空间向量及二面角的向量求法专题

合集下载

专题03 利用向量法求线线角、线面角、二面角及距离问题(知识梳理+专题过关)(解析版)

专题03 利用向量法求线线角、线面角、二面角及距离问题(知识梳理+专题过关)(解析版)

专题03利用向量法求线线角、线面角、二面角及距离问题【知识梳理】(1)异面直线所成角公式:设a ,b 分别为异面直线1l ,2l 上的方向向量,θ为异面直线所成角的大小,则cos cos ,⋅==a b a b a bθ.(2)线面角公式:设l 为平面α的斜线,a 为l 的方向向量,n 为平面α的法向量,θ为l 与α所成角的大小,则sin cos ,⋅==a n a n a nθ.(3)二面角公式:设1n ,2n 分别为平面α,β的法向量,二面角的大小为θ,则12,=n n θ或12,-n n π(需要根据具体情况判断相等或互补),其中1212cos ⋅=n n n n θ.(4)异面直线间的距离:两条异面直线间的距离也不必寻找公垂线段,只需利用向量的正射影性质直接计算.如图,设两条异面直线,a b 的公垂线的方向向量为n ,这时分别在,a b 上任取,A B 两点,则向量在n 上的正射影长就是两条异面直线,a b 的距离.则||||||||⋅=⋅=n AB n d AB n n 即两异面直线间的距离,等于两异面直线上分别任取两点的向量和公垂线方向向量的数量积的绝对值与公垂线的方向向量模的比值.(5)点到平面的距离A 为平面α外一点(如图),n 为平面α的法向量,过A 作平面α的斜线AB 及垂线AH .|n ||n |||||sin |||cos ,|=||nn⋅⋅=⋅=⋅<>=⋅AB AB AH AB AB AB n AB AB θ||||⋅=AB n d n (6)点A 与点B 之间的距离可以转化为两点对应向量AB 的模AB 计算.(7)在直线l 上找一点P ,过定点A 且垂直于直线l 的向量为n ,则定点A 到直线l 的距离为PA n d PA cos PA,n n⋅=〈〉=.【专题过关】【考点目录】考点1:异面直线所成角考点2:线面角考点3:二面角考点4:点到直线的距离考点5:点到平面的距离、直线到平面的距离、平面到平面的距离考点6:异面直线的距离【典型例题】考点1:异面直线所成角1.(2022·贵州·遵义市第五中学高二期中(理))在三棱锥P —ABC 中,PA 、PB 、PC 两两垂直,且PA =PB =PC ,M 、N 分别为AC 、AB 的中点,则异面直线PN 和BM 所成角的余弦值为()A 33B .36C .63D .66【答案】B【解析】以点P 为坐标原点,以PA ,PB ,PC 方向为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系,令2PA =,则()0,0,0P ,()0,2,0B ,()1,0,0M ,()1,1,0N ,则(1,1,0)PN =,(1,2,1)BM =-,设异面直线PN 和BM 所成角为θ,则||3cos 6||||PN BM PN BM θ⋅==.故选:B.2.(2022·四川省成都市新都一中高二期中(理))将正方形ABCD 沿对角线BD 折起,使得平面ABD ⊥平面CBD ,则异面直线AB 与CD 所成角的余弦值为()A .12B 2C .12-D .2【答案】A【解析】取BD 中点为O ,连接,AO CO ,所以,AO BD CO BD ⊥⊥,又面ABD ⊥面CBD 且交线为BD ,AO ⊂面ABD ,所以AO ⊥面CBD ,OC ⊂面CBD ,则AO CO ⊥.设正方形的对角线长度为2,如图所示,建立空间直角坐标系,()()()(0,0,1),1,0,0,0,1,0,1,0,0A B C D -,所以()()=1,0,1,=1,1,0AB CD ---,1cos ,222AB CD AB CD AB CD⋅==-⨯.所以异面直线AB 与CD 所成角的余弦值为12.故选:A3.(2022·新疆·乌苏市第一中学高二期中(理))如图,在直三棱柱111ABC A B C -中,3AC =,4BC =,13CC =,90ACB ∠=︒,则1BC 与1AC 所成角的余弦值为()A .3210B .3210-C .24D 5【答案】A【解析】因为111ABC A B C -为直三棱柱,且90ACB ∠=︒,所以建立如图所示的空间直角坐标系,()()()()110,4,0,0,0,0,0,0,3,3,0,3B C C A ,所以()()110,4,3,3,0,3BC AC =-=--,115,992BC A C ==+设1BC 与1AC 所成角为θ,所以11932cos cos ,532BC A Cθ-===⨯.则1BC 与1AC 32故选:A.4.(2022·福建宁德·高二期中)若异面直线1l ,2l 的方向向量分别是()1,0,2a =-,()0,2,1b =,则异面直线1l 与2l 的夹角的余弦值等于()A .25-B .25C .255-D 255【答案】B【解析】由题,()22125a =+-=,22215b =+=,则22cos 555a b a bθ⋅-==⋅⋅,故选:B5.(2022·河南·焦作市第一中学高二期中(理))已知四棱锥S ABCD -的底面ABCD 是边长为1的正方形,SD ⊥平面ABCD ,线段,AB SC 的中点分别为E ,F ,若异面直线EC 与BF 5SD =()A .1B .32C .2D .3【答案】C【解析】如图示,以D 为原点,,,DA DC DS 分别为x 、y 、z 轴正方向联立空间直角坐标系.不妨设(),0SD t t =>.则()0,0,0D ,()1,0,0A ,()1,1,0B ,()0,1,0C ,()0,0,S t ,11,,02E ⎛⎫⎪⎝⎭,10,,22t F ⎛⎫ ⎪⎝⎭.所以11,,02EC ⎛⎫=- ⎪⎝⎭,11,,22t BF ⎛⎫=-- ⎪⎝⎭.因为异面直线EC 与BF 55211054cos ,1111444EC BF EC BF EC BFt -+==⨯+⨯++,解得:t =2.即SD =2.故选:C6.(2021·广东·深圳市龙岗区德琳学校高二期中)如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,2DC SD ==,点M 是侧棱SC 的中点,2AD =则异面直线CD 与BM 所成角的大小为___________.【答案】3π【解析】由题知,底面ABCD 为矩形,SD ⊥底面ABCD 所以DA 、DC 、DS 两两垂直故以D 为原点,建立如图所示的空间直角坐标系因为2DC SD ==,2AD =,点M 是侧棱SC 的中点,则()0,0,0D ,()0,2,0C ,)2,2,0B ,()0,0,2S ,()0,1,1M 所以()0,2,0DC =,()2,1,1BM =--设异面直线CD 与BM 所成角为θ则21cos 22211DC BM DC BMθ⋅-===⨯++⋅因为异面直线的夹角为0,2π⎛⎤⎥⎝⎦所以3πθ=故答案为:3π.7.(2021·广东·江门市广雅中学高二期中)如图,在正三棱柱111ABC A B C -中,1 2.AB AA ==E 、F 分别是BC 、11AC 的中点.设D 是线段11B C 上的(包括两个端点......)动点,当直线BD 与EF 所10BD 的长为_______.【答案】【解析】如图以E为坐标原点建立空间直角坐标系:则()()10,0,0,,2,0,1,0,22E F B ⎛⎫- ⎪ ⎪⎝⎭设(0,,2)(11)D t t -≤≤,则()1,2,0,1,22EF BD t ⎫==+⎪⎪⎝⎭,设直线BD 与EF 所成角为θ所以cos ||||EF BD EF BD θ⋅==22314370t t +-=,解得1t =或3723t =-(舍去),所以BD ==故答案为:8.(2021·福建省厦门集美中学高二期中)如图,在正四棱锥V ABCD -中, E 为BC 的中点,2AB AV ==.已知F 为直线VA 上一点,且F 与A 不重合,若异面直线BF 与VE 所成角为余弦值为216,则VF VA =________.【答案】23【解析】连接AC 、BD 交于点O ,则AC BD ⊥,因为四棱锥V ABCD -为正四棱锥,故VO ⊥底面ABCD ,以点O 为坐标原点,OA 、OB 、OV 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则)A、E ⎛⎫ ⎪ ⎪⎝⎭、(V、()B ,设),0,VF VA λλ===-,其中01λ≤≤,(0,BV =,则)),1BF BV VF λ=+=-,22,22VE ⎛=- ⎝,由已知可得21cos ,6BF VE BF VE BF VE ⋅<>==⋅,整理可得2620λλ--=,因为01λ≤≤,解得23λ=,即23VF VA =.故答案为:23考点2:线面角9.(2022·山东·东营市第一中学高二期中)如图,在正方体1111ABCD A B C D -中,棱长为2,M 、N 分别为1A B 、AC 的中点.(1)证明://MN 平面11BCC B ;(2)求1A B 与平面11A B CD 所成角的大小.【解析】(1)如图,以点D 为坐标原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴建立空间直角坐标系.则()2,0,0A ,()0,2,0C ,()12,0,2A ,(2,2,0)B ,()12,2,2B ,()2,1,1M ,()1,1,0N .所以()1,0,1MN =--,因为DC ⊥平面11BCC B ,所以平面11BCC B 的一个法向量为(0,2,0)DC =,因为0MN DC ⋅=,所以MN DC ⊥,因为MN ⊂平面11BCC B ,所以//MN 平面11BCC B (2)()0,2,0DC =,()12,0,2DA =,()10,2,2A B =-.设平面11A B CD 的一个法向量为(),,n x y z =则122020DA n x z DC n y ⎧⋅=+=⎨⋅==⎩,令1z =,则1x =-,0y =,所以()1,0,1n =-设1A B 与平面11A B CD 所成角为θ,则1111sin cos ,2A B n A B n A B nθ⋅===⋅.因为0180θ︒≤<︒,所以1A B 与平面11A B CD 所成角为30°.10.(2021·黑龙江·哈尔滨七十三中高二期中(理))如图,已知正四棱柱1111ABCD A B C D -中,底面边长2AB =,侧棱1BB 的长为4,过点B 作1B C 的垂线交侧棱1CC 于点E ,交1B C 于点F.(1)求证:1A C ⊥平面BED ;(2)求1A B 与平面BDE 所成的角的正弦值.【解析】(1)连接AC ,因为1111ABCD AB C D -是正四棱柱,即底面为正方形,则BD AC ⊥,又1AA ⊥平面ABCD ,BD ⊂平面ABCD ,则1BD AA ⊥,又1AC AA A =∩,1,AC AA ⊂平面1A AC ,故BD ⊥平面1A AC ,而1AC ⊂平面1A AC ,则1BD AC ⊥,同理得1BE AC ⊥,又BD BE B ⋂=,,BD BE ⊂平面BDE ,所以1A C ⊥平面BDE ;(2)以DA 、DC 、1DD 分别为,,x y z 轴,建立直角坐标系,则()2,2,0B ,()()12,0,4,0,2,0A C ,∴()10,2,4A B =-,()12,2,4AC =--,由题可知()12,2,4AC =--为平面BDE 的一个法向量,设1A B 与平面BDE 所成的角为α,则1130sin cos 62024,C A B A α==⋅,即1A B 与平面BDE 所成的角的正弦值为306.11.(2021·河北唐山·高二期中)如图(1),△BCD 中,AD 是BC 边上的高,且∠ACD =45°,AB =2AD ,E 是BD 的中点,将△BCD 沿AD 翻折,使得平面ACD ⊥平面ABD ,得到的图形如图(2).(1)求证:AB⊥CD;(2)求直线AE与平面BCE所成角的正弦值.【解析】(1)证明:由图(1)知,在图(2)中AC⊥AD,AB⊥AD,∵平面ACD⊥平面ABD,平面ACD∩平面ABD=AD,AB⊂平面ABD,∴AB⊥平面ACD,又CD⊂平面ACD,∴AB⊥CD;(2)由(1)可知AB⊥平面ACD,又AC⊂平面ACD,∴AB⊥AC.以A为原点,AC,AB,AD所在直线分别为x,y,z轴建立空间直角坐标系,不妨设AC=1,则A(0,0,0),B(0,2,0),C(1,0,0),D(0,0,1),E(0,1,12),∴A E=10,1,2⎛⎫,⎪⎝⎭BC=(120),BE,-,=10,1,2⎛⎫-,⎪⎝⎭设平面BCE的法向量为n=(x,y,z),由20102BC n x yn BE y z⎧⋅=-=⎪⎨⋅=-+=⎪⎩,令y=1,得x=2,z=2,则n=(2,1,2),……设直线AE与平面BCE所成角为θ,则245 sin|cos,|15532AE nθ==⨯故直线AE与平面BCE4512.(2022·贵州·遵义市第五中学高二期中(理))如图,在四棱锥P-ABCD中,AD⊥平面ABP,BC//AD,∠PAB=90°,PA=AB=2,AD=3,BC=1,E是PB的中点.(1)证明:PB ⊥平面ADE ;(2)求直线AP 与平面AEC 所成角的正弦值.【解析】(1)因AD ⊥平面ABP ,PB ⊂平面ABP ,则AD ⊥PB ,又PA =AB =2,E 是PB 的中点,则有AE ⊥PB ,而AE AD A =,,AE AD ⊂平面ADE ,所以PB ⊥平面ADE .(2)因AD ⊥平面ABP ,∠PAB =90°,则直线,,AB AD AP 两两垂直,以点A 为原点,射线,,AB AD AP 分别为x ,y ,z 轴非负半轴建立空间直角坐标系,如图,则(0,0,0),(1,0,1),(0,0,2),(2,1,0)A E P C ,(1,0,1),(2,1,0),(0,0,2)AE AC AP ===,令平面AEC 的一个法向量为(,,)n x y z =,则020n AE x z n AC x y ⎧⋅=+=⎨⋅=+=⎩,令1x =-,得(121)n ,,=-,令直线AP 与平面AEC 所成角的大小为θ,则||26sin |cos ,|||||62n AP n AP n AP θ⋅=〈〉==⨯所以直线AP 与平面AEC 613.(2022·四川省成都市新都一中高二期中(理))如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,AD BC ∥,90ABC ∠=︒,2PA AB BC ===,1AD =,点M ,N 分别为棱PB ,DC 的中点.(1)求证:AM ∥平面PCD ;(2)求直线MN 与平面PCD 所成角的正弦值.【解析】(1)证明:以A 为坐标原点建立如图所示的空间直角坐标系,则()()()0,0,0,0,2,0,2,2,0A B C ,()()()1,0,0,0,0,2,0,1,1D P M ,则()()0,1,1,1,0,2AM PD ==-,()1,2,0CD =--,设平面PCD 的一个法向量为(),,n x y z =r,则2020n PD x z n CD x y ⎧⋅=-=⎨⋅=--=⎩,令1z =,则2,1x y ==-,则平面PCD 的一个法向量为()2,1,1n =-,0110,n AM n AM∴⋅=-+=∴⊥//AM ∴平面PCD(2)由(1)得3,1,02N ⎛⎫ ⎪⎝⎭,3,0,12MN ⎛⎫=- ⎪⎝⎭设直线MN 与平面PCD 所成角为θ.sin cos ,n MN MN n n MNθ⋅∴==⋅39=∴直线MN 与平面PCD 所成角的正弦值为27839.14.(2021·福建·厦门大学附属科技中学高二期中)如图,在四棱锥P ABCD -中,PA ABCD ⊥平面,,//AB AD BC AD ⊥,点M 是棱PD 上一点,且满足2,4AB BC AD PA ====.(1)求二面角A CD P --的正弦值;(2)若直线AM 与平面PCD所成角的正弦值为3,求MD 的长.【解析】(1)如图建立空间直角坐标系,则(0,0,0)A ,(2,2,0)C ,(0,4,0)D ,(0,0,4)P ,(2,2,0)CD =-,(0,4,4)PD =-,设平面PCD 法向量(,,)n x y z =,则00n CD n PD ⎧⋅=⎨⋅=⎩,即220440x y y z -+=⎧⎨-=⎩,令1x =,111x y z =⎧⎪=⎨⎪=⎩,即(1,1,1)n =,又平面ACD 的法向量(0,0,1)m =,cos ,3m n m n m n⋅〈〉=,故二面角A CD P --3=.(2)设MD PD λ=(01λ≤≤),(0,4,4)MD λλ=-,点(0,4,44)M λλ-,∴(0,4,44)AM λλ=-,由(1)得平面PCD 法向量(1,1,1)n =,且直线AM 与平面PCD∴6cos ,3AM n AM n AM n⋅〈〉==,解得12λ=,即12=MD PD ,又PD 12==MD PD 15.(2022·北京市第十二中学高二期中)如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,PD ⊥平面ABCD ,E 是棱PC 的中点.(1)证明://PA 平面BDE ;(2)若1,90PD AD BD ADB ===∠=︒,F 为棱PB 上一点,DF 与平面BDE 所成角的大小为30°,求PFPB的值.【解析】(1)如图,连接AC 交BD 于点M ,连接EM ,因为M 是AC 的中点,E 是PC 的中点,所以//PA EM 又ME ⊂平面BDE ,PA ⊄平面BDE ,所以//PA 平面BDE(2)因为1,90PD AD BD ADB ===∠=︒,所以AD BD ⊥,故以D 为坐标原点,DA 为x 轴,DB 为y 轴,DP 为z轴建立空间直角坐标系,则()()()()()1110,0,0,1,0,0,0,1,0,0,0,1,1,1,0,,,222D A B P C E ⎛⎫-- ⎪⎝⎭,()111,,,0,1,0222DE DB ⎛⎫=-= ⎪⎝⎭,设平面BDE 的法向量为(),,n x y z =r ,则00n DE n DB ⎧⋅=⎨⋅=⎩,即11102220x y z y ⎧-++=⎪⎨⎪=⎩,故取()1,0,1n =,设(01)PF PB λλ=<<,则()()0,,1,0,,1F DF λλλλ-=-因为直线DF 与平面BDE 所成角的大小为30,所以1sin302DF n DF n⋅==12=解得12λ=,故此时12PF PB =.16.(2022·江苏·东海县教育局教研室高二期中)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,2PD AD ==,AD PC ⊥,点E 在线段PC 上(不与端点重合),30PCD ∠=︒.(1)求证:AD ⊥平面PCD ;(2)是否存在点E 使得直线PB 与平面ADE 所成角为30°?若存在,求出PEEC的值;若不存在,说明理由.【解析】(1)证明:在正方形ABCD 中,可得AD CD ⊥,又由AD PC ⊥,且CDPC C =,CD ⊂平面PCD ,PC ⊂平面PCD ,根据线面垂直的判定定理,可得AD ⊥平面PCD .(2)在平面PCD 中,过点D 作DF CD ⊥交PC 于点F .由(1)知AD ⊥平面PCD ,所以AD DF ⊥,又由AD DC ⊥,以{},,DA DC DF 为正交基底建立空间直角坐标系D xyz -,如图所示,则()(0,0,0),2,0,0D A ,()2,2,0B ,()0,2,0C,(0,P -,设PEEC λ=,则PE EC λ=,所以212,,11AE AP PE λλλ⎛⎫-=+=- ++⎝⎭,()2,0,0AD =-,(2,3,PB =uu r设平面ADE 的一个法向量为(),,n x y z =,则2120120AE n x y AD n x λλ⎧-⋅=-++=⎪⎨+⎪⋅=-=⎩,取y =0,12x z λ==-,所以平面ADE的一个法向量()2n λ=-,因为直线PB 与平面ADE 所成角为30,所以1sin 30cos ,2PB n ︒==,解得5λ=±综上可得,存在点E 使得直线PB 与平面ADE 所成角为30,且5PEEC=±考点3:二面角17.(2022·云南·罗平县第一中学高二期中)如图,在直三棱柱111ABC A B C -中,D 为1AB 的中点,1B C 交1BC 于点E ,AC BC ⊥,1CA CB CC ==.(1)求证:DE ∥平面11AAC C ;(2)求平面1AB C 与平面11A B C 的夹角的余弦值.【解析】(1)证明:因为111ABC A B C -为三棱柱,所以平面11BCC B 是平行四边形,又1B C 交1BC 于点E ,所以E 是1B C 的中点.又D 为1AB 的中点,所以//DE AC ,又AC ⊂平面11AAC C ,DE ⊂/平面11AAC C ,所以//DE 平面11AAC C ;(2)在直三棱柱111ABC A B C -中,1CC ⊥平面111A B C ,又AC BC ⊥,所以11C A 、11C B 、1C C 两两互相垂直,所以以1C 为坐标原点,分别以11C A 、11C B 、1C C 为x 、y 、z 轴建立空间直角坐标系1C xyz -,如图所示.设11CA CB CC ===,则1(0,0,0)C ,1(1,0,0)A ,1(0,1,0)B ,(1,0,1)A ,(0,0,1)C ,所以1(1,1,1)AB =--,(1,0,0)=-AC ,11(1,1,0)=-A B ,1(1,0,1)AC =-.设平面1AB C 的一个法向量为(,,)n x y z =,则100n AB n AC ⎧⋅=⎨⋅=⎩,所以00x y z x -+-=⎧⎨-=⎩,不妨令1y =,则(0,1,1)n =,设平面11A B C 的一个法向量为(,,)m x y z =,则11100m A B m A C ⎧⋅=⎪⎨⋅=⎪⎩,所以00x y x z -+=⎧⎨-+=⎩,不妨令1y =,则(1,1,1)m =.所以cos ||||m n m n m n ⋅〈⋅〉===⋅所以平面1AB C 与平面11A B C18.(2022·江苏·宝应县教育局教研室高二期中)如图,已知三棱锥O ABC -的侧棱,,OA OB OC 两两垂直,且1,2OA OB OC ===,E 是OC的中点.(1)求异面直线BE 与AC 所成角的余弦值;(2)求二面角A BE C --的正弦值.【解析】(1)以O 为原点,OB ,OC ,OA 分别为,,x y z 轴建立如图所示空间直角坐标系,则有()0,0,1A ,()2,0,0B ,()0,2,0C ,()0,1,0E .()()()2,0,00,1,02,1,0EB =-=-,()0,2,1AC =-.2cos 5EB AC =-,.由于异面直线BE 与AC 所成的角是锐角,故其余弦值是25.(2)()()2,0,10,1,1AB AE =-=-,.设平面ABE 的法向量为()1,,n x y z =,则由11n AB n AE ⊥⊥,,得200x z y z -=⎧⎨-=⎩,取()11,2,2n =.由题意可得,平面BEC 为xOy 平面,则其一个法向量为()20,0,1n =u u r,1212122cos 3n n n n n n ⋅===⋅,,则12sin 3n n =,,即二面角A BE C --的正弦值为3.19.(2021·福建·厦门一中高二期中)如图,在平行四边形ABCD中,AB =,2BC =,4ABC π∠=,四边形ACEF 为矩形,平面ACEF ⊥平面ABCD ,1AF =,点M 在线段EF 上运动.(1)当AE DM ⊥时,求点M 的位置;(2)在(1)的条件下,求平面MBC 与平面ECD 所成锐二面角的余弦值.【解析】(1)2AB =2AD BC ==,4ABC π∠=,∴222cos 2AC AB BC AB BC ABC +-⋅∠∴222AB AC BC +=,∴90BAC ∠=︒,AB AC ∴⊥,又AF AC ⊥,又平面ACEF ⊥平面ABCD ,平面ACEF 平面ABCD AC =,AF ⊂平面ACEF ,AF ∴⊥平面ABCD ,所以以AB ,AC ,AF 为x ,y ,z 轴建立空间直角坐标系,则(0,0,0),(2,0,0),(0,2,0),(2,2,0),(0,2,1),(0,0,1)A B C D E F-,设(0,,1),02M y y 则2,1)AE =,(2,2,1)DM y =-AE DM ⊥,∴2(2)10AE DM y ⋅=-+=,解得22y =,∴12FM FE =.∴当AE DM ⊥时,点M 为EF 的中点.