20℃,体积为20L ,充气后,轮胎内空气压强增大为个大气压,温度升为25℃,若充入的空气温度为20℃,压强为1个大气压,则需充入多少升这样的空气(设轮胎体积不变).解析:以充气后轮胎内的气体为研究对象,这些气体是由原有部分加上充入部分气体所混合构成.轮胎内原有气体的状态为:p 1= atm ,T 1=293K ,V 1=20L .需充入空气的状态为:p 2=1atm ,T 2=293K ,V 2=充气后混合气体状态为:p =,T =298K ,V =20L 由混合气体的状态方程:+=得:p V T p V T pV T111222 V (pV T )(7.520298)117.5(L)2=-·=×-××=p V T T p 1112215302932931.点拨:凡遇到一定质量的气体由不同状态的几部分合成时,可考虑用混合气体的状态方程解决.【例3】已知空气的平均摩尔质量为×10-2 kg/mol ,试估算室温下,空气的密度.点拨:利用克拉珀龙方程=及密度公式ρ=可得ρ=, pV RT m M m V pM RT在具体估算时可取p 0=×105Pa ,T =300 K 来计算.参考答案:m 3【例4】贮气筒的容积为100 L ,贮有温度为27℃,压强为30atm 的氢气,使用后温度降为20℃,压强降为20个大气压,求用掉的氢气质量.点拨:方法一:选取筒内原有的全部氢气为研究对象,且没有用掉的氢气包含在末状态中.可求出用掉的氢气的体积.再取用掉的氢气为对象,同标准状态相比较,求出用掉氢气的质量,方法二:对使用前、后筒内的氢气用克拉珀龙方程.并可比较这两种方法的繁简程度.参考答案:跟踪反馈1.活塞把密闭容器分隔成容积相等的两部分A 和B ,如图13-59所示,在A 、B 中分别充进质量相同、温度相同的氢气和氧气,则活塞将:[ ]A .向右运动B .向左运动C.不动D.不能确定2.有一个充满氢气的氢气球,球的质量为球内充入氢气的3倍,氢气压强为外面空气压强的倍,温度相同,则氢气球开始上升的加速度为________(空气的平均摩尔质量为29g/mol)3.当温度为27℃,压强为×105Pa时,32g氧气的体积为多大密度是多大另有48g氧气,温度和压强跟上述数值相同,氧气密度是多大4.如图13-60所示,气缸A和容器B由一细管经阀门K相连,A和B的壁都是透热的,A放在27℃、1标准大气压的大气中,B浸在127℃的恒温槽内,开始时K是关断的,B内没有气体,容积V B=,A内装有气体,体积V A=,打开K,使气体由A流入B,等到活塞D停止移动时,A内气体体积是多大假设活塞D与气缸壁之间没有摩擦,细管的容积忽略不计.参考答案1.C 2. 3.m3 2kg/m3 4.3L。

专题:理想气体的状态方程(练习) (1)

专题:理想气体的状态方程(练习) (1)

