有理数的思维导图
初中数学思维导图
初中数学(1)有理数(2)代数式与整式(3)一元一次方程(4)实数(5)平面直角坐标系(6)二元一次方程(7)不等式(组)(8)整式的乘除与因式分解(9)分式与分式方程(10)二次根式(11)一次函数(12)一元二次方程(13)二次函数(14)反比例函数(15)图形的初步认识(16)相交线与平行线(17 )三角形与多边形(18)全等三角形及其性质(19)轴对称与等腰三角形(20)勾股定理(21)平行四边形(22)图形的旋转(24)相似型(25)锐角三角函数(26)视图与投影(27)尺规作图与命题的证明(28)数据的收集,整理与描述(29)数据的分析(30)概率有理数有关概念有理数的四则运算有理数的乘方科学记数法近似数有理数定义分类性质分类整数分数正整数零负整数正分数负分数正有理数零负有理数负整数负分数正整数正分数绝对值数轴相反数原点正方向单位长度符号不同的两个数互为相反数,数字要一样0的相反数是零0数a的绝对值记作lal,读作a的绝对值,任何数都有绝对值0的绝对值是零0,一个正数的绝对值是它本身一个负数的绝对值,是它的相反数有理数的加减法加上一个数或减去一个数有理数的加法运算律加法交换律加法结合律两个数相加交换加数的位置和不变a+b=b+a三个数相加,先把前两个数相加,或者先把后两个数相加和不变(a+b)+c=a+(b+c)有理数的乘法两数相乘,同号得正,异号得负,并把绝对值相乘任何数与零相乘都得零倒数一个正数的倒数仍是负数,一个负数的倒数仍是负数0没有倒数有理数的乘法运算律乘法交换律乘法结合律乘法分配律两个数相乘交换因数位置积相等ab=ba三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等(ab)c=a(bc)一个数同两个数的和相乘同于把这个数分别同这两个数相乘,再把积相加a(b+c)=ab+ac有理数的除法除以一个不等于零的数,等于乘以这个数的倒数两数相除,同号得正异号得负,并把绝对值相除0,除以任何一个数不等于 0的数,都是01 零不能做除数2有理数的除法与乘法是互逆运算3在做除法运算时,根据同号得正,异号得负的法则,先确定符号,再把绝对值相除,若在算式中有带分数,则一般化成假分数进行计算,若不能整除除法运算,转化为乘法运算:有理数的乘方及表示方法求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂,在a的n次方中,a叫做底数,n叫做指数an读作a的n次方有理数乘方的计算步骤一,先将乘方运算转化为乘法运算二,根据乘方的符号法则,确定幂的符号三,计算幂的绝对值有理数的混合运算顺序含有有理数的加减乘除乘方五种基本运算的多种运算叫做有理数的混合运算先乘方,再乘除,最后加减科学计数法把一个数表示成a×10的N次方的形式近似数近似数就是与准确数很接近的数代数式整式整式的加减有理式(只有加减乘除乘方包括数字开方运算的代数式叫做有理式)无理式(还有关于字母开方运算的代数式,叫做无理式)整式分式多项式单项式代数式的书写要求1字母与字母相乘,数字与字母相乘,数字应写在字母前,乘号通常写作(.)或者省略不写2当代数式中出现除法律算式一般按照分数的写法来写3带分数与字母相乘,省略乘号时应把带分数化成假分数(分子等于分母或大于分母的叫假分数)4实际问题中需弄单位时,若代数式的最后结果含有加、减运算,则要将整个式子用括号括起来再写单位,否则可直接写单位单项式定义多项式定义几个单项式的和叫做多项式如X的2次方+二xy+y的二次方,a的二次方减去b的二次方在多项式中,每个单项是叫做多项式的项,只含十一像一a,二分之一平方米,一ab,2兀r,都是数或字母的积,这样的事实叫做单项式,特别的单独的一个数或一个字母也是单项式,单项式中只含乘除,不含加减同类项合并同类项去括号化简求值所含字母相同,并且相同字母的指数也相同的项叫做同类项,几个常数项也是同类项?