(2)由(1)可得(2,,1)2BM =,(BC =设平面MBC 的一个法向量为111(,,)m x y z =,则111112020m BM y z m BC ⎧⋅=+=⎪⎨⎪⋅==⎩,取12y =,则m =,易知平面ECD 的一个法向量为(0,1,0)n =,∴cos |cos ,|||||m n m n m n θ⋅=<>=⋅∴平面MBC 与平面ECD 所成锐二面角的余弦值为105.20.(2022·四川省内江市第六中学高二期中(理))如图,直角三角形ABC 中,60BAC ∠=,点F 在斜边AB 上,且4AB AF =,AD ⊥平面ABC ,BE ⊥平面ABC ,3AD =,4AC BE ==.(1)求证:DF ⊥平面CEF ;(2)点M 在线段BC 上,且二面角F DM C --的余弦值为25,求CM 的长度.【解析】(1)90ACB ∠=,60BAC ∠=,4AC =,8AB ∴=,又4AB AF =,2AF ∴=;2222cos 2016cos6012CF AC AF AC AF BAC ∴=+-⋅∠=-=,解得:CF =,222AF CF AC ∴+=,则AF CF ⊥;DA ⊥平面ABC ,CF ⊂平面ABC ,CF AD ∴⊥;又,AF AD ⊂平面ADF ,AFA AD =,CF ∴⊥平面ADF ,DF ⊂平面ADF ,DF CF ∴⊥;连接ED ,在四边形ABED 中,作DH BE ⊥,垂足为H,如下图所示,DF ==EF ==,DE =222DF EF DE ∴+=,则DF EF ^;,CF EF ⊂平面CEF ,CF EF F ⋂=,DF ⊥∴平面CEF .(2)以C 为坐标原点,,CA CB 正方向为,x y 轴,以BE 的平行线为z 轴,可建立如图所示空间直角坐标系,设CM m =,则()0,,0M m ,()0,0,0C ,()4,0,3D,()F ,()4,,3MD m ∴=-,()4,0,3CD =,()1,FD =,设平面DMF 的法向量(),,n x y z =,则43030MD n x my z FD n x z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,令9y =,解得:3x m =-z m =,()3n m m ∴=--;设平面CDM 的法向量(),,m a b c =,则430430CD m a c MD m a mb c ⎧⋅=+=⎨⋅=-+=⎩,令3a =,解得:0b =,4c =-,()3,0,4m ∴=-;二面角F DM C --的余弦值为25,2cos ,5m n m n m n ⋅∴<>==⋅,25=,((()222134381m m m ⎡⎤∴-=-++⎢⎥⎣⎦,解得:m;当m F DM C --为钝二面角,不合题意;则二面角F DM C --的余弦值为25时,CM =21.(2022·江苏徐州·高二期中)如图所示,在四棱锥中P ABCD -,2AB DC=,0AB BC ⋅=,AP BD ⊥,且AP DP DC BC ====(1)求证:平面ADP ⊥平面ABCD ;(2)已知点E 是线段BP 上的动点(不与点P 、B 重合),若使二面角E AD P --的大小为4π,试确定点E 的位置.【解析】(1)连接BD ,由2AB DC =,0AB BC ⋅=知242,//,AB DC AB DC CD BC ==⊥,在Rt BCD 中,22216,4BD CD BC BD =+==,设AB 的中点为Q ,连接DQ ,则//,CD QB QB CD =,所以四边形BCDQ 为平行四边形,又,CD BC DC BC ⊥=,所以四边形BCDQ 为正方形,所以,22DQ AB DQ AQ ⊥==Rt AQD 中,22216AD AQ DQ =+=,在Rt ABD 中,222161632AD BD AB +=+==,所以AD BD ⊥,又,AP BD AP AD A ⊥⋂=,,AP AD ⊂平面ADP ,所以BD ⊥平面ADP ,又BD ⊂平面ABCD ,所以平面ADP ⊥平面ABCD ;(2)在APD △中,2228816AP PD AD +=+==,所以AP PD ⊥,在Rt APD 中,过点P 作PF AD ⊥,垂足为F ,因为PA PD =,所以F 为AD 中点,所以2PF DF ==,由(1)得BD ⊥平面ADP ,PF ⊂平面ADP ,则BD PF ⊥,,AD BD ⊂平面ABCD ,ADBD D =,则PF ⊥平面ABCD .以D 为原点,分别以,DA DB 所在直线为,x y 轴,以过点D 与平面ABCD 垂直的直线为z 轴,建立如图所示空间坐标系,则(0,0,0),(4,0,0),(0,4,0),(2,0,2),(4,0,0),(2,4,2)D A B P DA PB ==--,设()(2,4,2),0,1PE PB λλλλλ==--∈,则(22,4,22)DE DP PE λλλ=+=--,易知平面PAD 的一个法向量为(0,1,0)m =,设平面EAD 的法向量为(,,)n x y z =,则()()40224220n DA x n DE x y z λλλ⎧⋅==⎪⎨⋅=-++-=⎪⎩,令1z =,则1(0,,1)2n λλ-=,所以221cos ,cos 4211m n m n m nλπλλλ⋅-===⎛⎫+ ⎪-⎝⎭,即2122521λλλ-=-+,即23210λλ+-=,解得1λ=-(舍)或13λ=,所以,当点E 在线段BP 上满足13PE PB =时,使二面角E AD P --的大小为4π.22.(2021·湖北十堰·高二期中)如图所示,正方形ABCD 所在平面与梯形ABMN 所在平面垂直,//,2,4,23AN BM AB AN BM CN ====(1)证明:BM ⊥平面ABCD ;(2)在线段CM 上是否存在一点E ,使得二面角E BN M --的余弦值为33,若存在求出CE EM 的值,若不存在,请说明理由.【解析】(1)正方形ABCD 中,BC AB ⊥,因为平面ABCD ⊥平面ABMN ,平面ABCD平面,ABMN AB BC =⊂平面ABCD ,所以BC ⊥平面ABMN ,所以BC BM ⊥,且BC BN ⊥,2,23BC CN ==所以2222BN CN BC -,又因为2AB AN ==,所以222BN AB AN =+,所以AN AB ⊥,又因为AN //BM ,所以BM AB ⊥,BC BA B =,所以BM ⊥平面ABCD .(2)由(1)知,BM ⊥平面,ABCD BM AB ⊥,以B 为坐标原点,,,BA BM BC 所在直线分别为,,x y z 轴建立空间直角坐标系.()()()()0,0,0,0,0,2,2,2,0,0,4,0B C N M 设点(),,,,E x y z CE CM λ=[0,λ∈1],则()(),,20,4,2x y z λ-=-,所以0422x y z λλ=⎧⎪=⎨⎪=-⎩,所以()0,4,22E λλ-,所以()()2,2,0,0,4,22BN BE λλ==-,设平面BEN 的法向量为(),,m x y z =,()2204220m x y m y z λλ⋅=+=⎧∴⎨⋅=+-=⎩令1x =,所以21,1y z λλ=-=-,所以2(1,1,)1m λλ=--,显然,平面BMN 的法向量为()0,0,2BC =,所以cos ,BC m BC m BC m⋅=⋅3==即2642λλ=-+,即23210λλ+-=,解得13λ=或1-(舍),则存在一点E ,且12CE EM =.考点4:点到直线的距离23.(2021·云南大理·高二期中)鳖臑是指四个面都是直角三角形的三棱锥.如图,在鳖臑P ABC -中,PA ⊥平面ABC ,2AB BC PA ===,D ,E 分别是棱AB ,PC 的中点,点F是线段DE 的中点,则点F 到直线AC 的距离是()A .38B 6C .118D .224【答案】B 【解析】因为AB BC =,且ABC 是直角三角形,所以AB BC ⊥.以B 为原点,分别以BC ,BA 的方向为x ,y 轴的正方向,建立如图所示的空间直角坐标系B xyz -.因为2AB BC PA ===,所以()0,2,0A ,()2,0,0C ,()0,1,0D ,()1,1,1E ,则()2,2,0AC =-,11,1,22AF ⎛⎫=- ⎪⎝⎭.故点F到直线AC 的距离2221136144422AF AF AC AC d ⎛⎫⋅⎛⎫⎪=-++-= ⎪ ⎪⎝⎭⎝⎭.故点F 到直线AC 的距离是6424.(2021·河北·石家庄市第十二中学高二期中)已知直线l 的方向向量为(1,0,2)n =,点()0,1,1A 在直线l 上,则点()1,2,2P 到直线l 的距离为()A .230B 30C 3010D 305【答案】D【解析】由已知得(1,1,1)PA =---,因为直线l 的方向向量为(1,0,2)n =,所以点()1,2,2P 到直线l 的距离为2222212930335512PA n PA n ⎛⎫⎛⎫⋅-----= ⎪ ⎪ ⎪+⎝⎭⎝⎭故选:D25.(2021·北京·牛栏山一中高二期中)在空间直角坐标系中,已知长方体1111ABCD A B C D -的项点()0,0,0D ,()2,0,0A ,()2,4,0B ,()10,4,2C =,则点1A 与直线1BC 之间的距离为()A .B .2C .125D .52【答案】A【解析】如图,由题意知,建立空间直角坐标系D xyz -,1(000)(200)(240)(042)D A B C ,,,,,,,,,,,,则1422AB BC CC ===,,,连接111A B AC ,,所以1111A B A C BC ===得11A BC V 是等腰三角形,取1BC 的中点O ,连接1OA ,则1OA ⊥1BC ,即点1A 到直线1BC 的距离为1OA ,在1Rt A OB 中,有1OA ==故选:A26.(2021·北京市昌平区第二中学高二期中)已知空间中三点(1,0,0)A -,(0,1,1)B -,(2,1,2)C --,则点C 到直线AB 的距离为()A B C D 【答案】A【解析】依题意得()()1,1,2,1,1,1AC AB =--=-则点C 到直线AB 的距离为63d =故选:A27.(2022·江西南昌·高二期中(理))如图,在棱长为4的正方体1111ABCD A B C D -中,E 为BC 的中点,点P 在线段1D E 上,点Р到直线1CC 的距离的最小值为_______.【答案】5【解析】在正方体1111ABCD A B C D -中,建立如图所示的空间直角坐标系,则11(0,4,0),(0,0,4),(2,4,0),(0,4,4)C D E C ,11(2,0,0),(0,0,4),(2,4,4)CE CC ED ===--,因点P 在线段1D E 上,则[0,1]λ∈,1(2,4,4)EP ED λλλλ==--,(22,4,4)CP CE EP λλλ=+=--,向量CP 在向量1CC 上投影长为11||4||CP CC d CC λ⋅==,而||CP =,则点Р到直线1CC的距离4525h =,当且仅当15λ=时取“=”,所以点Р到直线1CC的距离的最小值为5.28.(2022·福建龙岩·高二期中)直线l 的方向向量为()1,1,1m =-,且l 过点()1,1,1A -,则点()0,1,1P -到l 的距离为___________.【解析】(1,0,2)AP =-,直线l 的方向向量为()1,1,1m =-,由题意得点P 到l的距离d =29.(2021·山东·嘉祥县第一中学高二期中)在棱长为2的正方体1111ABCD A B C D -中,O 为平面11A ABB 的中心,E 为BC 的中点,则点O 到直线1A E 的距离为________.【答案】3【解析】如图,以D 为原点建系,则()()()12,0,2,2,1,1,1,2,0A O E ,则()()110,1,1,1,2,2AO A E =-=--,则111111cos ,3A O A E A O A E A O A E⋅==,又[]11,0,A O A E π∈,所以111sin ,3A O A E =,所以点O 到直线1A E的距离为1111sin ,33A O A O A E ==.故答案为:23.考点5:点到平面的距离、直线到平面的距离、平面到平面的距离30.(2020·山东省商河县第一中学高二期中)如图,在正四棱柱1111ABCD A B C D -中,已知2AB AD ==,15AA =,E ,F 分别为1DD ,1BB 上的点,且11DE B F ==.(1)求证:BE ⊥平面ACF :(2)求点B 到平面ACF 的距离.【解析】(1)以D 为坐标原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴建立空间直角坐标系,如下图所示:则()()()()()2,0,0,2,2,0,0,2,0,0,0,1,2,2,4A B C E F ,设面ACF 的一个法向量为()=,,n x y z ,()()=2,2,0,0,2,4AC AF -=,可得00n AC n AF ⎧⋅=⎪⎨⋅=⎪⎩,即220240x y y z -+=⎧⎨+=⎩,不妨令1z =则()=2,2,1n BE --=,BE ∴⊥平面ACF .(2)()=0,2,0AB ,则点B 到平面ACF 的距离为43AB nn⋅=.31.(2022·江苏·2的正方形ABCD 沿对角线BD 折成直二面角,则点D 到平面ABC 的距离为______.【答案】33【解析】记AC 与BD 的交点为O ,图1中,由正方形性质可知AC BD ⊥,所以在图2中,,OB AC OD AC ⊥⊥,所以2BOD π∠=,即OB OD⊥如图建立空间直角坐标系,易知1OA OB OC OD ====则(0,0,1),(0,1,0),(1,0,0),(0,1,0)A B C D -则(0,1,1),(1,0,1),(0,2,0)AB AC BD =--=-=设(,,)n x y z =为平面ABC 的法向量,则00AB n y z AC n x z ⎧⋅=--=⎨⋅=-=⎩,取1x =,得(1,1,1)n =-所以点D 到平面ABC 的距离22333BD n d n⋅===故答案为:23332.(2022·河南·濮阳一高高二期中(理))如图,在棱长为1的正方体1111ABCD A B C D -中,若E ,F 分别是上底棱的中点,则点A 到平面11B D EF 的距离为______.【答案】1【解析】以1D 为坐标原点,11111,,D A D C D D 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,则()1,0,1A ,()11,1,0B ,10,,12E ⎛⎫⎪⎝⎭,()10,0,0D ,设平面11B D EF 的法向量(),,m x y z =,则有1111020m D E y z m D B x y ⎧⋅=+=⎪⎨⎪⋅=+=⎩,令2y =得:2,1x z =-=-,故()2,2,1m =--,其中()10,1,1AB =-,则点A 到平面11B D EF 的距离为11AB m d m⋅===故答案为:133.(2022·山东·济南外国语学校高二期中)在棱长为1的正方体1111ABCD A B C D -中,平面1AB C 与平面11AC D 间的距离是________.【解析】以点A 为坐标原点,AB 、AD 、1AA 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()0,0,0A 、()11,0,1B 、()1,1,0C 、()0,1,0D 、()10,0,1A 、()11,1,1C ,设平面1AB C 的法向量为()111,,m x y z =,()11,0,1AB =,()1,1,0AC =,由1111100m AB x z m AC x y ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取11x =,可得()1,1,1m =--,设平面11AC D 的法向量为()222,,n x y z =,()10,1,1DA =-,()11,0,1DC =,由12212200n DA y z n DC x z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,取21x =,可得()1,1,1n =--r ,因为m n =,平面1AB C 与平面11AC D 不重合,故平面1//AB C 平面11AC D ,()0,1,0AD =uuu r ,所以,平面1AB C 与平面11AC D 间的距离为1333AD m d m⋅==故答案为:33.34.(多选题)(2020·辽宁·大连八中高二期中)已知正方体1111ABCD A B C D -的棱长为1,点,E O 分别是11A B ,11AC 的中点,P 在正方体内部且满足1132243AP AB AD AA =++,则下列说法正确的是()A .点A 到直线BE 255B .点O 到平面11ABCD 的距离是24C .平面1A BD 与平面11B CD 3D .点P 到直线AD 的距离为56【答案】ABCD【解析】如图,建立空间直角坐标系,则(0,0,0)A ,(1,0,0)B ,(0,1,0)D ,1(0,0,1)A ,1(1,1,1)C ,()10,1,1D ,1,0,12E ⎛⎫⎪⎝⎭,所以1(1,0,0),,0,12BA BE ⎛⎫=-=- ⎪⎝⎭.设ABE θ∠=,则||5cos 5||||BA BE BA BE θ⋅==,25sin 5θ==.故A 到直线BE的距离1||sin 1d BA θ===,故选项A 正确.易知111111,,0222C O C A ⎛⎫==-- ⎪⎝⎭,平面11ABC D 的一个法向量1(0,1,1)DA =-,则点O 到平面11ABC D 的距离11211||224||DA C O d DA ⋅===,故选项B 正确.1111(1,0,1),(0,1,1),(0,1,0)A B A D A D =-=-=.设平面1A BD 的法向量为(,,)n x y z =,则110,0,n A B n A D ⎧⋅=⎪⎨⋅=⎪⎩所以0,0,x z y z -=⎧⎨-=⎩令1z =,得1,1y x ==,所以(1,1,1)n =.所以点1D 到平面1A BD的距离113||||A D n d n ⋅===因为平面1//A BD 平面11B CD ,所以平面1A BD 与平面11B CD 间的距离等于点1D 到平面1A BD 的距离,所以平面1A BD 与平面11B CD 间的距离为3.故选项C 正确.因为1312423AP AB AD AA =++,所以312,,423AP ⎛⎫= ⎪⎝⎭,又(1,0,0)AB =,则34||AP AB AB ⋅=,所以点P 到AB 的距离56d ==.故选项D 正确.故选:ABCD.考点6:异面直线的距离35.(2021·安徽·合肥市第六中学高二期中)如图正四棱柱1111ABCD A B C D -中,1AB BC ==,12AA =.动点P ,Q 分别在线段1C D ,AC 上,则线段PQ 长度的最小值是()A .13B .23C .1D .43【答案】B【解析】由题意可知,线段PQ 长度的最小值为异面直线1C D 、AC 的公垂线的长度.如下图所示,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系,则点()1,0,0A 、()0,1,0C 、()10,1,2C 、()0,0,0D ,所以,()1,1,0AC =-,()10,1,2=DC ,()1,0,0DA =,设向量(),,n x y z =满足n AC ⊥,1⊥n DC ,由题意可得1020n AC x y n DC y z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,解得2x yy z =⎧⎪⎨=-⎪⎩,取2y =,则2x =,1z =-,可得()2,2,1n =-,因此,min 23DA n PQ n⋅==.故选:B .36.(2021·辽宁沈阳·高二期中)定义:两条异面直线之间的距离是指其中一条直线上任意一点到另一条直线距离的最小值.在长方体1111ABCD A B C D -中,1AB =,2BC =,13AA =,则异面直线AC 与1BC 之间的距离是()A 5B 7C 6D .67【答案】D【解析】如图,以D 为坐标原点建立空间直角坐标系,则()()()()12,0,0,0,1,0,2,1,0,0,1,3A C B C ,则()2,1,0AC =-,()12,0,3BC =-,设AC 和1BC 的公垂线的方向向量(),,n x y z =,则100n AC n BC ⎧⋅=⎪⎨⋅=⎪⎩,即20230x y x z -+=⎧⎨-+=⎩,令3x =,则()3,6,2n =,()0,1,0AB =,67AB n d n⋅∴==.故选:D.37.(2021·上海交大附中高二期中)在正方体1111ABCD A B C D -中,4AB =,则异面直线AB 和1AC 的距离为___________.【答案】【解析】如图,以D 为坐标原点,分别以1,,DA DC DD 为,,x y z 轴建立空间直角坐标系,由1(4,0,0),(4,4,0),(0,4,0),(4,0,4)A B C A ,则1(0,4,0),(4,4,4)AB CA ==-,1(0,0,4)AA =设(,,)m x y z =是异面直线AB 和1AC 的公垂线的一个方向向量,则1404440m AB y m CA x y z ⎧⋅==⎪⎨⋅=-+=⎪⎩,令1x =,则(1,0,1)m =-,所以异面直线AB 和1AC的距离为1AA m m ⋅==故答案为:38.(2021·广东·广州市第二中学高二期中)如图,在三棱锥P ABC -中,三条侧棱PA ,PB ,PC 两两垂直,且3PA PB PC ===,G 是PAB △的重心,E ,F 分别为BC ,PB 上的点,且::1:2BE EC PF FB ==.(1)求证:平面GEF ⊥平面PBC ;(2)求证:EG 是直线PG 与BC 的公垂线;(3)求异面直线PG 与BC 的距离.【解析】(1)建立如图所示空间直角坐标系,()()()()()()3,0,0,0,3,0,0,0,3,0,1,0,0,2,1,1,1,0A B C F E G ,()1,0,0GF =-,0,0GF PC GF PB ⋅=⋅=,所以,,GF PC GF PB PC PB P ⊥⊥⋂=,所以GF ⊥平面PBC ,由于GF ⊂平面GEF ,所以平面GEF ⊥平面PBC .(2)()()1,1,1,0,3,3EG BC =--=-,0,0EG PG EG BC ⋅=⋅=,所以EG 是直线PG 与BC 的公垂线.(3)2221113EG =++=所以异面直线PG 与BC39.(2021·全国·高二期中)如下图,在四棱锥P ABCD -中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,,2,12ABC BAD PA AD AB BC π∠=∠=====.(1)求平面PAB 与平面PCD 所成夹角的余弦值;(2)求异面直线PB 与CD 之间的距离.【解析】以A 为原点,,,AB AD AP 所在直线为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系A xyz -,则()()()()()0,0,0,1,0,0,1,1,0,0,2,0,0,0,2A B C D P .(1)因为PA ⊥平面ABCD ,且AD ⊂平面ABCD ,所以PA AD ⊥,又AB AD ⊥,且PAAB A =,所以AD ⊥平面PAB ,所以()0,2,0AD =是平面PAB 的一个法向量.易知()()1,1,2,0,2,2PC PD =-=-uu u r uu u r ,设平面PCD 的法向量为(),,m x y z =,则0,0,m PC m PD ⎧⋅=⎨⋅=⎩即20,220,x y y z +-=⎧⎨-=⎩,令1y =解得1,1z x ==.所以()1,1,1m =是平面PCD 的一个法向量,从而3cos ,AD m AD m AD m⋅==uuu r u r uuu r u r uuu r u r PAB 与平面PCD 所成夹角为锐角所以平面PAB 与平面PCD 所成夹角的余弦值为33.(2)()1,0,2BP =-,设Q 为直线PB 上一点,且(),0,2BQ BP λλλ==-,因为()0,1,0CB =-,所以(),1,2CQ CB BQ λλ=+=--,又()1,1,0CD =-,所以点Q 到直线CD 的距离()22cos d CQ CQ CQ CD =-⋅uu u r uu u r uu u r uu u r===,因为22919144222999λλλ⎛⎫++=++≥⎪⎝⎭,所以23d≥,所以异面直线PB与CD之间的距离为2 3.。