专题:气体实验定律 理想气体的状态方程[重难点阐释]: 一.气体压强的计算气体压强的确定要根据气体所处的外部条件,往往需要利用跟气体接触的液柱和活塞等物体的受力情况和运动情况计算.几种常见情况的压强计算:1.封闭在容器内的气体,各处压强相等.如容器与外界相通,容器内外压强相等. 2.帕斯卡定律:加在密闭静止液体上的压强,能够大小不变地由液体向各个方向传递. 3.连通器原理:在连通器中,同一种液体(中间液体不间断)的同一水平面上的压强是相等的.4.液柱封闭的气体:取一液柱为研究对象;分析液柱受力情况,根据物体的运动情况,利用力的平衡方程(或动力学方程)求解.5.固体封闭的气体:取固体为研究对象;分析固体受力情况,根据物体的运动情况,利用力的平衡方程(或动力学方程)求解. 二.气体的图象1.气体等温变化的P --V 图象 (1)、如图所示,关于图象的几点说明 ①平滑的曲线是双曲线的一支,反应了在等温情况下,一定质量的气体压强跟体积成反比的规律.②图线上的点,代表的是一定质量气体的一个状态.③这条曲线表示了一定质量的气体由一个状态变化到另一个状态的过程,这个过程是一个等温过程,因此这条曲线也叫等温线. (2)、如图所示,各条等温线都是双曲线,且离开坐标轴越远的图线表示P ·V 值越大,气体的温度越高,即T 1<T 2<T 3 .2.等容线反应了一定质量的气体在体积不变时,压强随温度的变化关系,如图所示是P-t 图线,图线与t 轴交点的温度是-273℃,从图中可以看出P 与t 是一次函数关系,但不成正比,由于同一温度下,同一气体的体积大时压强小,所以V 1>V 2,如图所示P -T 图线,这时气体的压强P 与温度T 是正比例关系,坐标原点的物理意义是“P =0时,T =0”坐标原点的温度就是热力学温度的0K .由PV /T =C 得P /T =C /V 可知,体积大时对应的直线斜率小,所以有V 1>V 2.3.等压线反映了一定质量的气体在压强不变时,体积随温度的变化关系,如图所示,V -t 图线与t 轴的交点是-273℃,从图中可以看出,发生等压变化时,V 与t 不成正比,由于同一气体在同一温度下体积大时压强小,所以P 1>P 2.如图所示,V --T 图线是延长线过坐标原点的直线.由PV /T =C 得V /T =C /P 可知,压强大时对应的直线斜率小,所以有P 1>P 2.[基础巩固]:一.气体的状态参量1.温度:温度在宏观上表示物体的________;在微观上是________的标志.温度有________和___________两种表示方法,它们之间的关系可以表示为:T = ________.而且ΔT =____(即两种单位制下每一度的间隔是相同的).绝对零度为____0C,即___K ,是低温的极限,它表示所有分子都停止了热运动.可以无限接近,但永远不能达到.2.体积:气体的体积宏观上等于___________________________________,微观上则表示_______________________.1摩尔任何气体在标准状况下所占的体积均为_________.3.压强:气体的压强在宏观上是___________;微观上则是_______________________产生的.压强的大小跟两个因素有关:①气体分子的__________,②分子的_________. 二.气体实验定律1.玻意耳定律(等温变化)一定质量的气体,在温度不变的情况下,它的压强跟体积成______;或者说,它的压强跟体积的________不变.其数学表达式为_______________或_____________. 2.查理定律(等容变化)(1)一定质量的气体,在体积不变的情况下,温度每升高(或降低)10C ,增加(或减少)的压强等于它在___________.其数学表达式为_______________或_____________.(2)采用热力学温标时,可表述为:一定质量的气体,在体积不变的情况下,它的压强与热力学温度成______.其数学表达式为____________.(3)推论:一定质量的气体,从初状态(P ,T )开始,发生一等容变化过程,其压强的变化量△P 与温度变化量△T 的关系为_____________. 3.盖·吕萨克定律(等压变化)(1)一定质量的气体,在压强不变的情况下,温度每升高(或降低)10C ,增加(或减少)的体积等于它在___________.其数学表达式为_______________或_____________.(2)采用热力学温标时,可表述为:一定质量的气体,在压强不变的情况下,它的体积与热力学温度成______.其数学表达式为____________.(3)推论:一定质量的气体,从初状态(V ,T )开始,发生一等压变化过程,其体积的变化量△V 与温度变化量△T 的关系为_____________. 三.理想气体状态方程 1.理想气体能够严格遵守___________的气体叫做理想气体.从微观上看,分子的大小可忽略,除碰撞外分子间无___________,理想气体的内能由气体_____和_____决定,与气体_____无关.在___________、__________时,实际气体可看作理想气体. 2.一定质量的理想气体状态方程:222111T V P T V P = 3.密度方程:222111ρρT PT P =[典型分析]:题型一:气体压强的计算【例1】右图中气缸静止在水平面上,缸内用活塞封闭一定质量的空气.活塞的的质量为m ,横截面积为S ,下表面与水平方向成θ角,若大气压为P 0,求封闭气体的压强P .题型二:实验定律的定性分析 【例2】如图所示,把装有气体的上端封闭的玻璃管竖直插入水银槽内,管内水银面与槽内水银面的高度差为h ,当玻璃管缓慢竖直向下插入一些,问h 怎样变化?气体体积怎样变化?题型三:实验定律的定量计算【例3】一根两端开口、粗细均匀的细玻璃管,长L =30cm ,竖直插入水银槽中深h 0=10cm 处,用手指按住上端,轻轻提出水银槽,并缓缓倒转,则此时管内封闭空气柱多长?已知大气压P 0=75cmHg .题型四:气体状态方程的应用【例4】如图所示,用销钉将活塞固定,A 、B 两部分体积比为2∶1,开始时,A 中温度为127℃,压强为1.8 atm ,B 中温度为27℃,压强为1.2atm .将销钉拔掉,活塞在筒内无摩擦滑动,且不漏气,最后温度均为27℃,活塞停止,求气体的压强.题型五:图象问题的应用【例5】如图是一定质量的理想气体由状态A 经过状态B 变为状态C 的V --T 图象.已知气体在状态A 时的压强是1.5×105Pa.(1)说出A 到B 过程中压强变化的情形,并根据图像提供的信息,计算图中T A 的温度值. (2)请在图乙坐标系中,作出由状态A 经过状态B 变为状态C 的P --T 图像,并在图线相应位置上标出字母A 、B 、C .如果需要计算才能确定有关坐标值,请写出计算过程.[当堂练习]1.一定质量的理想气体处于某一初始状态,现要使它的温度经过状态变化后,回到初始状态的温度,用下列哪个过程可以实现( )A .先保持压强不变而使体积膨胀,接着保持体积不变而减小压强B .先保持压强不变而使体积减小,接着保持体积不变而减小压强C .先保持体积不变而增大压强,接着保持压强不变而使体积膨胀D . 先保持体积不变而减少压强,接着保持压强不变而使体积减小2.如图为0.2mol 某种气体的压强与温度关系.图中p 0为标准大气压.气体在B 状态时的体积是_____L .3.竖直平面内有右图所示的均匀玻璃管,内用两段水银柱封闭两段空气柱a 、b ,各段水银柱高度如图所示.大气压为p 0,求空气柱a 、b 的压强各多大?4.一根两端封闭,粗细均匀的玻璃管,内有一小段水银柱把管内空气柱分成a 、b 两部分,倾斜放置时,上、下两段空气柱长度之比L a /L b =2.当两部分气体的温度同时升高时,水银柱将如何移动?5.如图所示,内径均匀的U 型玻璃管竖直放置,截面积为5cm 2,管右侧上端封闭,左侧上端开口,内有用细线栓住的活塞.两管中分别封入L =11cm 的空气柱A 和B ,活塞上、下气体压强相等为76cm 水银柱产生的压强,这时两管内的水银面的高度差h=6cm ,现将活塞用细线缓慢地向上拉,使两管内水银面相平.求:(1)活塞向上移动的距离是多少?(2)需用多大拉力才能使活塞静止在这个位置上?6、一定质量的理想气体,在某一平衡状态下的压强、体积和温度分别为p 1、V 1、T 1,在另一平衡状态下的压强、体积和温度分别为p 2、V 2、T 2,下列关系正确的是( )A .p 1 =p 2,V 1=2V 2,T 1= 21T 2B .p 1 =p 2,V 1=21V 2,T 1= 2T 2C .p 1 =2p 2,V 1=2V 2,T 1= 2T 2D .p 1 =2p 2,V 1=V 2,T 1= 2T 27、A 、B 两装置,均由一支一端封闭、一端开口且带有玻璃泡的管状容器和水银槽组成,除玻璃泡在管上的位置不同外,其他条件都相同。

理想气体状态方程练习及答案

理想气体状态方程练习及答案
气体练习
例1:如图所示,气缸A和容器B由一细管经阀门K相 连,A和B的壁都是透热的,A是放置在27℃、1atm 的空气中,B浸在127℃的恒温槽内.开始时,K是关 闭的,B内为真空,容积VB=10L,A内装有理想气体 ,体积VA=10L.假设气缸壁和活塞D之间无摩擦,细 管的容积可忽略不计,打开K,使气体由A流入B, 等到活塞D停止移动时,A内气体的体积将是多少? 答案:A内气体的体积将是2.5L
答案: ① p=1.43×105pa ,②fm=600N
例7:一个质量可不计的活塞将一定量的气体封闭在上端开口 的直圆柱形气缸内,活塞的面积为600cm3,活塞上堆放着铁砂, 如图所示。最初活塞搁置在气缸内壁的固定卡环上,气体柱的 高度为H0=20cm,温度为20℃,气体压强为1atm。 (不计活塞 与气缸之间的摩擦) ①现对气体缓缓加热,当气体温度升高到57℃时,活塞(及铁砂) 刚好开始离开卡环而上升,求铁砂的质量。 ②继续加热,当温度又升高多少时,气体柱高度H1长为30cm。 ③此后维持温度不变,逐渐取走铁砂,则直到铁砂全部取走 时,气柱长H2为多少?
答案: ①铁砂的质量为60kg。 ②温度为495K,又升高了165K。 ③H2为33cm。
例8: 、如图所示,气缸放置在水平平台上,活塞质量为 10kg,横截面积50cm2,厚度1cm,气缸全长21cm, 气缸质量20kg,大气压强为1×105Pa,当温度为7℃时, 活塞封闭的气柱长10cm,若将气缸倒过来放置时,活塞 下方的空气能通过平台上的缺口与大气相通 。g取10m/s2求: (1)气柱多长? (2)当温度多高时,活塞刚好接触平台? (3)当温度多高时,缸筒刚好对地面无压力。 (活塞摩擦不计)。
答案:(1)28cm(2)237℃
例5:如图所示,一个内径均匀的双U形曲管,用水银柱 将管的A部分封闭了一定质量的气体,当温度为T1 (K)时,空气柱A的长度为40 cm,右侧曲管的水银面 高度差为16 cm,当温度变为T2(K)时,量得曲管B处 的水银面比原来升高了10 cm,若外界大气压为76 cmHg,则T1: T2应为( ). A.2:1 B.3:1 C.4:1 D.3:2

高中物理 理想气体的状态方程 (提纲、例题、练习、解析)