把多项式中的同类项合并成一项叫做合并同类项,一2a与5a合并同类项后为3a ,1/2x的二次方y与5x的二次方y合并为同类项后为11/2x的二次方y多项式的项合并同类项的步骤1准确找出同类项2利用法则把同类项的系数相加,字母和字母的指数不变3写出合并后的结果如3x的2次方y+4x的2次方y=(3+4)X的二次方y=7 X2次方y如果括号外的因数是正数去括号后原括号内各项的符号与原来的符号相同如果括号外的因数是负数去括号后原括号内各项的符号与原来的符号相反,如+(a+b一c,一(a+b一c)=一a一b+C化:通过去括号合并同将整式化简代::把已知的字母或某个整式的取值代入化简后的式子算:一句有理数的混合运算法则进行计算方程的有关概念解一元一次方程列一元一次方程解应用题用等号表示相等关系的式子叫做等式等式两边同时乘同一个数,或除以同一个数不为零的数,结果仍相等,等式两边同时加或减同一个数或40,结果仍相等只含有一个未知数,未知数的次数都是一等号,两边都是整数,这样的方程叫做一元一次方程一去分母,二去括号,三移项,四合并同类项,五系数化为一等积变形问题行程问题年龄问题工程问题利润率问题素质问题包括阅历中的数字规律储蓄问题配套问题长方体的体积等于长乘宽乘高圆柱体的体积等于兀R的二次方hH为高,r为底面圆半径变形前后体积相等相遇问题追及问题航行问题路程等于速度乘时间,时间等于路程除速度,速度整个路程除时间和上面一样快车行驶路程一去慢车行驶路程=原距离快车行驶距离十慢车行驶路程=远距离顺水速度=静水速度+上水流速度逆水速度=静水速度一水流速度路程=速度X时间大小两个年龄差不会变由题可知年龄增长一年为一岁工作量=工作效率x工作时间工作效率=工作量÷工作时间工作时间=工作量÷工作效率两个或几个工作效率不同的对象所完成的工作量和等于总工作量商品的利润率=商品进阶除以商品利率乘以100%商品利率=商品售价一商品进价(成本价)找出利润或利润率与其他量之间的关系设a,b分别为一个两位数的个位,十位上的数字,则这个两位数可表示为10b+1 抓住数字之间的新数原数之间的关系的关系利息=本金x利率x期数本息和=本金+利息=本金x(1+利率x期数)有题可知M件a产品与n件b产品配套a产品的数量xn= b产品的数量xm平方根的有关概念立方根的有关概念实数算术平方根平方根开平方平方根与算术平方根的区别与联系一般的,如果一个正数X的平方根等于a,即X的二次方等于a,那么这个正数x叫做a的算术平方根 0的算术平方根0非负数a的算术平方根记作根号a,读作根号a,其中a叫做被开方数如五的二次方等于25,那么五叫做25的算术平方根或者说25的算术平方根是5如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根,如果x的二次方=a,那么x叫做a的平方根一个正数a有两个平方根,它们互为相反数,记住正负根号a0的平方根是零0负数没有平方根求一个数a(a≥0)的平方根的运算叫做开平方,用符号±根号a表示(±9)的二次方=81 ±根号81 =±9算术平方根平方根如果一个数x的平方根等于a,即x的二次方=a,那么这个数x叫做a的平方根或二次方根,即x=±根号a一个正数有两个平方根,它们互为相反数,0的平方根是0 负数没有平方根如果一个正数x的平方根等于a,即x=a,那么这个正数x叫做a的算术平方根,即x=根号a 正数只有一个算数平方根,且恒正,根号0=0 