利用空间向量求空间角考点与题型归纳

利用空间向量求空间角考点与题型归纳

利用空间向量求空间角考点与题型归纳一、基础知识1.异面直线所成角设异面直线a ,b 所成的角为θ,则cos θ=|a ·b ||a ||b |❶, 其中a ,b 分别是直线a ,b 的方向向量.2.直线与平面所成角如图所示,设l 为平面α的斜线,l ∩α=A ,a 为l 的方向向量,n 为平面α的法向量,φ为l 与α所成的角,则sin φ=|cos 〈a ,n 〉|=|a ·n ||a ||n |❷.3.二面角(1)若AB ,CD 分别是二面角α­l ­β的两个平面内与棱l 垂直的异面直线,则二面角(或其补角)的大小就是向量AB ―→与CD ―→的夹角,如图(1).(2)平面α与β相交于直线l ,平面α的法向量为n 1,平面β的法向量为n 2,〈n 1,n 2〉=θ,则二面角α ­l ­β为θ或π-θ.设二面角大小为φ,则|cos φ|=|cos θ|=|n 1·n 2||n 1||n 2|❸,如图(2)(3).两异面直线所成的角为锐角或直角,而不共线的向量的夹角为(0,π),所以公式中要加绝对值.直线与平面所成角的范围为⎣⎡⎦⎤0,π2,而向量之间的夹角的范围为[0,π],所以公式中要加绝对值.利用公式与二面角的平面角时,要注意〈n 1,n 2〉与二面角大小的关系,是相等还是互补,需要结合图形进行判断.二、常用结论解空间角最值问题时往往会用到最小角定理 cos θ=cos θ1cos θ2.如图,若OA 为平面α的一条斜线,O 为斜足,OB 为OA 在平面α内的射影,OC 为平面α内的一条直线,其中θ为OA 与OC 所成的角,θ1为OA 与OB 所成的角,即线面角,θ2为OB 与OC 所成的角,那么cos θ=cos θ1cos θ2. 考点一 异面直线所成的角[典例精析]如图,在三棱锥P ­ABC 中,P A ⊥底面ABC ,∠BAC =90°.点D ,E ,N 分别为棱P A ,PC ,BC 的中点,M 是线段AD 的中点,P A =AC =4,AB =2.(1)求证:MN ∥平面BDE ;(2)已知点H 在棱P A 上,且直线NH 与直线BE 所成角的余弦值为721,求线段AH 的长. [解] 由题意知,AB ,AC ,AP 两两垂直,故以A 为原点,分别以AB ―→,AC ―→,AP ―→方向为x 轴、y 轴、z 轴正方向建立如图所示的空间直角坐标系.依题意可得A (0,0,0),B (2,0,0),C (0,4,0),P (0,0,4),D (0,0,2),E (0,2,2),M (0,0,1),N (1,2,0).(1)证明:DE ―→=(0,2,0),DB ―→=(2,0,-2). 设n =(x ,y ,z )为平面BDE 的法向量, 则⎩⎪⎨⎪⎧n ·DE ―→=0,n ·DB ―→=0,即⎩⎪⎨⎪⎧2y =0,2x -2z =0.不妨取z =1,可得n =(1,0,1).又MN ―→=(1,2,-1),可得MN ―→·n =0. 因为MN ⊄平面BDE ,所以MN ∥平面BDE . (2)依题意,设AH =h (0≤h ≤4),则H (0,0,h ), 进而可得NH ―→=(-1,-2,h ), BE ―→=(-2,2,2). 由已知,得|cos 〈NH ―→,BE ―→〉|=|NH ―→·BE ―→||NH ―→||BE ―→|=|2h -2|h 2+5×23=721, 整理得10h 2-21h +8=0,解得h =85或h =12.所以线段AH 的长为85或12.[解题技法]用向量法求异面直线所成角的一般步骤(1)选择三条两两垂直的直线建立空间直角坐标系;(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量; (3)利用向量的夹角公式求出向量夹角的余弦值;(4)两异面直线所成角的余弦等于两向量夹角余弦值的绝对值.[提醒] 注意向量的夹角与异面直线所成的角的区别:当异面直线的方向向量的夹角为锐角或直角时,此夹角就是异面直线所成的角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线所成的角.[题组训练]1.如图所示,在三棱柱ABC ­A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E ,F 分别是棱AB ,BB 1的中点,则直线EF 和BC 1所成的角是( )A .30°B .45°C .60°D .90°解析:选C 以B 为坐标原点,以BC 为x 轴,BA 为y 轴,BB 1为z 轴,建立空间直角坐标系如图所示.设AB =BC =AA 1=2,则C 1(2,0,2),E (0,1,0),F (0,0,1),∴EF ―→=(0,-1,1),BC 1―→=(2,0,2),∴EF ―→·BC 1―→=2,∴cos 〈EF ―→,BC 1―→〉=22×22=12,则EF 和BC 1所成的角是60°,故选C.2.如图,在四棱锥P ­ABCD 中,P A ⊥平面ABCD ,底面ABCD 是菱形,AB =2,∠BAD =60°.(1)求证:BD ⊥平面P AC ;(2)若P A =AB ,求PB 与AC 所成角的余弦值. 解:(1)证明:因为四边形ABCD 是菱形, 所以AC ⊥BD .因为P A ⊥平面ABCD ,BD ⊂平面ABCD , 所以P A ⊥BD .又因为AC ∩P A =A ,所以BD ⊥平面P AC . (2)设AC ∩BD =O .因为∠BAD =60°,P A =AB =2, 所以BO =1,AO =CO = 3.如图,以O 为坐标原点,射线OB ,OC 分别为x 轴,y 轴的正半轴建立空间直角坐标系O ­xyz ,则P (0,-3,2),A (0,-3,0),B (1,0,0),C (0,3,0), 所以PB ―→=(1,3,-2),AC ―→=(0,23,0). 设PB 与AC 所成角为θ,则cos θ=|PB ―→·AC ―→||PB ―→||AC ―→|=622×23=64.即PB 与AC 所成角的余弦值为64. 考点二 直线与平面所成的角[典例精析](2019·合肥一检)如图,在多面体ABCDEF 中,四边形ABCD 是正方形,BF ⊥平面ABCD ,DE ⊥平面ABCD ,BF =DE ,M 为棱AE 的中点.(1)求证:平面BDM ∥平面EFC ;(2)若DE =2AB ,求直线AE 与平面BDM 所成角的正弦值. [解] (1)证明:连接AC 交BD 于点N ,连接MN , 则N 为AC 的中点,又M 为AE 的中点,∴MN ∥EC . ∵MN ⊄平面EFC ,EC ⊂平面EFC , ∴MN ∥平面EFC .∵BF ,DE 都与平面ABCD 垂直,∴BF ∥DE . ∵BF =DE ,∴四边形BDEF 为平行四边形,∴BD ∥EF . ∵BD ⊄平面EFC ,EF ⊂平面EFC , ∴BD ∥平面EFC .又MN ∩BD =N ,∴平面BDM ∥平面EFC . (2)∵DE ⊥平面ABCD ,四边形ABCD 是正方形,∴DA ,DC ,DE 两两垂直,如图,建立空间直角坐标系D ­xyz . 设AB =2,则DE =4,从而D (0,0,0),B (2,2,0),M (1,0,2),A (2,0,0),E (0,0,4),∴DB ―→=(2,2,0),DM ―→=(1,0,2), 设平面BDM 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·DB ―→=0,n ·DM ―→=0,得⎩⎪⎨⎪⎧2x +2y =0,x +2z =0.令x =2,则y =-2,z =-1,从而n =(2,-2,-1)为平面BDM 的一个法向量.∵AE ―→=(-2,0,4),设直线AE 与平面BDM 所成的角为θ, 则sin θ=|cosn ,AE ―→|=|n ·AE ―→||n |·|AE ―→|=4515,∴直线AE 与平面BDM 所成角的正弦值为4515.[解题技法]利用向量求线面角的2种方法(1)分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角).(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线与平面所成的角.[题组训练]1.在长方体ABCD ­A 1B 1C 1D 1中,AB =2,BC =AA 1=1,则D 1C 1与平面A 1BC 1所成角的正弦值为________.解析:建立如图所示的空间直角坐标系D ­xyz ,由于AB =2,BC =AA 1=1,所以A 1(1,0,1),B (1,2,0),C 1(0,2,1),D 1(0,0,1),所以A 1C 1―→=(-1,2,0),BC 1―→=(-1,0,1),D 1C 1―→=(0,2,0).设平面A 1BC 1的法向量为n =(x ,y ,z ),则有⎩⎪⎨⎪⎧A 1C 1―→·n =0, BC 1―→·n =0,即⎩⎪⎨⎪⎧-x +2y =0,-x +z =0,令x =2,得y =1,z =2,则n =(2,1,2).设D 1C 1与平面A 1BC 1所成角为θ,则sin θ=|cos 〈D 1C 1―→,n 〉|=|D 1C 1―→·n ||D 1C 1―→||n |=22×3=13,即D 1C 1与平面A 1BC 1所成角的正弦值为13.答案:132.如图,在直三棱柱ABC ­A 1B 1C 1中,BA =BC =5,AC =8,D 为线段AC 的中点.(1)求证:BD ⊥A 1D ;(2)若直线A 1D 与平面BC 1D 所成角的正弦值为45,求AA 1的长.解:(1)证明:∵三棱柱ABC ­A 1B 1C 1是直三棱柱,∴AA 1⊥平面ABC ,又BD ⊂平面ABC ,∴BD ⊥AA 1, ∵BA =BC ,D 为AC 的中点,∴BD ⊥AC ,又AC ∩AA 1=A ,AC ⊂平面ACC 1A 1,AA 1⊂平面ACC 1A 1, ∴BD ⊥平面ACC 1A 1,又A 1D ⊂平面ACC 1A 1,∴BD ⊥A 1D . (2)由(1)知BD ⊥AC ,AA 1⊥平面ABC ,以D 为坐标原点,DB ,DC 所在直线分别为x 轴,y 轴,过点D 且平行于AA 1的直线为z 轴建立如图所示的空间直角坐标系D ­xyz .设AA 1=λ(λ>0),则A 1(0,-4,λ),B (3,0,0),C 1(0,4,λ),D (0,0,0), ∴DA 1―→=(0,-4,λ),DC 1―→=(0,4,λ),DB ―→=(3,0,0), 设平面BC 1D 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·DC 1―→=0,n ·DB ―→=0,即⎩⎪⎨⎪⎧4y +λz =0,3x =0,则x =0,令z =4,可得y =-λ,故n =(0,-λ,4)为平面BC 1D 的一个法向量. 设直线A 1D 与平面BC 1D 所成角为θ,则sin θ=|cosn ,DA 1―→|=|n ·DA 1―→||n |·|DA 1―→|=|4λ+4λ|λ2+16·λ2+16=45,解得λ=2或λ=8, 即AA 1=2或AA 1=8.考点三 二面角[典例精析]如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 位置,OD ′=10.(1)证明:D ′H ⊥平面ABCD ; (2)求二面角B ­D ′A ­C 的余弦值.[解] (1)证明:由四边形ABCD 为菱形,得AC ⊥BD . 由AE =CF =54,得AE AD =CFCD ,所以EF ∥AC .因此EF ⊥DH ,从而EF ⊥D ′H . 由AB =5,AC =6,得DO =BO =AB 2-AO 2=4.由EF ∥AC 得OH DO =AE AD =14,所以OH =1,D ′H =DH =3,则OD ′2=OH 2+D ′H 2,所以D ′H ⊥OH . 又OH ∩EF =H ,所以D ′H ⊥平面ABCD .(2)以H 为坐标原点,HB ,HF ,HD ′分别为x 轴,y 轴,z 轴建立空间直角坐标系H ­xyz ,如图所示.则B (5,0,0),C (1,3,0),D ′(0,0,3),A (1,-3,0), (由口诀“起点同”,我们先求出起点相同的3个向量.) 所以AB ―→=(4,3,0), AD ′―→=(-1,3,3),AC ―→=(0,6,0). (由口诀“棱排前”,我们用行列式求出两个平面的法向量.) 由⎩⎪⎨⎪⎧ AD ′―→=(-1,3,3), AB ―→=(4,3,0),可得平面ABD ′的法向量n 1=(-3,4,-5),由⎩⎪⎨⎪⎧AD ′―→=(-1,3,3), AC ―→=(0,6,0),可得平面AD ′C 的法向量n 2=(-3,0,-1). 于是cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=7525.所以二面角B ­D ′A ­C 的余弦值为7525.[解题技法](1)利用法向量求二面角的大小时,由于法向量的方向不同,两个法向量的夹角与二面角的大小可能相等,也可能互补.所以,两个法向量的夹角的余弦值与二面角的余弦值可能存在正负号的差异.(2)有时用观察法难以判定二面角是钝角还是锐角,为了保证解题结果准确无误,我们给出一种万无一失的方法:就是在两个半平面和二面角的棱上各取1个向量,要求这三个向量必须起点相同,在利用行列式计算法向量时,棱对应的向量必须排前面,即口诀“起点同,棱排前”,这样求出的两个法向量的夹角一定与二面角的大小相等.[题组训练]如图所示,四棱锥P ­ABCD 中,P A ⊥平面ABCD ,△DAB ≌△DCB ,E 为线段BD 上的一点,且EB =ED =EC =BC ,连接CE 并延长交AD 于F .(1)若G 为PD 的中点,求证:平面P AD ⊥平面CGF ; (2)若BC =2,P A =3,求二面角B ­CP ­D 的余弦值. 解:(1)证明:在△BCD 中,EB =ED =EC =BC , 故∠BCD =90°,∠CBE =∠BEC =60°.∵△DAB ≌△DCB ,∴∠BAD =∠BCD =90°,∠ABE =∠CBE =60°,∴∠FED =∠BEC =∠ABE =60°.∴AB ∥EF ,∴∠EFD =∠BAD =90°, ∴EF ⊥AD ,AF =FD . 又PG =GD ,∴GF ∥P A .又P A ⊥平面ABCD ,∴GF ⊥平面ABCD , ∵AD ⊂平面ABCD ,∴GF ⊥AD . 又GF ∩EF =F ,∴AD ⊥平面CGF .又AD ⊂平面P AD ,∴平面P AD ⊥平面CGF .(2)以A 为坐标原点,射线AB ,AD ,AP 分别为x 轴,y 轴,z 轴的正半轴建立如图所示的空间直角坐标系,则A (0,0,0),B (2,0,0),C (3,3,0),D (0,23,0),P (0,0,3),故CB ―→=(-1,-3,0), CP ―→=(-3,-3,3),CD ―→=(-3,3,0). 设平面BCP 的一个法向量为n 1=(1,y 1,z 1),则⎩⎪⎨⎪⎧ n 1·CB ―→=0,n 1·CP ―→=0,即⎩⎪⎨⎪⎧ -1-3y 1=0,-3-3y 1+3z 1=0,解得⎩⎨⎧y 1=-33,z 1=23,即n 1=⎝⎛⎭⎫1,-33,23. 设平面DCP 的一个法向量为n 2=(1,y 2,z 2),则⎩⎪⎨⎪⎧n 2·CD ―→=0,n 2·CP ―→=0,即⎩⎪⎨⎪⎧-3+3y 2=0,-3-3y 2+3z 2=0,解得⎩⎪⎨⎪⎧y 2=3,z 2=2,即n 2=(1,3,2). 所以cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=43169×8=24, 由图知二面角B ­CP ­D 为钝角, 所以二面角B ­CP ­D 的余弦值为-24. [课时跟踪检测]A 级1.如图所示,在正方体ABCD ­A 1B 1C 1D 1中,已知M ,N 分别是BD 和AD 的中点,则B 1M 与D 1N 所成角的余弦值为( )A.3030 B.3015 C.3010D.1515解析:选C 建立如图所示的空间直角坐标系.设正方体的棱长为2,则B 1(2,2,2),M (1,1,0),D 1(0,0,2),N (1,0,0),∴B 1M ―→=(-1,-1,-2), D 1N ―→=(1,0,-2),∴B 1M 与D 1N 所成角的余弦值为|B 1M ―→·D 1N ―→||B 1M ―→|·|D 1N ―→|=|-1+4|1+1+4×1+4=3010. 2.如图,已知长方体ABCD ­A 1B 1C 1D 1中,AD =AA 1=1,AB =3,E 为线段AB 上一点,且AE =13AB ,则DC 1与平面D 1EC 所成角的正弦值为( )A.33535B.277C.33D.24解析:选A 如图,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C 1(0,3,1),D 1(0,0,1),E (1,1,0),C (0,3,0),∴DC 1―→=(0,3,1), D 1E ―→=(1,1,-1), D 1C ―→=(0,3,-1). 设平面D 1EC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·D 1E ―→=0,n ·D 1C ―→=0,即⎩⎪⎨⎪⎧x +y -z =0,3y -z =0,取y =1,得n =(2,1,3).∴cosDC 1―→,n=DC 1―→·n |DC 1―→|·|n|=33535, ∴DC 1与平面D 1EC 所成的角的正弦值为33535.3.在直三棱柱ABC ­A 1B 1C 1中,AA 1=2,二面角B ­AA 1­C 1的大小为60°,点B 到平面ACC 1A 1的距离为3,点C 到平面ABB 1A 1的距离为23,则直线BC 1与直线AB 1所成角的正切值为( )A.7B.6C.5D .2解析:选A 由题意可知,∠BAC =60°,点B 到平面ACC 1A 1的距离为3,点C 到平面ABB 1A 1的距离为23,所以在三角形ABC 中,AB =2,AC =4,BC =23,∠ABC =90°,则AB 1―→·BC 1―→=(BB 1―→-BA ―→)·(BB 1―→+BC ―→)=4, |AB 1―→|=22,|BC 1―→|=4, cosAB 1―→,BC 1―→=AB 1―→·BC ―→|AB 1―→|·|BC ―→|=24,故tanAB 1―→,BC 1―→=7.4.如图,正三棱柱ABC ­A 1B 1C 1的所有棱长都相等,E ,F ,G 分别为AB ,AA 1,A 1C 1的中点,则B 1F 与平面GEF 所成角的正弦值为( )A.35 B.56 C.3310D.3610解析:选A 设正三棱柱的棱长为2,取AC 的中点D ,连接DG ,DB ,分别以DA ,DB ,DG 所在的直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,则B 1()0,3,2,F (1,0,1), E ⎝⎛⎭⎫12,32,0,G (0,0,2), B 1F ―→=()1,-3,-1,EF ―→=⎝⎛⎭⎫12,-32,1, GF ―→=(1,0,-1).设平面GEF 的法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧ EF ―→·n =0,GF ―→·n =0,即⎩⎪⎨⎪⎧12x -32y +z =0,x -z =0,取x =1,则z =1,y =3,故n =()1,3,1为平面GEF 的一个法向量, 所以cos 〈n ,B 1F ―→〉=1-3-15×5=-35,所以B 1F 与平面GEF 所成角的正弦值为35.5.在正方体ABCD ­A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( )A.12B.23C.33D.22解析:选B 以A 为坐标原点建立如图所示的空间直角坐标系A ­xyz ,设棱长为1,则A 1(0,0,1),E ⎝⎛⎭⎫1,0,12,D (0,1,0), ∴A 1D ―→=(0,1,-1), A 1E ―→=⎝⎛⎭⎫1,0,-12, 设平面A 1ED 的一个法向量为n 1=(1,y ,z ), 则⎩⎪⎨⎪⎧ n 1·A 1D ―→=0,n 1·A 1E ―→=0,即⎩⎪⎨⎪⎧y -z =0,1-12z =0,∴⎩⎪⎨⎪⎧y =2,z =2,∴n 1=(1,2,2). 又平面ABCD 的一个法向量为n 2=(0,0,1), ∴cos 〈n 1,n 2〉=23×1=23.即平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为23.6.如图,菱形ABCD 中,∠ABC =60°,AC 与BD 相交于点O ,AE ⊥平面ABCD ,CF ∥AE ,AB =2,CF =3.若直线OF 与平面BED 所成的角为45°,则AE =________.解析:如图,以O 为坐标原点,以OA ,OB 所在直线分别为x 轴,y 轴,以过点O 且平行于CF 的直线为z 轴建立空间直角坐标系.设AE =a ,则B (0,3,0),D (0,-3,0),F (-1,0,3),E (1,0,a ),∴OF ―→=(-1,0,3),DB ―→=(0,23,0), EB ―→=(-1,3,-a ).设平面BED 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DB ―→=0,n ·EB ―→=0,即⎩⎪⎨⎪⎧23y =0,-x +3y -az =0,则y =0,令z =1,得x =-a , ∴n =(-a,0,1),∴cos 〈n ,OF ―→〉=n ·OF ―→|n ||OF ―→|=a +3a 2+1×10.∵直线OF 与平面BED 所成角的大小为45°, ∴|a +3|a 2+1×10=22, 解得a =2或a =-12(舍去),∴AE =2.答案:27.如图,已知四棱锥P ­ABCD 的底面ABCD 是等腰梯形,AB ∥CD ,且AC ⊥BD ,AC 与BD 交于O ,PO ⊥底面ABCD ,PO =2,AB =22,E ,F 分别是AB ,AP 的中点,则二面角F ­OE ­A 的余弦值为________.解析:以O 为坐标原点,OB ,OC ,OP 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系O ­xyz , 由题知,OA =OB =2,则A (0,-2,0),B (2,0,0),P (0,0,2),E (1,-1,0),F (0,-1,1), OE ―→=(1,-1,0),OF ―→=(0,-1,1),设平面OEF 的法向量为m =(x ,y ,z ), 则⎩⎪⎨⎪⎧m ·OE ―→=0,m ·OF ―→=0,即⎩⎪⎨⎪⎧x -y =0-y +z =0.令x =1,可得m =(1,1,1).易知平面OAE 的一个法向量为n =(0,0,1),则cos 〈m ,n 〉=m ·n|m ||n |=33.由图知二面角F ­OE ­A 为锐角, 所以二面角F ­OE ­A 的余弦值为33. 答案:338.(2018·全国卷Ⅲ)如图,边长为2的正方形ABCD 所在的平面与半圆弧C D 所在平面垂直,M 是C D 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ­ABC 体积最大时,求平面MAB 与平面MCD 所成二面角的正弦值. 解:(1)证明:由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,又DM ⊂平面CMD ,所以BC ⊥DM .因为M 为CD 上异于C ,D 的点,且DC 为直径, 所以DM ⊥CM . 又BC ∩CM =C , 所以DM ⊥平面BMC . 因为DM ⊂平面AMD , 所以平面AMD ⊥平面BMC .(2)以D 为坐标原点, DA ―→的方向为x 轴正方向,建立如图所示的空间直角坐标系D ­xyz .当三棱锥M ­ABC 的体积最大时,M 为CD 的中点.由题设得D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),M (0,1,1),AM ―→=(-2,1,1),AB ―→=(0,2,0),DA ―→=(2,0,0).设n =(x ,y ,z )是平面MAB 的法向量,又DA ―→是平面MCD 的一个法向量,所以cos 〈n ,DA ―→〉=n ·DA ―→|n ||DA ―→|=55,sin 〈n ,DA ―→〉=255.所以平面MAB 与平面MCD 所成二面角的正弦值是255.9.(2018·全国卷Ⅱ)如图,在三棱锥P ­ABC 中,AB =BC =22,P A =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M ­P A ­C 为30°,求PC 与平面P AM 所成角的正弦值.解:(1)证明:因为P A =PC =AC =4,O 为AC 的中点, 所以PO ⊥AC ,且PO =2 3.连接OB ,因为AB =BC =22AC , 所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2.所以PO 2+OB 2=PB 2,所以PO ⊥OB . 又因为OB ∩AC =O , 所以PO ⊥平面ABC .(2)以O 为坐标原点,OB ―→的方向为x 轴正方向,建立如图所示的空间直角坐标系O ­xyz .由已知得O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,23),AP ―→=(0,2,23).取平面P AC 的一个法向量OB ―→=(2,0,0). 设M (a,2-a,0)(0<a ≤2),则AM ―→=(a,4-a,0). 设平面P AM 的法向量为n =(x ,y ,z ),令y =3a ,得z =-a ,x =3(a -4),所以平面P AM 的一个法向量为n =(3(a -4),3a ,-a ),所以cos 〈OB ―→,n 〉=23(a -4)23(a -4)2+3a 2+a 2.由已知可得|cos 〈OB ―→,n 〉|=cos 30°=32,所以23|a -4|23(a -4)2+3a 2+a 2=32, 解得a =43或a =-4(舍去).所以n =⎝⎛⎭⎫-833,433,-43.又PC ―→=(0,2,-23),所以cos 〈PC ―→,n 〉=833+8334+12·643+163+169=34.所以PC 与平面P AM 所成角的正弦值为34. B 级1.如图,四棱柱ABCD ­A 1B 1C 1D 1的底面ABCD 是菱形,AC ∩BD =O ,A 1O ⊥底面ABCD ,AB =2,AA 1=3.(1)证明:平面A 1CO ⊥平面BB 1D 1D ;(2)若∠BAD =60°,求二面角B ­OB 1­C 的余弦值. 解:(1)证明:∵A 1O ⊥平面ABCD ,BD ⊂平面ABCD , ∴A 1O ⊥BD .∵四边形ABCD 是菱形,∴CO ⊥BD . ∵A 1O ∩CO =O ,∴BD ⊥平面A 1CO . ∵BD ⊂平面BB 1D 1D ,∴平面A 1CO ⊥平面BB 1D 1D .(2)∵A 1O ⊥平面ABCD ,CO ⊥BD ,∴OB ,OC ,OA 1两两垂直,以O 为坐标原点,OB ―→,OC ―→, OA 1―→的方向分别为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系.∵AB =2,AA 1=3,∠BAD =60°, ∴OB =OD =1,OA =OC =3, OA 1=AA 21-OA 2= 6.则O (0,0,0),B (1,0,0),C (0,3,0),A (0,-3,0),A 1(0,0,6),∴OB ―→=(1,0,0),BB 1―→=AA 1―→=(0,3,6), OB 1―→=OB ―→+BB 1―→=(1,3,6). 设平面OBB 1的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧OB ―→·n =0,OB 1―→·n =0,即⎩⎪⎨⎪⎧x =0,x +3y +6z =0.令y =2,得z =-1,∴n =(0,2,-1)是平面OBB 1的一个法向量. 同理可求得平面OCB 1的一个法向量m =(6,0,-1), ∴cosn ,m=n ·m|n |·|m |=13×7=2121,由图可知二面角B ­OB 1­C 是锐二面角, ∴二面角B ­OB 1­C 的余弦值为2121. 2.如图,在四棱锥P ­ABCD 中,底面ABCD 是直角梯形,∠ADC =90°,AB ∥CD ,AB =2CD .平面P AD ⊥平面ABCD ,P A =PD ,点E 在PC 上,DE ⊥平面P AC .(1)求证:P A ⊥平面PCD ;(2)设AD =2,若平面PBC 与平面P AD 所成的二面角为45°,求DE 的长.解:(1)证明:由DE ⊥平面P AC ,得DE ⊥P A ,又平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,CD ⊥AD ,所以CD ⊥平面P AD ,所以CD ⊥P A , 又CD ∩DE =D ,所以P A ⊥平面PCD . (2)取AD 的中点O ,连接PO , 因为P A =PD ,所以PO ⊥AD ,又平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD , 所以PO ⊥平面ABCD ,以O 为坐标原点建立如图所示的空间直角坐标系O ­xyz ,由(1)得P A ⊥PD ,由AD =2得P A =PD =2,PO =1,设CD =a ,则P (0,0,1),D (0,1,0),C (a,1,0),B (2a ,-1,0), 则BC ―→=(-a,2,0),PC ―→=(a,1,-1). 设m =(x ,y ,z )为平面PBC 的法向量,由⎩⎪⎨⎪⎧m ·BC ―→=0,m ·PC ―→=0,得⎩⎪⎨⎪⎧-ax +2y =0,ax +y -z =0,令x =2,则y =a ,z =3a ,故m =(2,a,3a )为平面PBC 的一个法向量,由(1)知n =DC ―→=(a,0,0)为平面P AD 的一个法向量. 由|cosm ,n|=|m ·n ||m ||n |=|2a |a 10a 2+4=22,解得a =105,即CD =105,所以在Rt △PCD 中,PC =2155,由等面积法可得DE =CD ·PD PC =33.3.如图,在三棱锥P ­ABC 中,平面P AB ⊥平面ABC ,AB =6, BC =23,AC =26,D ,E 分别为线段AB ,BC 上的点,且AD =2DB ,CE =2EB ,PD ⊥AC .(1)求证:PD ⊥平面ABC ;(2)若直线P A 与平面ABC 所成的角为45°,求平面P AC 与平面PDE 所成的锐二面角大小.解:(1)证明:∵AC =26,BC =23,AB =6,∴AC 2+BC 2=AB 2,∴∠ACB =90°, ∴cos ∠ABC =236=33.又易知BD =2,∴CD 2=22+(23)2-2×2×23cos ∠ABC =8, ∴CD =22,又AD =4, ∴CD 2+AD 2=AC 2,∴CD ⊥AB .∵平面P AB ⊥平面ABC ,平面P AB ∩平面ABC =AB ,CD ⊂平面ABC , ∴CD ⊥平面P AB ,又PD ⊂平面P AB ,∴CD ⊥PD , ∵PD ⊥AC ,AC ∩CD =C , ∴PD ⊥平面ABC .(2)由(1)知PD ,CD ,AB 两两互相垂直,∴可建立如图所示的空间直角坐标系D ­xyz ,∵直线P A 与平面ABC 所成的角为45°,即∠P AD =45°,∴PD =AD =4,则A (0,-4,0),C (22,0,0),B (0,2,0),P (0,0,4),∴CB ―→=(-22,2,0),AC ―→=(22,4,0),P A ―→=(0,-4,-4). ∵AD =2DB ,CE =2EB ,∴DE ∥AC , 由(1)知AC ⊥BC ,∴DE ⊥BC ,又PD ⊥平面ABC ,BC ⊂平面ABC ,∴PD ⊥BC , ∵PD ∩DE =D ,∴CB ⊥平面PDE ,∴CB ―→=(-22,2,0)为平面PDE 的一个法向量. 设平面P AC 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AC ―→=0,n ·P A ―→=0,即⎩⎪⎨⎪⎧22x +4y =0,-4y -4z =0,令z =1,得x =2,y =-1, ∴n =(2,-1,1)为平面P AC 的一个法向量. ∴cos n ,CB ―→=-4-24×12=-32, ∴平面P AC 与平面PDE 所成的锐二面角的余弦值为32, 故平面P AC 与平面PDE 所成的锐二面角为30°.。