高中物理  理想气体的状态方程 (提纲、例题、练习、解析)
2.理想气体的状态方程
一定质量的理想气体,由初状态( )变化到末状态( )时,各量满足:
或 ( 为恒量).
上面两式都叫做一定质量的理想气体的状态方程.
要点诠释:
(1)气体的三个实验定律是理想气体状态方程的特例:
当 时, (玻意耳定律).
当 时, (查理定律).
当 时, (盖—吕萨克定律).
(2) 适用条件:
该方程是在理想气体质量不变的条件下才适用.是一定量理想气体两个状态参量的关系,与变化过程无关.
(3) 中的恒量 仅由气体的种类和质量决定,与其他参量无关.
要点二、应用理想气体状态方程解题的一般思路
1.应用理想气体状态方程解题的一般思路
(1)确定研究对象(某一部分气体),明确气体所处系统的力学状态(是否具有加速度).
A.理想气体实际上并不存在,只是一种理想模型
B.实只要气体压强不是很高就可视为理想气体
C.一定质量的某种理想气体的内能与温度、体积都有关
D.在任何温度、任何压强下,理想气体都遵循气体实验定律
【思路点拨】根据理想气体的特点。
【答案】A、D
【解析】理想气体是在忽略了实际气体分子间相互作用力的情况下而抽象出的一种理想化模型,A正确;实际气体能视为理想气体的条件是温度不太低、压强不太大,B错误;理想气体分子间无分子力作用,也就无分子势能,故一定质量的理想气体,其内能与体积无关,只取决于温度,C错误;由理想气体模型的定义可知D正确。

从中间态→末态,由盖一吕萨克定律得

由①②式得

其余5组大家可试证明一下.
2.克拉珀龙方程
某种理想气体,设质量为 ,摩尔质量为 ,则该理想气体状态方程为 。
式中 为摩尔气体常量,在国际单位制中 .

理想气体状态方程典型例题解析

理想气体状态方程典型例题解析

理想气体状态方程·典型例题解析【例1】某房间的容积为20m 3 ,在温度为17 ℃,大气压强为74 cm Hg 时,室内空气质量为25kg ,则当温度升高到27℃,大气压强变为76 cm Hg 时,室内空气的质量为多少千克?解析:以房间内的空气为研究对象,是属于变质量问题,应用克拉珀龙方程求解,设原质量为m,变化后的质量为m′,由克拉珀龙方程pV =mRT可得:MMpV Mp 2 Vm=①RT1m′=②RT2②÷①得:m =p 2 T1m p1T2∴m′=p 2T1p 1T2m=76×290 ×25kg=24.81kg.74 ×300点拨:对于变质量的问题,应用克拉珀龙方程求解的比较简单.【例2】向汽车轮胎充气,已知轮胎内原有空气的压强为 1.5 个大气压,温度为20 ℃,体积为20L ,充气后,轮胎内空气压强增大为7.5 个大气压,温度升为25 ℃,若充入的空气温度为20 ℃,压强为 1 个大气压,则需充入多少升这样的空气(设轮胎体积不变).解析:以充气后轮胎内的气体为研究对象,这些气体是由原有部分加上充入部分气体所混合构成.轮胎内原有气体的状态为:p 1=1.5 atm ,T 1=293K ,V 1 =20L .需充入空气的状态为:p2=1atm ,T2 =293K ,V 2=?充气后混合气体状态为:p=7.5atm ,T=298K ,V=20L由混合气体的状态方程:p1V 1+T1p2 V 2T2pV=得:TpV V 2 =(T -p 1 V1 ) ·T2T1 p 27.5× 20=( -2981.5× 30) ×2932931=117.5(L)点拨:凡遇到一定质量的气体由不同状态的几部分合成时,可考虑用混合气体的状态方程解决.【例3】已知空气的平均摩尔质量为 2.9 ×10 -2 kg/mol ,试估算室温下,空气的密度.m m pM 点拨:利用克拉珀龙方程pV =RT及密度公式ρ=可得ρ=,M V RT 在具体估算时可取p 0=1.01 ×105Pa ,T=300 K 来计算.参考答案:1.2Kg/m 3【例4】贮气筒的容积为100 L,贮有温度为27 ℃,压强为30atm 的氢气,使用后温度降为20℃,压强降为20 个大气压,求用掉的氢气质量.点拨:方法一:选取筒内原有的全部氢气为研究对象,且没有用掉的氢气包含在末状态中.可求出用掉的氢气的体积.再取用掉的氢气为对象,同标准状态相比较,求出用掉氢气的质量,方法二:对使用前、后筒内的氢气用克拉珀龙方程.并可比较这两种方法的繁简程度.参考答案:87.5g跟踪反馈1..活塞把密闭容器分隔成容积相等的两部分 A 和B,如图13-59 所示,在A、B 中分别充进质量相同、温度相同的氢气和氧气,则活塞将:[ ] A.向右运动B.向左运动C.不动D.不能确定2..有一个充满氢气的氢气球,球的质量为球内充入氢气的 3 倍,氢气压强为外面空气压强的 1.45 倍,温度相同,则氢气球开始上升的加速度为( 空气的平均摩尔质量为29g/mol)3..当温度为27 ℃,压强为 2.0 ×105 Pa 时,32g 氧气的体积为多大?密度是多大?另有48g 氧气,温度和压强跟上述数值相同,氧气密度是多大?4..如图13 -60 所示,气缸 A 和容器B 由一细管经阀门K 相连,A 和B的壁都是透热的, A 放在27 ℃、1 标准大气压的大气中,B 浸在127 ℃的恒温槽内,开始时K 是关断的,B 内没有气体,容积V B=2.4L ,A 内装有气体,体积V A=4.8L ,打开K,使气体由 A 流入B ,等到活塞 D 停止移动时, A 内气体体积是多大?假设活塞D 与气缸壁之间没有摩擦,细管的容积忽略不计.参考答案1 .C 2.1.5g 3.12.5dm 32kg/m 3 2kg/m 3 4 .3LWelcome To Download !!!欢迎您的下载,资料仅供参考!。

高中物理热学--理想气体状态方程试题及答案

高中物理热学--理想气体状态方程试题及答案

高中物理热学--理想气体状态方程试题及答案、单选题1•一定质量的理想气体,在某一平衡状态下的压强、体积和温度分别为压强、体积和温度分别为P2、V2、A. p i =p2, V i=2V2, T i= 1T22 C. p i =2p2, V i=2V2, T i= 2T2 T2,下列关系正确的是iB. p i =p2, V i= 2 V2 , T i= 2T2D . p i =2p2 , V i=V2, T i= 2T22.已知理想气体的内能与温度成正比。

如图所示的实线为汽缸内一定质量的理想气体由状态i到状态2的变化曲线,则在整个过程中汽缸内气体的内能A.先增大后减小C.单调变化B.先减小后增大D.保持不变3•地面附近有一正在上升的空气团,它与外界的热交热忽略不计•已知大气压强随高度增加而降低,则该气团在此上升过程中(不计气团内分子间的势能)A.体积减小,温度降低B.体积减小,温度不变C•体积增大,温度降低 D.体积增大,温度不变4.下列说法正确的是A. 气体对器壁的压强就是大量气体分子作用在器壁单位面积上的平均作用力B. 气体对器壁的压强就是大量气体分子单位时间作用在器壁上的平均冲量C. 气体分子热运动的平均动能减少,气体的压强一定减小D. 单位面积的气体分子数增加,气体的压强一定增大5 .气体内能是所有气体分子热运动动能和势能的总和,其大小与气体的状态有关,分子热运动的平均动能与分子间势能分别取决于气体的A .温度和体积B .体积和压强C.温度和压强 D .压强和温度6.带有活塞的汽缸内封闭一定量的理想气体。