负数没有算数平方根立方根开立方立方根与平方根的区别无理数实数及其分类一般的,如果一个算数x的立方=a,即x的三次方=a,那么x叫做a的立方根或者三次方根数a的立方根数a的立方根记住三次根号a,其中a叫做被开方数如5三次方=125.5叫做125的立方根负数没有平方根,但有立方根求一个数a的立方根的运算叫做开立方,八的立方根为三次根号8=2平方根的指数2可以省略,立方根的指数3不能省略无限不循环的小数叫做无理数有理数和无理数统称为实数平面直角坐标系的有关概念点的坐标的有关性质有序数对有顺序的两个数a与b组成数对教有序数对记作(a,b)前列后排平面直角坐标系在平面内画两条互相垂直并且原点重合的数轴,这样就建立了平面直角坐标系,横坐标x,纵坐标y象限平面直角坐标系上的x轴和y轴把坐标平面分成四个部分,每个部分称为象限,按逆时针依次叫做第一象限,第二象限,第三象限,第四象限,从右上方开始各象限内点的坐标的符号特征第一象限十十,第二象限一十,第三象限一一,第四象限十一二元一次方程组的有关概念解二元一次方程组列二元一次方程组解应用题二元一次方程二元一次方程组含有两个未知数,并且含有未知数的项次数都是一像这样的方程,叫做二元一次方程方程组中有两个未知数,每个含有未知数的项的次数都是1二元一次方程的解二元一次方程的解都是成对的,两个数一般要用大括号联系表示如x=1 y=2是二元一次方程x+y=3的一组解二元一次方程组的解二元一次方程组的两个方程的共同点叫做二元一次方程组的解解二元一次方程组的解一般情况下是唯一的,但有的方程组有无数多个解或者无解消元思想二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为熟悉的一元一次方程,即可先解出一个未知数,然后求另一个未知数,这种将未知数的个数由多化少逐一解决的思想,叫做消元思想代入消元法打二元一次方程组中的一个方程的一个未知数,用含另一个未知数的式子表示出来,再代入另一个方程加减消元法当二元一次方程组的两个方程中,同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数整体消元法将方程组中的一个方程或方程的一部分看成一整体带入另一个方程中解二元一次方程组的步骤二元一次方程组(消元)一元一次方程(求解)求出一个未知数的值(回代)求出另一个未知数的值(联立)写出方程组的解列二元一次方程组解应用题的常见类型(1)和,差,倍,分,问题较大量=较小量+多余量,总量=倍数x一份的量(2)产品配套问题这类问题的基本等量关系是配套比相等(3)行程问题路程=速度x时间(4)航速问题 1顺流(风)速度=静水(无风)中的速度+水(风)速 2逆流(风)速度=静水(无风)中的速度一水(风)速(5)工程问题工作量=工作效率x工作时间(6)增长率问题原量x(1+增长率)=增长后的量,原量x(1一减少率)=减少后的量(7)银行利率问题免税利息=本金x利息x期数,税后利息=本金x利率x期数一本金乘利率x期数x税率不等式的有关概念及性质解一元一次不等式解一元一次不等式组列一元一次不等式组解应用题不等式不等式的解与解集用符号<或>表示大小关系的式子叫做不等式使不等式成立的未知数的值叫做不等式的解,不等式的解是一个具体的解,如x=1是x+2>1的解不等式的性质不等式两边加或减同一个数或式子不等号的式方向不变,不等式两边乘或除同一个正数不等式号方向不变,不等式两边同乘或除同一个负数不等式号方向改变一元一次不等式只含有一个未知数不等式的两边都是整式,这样的不等式叫做一元一次不等式,不等式中只含一个未知数,未知数的次数是1一元一次,不等式的解集与表示方法用数轴表示解一元一次不等式的一般步骤去分母去括号移项合并同类项系数化为1一元一次不等式组类似于方程组把两个含有相同未知数的一元一次不等式合