用空间向量法求解立体几何问题典例及解析

用空间向量法求解立体几何问题典例及解析

用空间向量法求解立体几何问题典例及解析以多面体为载体,以空间向量为工具,来论证和求解空间角、距离、线线关系以及线面关系相关问题,是近年来高考数学的重点和热点,用空间向量解立体几何问题,极大地降低了求解立几的难度,很大程度上呈现出程序化思想。

更易于学生们所接受,故而执教者应高度重视空间向量的工具性。

首先,梳理一下利用空间向量解决立体几何的知识和基本求解方法 一:利用空间向量求空间角 (1)两条异面直线所成的夹角范围:两条异面直线所成的夹角的取值范围是 。

向量求法:设直线,a b 的方向向量为a,b ,其夹角为θ,则有cos ___________.θ= (2)直线与平面所成的角定义:直线与平面所成的角是指直线与它在这个平面内的射影所成的角。

范围:直线和平面所夹角的取值范围是 。

向量求法:设直线l 的方向向量为a ,平面的法向量为n ,直线与法向量所成角的余弦值为|cos |___________.θ=直线与平面所成的角为ϕ,则有sin ___________.ϕ=或在平面内任取一个向量m ,则|cos |___________.θ=.(3)二面角二面角的取值范围是 . 二面角的向量求法:方法一:在两个半平面内任取两个与棱垂直的向量,则这两个向量所成的 即为所求的二面角的大小;方法二:设1n ,2n 分别是两个面的 ,则向量1n 与2n 的夹角(或其补角)即为所求二面角的平面角的大小。

二:利用空间向量求空间距离 (1)点面距离的向量公式平面α的法向量为n ,点P 是平面α外一点,点M 为平面α内任意一点,则点P 到平面α的距离d 就是 ,即d =||||MP ⋅n n . (2)线面、面面距离的向量公式平面α∥直线l ,平面α的法向量为n ,点M ∈α、P ∈l ,平面α与直线l 间的距离d 就是MP 在向量n 方向射影的绝对值,即d = .平面α∥β,平面α的法向量为n ,点M ∈α、P ∈β,平面α与平面β的距离d 就是MP 在向量n 方向射影的绝对值,即d =||||MP ⋅n n . (3)异面直线的距离的向量公式设向量n 与两异面直线a 、b 都垂直,M ∈a 、P ∈b ,则两异面直线a 、b 间的距离d 就是MP 在向量n 方向射影的绝对值,即d =||||MP ⋅n n .三:利用空间向量解证平行、垂直关系1:①所谓直线的方向向量,就是指 的向量,一条直线的方向向量有 个。

空间向量应用-二面角

空间向量应用-二面角

04
二面角的应用
在几何学中的应用
向量投影
在求解向量的投影时,可以利用二面 角的概念,通过计算向量在某一平面 上的投影长度,来得到该向量与该平 面的夹角。
向量夹角
二面角的概念可以用于计算两个向量 的夹角,通过比较两个向量的夹角与 二面角的夹角,可以判断两个向量的 方向关系。
在物理学中的应用
力的合成与分解
建筑设计
在建筑设计中,利用二面角的概念可以确定建筑物的位置、方向和高度等信息, 以保证建筑物的安全和稳定性。
05
空间向量与二面角的关系
向量与二面角的关联
向量是既有大小又有方向的量,其大 小和方向可以用来表示二面角的大小 和方向。
二面角的大小和方向可以通过两个向 量的夹角来描述,这个夹角就是二面 角的平面角。
二面角的向量定义
总结词
二面角的向量定义是通过向量的投影 和叉积来定义的,它是一个标量值, 其大小等于两个向量的叉积的绝对值 再除以两向量的模的乘积。
详细描述
二面角的向量定义是通过向量的投影和叉积来 描述的。设两非零向量a和b分别属于两个半平 面,那么二面角θ的大小可以用公式 ∣a×b∣/∣a∣∣b∣表示,其中a×b表示向量a和b 的叉积,∣a∣和∣b∣分别表示向量a和b的模。这 个标量值的大小就等于二面角θ的大小。
二面角的性质
总结词
二面角具有一些重要的性质,如二面角的取值范围是[0,π],二面角的大小与观察方向有关,以及二面角的补角等 于其平面角的补角等。
详细描述
首先,二面角的取值范围是[0,π],这是由其几何定义直接得出的。其次,二面角的大小与观察方向有关,即观察 方向的不同可能导致二面角的大小发生变化。最后,二面角的补角等于其平面角的补角,这是由向量的性质得出 的。

2011-2020年高考数学真题分专题训练 专题24 空间向量与空间角的计算(学生版)

2011-2020年高考数学真题分专题训练 专题24 空间向量与空间角的计算(学生版)

专题24空间向量与空间角的计算年份题号考点考查内容2011理18二面角的计算线面、线线垂直的判定与性质、利用向量法求二面角的方法,逻辑推理能力、空间想象能力及运算求解能力2012理19二面角的计算线面平行、线线垂直、线面垂直的判定定理及二面角的计算,逻辑推理能力、空间想象能力及运算求解能力2013卷2理18二面角的计算线面平行的判定定理及二面角的计算,逻辑推理能力、空间想象能力及运算求解能力卷1理18空间线面角的计算空间线面、线线垂直的判定与性质及线面角的计算,空间想象能力、逻辑推论证能力2014卷2理18二面角的计算线面平行的判定、二面角的计算、锥体的体积计算等基础知识,逻辑推理能力、空间想象能力、运算求解能力卷2理11空间异面直线所成角的计算异面直线所成的角,空间想象能力和运算求解能力卷1理19二面角的计算空间线线垂直、线面垂直的判定与性质、二面角的计算等基础知识,逻辑推理能力、空间想象能力和运算求解能力2015卷1理18空间异面直线所成角的计算主线线、线面、面面垂直判定与性质及利用空间向量计算异面直线所成角,逻辑推理能力与运算求解能力.2016卷3理19空间线面角的计算线面平行的判定与性质、利用空间向量计算线面角,逻辑推理能力和运算求解能力卷2理19解答题中的折叠问题与探索性问题二面角的计算折叠问题中线面垂直的判定与性质、利用空间向量计算二面角,逻辑推理能力和运算求解能力卷1理18二面角的计算主线线、线面、面面垂直判定与性质及利用空间向量计算二面角,逻辑推理能力与运算求解能力卷1理11文11空间异面直线所成角的计算面面平行的性质及线线所成角,逻辑推理能力与运算求解能力2017卷3理16空间异面直线所成角的计算空间点、线、面位置关系及线线所成角,逻辑推理能力与运算求解能力卷3理19二面角的计算主要以三棱锥为载体面面垂直的判定与性质、简单几何体体积的计算、利用空间向量计算二面角,逻辑推理能力与运算求解能力卷2理18二面角的计算空间线面角的计算主要以三棱锥为载体线面平行的判定与性质、利用空间向量计算线面角与二面角,逻辑推理能力与运算求解能力卷2理10空间异面直线所成角的计算空间两条异面直线所成的角及空间想象能力与运算求解能力卷1理18二面角的计算空间垂直的判定与性质、利用空间向量计算二面角,逻辑推理能力与运算求解能力2018卷3文19解答题中的折叠问题与探索性问题空间面面垂直的判定与性质、是否存在点是线面平行的问题,逻辑推理能力与空间想象能力卷2文9空间异面直线所成角的计算空间两条异面直线所成的角及空间想象能力与运算求解能力卷1文10空间线面角的计算长方体中线面角的计算与长方体体积计算,运算求解能力卷3理19二面角的计算空间垂直的判定与性质、利用空间向量计算二面角与空间几何体体积的最大值,逻辑推理能力与运算求解能力卷2理20空间线面角的计算二面角的计算主要以三棱锥为载体线面垂直的判定与性质、利用空间向量计算线面角与二面角,逻辑推理能力与运算求解能力卷2理9空间异面直线所成角的计算空间两条异面直线所成的角及空间想象能力与运算求解能力卷1理18解答题中的折叠问题与探索性问题空间线面角的计算折叠问题中空间垂直的判定与性质、利用空间向量计算线面角及逻辑推理能力与运算求解能力2019卷3理19解答题中的折叠问题与探索性问题二面角的计算折叠问题中的共面问题的判定、空间垂直的判定与性质、利用空间向量计算二面角及逻辑推理能力与运算求解能力卷2理17二面角的计算空间线线、线面垂直的判定与性质及利用空间向量计算二面角,逻辑推理能力、运算求解能力卷1理18二面角的计算空间线面平行的判定及利用空间向量计算二面角,逻辑推理能力、运算求解能力2020卷1理16空间角的计算空间角的计算,利用余弦定理解三角形理18二面角的计算空间线线、线面垂直的判定与性质及利用空间向量计算二面角,逻辑推理能力、运算求解能力卷2理20空间位置关系判定、空间角的计算间线面平行与垂直的证明,线面角的计算卷3理19二面角、点与平面位置关系点在平面的证明,利用空间向量法求二面角探求规律考点82空间异面直线所成角的计算1.(2018•新课标Ⅱ,理9)在长方体1111ABCD A B C D -中,1AB BC ==,1AA =,则异面直线1AD 与1DB 所成角的余弦值为()A .15B .56C.55D.222.(2018•新课标Ⅱ,文9)在正方体1111ABCD AB C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为()A B C .D3.(2017•新课标Ⅱ,理10)已知直三棱柱111ABC A B C -中,120ABC ∠=︒,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为()A B C .D 4.(2016•新课标Ⅰ,理11文11)平面α过正方体1111ABCD A B C D -的顶点A ,//α平面11CB D ,α⋂平面ABCD m =,α⋂平面11ABB A n =,则m 、n 所成角的正弦值为()A .32B .22C .33D .135.(2014新课标Ⅱ,理11)直三棱柱ABC-A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1,则BM 与AN 所成的角的余弦值为()A .110B .25C 3010D 226.(2020全国Ⅰ理16)如图,在三棱锥P ABC-的平面展开图中,1,3,,,30AC AB AD AB AC AB AD CAE ===⊥⊥∠=︒,则cos FCB ∠=_____________.7.(2017•新课标Ⅲ,理16)a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论:①当直线AB 与a 成60︒角时,AB 与b 成30︒角;②当直线AB 与a 成60︒角时,AB 与b 成60︒角;③直线AB 与a 所成角的最小值为45︒;④直线AB 与a 所成角的最小值为60︒;其中正确的是.(填写所有正确结论的编号)8.(2015浙江)如图,三棱锥A BCD -中,3AB AC BD CD ====,2AD BC ==,点,M N 分别是,AD BC 的中点,则异面直线,AN CM 所成的角的余弦值是.9.(2015四川)如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,动点M 在线段PQ上,,E F 分别为,AB BC 的中点.设异面直线EM 与AF 所成的角为θ,则θcos 的最大值为_________.10.(2015•新课标Ⅰ,理18)如图,四边形ABCD 为菱形,120ABC ∠=︒,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,2BE DF =,AE EC ⊥.(Ⅰ)证明:平面AEC ⊥平面AFC(Ⅱ)求直线AE 与直线CF 所成角的余弦值.考点83空间线面角的计算1.(2020山东4)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40︒,则晷针与点A 处的水平面所成角为()A .20︒B .40︒C .50︒D .90︒2.(2018•新课标Ⅰ,文10)在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为()A .8B .62C .82D .833.(2014浙江)如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练,已知点A 到墙面的距离为AB ,某目标点P 沿墙面的射击线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小(仰角θ为直线AP 与平面ABC 所成角).若15AB m =,25AC m =,30BCM ∠=︒则tan θ的最大值A 305B 3010C 439D 5394.(2014四川)如图,在正方体1111ABCD A B C D -中,点O 为线段BD 的中点.设点P 在线段1CC 上,直线OP 与平面1A BD 所成的角为α,则sin α的取值范围是A .3,1]3B .63C .622,33D .22[,1]35.(2020全国Ⅱ理20)如图,已知三棱柱111ABC A B C -的底面是正三角形,侧面11BB C C 是矩形,,M N 分别为11,BC B C 的中点,P 为AM 上一点.过11B C 和P 的平面交AB 于E ,交AC 于F .(1)证明:1AA //MN ,且平面1A AMN ⊥平面11EB C F ;(2)设O 为△111C B A 的中心,若F C EB AO 11平面∥,且AB AO =,求直线E B 1与平面AMN A 1所成角的正弦值.6.(2018•新课标Ⅱ,理20)如图,在三棱锥P ABC -中,22AB BC ==,4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C --为30︒,求PC 与平面PAM 所成角的正弦值.7.(2016•新课标Ⅲ,理19)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,//AD BC ,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点.(1)证明://MN 平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值.8.(2013新课标Ⅰ,理18)如图,三棱柱ABC-A 1B 1C 1中,CA=CB ,AB=A A 1,∠BA A 1=60°.(Ⅰ)证明AB ⊥A 1C ;(Ⅱ)若平面ABC ⊥平面AA 1B 1B ,AB=CB=2,求直线A 1C 与平面BB 1C 1C 所成角的正弦值.9.(2018浙江)如图,已知多面体111ABCA B C ,1A A ,1B B ,1C C 均垂直于平面ABC ,120ABC ∠=,14A A =,11C C =,12AB BC B B ===.(1)证明:1AB ⊥平面111A B C ;(2)求直线1AC 与平面1ABB 所成的角的正弦值.10.(2017浙江)如图,已知四棱锥P ABCD -,PAD ∆是以AD 为斜边的等腰直角三角形,BC AD ∥,CD AD ⊥,22PC AD DC CB ===,E 为PD 的中点.(Ⅰ)证明:CE ∥平面PAB ;(Ⅱ)求直线CE 与平面PBC 所成角的正弦值.11.(2014天津)如图四棱锥P ABCD -的底面ABCD 是平行四边形,BA BD ==2AD =,PA PD ==,E ,F 分别是棱AD ,PC 的中点.(Ⅰ)证明:EF ∥平面PAB ;(Ⅱ)若二面角P AD B --为60°,(ⅰ)证明:平面PBC ⊥平面ABCD ;(ⅱ)求直线EF 与平面PBC 所成角的正弦值.12.(2013浙江)如图,在四棱锥P ABCD -中,PA ⊥面ABCD ,2AB BC ==,AD CD ==,PA =,120ABC ∠= ,G 为线段PC 上的点.(Ⅰ)证明:BD ⊥面APC ;(Ⅱ)若G 是PC 的中点,求DG 与APC 所成的角的正切值;(Ⅲ)若G 满足PC ⊥面BGD ,求PGGC的值.13.(2019浙江19)如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是AC ,A 1B 1的中点.(1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.14.(2018天津)如图,AD BC ∥且2AD BC =,AD CD ⊥,EG AD ∥且EG AD =,CD FG ∥且2CD FG =,DG ⊥平面ABCD ,2DA DC DG ===.(1)若M 为CF 的中点,N 为EG 的中点,求证:MN ∥平面CDE ;(2)求二面角E BC F --的正弦值;(3)若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60 ,求线段DP 的长.15.(2018江苏)如图,在正三棱柱111ABC A B C -中,12AB AA ==,点P ,Q 分别为11A B ,BC 的中点.(1)求异面直线BP 与1AC 所成角的余弦值;(2)求直线1CC 与平面1AQC 所成角的正弦值.16.(2017天津)如图,在三棱锥P ABC -中,PA ⊥底面ABC ,90BAC ∠=︒.点D ,E ,N 分别为棱PA ,PC ,BC 的中点,M 是线段AD 的中点,4PA AC ==,2AB =.(Ⅰ)求证:MN ∥平面BDE ;(Ⅱ)求二面角C EM N --的正弦值;(Ⅲ)已知点H 在棱PA 上,且直线NH 与直线BE 所成角的余弦值为721,求线段AH 的长.17.(2017北京)如图,在四棱锥P ABCD -中,底面ABCD 为正方形,平面PAD ⊥平面ABCD ,点M 在线段PB 上,PD //平面MAC ,PA PD ==,4AB =.(Ⅰ)求证:M 为PB 的中点;(Ⅱ)求二面角B PD A --的大小;(Ⅲ)求直线MC 与平面BDP 所成角的正弦值.18.(2014福建)在平行四边形ABCD 中,1AB BD CD ===,,AB BD CD BD ⊥⊥,将ABD ∆沿BD 折起,使得平面ABD ⊥平面BCD ,如图.(Ⅰ)求证:AB ⊥CD ;(Ⅱ)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.19.(2013天津)如图,四棱柱1111ABCD A B C D -中,侧棱1A A ⊥底面ABCD ,AB DC ∥,AB AD ⊥,1AD CD ==,12AA AB ==,E 为棱1AA 的中点.(Ⅰ)证明11B C CE ⊥;(Ⅱ)求二面角11B CE C --的正弦值;(Ⅲ)设点M 在线段1C E 上;且直线AM 与平面11ADD A 所成角的正弦值为26,求线段AM 的长.考点84二面角的计算1.(2018浙江)已知四棱锥S ABCD -的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为1θ,SE 与平面ABCD 所成的角为2θ,二面角S AB C --的平面角为3θ,则A .123θθθ≤≤B .321θθθ≤≤C .132θθθ≤≤D .231θθθ≤≤2.(2017浙江)如图,已知正四面体D ABC -(所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP PB =,2BQ CR QC RA==,分别记二面角D PR Q --,D PQ R --,D QR P --的平面角为α,β,γ,则A .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α3.如图,已知ABC ∆,D 是AB 的中点,沿直线CD 将ACD ∆折成△A CD ',所成二面角A CD B '--的平面角为α,则()A .A DB α∠' B .A DB α∠'C .A CB α∠'D .A CB α∠' 4.(2020全国Ⅰ理18)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC ∆是底面的内接正三角形,P 为DO 上一点,66PO =.(1)证明:PA ⊥平面PBC ;(2)求二面角B PC E --的余弦值.5.(2020全国Ⅲ理19)如图,在长方体1111ABCD A B C D -中,点,E F 分别在棱11,DD BB 上,且112,2DE ED BF FB ==.(1)证明:点1C 在平面AEF 内;(2)证明:若12,1,3AB AD AA ===时,求二面角1A EF A--的正弦值.6.(2020江苏24)在三棱锥A —BCD 中,已知CB =CD 5,BD =2,O 为BD 的中点,AO ⊥平面BCD ,AO =2,E 为AC 的中点.(1)求直线AB 与DE 所成角的余弦值;(2)若点F 在BC 上,满足BF =14BC ,设二面角F —DE —C 的大小为θ,求sin θ的值.7.(2020浙江19)如图,三棱台DEF —ABC 中,面ADFC ⊥面ABC ,∠ACB =∠ACD =45°,DC =2BC .(I)证明:EF ⊥DB ;(II)求DF 与面DBC 所成角的正弦值.8.(2020天津17)如图,在三棱柱111ABC A B C -中,1CC ⊥平面,,2ABC AC BC AC BC ⊥==,13CC =,点,D E 分别在棱1AA 和棱1CC 上,且12,AD CE M ==为棱11A B 的中点.(Ⅰ)求证:11C M B D ⊥;(Ⅱ)求二面角1B B E D --的正弦值;(Ⅲ)求直线AB 与平面1DB E 所成角的正弦值.9.(2020山东20)如图,四棱锥P ABCD -的底面为正方形,PD ⊥底面ABCD ,设平面PAD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知1PD AD ==,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值.10.(2019•新课标Ⅰ,理18)如图,直四棱柱1111ABCD A B C D -的底面是菱形,14AA =,2AB =,60BAD ∠=︒,E ,M ,N 分别是BC ,1BB ,1A D 的中点.(1)证明://MN 平面1C DE ;(2)求二面角1A MA N --的正弦值.11.(2019•新课标Ⅱ,理17)如图,长方体1111ABCD A B C D -的底面ABCD 是正方形,点E 在棱1AA 上,1BE EC ⊥.(1)证明:BE ⊥平面11EB C ;(2)若1AE A E =,求二面角1B EC C --的正弦值.12.(2018•新课标Ⅲ,理19)如图,边长为2的正方形ABCD 所在的平面与半圆弧 CD所在平面垂直,M 是 CD上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.13.(2017•新课标Ⅰ,理18)如图,在四棱锥P ABCD -中,//AB CD ,且90BAP CDP ∠=∠=︒.(1)证明:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===,90APD ∠=︒,求二面角A PB C --的余弦值.14.(2017•新课标Ⅱ,理19)如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,12AB BC AD ==,90BAD ABC ∠=∠=︒,E 是PD 的中点.(1)证明:直线//CE 平面PAB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为45︒,求二面角M AB D --的余弦值.15.(2017•新课标Ⅲ,理19)如图,四面体ABCD 中,ABC ∆是正三角形,ACD ∆是直角三角形,ABD CBD ∠=∠,AB BD =.(1)证明:平面ACD ⊥平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D AE C --的余弦值.16.(2016•新课标Ⅰ,理18)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,2AF FD =,90AFD ∠=︒,且二面角D AF E --与二面角C BE F --都是60︒.(Ⅰ)证明:平面ABEF ⊥平面EFDC ;(Ⅱ)求二面角E BC A --的余弦值.17.(2014新课标Ⅰ,理19)如图三棱锥111ABC A B C -中,侧面11BB C C 为菱形,1AB B C ⊥.(Ⅰ)证明:1AC AB =;(Ⅱ)若1AC AB ⊥,o 160CBB ∠=,AB=BC ,求二面角111A A B C --的余弦值.18.(2014新课标Ⅱ,理18)如图,四棱锥P-ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(Ⅰ)证明:PB ∥平面AEC ;(Ⅱ)设二面角D-AE-C 为60°,AP=1,AD=3,求三棱锥E-ACD 的体积.19.(2013新课标Ⅱ,理18)如图直棱柱111ABC A B C -中,D ,E 分别为AB ,1BB 的中点,1AA =AC=CB=22AB .(Ⅰ)证明:1BC ∥平面1A CD ;(Ⅱ)求二面角D-1A C E -的正弦值.20.(2012•新课标,理19)如图,直三棱柱111ABC A B C -中,112AC BC AA ==,D 是棱1AA 的中点,1DC BD ⊥(1)证明:1DC BC ⊥;(2)求二面角11A BD C --的大小.21.(2011•新课标,理18)如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,DAB ∠=060,AB =2AD ,PD ⊥底面ABCD .(Ⅰ)证明:PA BD ⊥;(Ⅱ)若PD =AD ,求二面角A PB C --的余弦值.22.(2011广东)如图在椎体P ABCD -中,ABCD 是边长为1的棱形,且DAB ∠=60︒,2PA PD ==2PB =,E ,F 分别是BC ,PC 的中点.(Ⅰ)证明:AD ⊥平面DEF ;(Ⅱ)求二面角P AD B --的余弦值.23.(2019天津理17)如图,AE ⊥平面ABCD ,,CF AE AD BC ∥∥,,1,2AD AB AB AD AE BC ⊥====.(Ⅰ)求证:BF ∥平面ADE ;(Ⅱ)求直线CE 与平面BDE 所成角的正弦值;(Ⅲ)若二面角E BD F --的余弦值为13,求线段CF 的长.24.(2018北京)如图,在三棱柱111ABC A B C -中,1CC ⊥平面ABC ,D ,E ,F ,G 分别为1AA ,AC ,11A C ,1BB 的中点,5AB BC ==,12AC AA ==.(1)求证:AC ⊥平面BEF ;(2)求二面角1B CD C --的余弦值;(3)证明:直线FG 与平面BCD 相交.25.(2016年山东)在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O '的直径,FB 是圆台的一条母线.(I)已知G ,H 分别为EC ,FB 的中点,求证:GH ∥平面ABC ;(II)已知EF =FB =12AC =23,AB BC =.求二面角F BC A --的余弦值.26.(2016年天津)如图,正方形ABCD 的中心为O ,四边形OBEF 为矩形,平面OBEF ⊥平面ABCD ,点G 为AB 的中点,2AB BE ==.(Ⅰ)求证:EG ∥平面ADF ;(Ⅱ)求二面角O EF C --的正弦值;(Ⅲ)设H 为线段AF 上的点,且AH =23HF ,求直线BH 和平面CEF 所成角的正弦值.27.(2015福建)如图,在几何体ABCDE 中,四边形ABCD 是矩形,AB ^平面BEG ,BE ^EC ,2AB BE EC ===,G ,F 分别是线段BE ,DC 的中点.(Ⅰ)求证:GF ∥平面ADE ;(Ⅱ)求平面AEF 与平面BEC 所成锐二面角的余弦值.28.(2015山东)如图,在三棱台DEF ABC -中,2AB DE =,,G H 分别为,AC BC 的中点.(Ⅰ)求证:BC //平面FGH ;(Ⅱ)若CF ⊥平面ABC ,AB ⊥BC ,CF =DE ,∠BAC =45 ,求平面FGH 与平面ACFD 所成的角(锐角)的大小.29.(2014山东)如图,在四棱柱1111ABCD A B C D -中,底面ABCD 是等腰梯形,60,DAB ∠= 22AB CD ==,M 是线段AB 的中点.(Ⅰ)求证:111//C M A ADD 平面;(Ⅱ)若1CD 垂直于平面ABCD 且1=3CD ,求平面11C D M 和平面ABCD 所成的角(锐角)的余弦值.30.(2014辽宁)如图,ABC ∆和BCD ∆所在平面互相垂直,且2AB BC BD ===,0120ABC DBC ∠=∠=,E 、F 分别为AC 、DC 的中点.(Ⅰ)求证:EF BC ⊥;(Ⅱ)求二面角E BF C --的正弦值.31.(2014浙江)如图,在四棱锥BCDE A -中,平面⊥ABC 平面BCDE ,90CDE BED ∠=∠= ,2AB CD ==,1DE BE ==,2AC =.(Ⅰ)证明:⊥DE 平面ACD ;(Ⅱ)求二面角E AD B --的大小.32.(2014广东)如图4,四边形ABCD 为正方形,PD ⊥平面ABCD ,030DPC ∠=,AF PC ⊥于点F ,//FE CD ,交PD 于点E .(Ⅰ)证明:CF ADF⊥平面(Ⅱ)求二面角D AF E --的余弦值.33.(2014湖南)如图,四棱柱1111ABCD A B C D -的所有棱长都相等,AC BD O = ,11111A C B D O = ,四边形1111ACC A BDD B 和四边形均为矩形.(1)证明:1;O O ABCD ⊥底面(2)若1160,CBA C OB D ∠=--求二面角的余弦值.34.(2013陕西)如图,四棱柱1111ABCD A B C D -的底面ABCD 是正方形,O 为底面中心,1AO ⊥平面ABCD ,12AB AA ==.(Ⅰ)证明:1AC ⊥平面11BB D D ;(Ⅱ)求平面1OCB 与平面11BB D D 的夹角θ的大小.35.(2012浙江)如图,在四棱锥P ABCD -中,底面是边长为23的菱形,120BAD ∠=︒,且PA ⊥平面ABCD ,26PA =,M ,N 分别为PB ,PD 的中点.(Ⅰ)证明://MN 平面ABCD ;(Ⅱ)过点A 作AQ PC ⊥,垂足为点Q ,求二面角A MN Q --的平面角的余弦值.36.(2017山东)如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB 边所在直线为旋转轴旋转120︒得到的,G 是 DF的中点.(Ⅰ)设P 是 CE上的一点,且AP BE ⊥,求CBP ∠的大小;(Ⅱ)当3AB =,2AD =,求二面角E AG C --的大小.考点85解答题中折叠问题与探索性问题1.(2019•新课标Ⅲ,理19)图1是由矩形ADEB 、Rt ABC ∆和菱形BFGC 组成的一个平面图形,其中1AB =,2BE BF ==,60FBC ∠=︒.将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ;(2)求图2中的二面角B CG A --的大小.2.(2018•新课标Ⅰ,理18)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把DFC ∆折起,使点C 到达点P 的位置,且PF BF ⊥.(1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.3.(2018•新课标Ⅲ,文19)如图,矩形ABCD 所在平面与半圆弧 CD所在平面垂直,M 是 CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得//MC 平面PBD ?说明理由.4.(2016•新课标Ⅱ,理19)如图,菱形ABCD 的对角线AC 与BD 交于点O ,5AB =,6AC =,点E ,F 分别在AD ,CD 上,54AE CF ==,EF 交于BD 于点H ,将DEF ∆沿EF 折到△D EF '的位置,10OD '=.(Ⅰ)证明:D H '⊥平面ABCD ;(Ⅱ)求二面角B D A C -'-的正弦值.5.(2019北京理16)如图,在四棱锥P ABCD -中,PA ABCD ⊥平面,AD CD ⊥,AD BC P ,23PA AD CD BC ====,.E 为PD 的中点,点F 在PC 上,且13PF PC =.(Ⅰ)求证:CD PAD ⊥平面;(Ⅱ)求二面角F AE P --的余弦值;(Ⅲ)设点G 在PB 上,且23PG PB =.判断直线AG 是否在平面AEF 内,说明理由.6.(2016年北京)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,AB AD ⊥,1AB =,2AD =,AC CD ==.(1)求证:PD ⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得//BM 平面PCD ?若存在,求AM AP 的值;若不存在,说明理由.7.(2015陕西)如图1,在直角梯形ΑΒCD 中,//ΑD ΒC ,2ΒΑD π∠=,1ΑΒΒC ==,2ΑD =,Ε是ΑD的中点,O 是AC 与BE 的交点.将ΑΒΕ∆沿BE 折起到1A BE ∆的位置,如图2.(Ⅰ)证明:CD ⊥平面1AOC ;(Ⅱ)若平面1A BE ⊥平面BCDE ,求平面1A BC 与平面1ACD 夹角的余弦值.8.(2013广东)如图1,在等腰直角三角形ABC 中,90A ∠=︒,6BC =,,D E 分别是,AC AB上的点,CD BE =,O 为BC 的中点.将ADE ∆沿DE 折起,得到如图2所示的四棱锥A BCDE '-,其中A O '=.(Ⅰ)证明:A O '⊥平面BCDE ;(Ⅱ)求二面角A CD B '--的平面角的余弦值.9.(2013湖北)如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,直线PC ⊥平面ABC ,E ,F 分别是PA ,PC 的中点.(Ⅰ)记平面BEF 与平面ABC 的交线为l ,试判断直线l 与平面PAC 的位置关系,并加以证明;(Ⅱ)设(I)中的直线l 与圆O 的另一个交点为D ,且点Q 满足12DQ CP = .记直线PQ 与平面ABC 所成的角为θ,异面直线PQ 与EF 所成的角为α,二面角E l C --的大小为β,求证:sin sin sin θαβ=.10.(2012福建)如图,在长方体1111ABCD A B C D -中11AA AD ==,E 为CD 中点.(Ⅰ)求证:11B E AD ⊥;(Ⅱ)在棱1AA 上是否存在一点P ,使得DP ∥平面1B AE ?若存在,求AP 的行;若存在,求AP 的长;若不存在,说明理由.(Ⅲ)若二面角11A B E A --的大小为30°,求AB 的长.。