气体开始处于状态a,然后经过程ab到达状态b或进过过程ac到状态c, b、c状态温度相同,如V-T所示。

设气体在状态b和状态c的压强分别为Pb、和PC ,在过程ab和ac 吸收的热量分别为Qab和Qac,贝UA. Pb >Pc, Qab>QacB. Pb >Pc, Qab<QacC. Pb <Pc, Qab>QacD. Pb <Pc, Qab<Qac中7.下列说法中正确的是A. 气体的温度升高时,分子的热运动变得剧烈,分子的平均动能增大,撞击器壁时对器壁的作用力增大,从而气体的压强一定增大B. 气体的体积变小时,单位体积的分子数增多,单位时间内打到器壁单位面积上的分子数增多,从而气体的压强一定增大C. 压缩一定量的气体,气体的内能一定增加D. 分子a从远处趋近固定不动的分子b,当a到达受b的作用力为零处时,a的动能一定最大&对一定量的气体,若用N表示单位时间内与器壁单位面积碰撞的分子数,则p i、V i、T i,在另一平衡状态下的14.一定质量的理想气体由状态A 经状态B 变为状A 当体积减小时,V 必定增加B 当温度升高时,N 必定增加C 当压强不变而体积和温度变化时,D 当压强不变而体积和温度变化时,二、双选题9•一位质量为60 kg 的同学为了表演“轻功”,他用打气筒 只相同的气球充以相等质量的空气(可视为理想气体) ,然 这4只气球以相同的方式放在水平放置的木板上, 在气球的 放置一轻质塑料板,如图所示。

高中物理:理想气体状态方程应用及解析

高中物理:理想气体状态方程应用及解析

高中物理:理想气体状态方程综合及解析A 基础1.空气压缩机的储气罐中储有1.0 atm 的空气6.0 L ,现再充入1.0 atm 的空气9.0 L .设充气过程为等温过程,空气可看作理想气体,则充气后储气罐中气体压强为( )A .2.5 atmB .2.0 atmC .1.5 atmD .1.0 atm解析:取全部气体为研究对象,由p 1V 1+p 2V 2=pV 1得p =2.5 atm ,故A 正确.答案:A2.用打气筒将压强为1 atm 的空气打进自行车胎内,如果打气筒容积ΔV =500 cm 3,轮胎容积V =3 L ,原来压强p =1.5 atm.现要使轮胎内压强变为p ′=4 atm ,问用这个打气筒要打气(设打气过程中空气的温度不变( )A .5次B .10次C .15次D .20次解析:因为温度不变,可应用玻意耳定律的分态气态方程求解.pV +np 1ΔV =p ′V ,代入数据得1.5 atm ×3 L +n ×1 atm ×0.5 L =4 atm ×3 L ,解得n =15.答案:C3.用活塞气筒向一个容积为V 的容器中打气,每次能把体积为V 0、压强为p 0的空气打入容器内.若容器内原有空气的压强为p 0,打气过程中温度不变,则打了n 次后容器内气体的压强为 W.解析:气体初状态为(nV 0,p 0)和(V ,p 0),末状态为(V ,p ).由玻意耳定律得p 0nV 0+p 0V =pV ,得p =p 0⎝ ⎛⎭⎪⎫1+nV 0V .答案:p 0⎝ ⎛⎭⎪⎫1+nV 0V 4.钢筒内装有3 kg 气体,其温度是-23 ℃,压强为4 atm ,如果用掉1 kg后温度升高到27 ℃,求筒内气体压强.解析:本题是变质量问题,如果我们在研究对象上做一下处理,可以使变质量问题成为一定质量的问题,本题的做法是选取筒内的23质量为研究对象,这样,初始状态体积占钢筒体积的23,末状态占全部体积. 以钢筒内剩下的2 kg 气体为研究对象.设钢筒容积为V ,则该部分气体在初状态占有的体积为23V ,末状态时恰好充满整个钢筒.由一定质量理想气体的状态方程p 1V 1T 1=p 2V 2T 2得p 2=p 1V 1T 2V 2T 1=4×23V ×300V ×250atm =3.2 atm. 答案:3.2 atm B 能力5.(多选)装有两种不同气体的容积相同的两个容器A 、B ,用均匀的长直玻璃管水平连接,管内有一段水银柱,将两部分气体隔开,当A 的温度低于B 的温度17 ℃时,水银恰好平衡,位于管中央,如图所示.为使水银柱保持在中央,则两容器的温度变化是( )A.升高相同温度B.使A 、B 升高到相同温度C.使两容器升温后的热力学温度之比等于它们的初状态的热力学温度之比D.使两容器温度变化量之比等于它们的初状态的热力学温度之比解析:假设水银柱不动,对A :p A T A =p A ′T A ′, Δp A =p A ′-p A =p A T A T A ′-p A =ΔT A T A p A ,同理对B得:Δp B=ΔT BT B p B,初始时,T A=T B-17,p A=p B,整理得:ΔT AT A=ΔT BT B或ΔT AT B-17=ΔT BT B.由此判断C、D正确. 答案:CD6.(多选)如图所示,在光滑的水平面上,有一个内外壁都光滑的气缸,气缸的质量为M,气缸内有一质量为m(m<M)的活塞,密封一部分理想气体,气缸处于静止状态.现用水平恒力F向左推活塞.当活塞与气缸的加速度均为a 时,封闭气体的压强为p1,体积为V1;若用同样大小的水平恒力F向右推气缸,当活塞与气缸的加速度均为a时,封闭气体的压强为p2,体积为V2,设封闭气体的质量和温度均不变,则()A.p1>p2B.p1<p2C.V1>V2D.V1<V2解析:向左推时,对于气缸p1S-p0S=Ma,解得p1=p0+MaS;向右推时,对于活塞p2S-p0S=ma,解得p2=p0+maS,可见p1>p2,由玻意耳定律得V1<V2.故选项A、D正确. 答案:AD7.如图,A,B是体积相同的气缸,B内有一导热的、可在气缸内无摩擦滑动的、体积不计的活塞C,D为不导热的阀门.起初,阀门关闭,A内装有压强p1=2.0×105 Pa,温度T1=300 K的氮气.B内装有压强p2=1.0×105 Pa,温度T2=600 K的氧气.打开阀门D,活塞C向右移动,最后达到平衡,以V1和V2分别表示平衡后氮气和氧气的体积,则V1∶V2=(假定氧气和氮气均为理想气体,并与外界无热交换,连接气缸的管道体积可忽略).解析:对于A容器中的氮气,其气体状态为初状态:p1=2.0×105 Pa,V1=V,T1=300 K,末状态:p1′=p,V1′=V1(题目所设),T1′=T.由气体状态方程可知:p1VT1=pV1T.①对于B容器中的氧气,其气体状态为初状态:p2=1.0×105 Pa,V2=V,T2=600 K,末状态:p2′=p,V2′=V2(题目所设),T2′=T,由气态方程可知:p2VT2=pV2T.②联立①②消去T、V,可得:V1 V2=p1T2p2T1=2.0×105Pa×600 K1.0×105Pa×300 K=41. 答案:4∶18.如图甲所示,一导热性能良好、内壁光滑的汽缸水平放置,横截面积为S =2×10-3 m2、质量为m=4 kg、厚度不计的活塞与汽缸底部之间封闭了一部分理想气体,此时活塞与汽缸底部之间的距离为24 cm,在活塞的右侧12 cm处有一对与汽缸固定连接的卡环,气体的温度为300 K,大气压强p0=1.0×105Pa.现将汽缸竖直放置,如图乙所示,取g=10 m/s2.求:图甲图乙(1)活塞与汽缸底部之间的距离;(2)加热到675 K时封闭气体的压强.解析:(1)p1=p0=1×105 PaT1=300 K,V1=24 cm×S,p2=p0+mgS=1.2×105 PaT1=T2,V2=HS由p1V1=p2V2,解得H=20 cm.(2)假设活塞能到达卡环处,则T3=675 K,V3=36 cm×S由p2V2T2=p3V3T3得p3=1.5×105 Pa>p2=1.2×105 Pa所以活塞到达卡环处,气体压强为1.5×105 Pa. 答案:(1)20 cm(2)1.5×105 Pa。