起来,组成一个一元一次不等式组一元一次,不等式组的解集用数轴来表示几个不等式的解集的公共部分,通常利用数轴来确定列一元一次不等式组解应用题的关键语句至少,最多,超过,不低于,不大于,不高于,大于,多等幂的有关计算整式的乘除因式分解同底数幂的乘法,底数不变,指数相加如a的m次方xa的n次方=a的m+a次方幂的乘方底数不变,指数相乘,如(a的m次方)n次方=a的mn次方积的乘方把每一个因式分别乘方,再把所得的幂相乘如(ab)的N次方=a的N次方b的N次方(N为正整数),(xy)的三次方=X的三次方y的三次方同底数幂的除法同底数幂相除底数不变指数相减,如A的m次方÷a的N次方=a的m-n次方零指数幂任何不等于零的数的零次幂都等于1单项式与单项式的相乘把它们的系数同底数幂分别相乘,对于只在一个单项式里含的字母,连同它的指数作为积的一个因式,如(2ab的二次方)x(一3a的三次方bc的二次方)=〈2x(一3)〉(axa的三次方)x(b的二次方xb)xc的二次方=6a的四次方b的三次方c的二次方单项式与多项式相乘单项式去乘多项式的每一项,再把所有得的积相加,如m(a+b+c)=ma+mb+mc乘法公式平方差公式完全平方差公式(a+b)(a一b)=a的二次方一b二次方两个数的和与这两个数的差的积,等于这两个数的平方差两个数的和或差的平方等于它们的平方和加上或减去它们积的2倍,即(a+b)的二次方=a的二次方+2ab+b的二次方,(a一b)的二次方=a二次方一2ab+b的二次方这两个都叫做完全平方公式,为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式添括号括号前面是+,括到括号里的各项都不变号,括号前面是一括号到括号里面的各项都变号单项式除以单项式把系数与同底数幂分别相除作为商的因式,对于只在被除数里出现了字母,连同它的指数作为商的一个因式,如4x的二次方y÷(2x)=(4÷2)(x的二次方÷x)xy=2xy多项式除以单项式多项式的每一项除以单项式如(ma+mb+mc)÷m=ma÷m+mb÷m十mc÷m=a+b+c整式的混合运算先乘方,再乘除,后加减,有括号时先算括号里的因式分解公因式多项式的各项都有一个公共的因式我们把这个因式叫做这个多项式,各项的公因式,如pa+pb+pc,p叫做这个多项式各项的公因式提公因式法公式法把一个多项式化成几个整式的积的形式,像这样的式子变形,叫做这个多项式的因式分解,这也叫做把这个多项式分解因式a的二次方一b的二次方→(因式分解)→(a+b)(a-b)→(整式乘法)→a的二次方一B的二次方6a的三次方b的二次方一4ab的二次方一2a的二次方b的三次方公因式是2ab第二次方平方差公式完全平方差公式两数的平方和加上或减去它们的积的2倍,等于两数和(差)的平方两个数的平方差等于这两个数的和与这两个数的差的积公式 a的二次方一b的二次方=(a+b)(a一b),其中a,b可以是单项式,也可以是多项式公式 a的二次方±2ab+b的二次方=(a±b)的二次方,其中ab可以是单项式或多项式因式分解的一般步骤1先看多项式的各项是否有公因式,若有则应先提公因式2根据多项式的项数判断是否能套用公式,若是二项式,看是否符合平方差公式的特征,若是三项式,则看是否符合完全平方公式的特征3多项式的项数多于三项时,可考虑先分组再进行因式分解4因式分解的结果一定要彻底分解到每个因式都不能再分解为止分式的有关概念分式的运算分式方程列分式方程解应用题分式的基本性质分式的分子与分母乘或除以同一个不等于零的整数,分式的值不变约分集约分法则把一个分式的分子与分母的公因式约去叫做分式的约分最简分式分子与分母没有公因式的分式叫做最简分式最简公分母取个分数系数的最小公倍数,