向量法-求二面角大小

向量法-求二面角大小

空间向量法---求二面角的大小
运用“空间向量法”---求“二面角的大小”的解题步骤:
① 建立空间直角坐标系; ② 求出所需各点的坐标; ③ 求出两个平面的法向量; ④ 求出两个法向量的夹角; ⑤ 写出所求二面角的大小。
空间向量法---求二面角的大小
运用“空间向量法”---求“二面角的大小”的解题步骤:
(1) 证明: AN⊥平面PAD .
(2) 求二面角C-AM-N的大小 .
P
M
A
D
B
NC
【练习3】 如图, 在四棱锥P-ABCD中, 底面是边长为2的菱形, ∠ABC=60O , PA⊥底面ABCD,PA=2, M,N分别为PC,BC的中点.
(1) 证明: AN⊥平面PAD .
(2) 求二面角C-AM-N的大小 .
∴ cosq =
6
3
得 tanq =
2
2

所求面SCD与面SBA所成二面角的正切值是22
【练习2】 已知点E、F分别是正方体ABCD-A1B1C1D1的棱BB1、 CC1上的点, 且 BE1=2EB, CF=2FC1 .
(1) 求面AEF与面ABC所成二面角的正切值 .
【练习3】 如图, 在四棱锥P-ABCD中, 底面是边长为2的菱形, ∠ABC=60O , PA⊥底面ABCD,PA=2, M,N分别为PC,BC的中点.
=
3 3
由条件知,二面角A-CD-E为锐角,∴
所求二面角的余弦值为
3 3
【练习1】 如下图, 在底面是直角梯形的四棱锥S-ABCD中,
∠ABC=90O
,
SA⊥面ABCD,SA=AB=BC=1,
AD=
1 2
.

空间向量二面角的向量求法专题

空间向量二面角的向量求法专题

第四讲空间向量、定义:(1) ,那么 AB (X 2 X i , y 2 y i ,Z 2 Zi)「2 注:a(4)应用: a (X i , y 〔, Z i ), b (X 2, y 2,Z 2)r r r a / /b br a X iy i z i一—=—X 2y 2Z 2aba b 0 X 1X 2 y i y 2 z L z 2 0二、空间向量解决空间立体几何问题:i 、 位置关系判定: (i) 线线平行:a/ /b2X L X 2y 2Z LZ 2线线垂直:— (cos 20)X i X 2 y i y 2 z 1 z 2 0(2) 线面平行: 1 // (其中m 为了平面的法向量)线面垂直: a// m(3) 面面平行:m/ / n / / ,其中m 为了的法向量,n的法向量面面垂直:mn,其中m 为了 的法向量,n 的法向量(2) a (x i , y i ,z i ),b (X 2,y 2,z 2),那么 a b (x iX 2, y i y 2, z i Z 2);a b (X i X 2, y ia bX 1X 2 y 1y 2 z 1z 2(3)数量积:y 2, Z icosr r a b2、求夹角:o b(1)线线角:|cos | | ----------------- 1,其中[0,—]|a| |b| 2a m _(2) 线面角:sin --------- |cos | | |,其中 [.,一]|a| |m| 2(3) 二面角:cos m ' ,其中[0,)|m|| n|向量法求解二面角向量在数学和物理学中的应用很广泛,在解析几何与立体几何里的应用更为了直接,用向量的方法格外便丁钻研空间里涉及直线和平■面的各种问题.随着新教材中向量工具的引入,立体几何的解题更加灵活多样,这为了那些空间想象水平较差的同学提供了机遇.利用平面的法向量几乎可以解决所有的立几计算和一些证明的问题,尤其在求点面距离、空间的角(斜线与平■面所成的角和二面角)时,法向量有着它独有的优势,以下举例全面剖析在立几中如何用法向量求二面角..利用法向量求二面角的大小的原理设n1,n2分别为了平■面,的法向量,二面角l 的大小为了,向量n i,n2的火角为了,那么有(图1)或(图2)根本结论构成二面角的两个平■面的法向量的火角或火角的补角等丁这个二面角的平■面角..如何求平■面的一个法向量例题1:如图3,在正方体ABCD-A I B !C I D I 中G 、E 、为了AA i 、AB 、BC 的中点,求平■面 GEF 的法向量.1n?GE -y2一 -— 1 n?FE -x2令y=1取平面的一个法向量为了n (1,1,1)评析 由于平■面的法向量有无数个,方向可上可下,模可大可小,我们只 要求出平面的某一个法向量(教简洁的)即可.三. 法向量的应用举例:略解:以D 为了原点建立右手空间直角坐标系,那么 E(1,i,0)、F(;,1,0)、G(1,0 ,亳由此得:GE (0,1, 1) FE (1, ]0)22 2 2 2设平面的法向量为了n (x, y, z)由n GE 及nFE 可得1z 0 2 1y 0 2F 分别例题4.在长方体ABCD-A i B i C i D 1 中,AB=2 , BC=4 , AA i=2,点Q是BC 的中点,求此时二面角A— A i D— Q的大小.评析(i)用法向量的方法处理二面角的问题时,将传统求二面角问题时的三步曲:“找一一证一一求〞直接简化成了一步曲:“计算〞,这在一定程度上降低了学生的空间想象水平,到达不用作图就可以直接计算的目的,更加注重对学生创新水平的培养,表达了教育改革的精神.(2)此法在处理二面角问题时,可能会遇到二面角的具体大小问题,如本题中假设令a i i,那么n2 ( i, i, 2) , ••cos n i,n2 匕6,二二面角A— AiD一Q的大小是n i ,n2 arccos—6的补角arccos—6.所以在计算之前不妨先6 6依题意直观判断一下所求二面角的大小,然后根据计算取“相等角〞或取“补例5如图5,在底面是直角梯形的四棱锥 S — ABCD 中,AD//BC , ZABC=900, SAM ABCD, SA= - , AB=BC=1 , AD= - 0一2评析:(1)由于所求的二面角的交线在图中较难作出,所以用传统的方法 求二面角比拟困难,向量法在这里就表达出它特有的优势;(2)但判断侧面SCD 与面SBA 所成的二面角的平■面角是锐角还是钝角时,图形的直观性就不明 显了,当不能很好地判断所求的二面角的类型时,以下给出解决方案.求侧面SCD 与血SBA 所成的二面角的大小.四. 当直观很难判断二面角是锐角还是钝角时,通过判断法向量的方向来求解二面角.原理首先我们再重新认识一下法向量火角和二面角的关系: 如上图6所示,当我们把法向量控制成“一进一出〞, 此时两法向量在三个坐标平■面xoy, yoz, xoz的投影也uv uv可以看成是“一进一出〞,这时不难得出n1,n2的火角其次如何控制一个平■面的法向量方向是我们想要的“向上或向下〞,“向后或向前〞,“向左或向右〞v如图7所示:平■面ABC的法向量n进一出〞,那么所求的二面角的平■面角就等就是二面角的大小,反之就不是.呢?I图6所以,只要我们判断两个法向量的方向是丁两法向量的火角,如果是“同进同出〞, 那么所求的二面角的平面角就等丁两法向量的火角的补角,掌握了这点,那么用法 向量求二面角就可以做到随心所欲.1,在底面是直角梯形的四棱锥 S — ABCD 中,AD//BC , ZABC=90.,SAL面ABCD, SA= - , AB=BC=1 , AD=-.求侧面SCD 与面SBA 所成的二面角2 22如图,正三棱柱ABC ABG 的所有棱长都为了2 , D 为了CC i 中点.(I )求证:AB i 上平面A ,BD ;(皿)求二面角A A i B C i 的大小;的大小. v.3.如图,四棱锥P ABCD ,底面ABCD 为了菱形,ABC 60o , E, F 分别是BC, PC 的中点. (1)证明:AE PD ;(2)假设H 为了PD 上的动点, 面角E AF C 的余弦值.4 .如图,在底面是菱形的四棱锥 P — ABCD 中,ZABC=60°, PA=AC=a, PB=PD=屈,点 E 在 PD 上,且 PE:ED=2:1. (1) 证明PAL 平面 ABCD;(2) 求以AC 为了棱,EAC 与DAC 为了面的二面角 的大小PA 平面 ABCD , EH 与平■面PAD 所成最大角的正切值为了—,求二2,AB与AB5.如图,直三棱柱ABA A1B1C1 中,ZACB=90 ,AC=AA=1,相交于点D, M为了BC的中点.(1)求证:C6平面BDM(2)求平面BBD与平面CB网成二面角的大小B Bi。

空间向量与立体几何向量法求二面角(二

空间向量与立体几何向量法求二面角(二

D
AB CD
面面角:
②法向量法n1,n2源自 n1,n2n2
n1,n2
n2
n1,n2
n1




n1
l
l
cos cos n1, n2 cos cos n1, n2
注意法向量的方向:一进一出,二面角等于法向量夹角; 同进同出,二面角等于法向量夹角的补角
(2)求证:PB⊥平面EFD
(2)证明:依题意得B(1,1,0),PB (1,1,1)
又DE (0, 1 , 1),故PB DE 0 1 1 0
22
所以PB DE
2 2Z
由已知EF PB,
P
且EF DE E,
所以PB 平面EFD
E F
D
C Y
A B
X
BC SO,BC AO,SO AO O BC 平面SOA, BC SA
(2)求直线SD与平面SAB所成角的正弦值。 z
解:由(1)知SO,OA,BC两两垂直。
S
故以OA、OB、OS为正交基底建立
空间直角坐标系如图。则 S(0,0,1),D( 2,- 2 2,0),
C O By
四边形,侧面SBC 底面ABCD。已知 ABC 450
AB=2,BC= 2 2 ,SA=SB= 3 .
(1)求证 SA BC.
(2)求直线SD与平面SAB所成角的正弦值。
S
C
OB
D
A
证明:(1)取BC中点O,连接OA、OS。 S
则由BC 2 2得OB 2,
又AB 2,ABC 450, 得OA 2
依题意得A(1, 0, 0), P(0, 0,1), P