高中物理 第八章 气体 第3节 理想气体的状态方程练习(含解析)新人教版选修3-3

高中物理 第八章 气体 第3节 理想气体的状态方程练习(含解析)新人教版选修3-3

第3节理想气体的状态方程1.了解理想气体模型,知道实际气体可以近似看成理想气体的条件。

2.能够从气体实验定律推导出理想气体的状态方程。

3.掌握理想气体状态方程的内容、表达式和适用条件,并能应用理想气体的状态方程分析解决实际问题。

一、理想气体1.定义:在任何温度、任何压强下都严格遵从□01气体实验定律的气体。

2.理想气体与实际气体二、理想气体的状态方程1.内容:一定质量的某种理想气体,在从状态1变化到状态2时,尽管p、V、T都可能03热力学温度的比值保持不变。

改变,但是□01压强跟□02体积的乘积与□2.公式:□04pV T =C 或□05p 1V 1T 1=p 2V 2T 2。

3.适用条件:一定质量的□06某种理想气体。

判一判(1)一定质量的理想气体,先等温膨胀,再等压压缩,其体积必小于起始体积。

( ) (2)气体的状态由1变到2时,一定满足方程p 1V 1T 1=p 2V 2T 2。

( ) (3)描述气体的三个状态参量中,可以保持其中两个不变,仅使第三个发生变化。

( ) 提示:(1)× (2)× (3)×课堂任务 对理想气体的理解理想气体的特点1.严格遵守气体实验定律及理想气体状态方程。

2.理想气体分子本身的大小与分子间的距离相比可以忽略不计,分子可视为质点。

3.理想气体分子除碰撞外,无相互作用的引力和斥力,故无分子势能,理想气体的内能等于所有分子热运动动能之和,一定质量的理想气体内能只与温度有关。

例1 (多选)关于理想气体,下面说法哪些是正确的( )A.理想气体是严格遵守气体实验定律的气体模型B.理想气体的分子没有体积C.理想气体是一种理想模型,没有实际意义D.实际气体在温度不太低、压强不太大的情况下,可当成理想气体[规范解答] 理想气体是指严格遵守气体实验三定律的气体,实际的气体在压强不太高、温度不太低时可以认为是理想气体,A、D正确。

理想气体分子间没有分子力,但分子有大小,B错误。

理想气体状态方程练习题(三)

理想气体状态方程练习题(三)

理想气体状态方程练习题(三)1. (10分)(2013山西四校联考)我国陆地面积8= 960万平方千米,若地面大气压P0= 1.0 X 10 5 Pa,地面附近重力加速度g取10 m/s 2,试估算:①地面附近温度为270 K的1 m3空气,在温度为300 K时的体积。

②我国陆地上空空气的总质量M总;2. 一个质量可不计的活塞将一定质量的理想气体封闭在上端开口的直立筒形气缸内,活塞上堆放着铁砂,如图所示,最初活塞搁置在气缸内壁的卡环上,气体柱的高度为H,压强等于大气压强P0,现对气体缓慢加热,当气体温度升高了△ T=60K时,活塞(及铁砂)开始离开卡环而上升,继续加热直到气柱高度为H=1.5H0. 此后在维持温度不变的条件下逐渐取走铁砂,温度.(不计活塞与气缸之间的摩擦)直到铁砂全部取走时,气柱高度变为3.一气缸竖直放置,内截面积S=50cm2,质量m=10kg的活塞将一定质量的气体封闭在缸内,气体柱长h0=15cm,活塞用销子销住,缸内气体的压强P=2.4 X 1Pa,温度活塞与气缸壁的摩擦。

当活塞速度达到最大时,缸内气体的温度为177 C。

现拔去活塞销s (不漏气),不计57 C,外界大气压为1.0 X I5pa。

求:(1)此时气体柱的长度h;(2)如活塞达到最大速度V m=3m/s,则缸内气体对活塞做的功。

A的截面积S A=10cm2,活塞B的截面积4.如图所示,在水平放置内壁光滑,截面积不等的气缸里,活塞S B=20cm 2。

两活塞用质量不计的细绳连接,活塞A还通过细绳、定滑轮与质量为1kg的重物C相连,在缸内气温t i=227 C时,两活塞保持静止,此时两活塞离开气缸接缝处距离都是L=10cm,大气压强P o =1.0 X105Pa保持不变,试求:(1)此时气缸内被圭寸闭气体的压强;(2)在温度由t i缓慢下降到t2 =-23 C过程中,气缸内活塞A、B移动情况。

(3)当活塞A、B间细绳拉力为零时,气缸内气体的温度。

高二物理气体的状态方程试题答案及解析

高二物理气体的状态方程试题答案及解析

高二物理气体的状态方程试题答案及解析1.如图(a)所示,一导热性能良好、内壁光滑的气缸水平放置,横截面积为S=2×10-3m2、质量为m=4kg厚度不计的活塞与气缸底部之间封闭了一部分气体,此时活塞与气缸底部之间的距离为24cm,在活塞的右侧12cm处有一对与气缸固定连接的卡环,气体的温度为300K,大气压强P=1.0×105Pa。

现将气缸竖直放置,如图(b)所示,取g=10m/s2。

求:(1)活塞与气缸底部之间的距离;(2)加热到675K时封闭气体的压强。

【答案】(1)(2)【解析】(1)气缸水平放置时,封闭气体的压强:,温度:,体积:当气缸竖直放置时,封闭气体的压强:,温度,体积:.根据理想气体状态方程有:,代入数据可得(2)假设活塞能到达卡环,由题意有:根据理想气体状态方程有:代入数据可得:,故假设成立,活塞能达到卡环,气体压强为【考点】考查气体状态方程2.如图所示,封闭有一定质量理想气体的汽缸固定在水平桌面上,开口向右放置,活塞的横截面积为S。

活塞通过轻绳连接了一个质量为m的小物体,轻绳跨在定滑轮上。

开始时汽缸内外压强相同,均为大气压。

汽缸内气体的温度,轻绳处在伸直状态。

不计摩擦。

缓慢降低汽缸内温度,最终使得气体体积减半,求:①重物刚离地时气缸内的温度;②气体体积减半时的温度;③在下列坐标系中画出气体状态变化的整个过程。

并标注相关点的坐标值。

【答案】①②③如图所示【解析】①P1=P,(1分)等容过程:(2分)(1分)②等压过程:(2分)(1分)③如图所示(共1分)【考点】考查了理想气体状态方程3.如图(a)所示,一导热性能良好、内壁光滑的气缸水平放置。