与所有字母公式数的最高次幂的积作为公分母,这样的分母叫做最简公分母通分局通分法则根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式叫做分式的通分先求个各分式的最简公分母及各分母系数的最小公倍数相同,因数的最高次幂与所有不同因式积约分与通分的联系与区别区别;约分的分式个数是一个,通分的分式个数是两个或两个以上,约分的目的将分式化为最简的分式或整通分的目的十几个一分母的分式化为同分母的分式联系;依据是分式的基本性质,分式的值不变分式的乘方分式方程要把分子,分母分别乘方,如(A/b)的N次方=B的N次方/a的N次方分式的加减先通分变为同分母分式再加减分式的混合运算先算乘方,再算乘除,最后算加减,有括号的先算括号里的负整数指数幂任何不等于零的数的负N次方(n为正整数)次幂,等于这个数的n次幂的倒数,即a的负N次方=A的N次方/1(a≠0,n为正整数)科学计数法用ax10几次方?来表示分式方程分母中含有未知数的方程,叫做分式方程解分式方程的一般步骤1去分母2解整式方程3验算可化为一元一次方程的分式方程方程两边同乘一个数去分母列分式方程解应用题的常见题型行程问题有路程,时间和速度三个量,其关系是路程=速度x时间工程问题有工作效率,工作时间和工作总量三个量,其关系是工作总量=工作效率x工作时间增长率问题其等量关系式原谅乘(1+增长率)=增长率后的量,原量x(1一降低率)=降低后的量利润问题商品利率=商品售价一商品进价商品利率=商品利润÷商品进价x100% 售价=进价x(1+利润率),售价=标价x打折价二次根式的有关概念和性质二次根式的运算二次根式;形如根号a(a≥0)的式子叫做二次根式,其中符号根号叫做二次根号,二次根号下的数叫做被开方数使二次根式有意义的条件;当二次根式根号a中要求字母a必须满足条件a≥零0,给被开方数是非负的,所以当a≥ 0时,二次根式根号a有意义当a<0时,二次根式根号a无意义二次根式的性质;(根号a)的二次方= a(a≥0)根号a的二次方=|a|=a(a>0)0(a=)一a(a<)二次根式的乘法两个二次根式相乘,把被开方数相乘,根指数不变积的算数平方根积的算术平方根等于积中各各因式的算数平方根的乘积商的算术平方根商的算术平方根等于被除数的算术平方根除以除数的算术平方根,即根号a/b=根号b分之根号a(a≥0,b>0)最简二次根式1被开方数的因数是整数,字母因式是整式2被开方数不含能开的,尽方的因数或因式二次根式的加减先将二次根式化成最简,二次根式再将被开方数相同的二次根式进行合并二次根式的混合运算二次根式的混合运算是指二次根式的加减乘除,乘方的混合运算(23)圆变量与函数一次函数的图像与性质一次函数与方程组不等式一次函数的实践与探索常量与变量常量在一个变化过程中,数值始终不变的量称为常量变量在某一变化过程中数值发生变化的量称为变量变量可以变化,而常量是已知数函数一般的一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值y都有一个唯一确定的值与其对应,那么我们说x是自变量y是x的函数函数自变量的取值范围函数自变量的取值范围是指函数有意义的自变量的全体函数值如果在自变量取值范围内给定一个值a函数,对应的值为b,那么b叫做当自变量取值为a时的函数值函数的解析式像y=50一0.1Ix这样,用关于自变量的数学式子表示,函数与自变量之间的关系是描述函数的常用方法,这种式子叫做函数的解析式函数的图像列表,描点,连线函数的表示方法列表法;打字变量x的一个系列值和函数y的对应值列成一个表解析式法;用含有自变量的代数式表示函数的方法叫做解析式法图像法正比例函数与一次函数待定系数法正比例函数的图像特征与性质一次函数的图像特征与性质k,b的符号与直线y=kx+b(k≠0)的关系如y=kx(K是常数,k≠0)的函数,叫做正比例函数,如y=1/3x,y=一3x等都是正比例函数如y=kx+b(K,b是常数k≠零)的函数叫做一次函数,如Y=2 