利用向量方法求空间角 知识点+例题+练习

利用向量方法求空间角 知识点+例题+练习

教学内容利用向量方法求空间角教学目标1.掌握各种空间角的定义,弄清它们各自的取值范围.2.掌握异面直线所成的角,二面角的平面角,直线与平面所成的角的联系和区别,体会求空间角中的转化思想.重点1.掌握各种空间角的定义,弄清它们各自的取值范围.2.掌握异面直线所成的角,二面角的平面角,直线与平面所成的角的联系和区别,体会求空间角中的转化思想.难点1.掌握各种空间角的定义,弄清它们各自的取值范围.2.掌握异面直线所成的角,二面角的平面角,直线与平面所成的角的联系和区别,体会求空间角中的转化思想.教学准备教学过程自主梳理1.两条异面直线的夹角①定义:设a,b是两条异面直线,在直线a上任取一点作直线a′∥b,则a′与a的夹角叫做a与b的夹角.②范围:两异面直线夹角θ的取值范围是_____________________.③向量求法:设直线a,b的方向向量为a,b,其夹角为φ,则有cos θ=________=_______________.2.直线与平面的夹角①定义:直线和平面的夹角,是指直线与它在这个平面内的射影的夹角.②范围:直线和平面夹角θ的取值范围是________________________.③向量求法:设直线l的方向向量为a,平面的法向量为u,直线与平面所成的角为θ,a与u的夹角为φ,则有sin θ=|cos φ|或cos θ=sin φ.3.二面角(1)二面角的取值范围是____________.(2)二面角的向量求法:①若AB、CD分别是二面角α—l—β的两个面内与棱l垂直的异面直线,则二面角的大小就是向量AB→与CD→的夹角(如图①).②设n1,n2分别是二面角α—l—β的两个面α,β的法向量,则向量n1与n2的夹角(或其补角)的大小就是二面角的平面角的大小(如图②③).自我检测1.已知两平面的法向量分别为m=(0,1,0),n=(0,1,1),则两平面所成的二面角为________.2.若直线l1,l2的方向向量分别为a=(2,4,-4),b=(-6,9,6),则l1与l2所成的角等于________.3.若直线l的方向向量与平面α的法向量的夹角等于120°,则直线l与平面α所成的角等于________.4.二面角的棱上有A、B两点,直线AC、BD分别在这个二面角的两个半平面内,且都垂直于AB.已知AB=4,AC=6,BD=8,CD=217,则该二面角的大小为_______________________________________.5.(2010·铁岭一模)已知直线AB、CD是异面直线,AC⊥CD,BD⊥CD,且AB=2,CD=1,则异面直线AB与CD所成的角的大小为________.教学效果分析教学过程探究点一利用向量法求异面直线所成的角例1已知直三棱柱ABC—A1B1C1,∠ACB=90°,CA=CB=CC1,D为B1C1的中点,求异面直线BD和A1C所成角的余弦值.变式迁移1如图所示,在棱长为a的正方体ABCD—A1B1C1D1中,求异面直线BA1和AC所成的角.探究点二利用向量法求直线与平面所成的角例2如图,已知平面ABCD⊥平面DCEF,M,N分别为AB,DF的中点,求直线MN与平面DCEF所成的角的正弦值.变式迁移2如图所示,在几何体ABCDE中,△ABC是等腰直角三角形,∠ABC=90°,BE和CD都垂直于平面ABC,且BE=AB=2,CD=1,点F是AE的中点.求AB与平面BDF所成的角的正弦值.教学效果分析教学过程探究点三利用向量法求二面角例3如图,ABCD是直角梯形,∠BAD=90°,SA⊥平面ABCD,SA=BC=BA=1,AD=12,求面SCD与面SBA所成角的余弦值大小.变式迁移3如图,在三棱锥S—ABC中,侧面SAB与侧面SAC均为等边三角形,∠BAC=90°,O为BC中点.(1)证明:SO⊥平面ABC;(2)求二面角A—SC—B的余弦值.探究点四综合应用例4如图所示,在三棱锥A—BCD中,侧面ABD、ACD是全等的直角三角形,AD是公共的斜边,且AD=3,BD=CD=1,另一个侧面ABC是正三角形.(1)求证:AD⊥BC;(2)求二面角B-AC-D的余弦值;(3)在线段AC上是否存在一点E,使ED与面BCD成30°角?若存在,确定点E的位置;若不存在,说明理由.教学效果分析教学过程变式迁移4 (2011·山东,19)在如图所示的几何体中,四边形ABCD为平行四边形,∠ACB=90°,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC,AB=2EF.(1)若M是线段AD的中点,求证:GM∥平面ABFE;(2)若AC=BC=2AE,求二面角A-BF-C的大小.1.求两异面直线a、b的所成的角θ,需求出它们的方向向量a,b的夹角,则cos θ=|cos〈a,b〉|.2.求直线l与平面α所成的角θ.可先求出平面α的法向量n与直线l的方向向量a的夹角.则sin θ=|cos〈n,a〉|.3.求二面角α—l—β的大小θ,可先求出两个平面的法向量n1,n2所成的角.则θ=〈n1,n2〉或π-〈n1,n2〉.)一、填空题(每小题6分,共48分)1.在正方体ABCD—A1B1C1D1中,M是AB的中点,则sin〈DB1→,CM→〉的值等于________.2.已知长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是侧棱BB1的中点,则直线AE与平面A1ED1所成的角的大小为________.3.如图,在正四面体ABCD中,E、F分别是BC和AD的中点,则AE与CF所成的角的余弦值为________.教学效果分析教学过程4.(2011·南通模拟) 如图所示,在长方体ABCD—A1B1C1D1中,已知B1C,C1D与上底面A1B1C1D1所成的角分别为60°和45°,则异面直线B1C和C1D所成的余弦值为________.5.P是二面角α—AB—β棱上的一点,分别在α、β平面上引射线PM、PN,如果∠BPM=∠BPN=45°,∠MPN=60°,那么二面角α—AB—β的大小为________.6.(2011·无锡模拟)已知正四棱锥P—ABCD的棱长都相等,侧棱PB、PD的中点分别为M、N,则截面AMN与底面ABCD所成的二面角的余弦值是________.7.如图,P A⊥平面ABC,∠ACB=90°且P A=AC=BC=a,则异面直线PB与AC所成角的正切值等于________.8.如图,已知正三棱柱ABC—A1B1C1的所有棱长都相等,D是A1C1的中点,则直线AD与平面B1DC所成的角的正弦值为________.二、解答题(共42分)9.(14分) 如图所示,AF、DE分别是⊙O、⊙O1的直径,AD与两圆所在的平面均垂直,AD=8.BC是⊙O的直径,AB=AC=6,OE∥AD.(1)求二面角B-AD-F的大小;(2)求直线BD与EF所成的角的余弦值.10.(14分)(2011·大纲全国,19)如图,四棱锥S-ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形,AB=BC=2,CD=SD=1.(1)证明:SD⊥平面SAB;(2)求AB与平面SBC所成角的正弦值.教学效果分析教学过程11.(14分)(2011·湖北,18)如图,已知正三棱柱ABC-A1B1C1各棱长都是4,E是BC的中点,动点F在侧棱CC1上,且不与点C重合.(1)当CF=1时,求证:EF⊥A1C;(2)设二面角C-AF-E的大小为θ,求tan θ的最小值.自主梳理1.②⎝⎛⎦⎤0,π2③|cos φ|⎪⎪⎪⎪a·b|a|·|b| 2.②⎣⎡⎦⎤0,π2 3.(1)[0,π]教学效果分析自我检测 1.45°或135° 2.90° 3.30° 4.60° 5.60° 课堂活动区例1 解题导引 (1)求异面直线所成的角,用向量法比较简单,若用基向量法求解,则必须选好空间的一组基向量,若用坐标求解,则一定要将每个点的坐标写正确.(2)用异面直线方向向量求两异面直线夹角时,应注意异面直线所成的角的范围是⎝⎛⎦⎤0,π2 解如图所示,以C 为原点,直线CA 、CB 、CC 1分别为x 轴、y 轴、z 轴建立空间直角坐标系.设CA =CB =CC 1=2,则A 1(2,0,2),C (0,0,0),B (0,2,0),D (0,1,2), ∴BD →=(0,-1,2),A 1C →=(-2,0,-2),∴cos 〈BD →,A 1C →〉=BD →·A 1C →|BD →||A 1C →|=-105.∴异面直线BD 与A 1C 所成角的余弦值为105.变式迁移1 解 ∵BA 1→=BA →+BB 1→,AC →=AB →+BC →, ∴BA 1→·AC →=(BA →+BB 1→)·(AB →+BC →) =BA →·AB →+BA →·BC →+BB 1→·AB →+BB 1→·BC →. ∵AB ⊥BC ,BB 1⊥AB ,BB 1⊥BC , ∴BA →·BC →=0,BB 1→·AB →=0, BB 1→·BC →=0,BA →·AB →=-a 2, ∴BA 1→·AC →=-a 2. 又BA 1→·AC →=|BA 1→|·|AC →|·cos 〈BA 1→,AC →〉,∴cos 〈BA 1→,AC →〉=-a 22a ×2a =-12.∴〈BA 1→,AC →〉=120°.∴异面直线BA 1与AC 所成的角为60°.例2 解题导引 在用向量法求直线OP 与α所成的角(O ∈α)时,一般有两种途径:一是直接求〈OP →,OP ′→〉,其中OP ′为斜线OP 在平面α内的射影;二是通过求〈n ,OP →〉进而转化求解,其中n 为平面α的法向量.解设正方形ABCD ,DCEF 的边长为2,以D 为坐标原点,分别以射线DC ,DF ,DA 为x ,y ,z 轴正半轴建立空间直角坐标系如图.则M (1,0,2),N (0,1,0),可得MN →=(-1,1,-2).又DA →=(0,0,2)为平面DCEF 的法向量,可得cos 〈MN →,DA →〉=MN →·DA →|MN →||DA →|=-63.所以MN 与平面DCEF 所成的角的正弦值为|cos 〈MN →,DA →〉|=63.变式迁移2 解 以点B 为原点,BA 、BC 、BE 所在的直线分别为x ,y ,z 轴,建立如图所示的空间直角坐标系,则B (0,0,0),A (2,0,0),C (0,2,0),D (0,2,1),E (0,0,2),F (1,0,1). ∴BD →=(0,2,1),DF →=(1,-2,0). 设平面BDF 的一个法向量为 n =(2,a ,b ),∵n ⊥DF →,n ⊥BD →, ∴⎩⎪⎨⎪⎧n ·DF →=0,n ·BD →=0.即⎩⎪⎨⎪⎧(2,a ,b )·(1,-2,0)=0,(2,a ,b )·(0,2,1)=0. 解得a =1,b =-2.∴n =(2,1,-2). 设AB 与平面BDF 所成的角为θ,则法向量n 与BA →的夹角为π2-θ,∴cos ⎝⎛⎭⎫π2-θ=BA →·n |BA →||n |=(2,0,0)·(2,1,-2)2×3=23, 即sin θ=23,故AB 与平面BDF 所成的角的正弦值为23.例3 解题导引 图中面SCD 与面SBA 所成的二面角没有明显的公共棱,考虑到易于建系,从而借助平面的法向量来求解.解建系如图,则A (0,0,0), D ⎝⎛⎭⎫12,0,0,C (1,1,0), B (0,1,0),S (0,0,1), ∴AS →=(0,0,1),SC →=(1,1,-1),SD →=⎝⎛⎭⎫12,0,-1,AB →=(0,1,0),AD →=⎝⎛⎭⎫12,0,0. ∴AD →·AS →=0,AD →·AB →=0. ∴AD →是面SAB 的法向量,设平面SCD 的法向量为n =(x ,y ,z ),则有n ·SC →=0且n ·SD →=0.即⎩⎪⎨⎪⎧x +y -z =0,12x -z =0.令z =1,则x =2,y =-1.∴n =(2,-1,1).∴cos 〈n ,AD →〉=n ·AD →|n ||AD →|=2×126×12=63.故面SCD 与面SBA 所成的二面角的余弦值为63. 变式迁移3 (1)证明 由题设AB =AC =SB =SC =SA . 连结OA ,△ABC 为等腰直角三角形,所以OA =OB =OC =22SA , 且AO ⊥BC .又△SBC 为等腰三角形,故SO ⊥BC ,且SO =22SA .从而OA 2+SO 2=SA 2,所以△SOA 为直角三角形,SO ⊥AO . 又AO ∩BC =O ,所以SO ⊥平面ABC . (2)解以O 为坐标原点,射线OB 、OA 、OS 分别为x 轴、y 轴、z 轴的正半轴,建立如图的空间直角坐标系O -xyz ,如图.设B (1,0,0),则C (-1,0,0), A (0,1,0),S (0,0,1).SC 的中点M ⎝⎛⎭⎫-12,0,12, MO →=⎝⎛⎭⎫12,0,-12,MA →=⎝⎛⎭⎫12,1,-12, SC →=(-1,0,-1), ∴MO →·SC →=0,MA →·SC →=0.故MO ⊥SC ,MA ⊥SC ,〈MO →,MA →〉等于二面角A —SC —B 的平面角.cos 〈MO →,MA →〉=MO →·MA →|MO →||MA →|=33,所以二面角A —SC —B 的余弦值为33.例4 解题导引 立体几何中开放性问题的解决方式往往是通过假设,借助空间向量建立方程,进行求解.(1)证明作AH ⊥面BCD 于H ,连结BH 、CH 、DH ,则四边形BHCD 是正方形,且AH =1,将其补形为如图所示正方体.以D 为原点,建立如图所示空间直角坐标系.则B (1,0,0),C (0,1,0),A (1,1,1). BC →=(-1,1,0),DA →=(1,1,1), ∴BC →·DA →=0,则BC ⊥AD .(2)解 设平面ABC 的法向量为n 1=(x ,y ,z ),则由n 1⊥BC →知:n 1·BC →=-x +y =0,同理由n 1⊥AC →知:n 1·AC →=-x -z =0, 可取n 1=(1,1,-1),同理,可求得平面ACD 的一个法向量为n 2=(1,0,-1). 由图可以看出,二面角B -AC -D 即为〈n 1,n 2〉,∴cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=1+0+13×2=63.即二面角B -AC -D 的余弦值为63. (3)解 设E (x ,y ,z )是线段AC 上一点, 则x =z >0,y =1,平面BCD 的一个法向量为n =(0,0,1),DE →=(x,1,x ),要使ED 与平面BCD 成30°角,由图可知DE →与n 的夹角为60°,所以cos 〈DE →,n 〉=DE →·n |DE →||n |=x 1+2x 2 =cos 60°=12.则2x =1+2x 2,解得x =22,则CE =2x =1.故线段AC 上存在E 点,且CE =1时,ED 与面BCD 成30°. 变式迁移4(1)证明 方法一 因为EF ∥AB ,FG ∥BC ,EG ∥AC ,∠ACB =90°, 所以∠EGF =90°, △ABC ∽△EFG . 由于AB =2EF , 因此BC =2FG . 连结AF ,由于FG ∥BC ,FG =12BC ,在▱ABCD 中,M 是线段AD 的中点,则AM ∥BC ,且AM =12BC ,因此FG ∥AM 且FG =AM ,所以四边形AFGM 为平行四边形, 因此GM ∥F A .又F A ⊂平面ABFE ,GM ⊄平面ABFE ,方法二 因为EF ∥AB ,FG ∥BC ,EG ∥AC ,∠ACB =90°, 所以∠EGF =90°, △ABC ∽△EFG . 由于AB =2EF , 所以BC =2FG .取BC 的中点N ,连结GN ,因此四边形BNGF 为平行四边形, 所以GN ∥FB .在▱ABCD 中,M 是线段AD 的中点,连结MN , 则MN ∥AB .因为MN ∩GN =N , 所以平面GMN ∥平面ABFE .又GM ⊂平面GMN ,所以GM ∥平面ABFE .(2)解 方法一 因为∠ACB =90°,所以∠CAD =90°. 又EA ⊥平面ABCD ,所以AC ,AD ,AE 两两垂直.分别以AC ,AD ,AE 所在直线为x 轴,y 轴和z 轴,建立如图所示的空间直角坐标系,不妨设AC =BC =2AE =2,则由题意得A (0,0,0),B (2,-2,0),C (2,0,0),E (0,0,1),所以AB →=(2,-2,0),BC →=(0,2,0).又EF =12AB ,所以F (1,-1,1),BF →=(-1,1,1).设平面BFC 的法向量为m =(x 1,y 1,z 1),则m ·BC →=0,m ·BF →=0,所以⎩⎪⎨⎪⎧y 1=0,x 1=z 1,取z 1=1,得x 1=1,所以m =(1,0,1).设平面向量ABF 的法向量为n =(x 2,y 2,z 2),则n ·AB →=0,n ·BF →=0,所以⎩⎪⎨⎪⎧x 2=y 2,z 2=0,取y 2=1,得x 2=1.则n =(1,1,0).所以cos 〈m ,n 〉=m ·n |m |·|n |=12.因此二面角A -BF -C 的大小为60°.方法二 由题意知,平面ABFE ⊥平面ABCD . 取AB 的中点H ,连结CH . 因为AC =BC , 所以CH ⊥AB ,过H 向BF 引垂线交BF 于R ,连结CR ,则CR ⊥BF , 所以∠HRC 为二面角A -BF -C 的平面角. 由题意,不妨设AC =BC =2AE =2,在直角梯形ABFE 中,连结FH ,则FH ⊥AB . 又AB =22,所以HF =AE =1,BH =2,因此在Rt △BHF 中,HR =63.由于CH =12AB =2,所以在Rt △CHR 中,tan ∠HRC =263= 3.因此二面角A -BF -C 的大小为60°. 课后练习区 1.21015 2.90°解析 ∵E 是BB 1的中点且AA 1=2,AB =BC =1, ∴∠AEA 1=90°,又在长方体ABCD -A 1B 1C 1D 1中, A 1D 1⊥平面ABB 1A 1,∴A 1D 1⊥AE ,∴AE ⊥平面A 1ED 1. ∴AE 与面A 1ED 1所成的角为90°. 3.23解析 设四面体的棱长为a , AB →=p ,AC →=q ,AD →=r ,则AE →=12(p +q ),CF →=12(r -2q ).∴AE →·CF →=-12a 2.又|AE →|=|CF →|=32a ,∴cos 〈AE →,CF →〉=AE →,CF →|AE →|·|CF →|=-23.即AE 和CF 所成角的余弦值为23.4.64 5.90° 解析不妨设PM =a ,PN =b ,作ME ⊥AB 于E ,NF ⊥AB 于F , 如图:∵∠EPM =∠FPN =45°,∴PE =22a ,PF =22b ,∴EM →·FN →=(PM →-PE →)·(PN →-PF →) =PM →·PN →-PM →·PF →-PE →·PN →+PE →·PF →=ab cos 60°-a ×22b cos 45°-22ab cos 45°+22a ×22b=ab 2-ab 2-ab 2+ab2=0, ∴EM →⊥FN →,∴二面角α—AB —β的大小为90°. 6.255解析 如图建立空间直角坐标系,设正四棱锥的棱长为2,则PB =2,OB =1,OP =1. ∴B (1,0,0),D (-1,0,0), A (0,1,0),P (0,0,1), M ⎝⎛⎭⎫12,0,12, N ⎝⎛⎭⎫-12,0,12, AM →=⎝⎛⎭⎫12,-1,12, AN →=⎝⎛⎭⎫-12,-1,12, 设平面AMN 的法向量为n 1=(x ,y ,z ),由⎩⎨⎧n ·AM →=12x -y +12z =0,n ·AN →=-12x -y +12z =0,解得x =0,z =2y ,不妨令z =2,则y =1.∴n 1=(0,1,2),平面ABCD 的法向量n 2=(0,0,1),则cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=25=255.7. 2解析 PB →=P A →+AB →,故PB →·AC →=(P A →+AB →)·AC →=P A →·AC →+AB →·AC →=0+a ×2a ×cos 45°=a 2.又|PB →|=3a ,|AC →|=a .∴cos 〈PB →,AC →〉=33,sin 〈PB →,AC →〉=63,∴tan 〈PB →,AC →〉= 2. 8.45解析 不妨设正三棱柱ABC —A 1B 1C 1的棱长为2,建立如图所示的空间直角坐标系,则C (0,0,0),A (3,-1,0),B 1(3,1,2),D ⎝⎛⎭⎫32,-12,2.则CD →=⎝⎛⎭⎫32,-12,2,CB 1→=(3,1,2),设平面B 1DC 的法向量为 n =(x ,y,1),由⎩⎪⎨⎪⎧n ·CD →=0,n ·CB 1→=0,解得n =(-3,1,1).又∵DA →=⎝⎛⎭⎫32,-12,-2,∴sin θ=|cos 〈DA →,n 〉|=45.9.解 (1)∵AD 与两圆所在的平面均垂直, ∴AD ⊥AB ,AD ⊥AF ,故∠BAF 是二面角B —AD —F 的平面角.(2分) 依题意可知,ABFC 是正方形,∴∠BAF =45°. 即二面角B —AD —F 的大小为45°.(5分)(2)以O 为原点,CB 、AF 、OE 所在直线为坐标轴,建立空间直角坐标系(如图所示),则O (0,0,0),A (0,-3 2,0),B (3 2,0,0),D (0,-3 2,8),E (0,0,8),F (0,3 2,0),(8分)∴BD →=(-3 2,-3 2,8), EF →=(0,3 2,-8).cos 〈BD →,EF →〉=BD →·EF →|BD →||EF →|=0-18-64100×82=-8210.(12分)设异面直线BD 与EF 所成角为α,则cos α=|cos 〈BD →,EF →〉|=8210.即直线BD 与EF 所成的角的余弦值为8210.(14分) 10.方法一 (1)证明 取AB 中点E ,连结DE ,则四边形BCDE 为矩形,DE =CB =2,连结SE ,则SE ⊥AB ,SE = 3.又SD =1,故ED 2=SE 2+SD 2,所以∠DSE 为直角,即SD ⊥SE .(4分) 由AB ⊥DE ,AB ⊥SE ,DE ∩SE =E , 得AB ⊥平面SDE , 所以AB ⊥SD .由SD 与两条相交直线AB 、SE 都垂直,所以SD ⊥平面SAB .(7分)(2)解 由AB ⊥平面SDE 知,平面ABCD ⊥平面SDE .(10分)作SF ⊥DE ,垂足为F ,则SF ⊥平面ABCD ,SF =SD ·SE DE =32.作FG ⊥BC ,垂足为G ,则FG =DC =1. 连结SG ,又BC ⊥FG ,BC ⊥SF ,SF ∩FG =F , 故BC ⊥平面SFG ,平面SBC ⊥平面SFG . 作FH ⊥SG ,H 为垂足,则FH ⊥平面SBC .FH =SF ·FG SG =37,则F 到平面SBC 的距离为217.由于ED ∥BC ,所以ED ∥平面SBC ,E 到平面SBC 的距离d 为217.(12分)设AB 与平面SBC 所成的角为α,则sin α=d EB =217,即AB 与平面SBC 所成的角的正弦值为217.(14分)方法二 以C 为坐标原点,射线CD 为x 轴正半轴,建立如图所示的空间直角坐标系C -xyz .设D (1,0,0),则A (2,2,0)、B (0,2,0).(2分) 又设S (x ,y ,z ),则x >0,y >0,z >0.(1)证明 AS →=(x -2,y -2,z ),BS →=(x ,y -2,z ), DS →=(x -1,y ,z ), 由|AS →|=|BS →|得(x -2)2+(y -2)2+z 2=x 2+(y -2)2+z 2, 故x =1. 由|DS →|=1得y 2+z 2=1.①又由|BS →|=2得x 2+(y -2)2+z 2=4, 即y 2+z 2-4y +1=0.②联立①②得⎩⎨⎧y =12,z =32.(4分)于是S (1,12,32),AS →=(-1,-32,32),BS →=(1,-32,32),DS →=(0,12,32).因为DS →·AS →=0,DS →·BS →=0, 故DS ⊥AS ,DS ⊥BS .又AS ∩BS =S ,所以SD ⊥平面SAB .(7分) (2)解 设平面SBC 的法向量a =(m ,n ,p ),则a ⊥BS →,a ⊥CB →,a ·BS →=0,a ·CB →=0.又BS →=(1,-32,32),CB →=(0,2,0),故⎩⎪⎨⎪⎧m -32n +32p =0,2n =0.取p =2得a =(-3,0,2).(10分) 又AB →=(-2,0,0),cos 〈AB →,a 〉=|AB →·a ||AB →||a |=217,所以AB 与平面SBC 所成角的正弦值为217.(14分) 11.(1)证明 建立如图所示的空间直角坐标系,则由已知可得A (0,0,0),B (23,2,0),C (0,4,0),A 1(0,0,4),E (3,3,0),F (0,4,1).(2分)于是CA 1→=(0,-4,4), EF →=(-3,1,1). 则CA 1→·EF →=(0,-4,4)·(-3,1,1)=0-4+4=0, 故EF ⊥A 1C .(8分)(2)解 设CF =λ(0<λ≤4),平面AEF 的一个法向量为m =(x ,y ,z ), 则由(1)得F (0,4,λ).(8分) AE →=(3,3,0),AF →=(0,4,λ),于是由m ⊥AE →,m ⊥AF →可得⎩⎪⎨⎪⎧m ·AE →=0,m ·AF →=0,即⎩⎨⎧3x +3y =0,4y +λz =0.取m =(3λ,-λ,4).又由直三棱柱的性质可取侧面AC 1的一个法向量为n =(1,0,0),于是由θ的锐角可得cos θ=|m ·n ||m |·|n |=3λ2λ2+4,sin θ=λ2+162λ2+4,所以tan θ=λ2+163λ=13+163λ2.(10分) 由0<λ≤4,得1λ≥14,即tan θ≥13+13=63. 故当λ=4,即点F 与点C 1重合时,tan θ取得最小值63.(14分)。

空间向量求二面角例题及解析

空间向量求二面角例题及解析

空间向量求二面角例题及解析咱们需要两个空间向量。

假设有向量 ( vec{a = (1, 2, 3) ) 和向量 ( vec{b = (4, 5, 6) )。

这些向量就像你和朋友在球场上的位置一样,描述了你们的方向和距离。

为了求这两个向量的二面角,咱们得先找出它们的夹角。

这就得用到个公式,别担心,不是那些高深的数学,简单直接就好。

公式是这样的,夹角 ( theta ) 的余弦值等于 ( frac{vec{a cdot vec{b{|vec{a| |vec{b| )。

听起来有点绕,但实际上就是把两个向量点乘,然后再用它们的模长相乘。

点乘的意思就是把对应的分量相乘后再加起来。

所以先计算一下: ( vec{a cdot vec{b = 1 cdot 4 +2 cdot 5 +3 cdot 6 =4 + 10 + 18 = 32 )。

这就是两个向量的点乘结果。

我们需要计算它们的模长。

模长就像是量一量这两个向量有多长,简单得很!模长公式是 ( |vec{a| = sqrt{x^2 + y^2 + z^2 ),所以对于 ( vec{a ),我们有 ( |vec{a| =sqrt{1^2 + 2^2 + 3^2 = sqrt{1 + 4 + 9 = sqrt{14 )。

对于 ( vec{b ),也是一样的,计算一下 ( |vec{b| = sqrt{4^2 + 5^2 + 6^2 = sqrt{16 + 25 + 36 = sqrt{77 )。

一切准备就绪,咱们回到公式里。

代入数据后,我们的余弦值就是 ( cos theta =frac{32{sqrt{14 cdot sqrt{77 )。

这个结果一算出来,就能求出夹角 ( theta ) 了,最后通过反余弦函数,找到具体的角度,哎哟,这样就能明白你和朋友之间的相对位置了,真是妙不可言!不过咱们还没完,二面角的计算有个小秘密哦,那就是它涉及到面法向量。

当咱们有两个平面的时候,二面角其实就是这两个平面的法向量之间的夹角。

二面角的求法和利用空间向量解决立体几何问题

二面角的求法和利用空间向量解决立体几何问题

二面角的定义:
1、定义
从一条直线出发的两个半平面所组成
的图形叫做二面角, 这条直线叫做二面角
l
的棱, 这两个半平面叫做二面角的面.
2、二面角的表示方法
二面角-AB-
A
C
B
二面角- l-
D
l
B
A
二面角C-AB- D
F
E
A
B
D
C
二面角C-AB- E
二面角的平面角:
以二面角的棱上任意一点为端
点, 在两个面内分别作垂直于棱的 两条射线, 这两条射线所成的角叫 做二面角的平面角。
面面平行
∥ n1 ∥ n2 n1 kn2
二、垂直关系:
设直线 l, m 的方向向量分别为 AB,CD ,
平面 , 的法向量分别为 n1 , n2 , 线线垂直:
l ⊥ m AB ⊥ CD AB • CD 0 ;
Bl
A
平面 内的两个相交向量垂直
(4)解方程组,令其中一个量的值求另外两个, 即得法向量。
一、平行关系:
设直线 l, m 的方向向量分别为 AB,CD ,
lm
BD
平面 , 的法向量分别为
线线平行:
n1
, n2

l ∥ m AB ∥ CD AB kCD

x1 y1
=
A
x2 y2
=
C
x3 y3
线面平行
AB
l ∥ AB n1 AB n1 0 ;
分别作垂直于a 的两条射线OA,OB,则∠AOB就 是此二面角的平面角。
2、垂线法: 在一个平面 内选一点A向另一平面 作 垂线AB,
垂足为B,再过点B向棱a作垂线BO,垂足 为O, 连结AO,则∠AOB就是二面角的平面角。