横截面积为S=2×10-3m2、质量为m=4kg、厚度不计的活塞与气缸底部之间封闭了一部分气体,此时活塞与气缸底部之间的距离为24cm,在活塞的右侧12cm处有一对与气缸固定连接的卡环,气体的温度为300K,大气压强p=1.0×105Pa。

理想气体状态方程

理想气体状态方程
2021/3/8
解:以混进水银气压计的空气为研究对象
初状态:
p1=758-738=20mmHg V1=80Smm3 T1=273+27=300 K 末状态:
p2=p-743mmHg V2=(738+80)S-743S=75Smm3
T2=273+(-3)=270K
由理想气体状态方程得: p1V1 p2V2
2、在温度不太低,压强不太大时实际气体都可看成 是理想气体。
2021/3/8
3、从能量上说:理想气体的微观本质是忽略了分 子力,没有分子势能,理想气体的内能只有分子 动能。
一定质量的理想气体的内能仅由温度决 定 ,与气体的体积无关。
2021/3/8
如图所示,一定质量的某种理想气体从A到B经历了 一个等温过程,从B到C经历了一个等容过程。分别
用pA、VA、TA和pB、VB、TB以及pC、VC、TC表示气体在A、B、
C三个状态的状态参量,那么A、C状态的状态参量间 有何关系呢? p
A
C
TA=TB
B
0
V
2021/3/8
推导过程
p A
从A→B为等温变化:由玻意耳定律
C
pAVA=pBVB
B
从B→C为等容变化:由查理定律
pB pC TB TC
答案:(1)133cmHg (2)-5℃
2021/3/8
三、克拉珀龙方程
pV nRT 或 pV m RT
M
克拉珀龙方程是任意质量的理想气体的状态方 程,它联系着某一确定状态下,各物理量的关 系。 对实际气体只要温度不太低,压强不太大就可 应用克拉珀龙方程解题.
2021/3/8
5.(能力挑战题)用压强为p=40atm的氢气钢瓶给容积为V1=1m3的 气球充气,设气球原来是真空,充气后气球内的氢气压强为p1=1atm, 钢瓶内氢气压强为p2=20atm,设充气过程中温度不变,求钢瓶的容 积V。

中国石油大学热工基础典型问题第三章 理想气体的性质与热力过程

中国石油大学热工基础典型问题第三章 理想气体的性质与热力过程

工程热力学与传热学第三章 理想气体的性质与热力过程 典型问题分析一. 基本概念分析1 c p ,c v ,c p -c v ,c p /c v 与物质的种类是否有关,与状态是否有关。

2 分析此式各步的适用条件:3将满足下列要求的理想气体多变过程表示在p-v 图和T-s 图上。

(1) 工质又膨胀,又升温,又吸热的过程。

(2) 工质又膨胀,又降温,又放热的过程。

4 试分析多变指数在 1<n<k 范围内的膨胀过程特点。

二. 计算题分析理想气体状态方程式的应用 1某蒸汽锅炉燃煤需要的标准状况下,空气量为 q V =66000m 3/h ,若鼓风炉送入的热空气温度为t 1=250°C ,表压力 p g1=20.0kPa 。

当时当地的大气压力 p b =101.325kPa 。

求实际的送风量为多少?理想气体的比热容 2在燃气轮机动力装置的回热器中,将空气从150ºC 定压加热到350ºC ,试按下列比热容值计算对每公斤空气所加入的热量。

01 按真实比热容计算;02 按平均比热容表计算(附表2,3); 03 按定值比热容计算;04 按空气的热力性质表计算(附表4); 3已知某理想气体的比定容热容c v =a+bt , 其中a ,b 为常数,试导出其热力学能,焓和熵变的计算式。

理想气体的热力过程 4一容积为 0.15m 3 的储气罐,内装氧气,其初始压力 p 1=0.55MPa ,温度 t 1=38ºC 。

若对氧气加热,其温度,压力都升高。

储气罐上装有压力控制阀,当压力超过 0.7MPa 时,阀门便自动打开,dTm c dHpV U d pV d dU pdV dU WdU Q P ==+=+=+=+=)()(δδ典 型 问 题放走部分氧气,即储气罐中维持的最大压力为 0.7MPa 。

问当罐中氧气温度为 285ºC 时,对罐中氧气共加入了多少热量?设氧气的比热容为定值。

高中物理选修3-3:《理想气体状态方程》含解析

高中物理选修3-3:《理想气体状态方程》含解析

第四单元理想气体状态方程(时间:90分钟,满分:100分)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,至少有一个选项符合题目要求.全部选对的得5分,选对但不全的得3分,有选错或不答的得0分.)1.某驾驶员发现中午时车胎内的气压高于清晨时的,且车胎体积增大.若这段时间胎内气体质量不变且可视为理想气体,那么()A.外界对胎内气体做功,气体内能减小B.外界对胎内气体做功,气体内能增大C.胎内气体对外界做功,内能减小D.胎内气体对外界做功,内能增大2.如图所示是理想气体经历的两个状态的p-T图象,对应的p-V图象应是()3.一定质量的理想气体经历等温压缩过程时,气体的压强增大,从分子微观角度来分析,这是因为()A.气体分子的平均动能增大B.单位时间内器壁单位面积上分子碰撞的次数增多C.气体分子数增加D.气体分子对器壁的碰撞力变大4.一定质量的某种理想气体的压强为p,热力学温度为T,单位体积内的气体分子数为n,则()A.p增大,n一定增大B.T减小,n一定增大C.pT增大时,n一定增大 D.pT增大时,n一定减小5.一定质量的某种理想气体经历如图所示的一系列过程,ab、bc、cd和da这四个过程在p-T图上都是直线段,其中ab的延长线通过坐标原点O,bc垂直于ab,cd平行于ab,由图可以判断()A.ab过程中气体体积不断减小B.bc过程中气体体积不断减小C.cd过程中气体体积不断增大D.da过程中气体体积不断增大6.一定质量的理想气体做等压变化时,其V-t图象如图所示,若保持气体质量不变,使气体的压强增大后,再让气体做等压变化,则其等压线与原来相比,下列可能正确的是()A.等压线与t轴之间夹角变大B.等压线与t轴之间夹角变小C.等压线与t轴交点的位置不变D.等压线与t轴交点的位置一定改变7.一绝热容器内封闭着一些气体,容器在高速运输途中突然停下来,则下列说法正确的是()A.因气体温度与机械运动的速度无关,故容器中温度不变B.因容器是绝热的,故容器中气体温度不变C.因容器突然停止运动,气体分子运动的速度亦随之减小,故容器中温度降低D.容器停止运动时,由于分子和容器壁的碰撞,机械运动的动能转化为分子热运动的动能,故容器中气体温度将升高8.一钢筒内装有压缩空气,当打开阀门后气体迅速从筒内逸出,很快筒内气体的压强与大气压强p0相同,然后立即关闭阀门.如果钢瓶外部环境保持温度不变,经较长的时间后筒内的气体压强()A.等于p0B.大于p0C.小于p0D.无法判定9.如图中A、B两点代表一定质量的理想气体的两个不同的状态,状态A的温度为T A,状态B的温度为T B;由图可知()A.T B=2T A B.T B=4T AC.T B=6T A D.T B=8T A10.已知湖水深度为20 m,湖底水温为4 ℃,水面温度为17 ℃,大气压强为1.0×105 Pa.当一气泡从湖底缓慢升到水面时,其体积约为原来的(取g=10 m/s2,ρ=1.0×103 kg/m3)()A.12.8倍B.8.5倍C.3.1倍D.2.1倍11.教室内的气温会受到室外气温的影响,如果教室内上午10时的温度为15 ℃,下午2时的温度为25 ℃,假设大气压强无变化,则下午2时与上午10时相比较,房间内的() A.空气分子密集程度增大B.空气分子的平均动能增大C.空气分子的速率都增大D.空气质量增大12.如图所示,一定质量的理想气体由状态A沿平行于纵轴的直线变化到状态B,则它的状态变化过程是()A.气体的温度不变B.气体的内能增加C.气体分子的平均速率减小D.气体分子在单位时间内与器壁单位面积碰撞的次数不变题号123456789101112答案二、非选择题(本题共4小题,共40分.按题目要求作答.解答题应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位.)13.(10分)如图,上端开口的圆柱形汽缸竖直放置,截面积为5×10-3m2,一定质量的理想气体被质量为 2.0 kg的光滑活塞封闭在汽缸内,其压强为________Pa(大气压强取1.01×105 Pa,g取10 m/s2).若从初温27 ℃开始加热气体,使活塞离汽缸底部的高度由0.50 m缓慢地变为0.51 m,则此时气体的温度为________℃(取T=t+273 K).14.(10分)一定质量的理想气体经历了温度缓慢升高的变化,如图所示,p-T和V-T 图各记录了其部分变化过程.(1)试求温度600 K时气体的压强;(2)在p-T图象上将温度从400 K升高到600 K的变化过程补充完整.15.(10分)有一空的薄金属筒开口向下静止于恒温透明液体中,筒中液面与A 点齐平.现缓慢将其压到更深处,筒中液面与B 点齐平,此时筒中气体长度减为原来的23.若测得A 点压强为1.2×105Pa ,不计气体分子间相互作用,且筒内气体无泄漏.(1)求液体中B 点的压强;(2)从微观上解释气体压强变化的原因.16.(10分)如图所示为一均匀薄壁U 形管,左管上端封闭,右管开口且足够长,管的横截面积为S ,内装有密度为ρ的液体.右管内有一质量为m 的活塞搁在固定卡口上,卡口与左管上端等高,活塞与管壁间无摩擦且不漏气.温度为T 0时,左、右管内液面等高,两管内空气柱(可视为理想气体)长度均为L ,压强均为大气压强p 0,重力加速度为g ,现使左、右两管温度同时缓慢升高,在活塞离开卡口上升前,左右两管液面保持不动.求:(1)温度升高到T 1为多少时,右管活塞开始离开卡口上升; (2)温度升高到T 2为多少时,两管液面高度差为L .参考答案与解析1.[49] 解析:选D.中午,车胎内气体温度升高,内能增大,车胎体积增大,气体对外做功.选项D 正确.2.[50] 解析:选C.由p -T 图象可知,气体先经历等容变化,后经历等温变化,所以对应的p -V 图象是C ,所以C 正确,A 、B 、D 错误.3.[51] 解析:选B.温度不发生变化,分子的平均动能不变,分子对器壁的碰撞力不变,故A 、D 错;质量不变,分子总数不变,C 错误;体积减小,气体分子密集程度增大,单位时间内器壁单位面积上分子碰撞次数增多,故B 正确.4.[52] 解析:选C.只有p 或T 变化时,不能得出体积的变化情况,A 、B 错误;pT 增大,V 一定减小,单位体积内的分子数一定增大,C 正确,D 错误.5.[53] 解析:选BCD.四条直线段只有ab 是等容过程,A 错误;连接Ob 、Oc 和Od ,则Ob 、Oc 、Od 都是一定质量的理想气体的等容线,依据p -T 图中等容线的特点(斜率越大,气体体积越小),比较这几条图线的斜率,即可得出V a =V b >V d >V c ,故B 、C 、D 都正确.6.[54] 解析:选BC.对于一定质量气体的等压线,其V -t 图线的延长线一定过t 轴上-273.15 ℃的点,故C 项正确,D 项错误;气体压强增大后,温度还是0 ℃时,由理想气体状态方程pVT=C 可知,V 0减小,等压线与t 轴夹角减小,A 项错误,B 项正确.7.[55] 解析:选D.只有与分子微观热运动所对应的动能才能包括在气体的内能之中,而与气体宏观运动所对应的动能,应属于气体的机械能中的动能.当容器在高速运输途中突然停下来时,气体分子与器壁撞击,使气体分子的定向运动转化为分子的无规则运动,于是气体整体的宏观运动的动能就转化成气体分子微观热运动的动能,即机械能转化为内能,使气体的温度升高.8.[56] 解析:选B.气体迅速膨胀时温度降低,刚关闭阀门时,筒内温度低,当和环境温度达到热平衡后,筒内压强变大.9.[57] 解析:选C.对于A 、B 两个状态应用理想气体状态方程p A V A T A =p B V B T B 可得:T BT A=p B V B p A V A =3p 0×4V 02p 0×V 0=6,即T B =6T A ,C 项正确. 10.[58] 解析:选C.对气泡内气体:在湖底处p 1=p 0+ρgh ,V 1,T 1=277 K ; 在水面时,p 2=p 0,V 2,T 2=290 K. 由理想气体状态方程:p 1V 1T 1=p 2V 2T 2,代入数据得V 2V 1=p 1T 2p 2T 1=3.1,故C 对.11.[59] 解析:选B.温度升高,气体分子的平均动能增大,平均每个分子对器壁的冲力将变大,但气压并未改变,可见单位体积内的分子数一定减少,故A 、D 项错误,B 项正确;温度升高,并不是所有空气分子的速率都增大,C 项错误.12.[60] 解析:选B.从p -V 图象中的AB 图线知,气体状态由A 变到B 为等容升压,根据查理定律,一定质量的气体,当体积不变时,压强跟热力学温度成正比.选项A 中温度不变是不正确的,应该是压强增大,温度升高.气体的温度升高,内能增加,选项B 正确.气体的温度升高,分子平均速率增加,故选项C 错误.气体压强增大,则气体分子在单位时间内与器壁单位面积碰撞的次数增加,故选项D 是错误的.13.[61]解析:活塞的受力情况如图, 由平衡条件得,pS =p 0S +mg , 则p =p 0S +mg S =p 0+mg S=1.01×105 Pa +2.0×105×10-3 Pa =1.05×105Pa.由盖—吕萨克定律V 1T 1=V 2T 2得T 2=V 2T 1V 1=h 2T 1h 1=0.51×3000.5 K =306 Kt 2=T 2-273 K =33 ℃. 答案:1.05×105 3314.[62] 解析:(1)p 1=1.0×105Pa ,V 1=2.5 m 3,T 1=400 K , p 2=?,V 2=3 m 3,T 2=600 K ,p 1V 1T 1=p 2V 2T 2p 2=p 1V 1T 2T 1V 2=1.25×105 Pa.(也可以利用图象来解,但要有必要的说明) (2)图象如图所示.答案:(1)1.25×105 Pa (2)见解析图15.[63] 解析:(1)由题意知气体做等温变化 则有p A V =p B 23V代入数据得p B =1.8×105Pa.(2)在缓慢下压过程中,温度不变,气体分子的平均动能不变;但单位体积内的气体分子数增多,单位时间内气体分子碰撞器壁的次数增多,气体的压强变大.答案:(1)1.8×105Pa (2)见解析16.[64] 解析:(1)活塞刚离开卡口时,对活塞mg +p 0S =p 1S 得:p 1=p 0+mgS两侧气体体积不变,对右管气体p 0T 0=p 1T 1得:T 1=T 0⎝⎛⎭⎫1+mg p 0S . (2)左管内气体,V 2=3L 2S ,p 2=p 0+mgS +ρgL应用理想气体状态方程:p 0LS T 0=p 2V 2T 2得T 2=3T 02p 0p 2=3T 02p 0⎝⎛⎭⎫p 0+mg S +ρgL . 答案:(1)T 0⎝⎛⎭⎫1+mg p 0S (2)3T 02p 0⎝⎛⎭⎫p 0+mg S +ρgL。