新高考数学复习考点知识与题型专题讲解7---用空间向量求二面角,点面距

新高考数学复习考点知识与题型专题讲解7---用空间向量求二面角,点面距

新高考数学复习考点知识与题型专题讲解用空间向量求解二面角,点面距考向一 用坐标法求二面角1、如图,三棱锥V ABC -的侧棱长都相等,底面ABC 与侧面VAC 都是以AC 为斜边的等腰直角三角形,E 为线段AC 的中点,F 为直线AB 上的动点,若平面VEF 与平面VBC 所成锐二面角的平面角为θ,则cos θ的最大值是()A .23C【答案】D【解析】底面ABC 与侧面VAC 都是以AC 为斜边的等腰直角三角形,则Rt ABC Rt VAC ≅,所以VA VC BA BC ===设2VA VC BA BC VB =====,由E 为线段AC 的中点,则VE BV ==,由222VE BE VB +=,所以VE EB ⊥,以E 为原点,EB 为x 轴,EC 为y 轴,EV 为z 轴,建立空间直角坐标系,如图所示:则()C,)B,(V,设(),F x x ,(0,VC =,(2,0,VB =,(EV=,(,VF x x =,设平面VBC 的一个法向量()111,,m x y z =,则00m VC m VB ⎧⋅=⎨⋅=⎩,即11110⎧+=⎪=,令11x =,则11y =,11z =, 所以()1,1,1m =.设平面VEF 的一个法向量()222,,n x y z =,则00n EV n VF ⎧⋅=⎨⋅=⎩,即(222200x x x y =⋅+⋅+=⎪⎩,解得20z =,令21y =,则221x =-, 所以21,1,0n x ⎛⎫=- ⎪ ⎪⎝⎭,平面VEF 与平面VBC 所成锐二面角的平面角为θ,则22cos 22232m n x m n x xθ⋅==-+, 将分子、分母同除以1x,可得 2222322226626x xx x =-+-+令()2226626632f x x x x ⎛⎫=-+=-+ ⎪ ⎪⎝⎭, 当22x =时,()min 3f x =,则cos θ的最大值为:263=.故选:D2、如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H.将△DEF 沿EF 折到△D′EF 位置,OD′=10.(1)证明:D′H ⊥平面ABCD ;(2)求二面角B­D′A­C 的余弦值.[解] (1)证明:由四边形ABCD 为菱形,得AC ⊥BD. 由AE =CF =54,得AE AD =CFCD ,所以EF ∥AC. 因此EF ⊥DH ,从而EF ⊥D′H.由AB =5,AC =6,得DO =BO =AB2-AO2=4. 由EF ∥AC 得OH DO =AE AD =14, 所以OH =1,D′H =DH =3,则OD′2=OH2+D′H2,所以D′H ⊥OH.又OH∩EF =H ,所以D′H ⊥平面ABCD.(2)以H 为坐标原点,HB ,HF ,HD′分别为x 轴,y 轴,z 轴建立空间直角坐标系H­xyz ,如图所示.则B(5,0,0),C(1,3,0),D′(0,0,3),A(1,-3,0),(由口诀“起点同”,我们先求出起点相同的3个向量.)所以AB ―→=(4,3,0),AD′―→=(-1,3,3),AC ―→=(0,6,0). (由口诀“棱排前”,我们用行列式求出两个平面的法向量.)由⎩⎪⎨⎪⎧AD′―→=(-1,3,3),AB ―→=(4,3,0),可得平面ABD′的法向量n1=(-3,4,-5),由⎩⎪⎨⎪⎧AD′―→=(-1,3,3),AC ―→=(0,6,0),可得平面AD′C 的法向量n2=(-3,0,-1). 于是cos 〈n1,n2〉=n 1·n2|n 1|·|n2|=7525. 所以二面角B­D′A­C 的余弦值为7525.3、如图所示,四棱锥P­ABCD 中,PA ⊥平面ABCD ,△DAB ≌△DCB ,E 为线段BD 上的一点,且EB =ED =EC =BC ,连接CE 并延长交AD 于F.(1)若G 为PD 的中点,求证:平面PAD ⊥平面CGF ;(2)若BC =2,PA =3,求二面角B­CP­D 的余弦值.解:(1)证明:在△BCD 中,EB =ED =EC =BC ,故∠BCD =90°,∠CBE =∠BEC =60°.∵△DAB ≌△DCB ,∴∠BAD =∠BCD =90°,∠ABE =∠CBE =60°,∴∠FED =∠BEC =∠ABE =60°.∴AB ∥EF ,∴∠EFD =∠BAD =90°,∴EF ⊥AD ,AF =FD.又PG =GD ,∴GF ∥PA.又PA ⊥平面ABCD ,∴GF ⊥平面ABCD ,∵AD ⊂平面ABCD ,∴GF ⊥AD.又GF∩EF =F ,∴AD ⊥平面CGF.又AD ⊂平面PAD ,∴平面PAD ⊥平面CGF.(2)以A 为坐标原点,射线AB ,AD ,AP 分别为x 轴,y 轴,z 轴的正半轴建立如图所示的空间直角坐标系,则A(0,0,0),B(2,0,0),C(3,3,0),D(0,23,0),P(0,0,3),故CB ―→=(-1,-3,0),CP ―→=(-3,-3,3),CD ―→=(-3,3,0). 设平面BCP 的一个法向量为n1=(1,y1,z1),则⎩⎪⎨⎪⎧n 1·CB ―→=0,n 1·CP ―→=0,即⎩⎨⎧-1-3y1=0,-3-3y1+3z1=0,解得⎩⎪⎨⎪⎧y1=-33,z1=23,即n1=⎝ ⎛⎭⎪⎫1,-33,23.设平面DCP 的一个法向量为n2=(1,y2,z2),则⎩⎪⎨⎪⎧n 2·CD ―→=0,n 2·CP ―→=0,即⎩⎨⎧-3+3y2=0,-3-3y2+3z2=0,解得⎩⎨⎧y2=3,z2=2,即n2=(1,3,2).所以cos 〈n1,n2〉=n 1·n2|n1||n2|=43169×8=24, 由图知二面角B­CP­D 为钝角,所以二面角B­CP­D 的余弦值为-24.4、如图所示,多面体是由底面为ABCD 的直四棱柱被截面AEFG 所截而得到的,该直四棱柱的底面为菱形,其中2AB =,5CF =,1BE =,60BAD ∠=.(1)求BG 的长;(2)求平面AEFG 与底面ABCD 所成锐二面角的余弦值.【答案】(1)【解析】因为多面体是由底面为ABCD 的直四棱柱被截面AEFG 所截而得到的,所以平面ADG //平面BCFE ,又平面ADG 平面AEFG AG =,平面BCFE ⋂平面AEFG EF =,所以//AG EF ,同理//AE GF ,所以四边形AEFG 是平行四边形,连结AC ,BD 交于O ,以O 为原点,,OB OC 所在直线分别为x 轴,y 轴建立如图所示的空间直角坐标系O xyz -,则(0,A ,(1,0,0)B ,(1,0,1)E,F ,所以(4)AG EF ==-,(1,AB =,所以(2,0,4)BG AG AB =-=-,所以||(BG =-=所以BG 的长为(2)根据题意可取平面ABCD 的一个法向量为(0,0,1)m =,由(1)知(4)AG =-,(1,AE =,设平面AEFG 的法向量为(,,)n x y z =,则由00n AE n AG ⎧⋅=⎨⋅=⎩,得040x z x z ⎧++=⎪⎨-++=⎪⎩,即32y x z ⎧=⎪⎪⎨⎪=⎪⎩,令23z =,则x =,5y=-,所以(33,5,n =-,所以cos ,||||1m n m n m n ⋅〈〉===⋅⨯, 所以平面AEFG 与底面ABCD5、如图,四棱锥P ABCD -中,60,BAD AC ∠=︒平分BAD ∠.AB BC ⊥.AC CD ⊥.(1)设E 是PD 的中点,求证://CE 平面PAB ;(2)设PA ⊥平面ABCD ,若PD 与平面ABCD 所成的角为45°,求二面角A PC B --的余弦值.【答案】(1)证明见解析;(2)25【解析】(1)证明:111()222CE CA AE CF FA AP AD AB AP =+=+++=-+,即CE 能被平面PAB 内两个不共线的向量表示,且CE ⊂平面PAB ,//CE ∴平面PAB ;(2)因为PA ⊥平面ABCD ,且PD ⋂平面ABCD D =,故PDA ∠为PD 与平面ABCD 所成的角,故45PDA ︒∠=,从而PA AD =.不妨设AC =BC =,3AB =,2CD =,4=AD ,D 到AB 的距离为以A 坐标原点,AB ,AP 分别为y ,z 轴,建立空间直角坐标系Axyz ,如图所示.(0,0,0),(0,3,0),(0,0,4)A B C D P .∵PA ⊥平面ABCD ,∴PA CD ⊥,又∵CD AC ⊥,∴CD ⊥平面PAC∴(3,1,0)CD =-是平面PAC 的一个法向量.设平面PCB 的一个法向量为(,,)n x y z =,由0,0,n PB n BC ⎧⋅=⎨⋅=⎩得(,,)(0,3,4)0,(,,)0,x y z x y z ⋅-=⎧⎪⎨⋅=⎪⎩即得(0,4,3)n =.设所求的角为θ,则θ为锐角,则||42cos 255||||CD n CD n θ⋅===⨯⋅,即所求的二面角的余弦值为25. 6、如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD=∠CBD ,AB=BD .(1)证明:平面ACD⊥平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D –AE –C 的余弦值.【答案】(1)由题设可得,,从而又是直角三角形,所以 取的中点,连结,则ABD CBD ∆≅∆AD DC =ACD ∆90ADC ∠=AC O ,DO BO ,DO AC DO AO ⊥=ODBCE又由于是正三角形,故所以为二面角的平面角在中,又,所以,故所以平面平面(2)由题设及(1)知,两两垂直,以为坐标原点,的方向为轴正方向,为单位长,建立如图所示的空间直角坐标系,则由题设知,四面体的体积为四面体的体积的,从而到平面的距离为到平面的距离的,即为的中点,得,故设是平面的法向量,则同理可取则ABC ∆BO AC ⊥DOB ∠D AC B --Rt AOB ∆222BOAO AB +=AB BD =222222BO DO BO AO AB BD +=+==90DOB ∠=ACD ⊥ABC ,,OA OB OD O OA x ||OA O xyz -(1,0,0),(1,0,0),(0,0,1)A B C D -ABCE ABCD 12E ABC D ABC 12E DB 1)2E 1(1,0,1),(2,0,0),(1,)2AD AC AE =-=-=-(,,)n x y z =DAE 0,m AC m AE ⎧⋅=⎪⎨⋅=⎪⎩(0,m =-7cos ,||||n m n m n m <>==所以二面角考向二 用坐标法求点面距1、在棱长为2的正方体中,,分别为棱、的中点,为棱上的一点,且,设点为的中点,则点到平面的距离为( )AB .C .D【答案】D【解析】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,则M (2,λ,2),D 1(0,0,2),E (2,0,1),F (2,2,1),=(﹣,=(0,设平面D 1EF 的法向量=(x ,y ,z ),D AE C --1111ABCD A B C D -E F 1AA 1BB M 11A B 1(02)A M λλ=<<N ME N 1D EF23λ1ED EF n则 ,取x =1,得=(1,0,2),∴点M 到平面D 1EF 的距离为:2、在我国古代数学名著《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑(bie nao ).已知在鳖臑中,平面,,为的中点,则点到平面的距离为_____.【解析】以B 为坐标原点,BA,BC 所在直线分别为x 轴,y 轴建立空间直角坐标系,如图,1·20·20n ED x z n EF y ⎧=-+=⎨==⎩n 25EM n n==P ABC -PA ⊥ABC 2PA AB BC ===M PC P MAB则 ,由为的中点可得;, .设为平面的一个法向量,则,即,令,可得,点到平面的距离为3、边长为1的等边三角形ABC 中,沿BC 边高线AD 折起,使得折后二面角B -AD -C 为60°,点D 到平面ABC 的距离为________.【答案】1510【解析】如图所示,AD ⊥平面BCD ,AD =32, BD =CD =BC =12,∴V A -BCD =13×AD ×S △BCD .()()()()0,0,0,2,0,0,2,0,2,0,2,0B A P C M PC ()1,1,1M ()()1,1,1,2,0,0BM BA ==()2,0,2BP =(),,x y z =n ABM 00n BA n BM ⎧⋅=⎨⋅=⎩200x x y z =⎧⎨++=⎩1z =-()0,1,1=-n P MAB 2BP d ⋅==n n又∵V A -BCD =V D -ABC =13×h ×S △ABC ,∴由等积法可解得h =1510. 4、如图所示,在长方体中,,,点在棱上移动.(1)证明:;(2)当为的中点时,求点到平面的距离;【答案】如图所示,以为坐标原点,直线、、分别为,轴,建立空间直角坐标系.设,则,,,.⑴ 证明:因,则,即.⑵; 5、如图:正三棱柱的底面边长为,是延长线上一点,且,二面角的大小为;1111ABCD A B C D -11AD AA ==2AB =E AB 11D E A D ⊥E AB E 1ACD EAB CDA 1B 1D 1C 1D DA DC 1DD x y z ,AE x =()1101A ,,()1001D ,,()10E x ,,()()100020A C ,,,,,()()11101110A D D E x ⋅=--⋅-=,,,,11A D D E ⊥11D E A D ⊥13111ABC A B C -3D CB BD BC =1B AD B--60︒y(1)求点到平面的距离;(2)若是线段上的一点 ,且,在线段上是否存在一点,使直线平面? 若存在,请指出这一点的位置;若不存在,请说明理由.【答案】(1; (2)存在,当时,知平面.【解析】(1)设为的中点,则,在正三棱柱中,平面,而平面,所以,而,因此平面,而平面,所以有为二面角的平面角,如下图所示:,,1C 1B AD P AD 12DP AA =1DC Q //PQ 1ABC 113C Q QD =1//PQ AC //PQ 1ABC E AD BE AD ⊥111ABC A B C -1BB ⊥ABC AD ⊂ABC 1BB AD ⊥1BB EB B =AD ⊥1BB E 1B E ⊂1BB E 1B E AD ⊥1BEB ∴∠1B AD B --160BEB ∴∠=︒120ABD ∠=︒32BE =侧棱; 又,知点 到平面的距离(2)由(1)可知,,,,当时,有 成立,而 平面 ,所以 平面,故存在,当时,符合题意。

向量法求空间角、距离和二面角

向量法求空间角、距离和二面角
本题的解题过程告诉我们,用坐标法求空间角与距离,就是用空间向量将空间元素的位置关系转化为坐标表示的数量关系,解题的关键是根据几何体的特点,选取恰当的坐标原点和坐标轴,一般来说,长方体、正方体中较为容易建立坐标系.
高考对空间向量的考查是以立体几何为载体,利用空间向量求有向线段的长度,求两条有向线段的夹角(或其余弦、正弦、正切),二面角、点到平面的距离、异面直线的距离、证明线线、线面、面面垂直等.下面是今年广东高考数学及广州一模,体现了高考对空间向量的考查要求.
证明:设 为公垂线段,取 (如图1所示),则
设直线 所成的角为 ,显然
1.4.直线 与平面 所成的角
在 上取定 ,求平面 的法向量 (如图2所示),再求 ,则 为所求的角.
1.5.二面角
方法一:构造二面角 的两个半平面 的法向量 (都取向上的方向,如图3所示),则
1若二面角 是“钝角型”的如图3甲所示,那么其大小等于两法向量 的夹角的补角,即 (例如2004年高考数学广东卷第18题第(1)问).
[例2](2004年全国普通高等学校招生全国统一考试数学广东卷第18题)
如右图8,在长方体ABCD—A1B1C1D1中,已知AB=4, AD=3,AA1= 2. E、F分别是A来自、BC上的点,且EB=FB=1.
(1)求二面角C—DE—C1的正切值;
(2)求直线EC1与FD1所成的角的余弦值.
解题分析:本题主要考查了二面角、异面直线所成的角等知识和空间想象能力、思维能力、运算能力.高考试卷给出的参考答案分别用了传统方法及向量法.在传统解法中,运用三垂线定理作出二面角的平面角并正明,通过延长和平移线段作出异面直线所成的角,进而通过解直角三角形和斜三角形解决问题.在用向量法的解答上,选择 为空间直角坐标系的原点, 分别为 轴, 轴, 轴的正向,这不是右手直角坐标系,虽然与右手直角坐标系没有本质上的区别,但教科书中所建立及提倡的是右手直角坐标系,所以考生习惯用右手直角坐标系. 用向量法解决第(1)问时只是用了本文所提到的“1.5.二面角”之“方法一”.

高考数学专题:向量求二面角(含答案)

高考数学专题:向量求二面角(含答案)

高考数学专题:向量求二面角向量法求二面角大小的两种方法(1)分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小.(2)分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.1、如图,四棱锥P-ABCD中,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=π3,M为BC上一点,且BM=12,MP⊥AP.(1)求PO的长;(2)求二面角A-PM-C的正弦值.2、如图,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F 分别为AC,DC的中点.(1)求证:EF⊥BC;(2)求二面角E-BF-C的正弦值.3、如图所示,在多面体ABCD-A1B1C1D1中,上、下两个底面A1B1C1D1和ABCD互相平行,且都是正方形,DD1⊥底面ABCD,AB=2A1B1=2DD1=2a.(1)求异面直线AB1与DD1所成角的余弦值;(2)已知F是AD的中点,求证:FB1⊥平面BCC1B1;(3)在(2)的条件下,求二面角F-CC1-B的余弦值.4、如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D-AF-E与二面角C-BE-F都是60°.(1)证明:平面ABEF⊥平面EFDC;(2)求二面角E-BC-A的余弦值.5、如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF⊥平面ABCD,点G为AB的中点,AB=BE=2.(1)求证:EG∥平面ADF;(2)求二面角O-EF-C的正弦值;(3)设H为线段AF上的点,且AH=23HF,求直线BH和平面CEF所成角的正弦值6、如图,在四棱锥P-ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=π2,PA=AD=2,AB=BC=1.(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长.7、如图所示,在多面体A1B1D1-DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(1)证明:EF∥B1C;(2)求二面角E-A1D-B1的余弦值.8、如图,三棱锥P-ABC中,PC⊥平面ABC,PC=3,∠ACB=π2,D,E分别为线段AB,BC上的点,且CD=DE=2,CE=2EB=2.(1)证明:DE⊥平面PCD;(2)求二面角A-PD-C的余弦值.答案:1、解:(1)如图,连接AC,BD,因为ABCD为菱形,则AC∩BD=O,且AC⊥BD.以O为坐标原点,OA →,OB →,OP →的方向分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O -xyz .因为∠BAD =π3,所以OA =AB ·cos π6=3,OB =AB ·sin π6=1,所以O (0,0,0),A (3,0,0),B (0,1,0),C (-3,0,0),OB →=(0,1,0),BC →=(-3,-1,0).由BM =12,BC =2知, BM→=14BC →=⎝ ⎛⎭⎪⎫-34,-14,0, 从而OM→=OB →+BM →=⎝ ⎛⎭⎪⎫-34,34,0, 即M ⎝ ⎛⎭⎪⎫-34,34,0.设P (0,0,a ),a >0,则AP→=(-3,0,a ),MP →=⎝ ⎛⎭⎪⎫34,-34,a . 因为MP ⊥AP ,故MP →·AP→=0,即-34+a 2=0,所以a =32或a =-32(舍去), 即PO =32.(2)由(1)知,AP →=⎝ ⎛⎭⎪⎫-3,0,32,MP →=⎝ ⎛⎭⎪⎫34,-34,32,CP →=⎝ ⎛⎭⎪⎫3,0,32. 设平面APM 的法向量为n 1=(x 1,y 1,z 1),平面PMC 的法向量为n 2=(x 2,y 2,z 2),由n 1·AP →=0,n 1·MP →=0, 得⎩⎪⎨⎪⎧-3x 1+32z 1=0,34x 1-34y 1+32z 1=0,故可取n 1=⎝ ⎛⎭⎪⎫1,533,2. 由n 2·MP →=0,n 2·CP →=0, 得⎩⎪⎨⎪⎧34x 2-34y 2+32z 2=0,3x 2+32z 2=0,故可取n 2=(1,-3,-2). 从而法向量n 1,n 2的夹角的余弦值为 cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-155, sin 〈n 1,n 2〉=1-⎝⎛⎭⎪⎫-1552=105, 故所求二面角A -PM -C 的正弦值为105.2、(1)证明:由题意,以B 为坐标原点,在平面DBC 内过B 作垂直BC 的直线为x 轴,BC 所在直线为y 轴,在平面ABC 内过B 作垂直BC 的直线为z 轴,建立如图所示空间直角坐标系.易得B (0,0,0),A (0,-1,3),D (3,-1,0),C (0,2,0),因而E ⎝ ⎛⎭⎪⎫0,12,32,F ⎝ ⎛⎭⎪⎫32,12,0,所以EF →=⎝ ⎛⎭⎪⎫32,0,-32,BC →=(0,2,0),因此EF →·BC→=0. 从而EF →⊥BC →,所以EF ⊥BC .(2)平面BFC 的一个法向量为n 1=(0,0,1). 设平面BEF 的法向量为n 2=(x ,y ,z ). 又BF →=⎝ ⎛⎭⎪⎫32,12,0,BE →=⎝ ⎛⎭⎪⎫0,12,32,由⎩⎪⎨⎪⎧n 2·BF →=0,n 2·BE →=0得其中一个n 2=(1,-3,1).设二面角E -BF -C 大小为θ,且由题意知θ为锐角, 则cos θ=|cos 〈n 1,n 2〉| =⎪⎪⎪⎪⎪⎪n 1·n 2|n 1||n 2|=15. 因此sin θ=25=255,即所求二面角的正弦值为255.3、.解:以D 为坐标原点,以DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则A (2a ,0,0),B (2a ,2a ,0),C (0,2a ,0),D 1(0,0,a ),F (a ,0,0),B 1(a ,a ,a ),C 1(0,a ,a ).(1)因为AB 1→=(-a ,a ,a ),DD 1→=(0,0,a ), 所以|cos 〈AB 1→,DD 1→〉|=⎪⎪⎪⎪⎪⎪⎪⎪AB 1→·DD 1→|AB 1→||DD 1→|=33,所以异面直线AB 1与DD 1所成角的余弦值为33. (2)证明:因为BB 1→=(-a ,-a ,a ),BC →=(-2a ,0,0),FB 1→=(0,a ,a ), 所以⎩⎪⎨⎪⎧FB 1→·BB 1→=0,FB 1→·BC →=0,所以FB 1⊥BB 1,FB 1⊥BC . 因为BB 1∩BC =B , 所以FB 1⊥平面BCC 1B 1.(3)由(2)知,FB 1→为平面BCC 1B 1的一个法向量. 设n =(x 1,y 1,z 1)为平面FCC 1的法向量, 因为CC 1→=(0,-a ,a ),FC →=(-a ,2a ,0), 所以⎩⎪⎨⎪⎧n ·CC 1→=0,n ·FC →=0,即⎩⎨⎧-ay 1+az 1=0,-ax 1+2ay 1=0.令y 1=1,则n =(2,1,1),所以||cos 〈FB 1→,n 〉=⎪⎪⎪⎪⎪⎪⎪⎪FB 1→·n |FB 1→||n |=33,因为二面角F -CC 1-B 为锐角, 所以二面角F -CC 1-B 的余弦值为33.4、解:(1)证明:由已知可得AF ⊥DF ,AF ⊥FE ,所以AF ⊥平面EFDC .又AF ⊂平面ABEF ,故平面ABEF ⊥平面EFDC . (2)如图,过D 作DG ⊥EF ,垂足为G , 由(1)知DG ⊥平面ABEF .以G 为坐标原点,GF →的方向为x 轴正方向,|GF →|为单位长,建立如图所示的空间直角坐标系G -xyz . 由(1)知∠DFE 为二面角D -AF -E 的平面角,故∠DFE =60°, 则|DF |=2,|DG |=3,可得A (1,4,0),B (-3,4,0),E (-3,0,0),D (0,0,3). 由已知,AB ∥EF , 所以AB ∥平面EFDC .又平面ABCD ∩平面EFDC =CD , 故AB ∥CD ,CD ∥EF .由BE ∥AF ,可得BE ⊥平面EFDC ,所以∠CEF 为二面角C -BE -F 的平面角,∠CEF =60°,从而可得C (-2,0,3).所以EC→=(1,0,3),EB →=(0,4,0),AC →=(-3,-4,3),AB →=(-4,0,0).设n =(x ,y ,z )是平面BCE 的法向量,则 ⎩⎪⎨⎪⎧n ·EC →=0,n ·EB →=0,即⎩⎨⎧x +3z =0,4y =0. 所以可取n =(3,0,-3). 设m 是平面ABCD 的法向量, 则⎩⎪⎨⎪⎧m ·AC →=0,m ·AB →=0.同理可取m =(0,3,4), 则cos 〈n ,m 〉=n·m |n ||m |=-21919.故二面角E -BC -A 的余弦值为-21919.5、解:依题意,OF ⊥平面ABCD ,如图,以O 为原点,分别以AD →,BA →,OF →的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,依题意可得O (0,0,0),A (-1,1,0),B (-1,-1,0),C (1,-1,0),D (1,1,0),E (-1,-1,2),F (0,0,2),G (-1,0,0).(1)证明:依题意,AD→=(2,0,0),AF →=(1,-1,2). 设n 1=(x ,y ,z )为平面ADF 的法向量,则⎩⎪⎨⎪⎧n 1·AD →=0,n 1·AF →=0,即⎩⎨⎧2x =0,x -y +2z =0.不妨设z =1,可得n 1=(0,2,1).又EG →=(0,1,-2),所以EG →·n 1=0, 又因为直线EG ⊄平面ADF , 所以EG ∥平面ADF .(2)易证,OA→=(-1,1,0)为平面OEF 的一个法向量. 依题意,EF→=(1,1,0),CF →=(-1,1,2).设n 2=(x ,y ,z )为平面CEF 的法向量,则⎩⎪⎨⎪⎧n 2·EF →=0,n 2·CF →=0,即⎩⎨⎧x +y =0,-x +y +2z =0.不妨设x =1,可得n 2=(1,-1,1).因此cos 〈OA →,n 2〉=OA →·n 2|OA →||n 2|=-63,于是sin 〈OA →,n 2〉=33.所以,二面角O -EF -C 的正弦值为33.(3)由AH =23HF ,得AH =25AF .因为AF→=(1,-1,2),所以AH →=25AF →=⎝ ⎛⎭⎪⎫25,-25,45,进而有H ⎝ ⎛⎭⎪⎫-35,35,45,从而BH →=⎝ ⎛⎭⎪⎫25,85,45,因此cos 〈BH →,n 2〉=BH →·n 2|BH →||n 2|=-721.所以,直线BH 和平面CEF 所成角的正弦值为721.6、解:以{AB →,AD →,AP →}为正交基底建立如图所示的空间直角坐标系A -xyz ,则各点的坐标为B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,2). (1)因为AD ⊥平面PAB ,所以AD→是平面PAB 的一个法向量,AD →=(0,2,0).因为PC→=(1,1,-2),PD →=(0,2,-2). 设平面PCD 的法向量为m =(x ,y ,z ), 则m ·PC →=0,m ·PD →=0, 即⎩⎨⎧x +y -2z =0,2y -2z =0. 令y =1,解得z =1,x =1.所以m =(1,1,1)是平面PCD 的一个法向量. 从而cos 〈AD →,m 〉=AD →·m |AD →||m |=33, 所以平面PAB 与平面PCD 所成二面角的余弦值为33. (2)因为BP→=(-1,0,2),设BQ →=λBP →=(-λ,0,2λ)(0≤λ≤1),又CB→=(0,-1,0),则CQ →=CB →+BQ →= (-λ,-1,2λ),又DP→=(0,-2,2),从而cos 〈CQ →,DP →〉=CQ →·DP →|CQ →||DP →|=1+2λ10λ2+2.设1+2λ=t ,t ∈[1,3],则cos 2〈CQ →,DP →〉=2t 25t 2-10t +9=29⎝ ⎛⎭⎪⎫1t -592+209≤910.当且仅当t =95,即λ=25时, |cos 〈CQ→,DP →〉|的最大值为31010. 因为y =cos x 在⎝ ⎛⎭⎪⎫0,π2上是减函数,所以此时直线CQ 与DP 所成角取得最小值. 又因为BP =12+22=5, 所以BQ =25BP =255.7、解:(1)证明:由正方形的性质可知A 1B 1∥AB ∥DC ,且A 1B 1=AB =DC ,所以四边形A 1B 1CD 为平行四边形,从而B 1C ∥A 1D .又A 1D ⊂平面A 1DE ,B 1C ⊄平面A 1DE ,于是B 1C ∥平面A 1DE . 又B 1C ⊂平面B 1CD 1,平面A 1DE ∩平面B 1CD 1=EF ,所以EF ∥B 1C .(2)因为四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,所以AA 1⊥AB ,AA 1⊥AD ,AB ⊥AD 且AA 1=AB =AD ,以A 为原点,分别以AB →,AD →,AA 1→为x 轴,y 轴和z 轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A (0,0,0),B (1,0,0),D (0,1,0),A 1(0,0,1),B 1(1,0,1),D 1(0,1,1),而E 点为B 1D 1的中点,所以E 点的坐标为(0.5,0.5,1).设面A 1DE 的法向量为n 1=(r 1,s 1,t 1),而该面上向量A 1E →=(0.5,0.5,0),A 1D →=(0,1,-1),由n 1⊥A 1E →,n 1⊥A 1D →得r 1,s 1,t 1应满足方程组⎩⎨⎧0.5r 1+0.5s 1=0,s 1-t 1=0,因为(-1,1,1)为其一组解,所以可取n 1=(-1,1,1).设面A 1B 1CD 的法向量为n 2=(r 2,s 2,t 2),而该面上向量A 1B 1→=(1,0,0),A 1D →=(0,1,-1),由此同理可得n 2=(0,1,1),所以结合图形知二面角E -A 1D -B 1的余弦值为|n 1·n 2||n 1|·|n 2|=23×2=63. 8、解:(1)证明:由PC ⊥平面ABC ,DE ⊂平面ABC ,得PC ⊥DE .由CE =2,CD =DE =2得△CDE 为等腰直角三角形,故CD ⊥DE .又PC ∩CD =C ,所以DE ⊥平面PCD .(2)由(1)知,△CDE 为等腰直角三角形,∠DCE =π4.如图,过D 作DF 垂直CE 于F ,易知DF =FC =FE =1.又EB =1,故FB =2.由∠ACB =π2得DF ∥AC ,DF AC =FB BC =23,故AC =32DF =32.如图,以C 为坐标原点,分别以CA→,CB →,CP →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,则C (0,0,0),P (0,0,3),A ⎝ ⎛⎭⎪⎫32,0,0,E (0,2,0),D (1,1,0),ED →=(1,-1,0),DP →=(-1,-1,3),DA →=⎝ ⎛⎭⎪⎫12,-1,0. 设平面PAD 的法向量为n 1=(x 1,y 1,z 1),由n 1·DP →=0,n 1·DA →=0,得⎩⎪⎨⎪⎧-x 1-y 1+3z 1=0,12x 1-y 1=0, 故可取n 1=(2,1,1).由(1)可知,DE ⊥平面PCD ,故平面PCD 的法向量n 2可取为ED→, 即n 2=(1,-1,0).从而法向量n 1,n 2的夹角的余弦值为cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=36, 故二面角A -PD -C 的余弦值为36.。