高三物理气体的状态方程试题答案及解析

高三物理气体的状态方程试题答案及解析

高三物理气体的状态方程试题答案及解析1.)(10分)如图所示,一导热性能良好、内壁光滑的气缸竖直放置,在距气缸底部l=36cm处有一与气缸固定连接的卡环,活塞与气缸底部之间封闭了一定质量的气体.当气体的温度T0=300K、大气压强p=1.0×105Pa时,活塞与气缸底部之间的距离 l=30cm,不计活塞的质量和厚度.现对气缸加热,使活塞缓慢上升,求:①活塞刚到卡环处时封闭气体的温度T1;②封闭气体温度升高到T2=540K时的压强p2。

【答案】①② Pa【解析】①设气缸的横截面积为S,由题意可知,此过程为等压膨胀由盖-吕萨克定律有(3分)(2分)②由题意可知,此过程体积保持不变由查理定律有(3分)Pa (2分)【考点】考查了气体状态方程2.一定质量的某种理想气体从状态A开始按图所示的箭头方向经过状态B达到状态C,已知气体在A状态时的体积为2L,求:①气体在状态C时的体积;②说明A→B、B→C两个变化过程是吸热还是放热,并比较A→B、B→C两个过程中热量的大小。

【答案】(1)4L (2)A到B过程吸热 B到C过程放热大于【解析】①气体A状态体积V1,温度T1;C状态体积V2,温度T2。

根据理想气体状态方程(3分)解得: (1分)②气体A到B过程吸热(2分)气体B到C过程放热(2分)气体A到B过程吸收的热量大于气体B到C过程放出的热量(2分)【考点】本题考查理想气体状态方程。

3.有一导热气缸,气缸内用质量为m的活塞密封一定质量的理想气体,活塞的横截面积为S,大气压强为p。

如图所示,气缸水平放置时,活塞距离气缸底部的距离为L,现将气缸竖立起来,活塞将缓慢下降,不计活塞与气缸间的摩擦,不计气缸周围环境温度的变化,求活塞静止时到气缸底部的距离。

【答案】【解析】由于气缸导热,且不计环境温度的变化,将气缸由水平放置变成竖直放置,直到活塞不再下降的过程中,缸内密闭的气体经历的是等温过程,设此时活塞到气缸底部的距离为h。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

理想气体状态方程·典型例题解析
【例1】某房间的容积为20m 3,在温度为17℃,大气压强为74 cm Hg 时,室内空气质量为25kg ,则当温度升高到27℃,大气压强变为76 cm Hg 时,室内空气的质量为多少千克?
解析:以房间内的空气为研究对象,是属于变质量问题,应用克拉珀龙方程求解,设原质量为m ,变化后的质量为m ′,由克拉珀龙方程
pV RT =可得:m M m m m m 25kg 24.81kg =……①′=……②②÷①得:=∴′==×××=.MpV RT Mp V RT m m p T p T p T p T 122
211221127629074300
点拨:对于变质量的问题,应用克拉珀龙方程求解的比较简单.
【例2】向汽车轮胎充气,已知轮胎内原有空气的压强为1.5个大气压,温度为20℃,体积为20L ,充气后,轮胎内空气压强增大为7.5个大气压,温度升为25℃,若充入的空气温度为20℃,压强为1个大气压,则需充入多少升这样的空气(设轮胎体积不变).
解析:以充气后轮胎内的气体为研究对象,这些气体是由原有部分加上充入部分气体所混合构成.
轮胎内原有气体的状态为:p 1=1.5 atm ,T 1=293K ,V 1=20L .
需充入空气的状态为:p 2=1atm ,T 2=293K ,V 2=?
充气后混合气体状态为:p =7.5atm ,T =298K ,V =20L 由混合气体的状态方程:+=得:p V T p V T pV T
111222 V (pV T )(7.520298)117.5(L)2=-·=×-××=p V T T p 1112215302932931
. 点拨:凡遇到一定质量的气体由不同状态的几部分合成时,可考虑用混合气体的状态方程解决.
【例3】已知空气的平均摩尔质量为2.9×10-2 kg/mol ,试估算室温下,空气的密度.
点拨:利用克拉珀龙方程=及密度公式ρ=可得ρ=, pV RT m M m V pM RT
在具体估算时可取p0=1.01×105Pa,T=300 K来计算.
参考答案:1.2Kg/m3
【例4】贮气筒的容积为100 L,贮有温度为27℃,压强为30atm的氢气,使用后温度降为20℃,压强降为20个大气压,求用掉的氢气质量.点拨:方法一:选取筒内原有的全部氢气为研究对象,且没有用掉的氢气包含在末状态中.可求出用掉的氢气的体积.再取用掉的氢气为对象,同标准状态相比较,求出用掉氢气的质量,方法二:对使用前、后筒内的氢气用克拉珀龙方程.并可比较这两种方法的繁简程度.
参考答案:87.5g
跟踪反馈
1.活塞把密闭容器分隔成容积相等的两部分A和B,如图13-59所示,在A、B中分别充进质量相同、温度相同的氢气和氧气,则活塞将:
[ ] A.向右运动
B.向左运动
C.不动
D.不能确定
2.有一个充满氢气的氢气球,球的质量为球内充入氢气的3倍,氢气压强为外面空气压强的 1.45倍,温度相同,则氢气球开始上升的加速度为________(空气的平均摩尔质量为29g/mol)
3.当温度为27℃,压强为2.0×105Pa时,32g氧气的体积为多大?密度
是多大?另有48g氧气,温度和压强跟上述数值相同,氧气密度是多大?
4.如图13-60所示,气缸A和容器B由一细管经阀门K相连,A和B 的壁都是透热的,A放在27℃、1标准大气压的大气中,B浸在127℃的恒温
槽内,开始时K是关断的,B内没有气体,容积V B=2.4L,A内装有气体,体积V A=4.8L,打开K,使气体由A流入B,等到活塞D停止移动时,A内气体体积是多大?假设活塞D与气缸壁之间没有摩擦,细管的容积忽略不计.
参考答案
1.C 2.1.5g 3.12.5dm32kg/m32kg/m34.3L。

相关文档
最新文档