人教版A版高中数学选修2-1《利用空间向量法求二面角》

人教版A版高中数学选修2-1《利用空间向量法求二面角》
一、平面的法向量与二面角的关系
平面的法向量与二面角的关系
(Ⅱ)若PD=AD,求二面角A-PB-C的余弦值。
解:如图,以D为坐标原点,建立空间直角坐标系D-xyz, 建系
设AD=1,则
z
…1分
找量:
点的P坐标
设平nn 面APBBPA==B00的即法向x31y量1 为3z1y1 n00可(x取1, yn1

0,即
Байду номын сангаас
3x2 y2 =0,
m B1C1 0, 3x2 z2 0.
取m (1, 3, 3).
|cos n , m ||n m| 1 . nm 7
计算: 法向量、夹角
…2分
二面角A A1B1 C1的平面角为锐角,
二面角A

A1B1

C1的余弦值为
2、数学思想:化归与转化的思想 数形结合思想 方程的思想
七、课堂作业
OB1 OB+BB1 OB+AA1
x
z y
(Ⅱ)设二面角 D -A E-C 为 60°,A P=1,A D = 3 ,求三棱锥 E -A C D 的体积.
解(I)连接BD交AC于点O,连结EO。
ABCD为矩形,O为BD的中点。
又E为PD的中点, EO∥PB。
且EO 面AEC,PB 面AEC,
PB//面AEC,
O …4分
(Ⅱ)设二面角 D -A E-C 为 60°,A P=1,A D = 3 ,求三棱锥 E -A C D 的体积. 解: PA 面ABCD,且ABCD为矩形
1 7
.
④作答: 观察图形、定值
…1分
变式练习2
如图所示,四棱锥P-ABCD中,底面ABCD为正方 形,PD⊥平面ABCD,PD=AB=2,E,F,G分别 为PC,PD,BC的中点. (1)求证:PA⊥EF. (2)求二面角D-FG-E的余弦值.

空间向量处理二面角

空间向量处理二面角

二面角二面角的求解方法(范围: )一、定义法:直接在二面角的棱上取一点(特殊点),分别在两个半平面内作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性;例、在四棱锥P -ABCD 中,ABCD 是正方形,PA⊥平面ABCD ,PA=AB=a ,求二面角B -PC -D 的大小。

变式:如图,已知二面角α-а-β等于120°,PA ⊥α,A ∈α,PB ⊥β,B ∈β. 求∠APB 的大小.二、三垂线定理法:已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角; 例、在四棱锥P -ABCD 中,ABCD 是平行四边形,PA⊥平面ABCD ,PA=AB=a ,⊥ABC=30°,求二面角P -BC -A 的大小。

p ABCDL HjA BC DPH ABCD A 1 B 1C 1D 1EOPOBA变式1、如图,ABCD-A 1B 1C 1D 1是长方体,侧棱AA 1长为1,底面为正方体且边长为2,E 是棱BC 的中点,求面C 1DE 与面CDE 所成二面角的正切值.变式2、ΔABC 中,∠A=90°,AB=4,AC=3,平面ABC 外一点P 在平面ABC 内的射影是AB 中点M ,二面角P —AC —B 的大小为45°。

求(1)二面角P —BC —A 的大小;(2)二面角C —PB —A 的大小变式3、如图,平面α⊥平面β,α∩β=l ,A ∈α,B ∈β,点A 在直线l 上的射影为A 1,点B 在l 的射影为B 1,已知AB=2,AA 1=1,BB 1=2,求:二面角A 1-AB -B 1的大小.三、垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个半平面的交线所成的角即为平面角,由此可知,二面角的平面角所在的平面与棱垂直;例、空间的点P 到二面角βα--l 的面α、β及棱l 的距离分别为4、3、3392,求二面角βα--l 的大小.PlCBAB 1AA 1BLE FCDPMBA四、射影法(无棱二面角)利用面积射影公式S 射=S 原cos θ,其中θ为平面角的大小,此方法不必在图形中画出平面角;例、在四棱锥P-ABCD 中,ABCD 为正方形,PA⊥平面ABCD ,PA =AB =a ,求平面PBA 与平面PDC 所成二面角的大小。

二面角求法及经典题型归纳

二面角求法及经典题型归纳

二面角求法归纳18题,通常是立体几何(12-14分),本题考查空间线面平行、线面垂直、面面垂直的判断与证明,考查二面角的求法以及利用向量知识解决几何问题的能力,同时考查空间想象能力、推理论证能力和运算能力。

以下是求二面角的五种方法总结,及题形归纳。

定义法:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。

本定义为解题提供了添辅助线的一种规律。

如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。

例1(2009全国卷Ⅰ理)如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD =2DC SD ==,点M 在侧棱SC 上,ABM ∠=60°(I )证明:M 在侧棱SC 的中点 (II )求二面角S AM B --的大小。

证(I )略解(II ):利用二面角的定义。

在等边三角形ABM 中过点B作BF AM ⊥交AM 于点F ,则点F 为AM 的中点,过F 点在平面ASM 内作GF AM ⊥,GF 交AS 于G ,连结AC ,∵△ADC ≌△ADS ,∴AS-AC ,且M 是SC 的中点, ∴AM ⊥SC , GF ⊥AM ,∴GF ∥AS ,又∵F 为AM 的中点,∴GF 是△AMS 的中位线,点G 是AS 的中点。

则GFB ∠即为所求二面角. ∵2=SM ,则22=GF ,又∵6==AC SA ,∴2=AM ∵2==AB AM ,060=∠ABM ∴△ABM 是等边三角形,∴3=BF在△GAB 中,26=AG ,2=AB ,090=∠GAB ,∴211423=+=BG 366232222113212cos 222-=-=⨯⨯-+=⋅-+=∠FB GF BG FB GF BFG FGFG∴二面角S AM B --的大小为)36arccos(-例2. (2010全国I 理,19题,12分)如图,四棱锥S-ABCD 中,SD ⊥底面ABCD ,AB//DC ,AD ⊥DC ,AB=AD=1,DC=SD=2,E 为棱SB 上的一点,平面EDC ⊥平面SBC . (Ⅰ)证明:SE=2EB ;(Ⅱ)求二面角A-DE-C 的大小 . (Ⅱ) 由225,1,2,,SA SD AD AB SE EB AB SA =+===⊥知22121,AD=133AE SA AB ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭又.故ADE ∆为等腰三角形.取ED 中点F,连接AF,则226,3AF DE AF AD DF ⊥=-=. 连接FG ,则//,FG EC FG DE ⊥.所以,AFG ∠是二面角A DE C --的平面角. 连接AG,A G=2,2263FG DG DF =-=, 2221cos 22AF FG AG AFG AF FG +-∠==-,所以,二面角A DE C --的大小为120°.例3(2010浙江省理,20题,15分)如图, 在矩形ABCD 中,点,E F 分别 在线段,AB AD 上,243AE EB AF FD ====.沿直线EF 将 AEF 翻折成'A EF ,使平面'A EF BEF ⊥平面.(Ⅰ)求二面角'A FD C --的余弦值;(Ⅱ)点,M N 分别在线段,FD BC 上,若沿直线MN 将四边形MNCD 向上翻折,使C 与'A 重合,求线段FM 的长.练习(2008山东)如图,已知四棱锥P-ABCD,底面ABCD为菱形,P A⊥平面ABCD,60ABC∠=︒,E,F分别是BC, PC的中点.(Ⅰ)证明:AE⊥PD;(Ⅱ)若H为PD上的动点,EH与平面P AD所成最大角的正切值为62,求二面角E—AF—C的余弦值.分析:第1题容易发现,可通过证AE⊥AD后推出AE⊥平面APD,使命题获证,而第2题,则首先必须在找到最大角正切值有关的线段计算出各线段的长度之后,考虑到运用在二面角的棱AF上找到可计算二面角的平面角的顶点S,和两边SE与SC,进而计算二面角的余弦值。

立体几何-利用空间向量求二面角的平面角

立体几何-利用空间向量求二面角的平面角

利用空间向量求二面角的平面角2 解:过D 作DF BC 于F ,过D 作DEFED 为二面角B AC D 的平面角, 又AB 平面BCD , AC 于E ,连结EF ,则AC 垂直于平面DEF ,• AB DF , AB CD , • DF 平面ABC ,• DF EF又••• AB CD , BD CD , • CD 平面 ABD , • CD AD ,设BD a ,贝U AB BC 2a , 在Rt BCD 中,S BCD 1-BC DF 21-BD CD , • DF 2.3 a1. 二面角的概念:二面角的定义•从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做 二面角的面.若棱为I ,两个面分别为 ,的二面角记为 丨2. 二面角的平面角:(1) 过二面角的棱上的一点 0分别在两个半平面内作棱的两条垂线 OA,OB ,则 AOB 叫做二面角 I 的平面角+(2)一个平面垂直于二面角 I 的棱I ,且与两半平面交线分别为 OA,OB, 0为垂足,则 AOB也是 I 的平面角+说明:(1) 二面角的平面角范围是 [0°,180°];(2) 二面角的平面角为直角时,则称为直二面角,组成直二面角的两个平面互相垂直 引导:请学生归纳已学过的求二面角的大小的方法,教师作必要的补充与引导•明确本节课的课题. 二. 求二面角的平面角:【回顾复习定义法求二面角的平面角】例 1:在棱长为1的正方体AC !中,求平面C^D 与底面ABCD 所成二面可以求得: sin COC 16,所以,平面GBD 与底面ABCD 所成3二面角C 1 BDC 的平面角的正弦值大小为63【回顾复习用三垂线法求二面角的平面角】例 2.如图,AB 平面BCD , BD CD ,若AB BC 2BD ,求.面角B AC D 的正弦值•分析:要求二面角的正弦值,首先要找到二面角的平面角角C 1 BD C 的平面角正弦值大小. 解:过C 1作C 1O BD 于点O ,•••正方体 AC 1 ,••• CC 1 平面 ABCD , 二 COC 1为平面GBD 与平面ABCD 所成二面角C 1G BD C 的平面角,C所以,二面角B AC D 的正弦值为一10 .5通过观察探究利用法向量解决: 例1 :解:建立空间直角坐标系得:DC i (0,1,1),DB (1,1,0),DC (0,1,0)设平面 GBD 的法向量 n-i(x 1, y 1, Z |),平面 CBD 的法向量 n 2 (x 2,y 2,z 2),可得 n (1, 1,1), n 2 (0,0,1),口 (0,0,1) , n 2所以,二面角B AC D 的正弦值为一105三. 归纳小结:本节课回忆巩固了求解二面角的一些方法,并且通过类比用空间向量知识求解二面角,我们感受到空 间向量的巧妙之处,但要让同学们认识到法向量之间的夹角与二面角的平面角的异同之处。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间向量
一、定义:
(1)已知,则),,(121212z z y y x x AB ---=
(2)已知),,(),,,(222111z y x b z y x a ==
,则),,(212121z z y y x x b a +++=+

),,(212121z z y y x x b a ---=- ;212121z z y y x x b a ++=⋅
(3)数量积:cos a b a b θ⋅=⋅⋅
注:2
2
a a =;2()a
b a b +=
+;222||z y x a ++=
(4)应用:已知),,(),,,(222111z y x b z y x a ==
1122//x y a b b a x y λ⇒=⇒
==2
1
z z 00212121=++⇒=⋅⇒⊥z z y y x x b a b a
二、空间向量解决空间立体几何问题: 1、位置关系判定:
(1)线线平行:111
222
//x y z a b a b x y z λ→



⇒=⇒
== 线线垂直:121212(cos 0)02
a b x x y y z z π
θθ→→
⊥⇒=
=⇒⋅+⋅+⋅=
(2)线面平行://a m l α→→
⊥⇒(其中m →
为平面的法向量)
线面垂直://a m l α→

⇒⊥
(3)面面平行:////,m n m n αβαβ→→→→
⇒其中为的法向量,为
的法向量 面面垂直:,m n m n αβαβ→



⊥⇒⊥其中为的法向量,为的法向量
2、求夹角:
(1)线线角:||
|||||cos |b a b a
⋅⋅=θ,其中[0,]2πθ∈ (2)线面角:|||||||cos |sin m a m a
⋅⋅==θθ,其中[0,]2
π
θ∈ (3)二面角:cos ||||
m n
m n θ→→


⋅=
⋅,其中[0,)θπ∈
向量法求解二面角
向量在数学和物理学中的应用很广泛,在解析几何与立体几何里的应用更为直接,用向量的方法特别便于研究空间里涉及直线和平面的各种问题。

随着新教材中向量工具的引入,立体几何的解题更加灵活多样,这为那些空间想象能力较差的同学提供了机遇。

利用平面的法向量几乎可以解决所有的立几计算和一些证明的问题,尤其在求点面距离、空间的角(斜线与平面所成的角和二面角)时,法向量有着它独有的优势,以下举例全面剖析在立几中如何用法向量求二面角。

一. 利用法向量求二面角的大小的原理:
设 21,n n 分别为平面βα,的法向量,二面角βα--l 的大小为θ,向量
21,n n 的夹角为ϕ,则有πϕθ=+(图1)或 ϕθ=(图2)

基本结论 构成二面角的两个平面的法向量的夹角或夹角的补角等于这个二面角的平面角.
二. 如何求平面的一个法向量:
例题1: 如图3,在正方体ABCD-A 1B !C 1D 1中G 、E 、F 分别 为AA 1、AB 、BC 的中点,求平面GEF 的法向量。

略解:以D 为原点建立右手空间直角坐标系,则E(1,
21,0) 、F(2
1
,1,0) 、 G(1,0,2
1
)由此得:
)21,21,0(-=GE )021,21(-=FE 设平面的法向量为),,(z y x n = 由n ⊥GE 及n ⊥FE 可得
⎪⎪⎩
⎪⎪⎨⎧
=-=•=-=•021*******y x FE n z y GE n ⎩⎨
⎧==⇒y
z y
x
y
令y=1取平面的一个法向量为)1,1,1(=n
评析 因为平面的法向量有无数个,方向可上可下,模可大可小,我们只要求出平面的某一个法向量(教简单的)即可。

三. 法向量的应用举例:
例题4. 在长方体ABCD —A 1B 1C 1D 1中,AB=2,BC=4,AA 1=2,点Q 是BC 的中点,求此时二面角A —A 1D —Q 的大小.

评析(1)用法向量的方法处理二面角的问题时,将传统求二面角问题时的三步曲:“找——证——求”直接简化成了一步曲:“计算”,这在一定程度上降低了学生的空间想象能力,达到不用作图就可以直接计算的目的,更加注重对学生创新能力的培养,体现了教育改革的精神。

(2)此法在处理二面角问题时,可能会遇到二面角的具体大小问题,如本题中若令11-=a ,则)2,1,1(2---=n ,∴6
6
,cos 21->=<n n ,∴二面角A —A 1D —Q 的大小 是><21,n n 66arccos
-π=的补角6
6arccos 。

所以在计算之前不妨先依题意直观判断一下所求二面角的大小,然后根据计算取“相等角”或取“补角”。

例5 如图5,在底面是直角梯形的四棱锥S —A BCD 中,AD//BC ,∠
A BC=900,S A ⊥面A BCD ,S A =21,A B=BC=1,A D=2
1。

求侧面SCD 与面SB A 所成的二面角的大小。

评析:(1)因为所求的二面角的交线在图中较难作出,所以用传统的方法求二面角比较困难,向量法在这里就体现出它特有的优势;(2)但判断侧面SCD 与面SB A 所成的二面角的平面角是锐角还是钝角时,图形的直观性就不明显了,当不能很好地判断所求的二面角的类型时,以下给出解决方案。

图5
四. 当直观很难判断二面角是锐角还是钝角时, 通过判断法向量的方向来求解二面角.
原理 首先我们再重新认识一下法向量夹角和二面角的关系: 如上图6所示,当我们把法向量控制成“一进一出”, 此时两法向量在三个坐标平面xoz yoz xoy ,,的投影也 可以看成是“一进一出”,这时不难得出12,n n 的夹角 就是二面角的大小,反之就不是。

其次如何控制一个平面的法向量方向是我们想
要的“向上或向下”,“向后或向前”,“向左或向右”呢?
如图7所示:平面ABC 的法向量n
若要法向量n 的方向“向上”,可设n =)1,,(y x 或
n =),,(0z y x ,其中0z >0;若要法向量n 的方向 “向前”,可设n =),,1(z y 或n =),,(0z y x ,其中
00>x ;若要法向量n 的方向“向右”,可设n = ),1,(y x 或n =),,(0z y x ,其中00>y
所以,只要我们判断两个法向量的方向是 “一进一出”,那么所求的二面角的平面角就等
1
n
2
n
图6
于两法向量的夹角,如果是“同进同出”, 那么
所求的二面角的平面角就等于两法向量的夹角的补角,掌握了这点,那么用法向量求二面角就可以做到随心所欲。

1,在底面是直角梯形的四棱锥S —A BCD 中,AD//BC ,∠A BC=900,S A ⊥
面A BCD ,S A =21,A B=BC=1,A D=2
1。

求侧面SCD 与面SB A 所成的二面角
的大小。

2如图,正三棱柱111ABC A B C -的所有棱长都为 2,D 为1CC 中点.
(Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角11C B A A --的大小;
A
B
C
D
1
A
1C
1B
3.如图,已知四棱锥P ABCD -,底面ABCD 为菱形,
PA ⊥平面ABCD ,60ABC ∠=,E F ,分别是BC PC ,
的中点.
(1)证明:AE PD ⊥;
(2)若H 为PD 上的动点,EH 与平面PAD 面角E AF C --的余弦值.
4.如图,在底面是菱形的四棱锥P —ABC D中,∠ABC=600,PA=AC=a ,PB=PD=
a 2,点E 在PD 上,且PE:ED=2:1.
(1)证明PA ⊥平面ABCD ;
(2)求以AC 为棱,EAC 与DAC 为面的二面角θ的大小
P
B
E
C
D
F
A
5.如图,直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=AA1=1,,AB1与A1B 相交于点D,M为B1C1的中点.
(1)求证:CD⊥平面BDM;
(2)求平面B1BD与平面CBD所成二面角的大小.。

相关文档
最新文档