x- 1,y=1 /2 x+1等都是一次函数一次函数一般形式(1)K不等于(2)x的次数是1(3)常数b可以为任何实数先设出函数解析式,再根据条件确定解析式中未知的系数,从而得出函数解析式的方法叫做待定系数法丨当k>0时,函数y=kx的图像从左向右呈上升趋势,当k<0时,函数y=kx的图像从左向右呈向下降趋势正比例函数y=kx(k≠0)中丨k丨越大直线y=kx越靠近y轴,丨k丨越小直线y=kx越靠近x轴用图像来表示图像过第123象限,图像过134象限Y随x的增大而增大图像过124象限图像过234象限y随x增大而减小直线y=kx+b(k不等于零),令y=0,得x=-b/k,即直线y=kx+b与x轴交于(减b0/k)一次函数与一元一次方程当某个一次函数的值为零时,求自变量的值一次函数与二元一次方程组如果一个二元一次方程组有唯一解,那么这个解就是方程组对应的两条直线的交点坐标一次函数与一元一次不等式从函数角度看解一元一次不等式,就是寻求使一元一次函数y=ax+b(a≠0)的值大于或(或小于)0的自变量x的取值范围从函数图像的角度看就是确定直线y=ax+b(a≠0)的在x轴上或下方部分的点的横坐标满足的条件函数值的大小问题转化为解方程或解不等式的问题加以解决一元二次方程的一般形式一元二次方程的根一元二次方程的有关概念一元二次方程的根解一元二次方程解一元二次方程应用题含一个未知数并且未知数的最高次数是二的整式方程,叫做一元二次方程等号左边是一个关于未知数的二次多项式等号,右边是0将此数带入这个一元二次方程的左右,两边看是否相等直接开平方解一元二次方程如X的二次方等于p或(MX+n)的二次方等于p (p≥0)配方法解,一元二次方程通过配成完全平方形式来解一元二次方程的方法,叫做配方法一元二次方程根的判别式公式法解一元二次方程一般的四肢b的二次方一4AC叫做方程ax的次方加bx+c=0(a≠0)的根的判别式通常用希腊字母△表示,即△=b的二次方一4 acax的二次方+bx+c=0(a≠0)因式分解法解一元二次方程子主题使方程化为两个一次因式的乘积等于零的形式一元二次方程根与系数关系方程解应用题的一般步骤审设找列检验答列一元二次方程解应用题的常见类型数字问题若一个两位数,十位个位上的数字分别为a,b,则这个两位数表示为十a+b 若一个三位数百位,十位个位上的数字分别为ABC,则这三个数表示为100 a+10 b+c平均增长(降低)率问题设a为起始量,b为终止量,n为增长(降低)的次数,均增长率公式为a(1+x)的n次方=b(x为平均增长率)为,平均降低率公式为a(1 -x)的n次方=、b(x为平均降低率)面积体积问题将不规则图形分割或组合成规则图形,找出未知量与已知量在内再联系,根据面积(体积)公式列出一元二次方程传染问题传染源加第一轮被感染数+第二轮被感染数=第二轮被感染后的总数子主题销售利润问题利润=售价一进价利润率=进价/利润X100%=进价/售价一进价X100%售价=进价X(1加利润率)总利润等于总售价一总成本=单个利润X总销售量二次函数的有关概念二次函数的图像与性质二次函数的实践与探索二次函数如y=aX的二次方+bx+c(a,b,c是常数a≠0)的函数叫做二次函数,其中x是自变量ABC分别是函数表达式的二次项系数一次项系数和常数项二次函数的一般形式函数的关系是整式,自变量的最高次数是二,二次项系数不等于零二次函数的常见表达式式子表达二次函数的顶点坐标及其意义抛物线二次函数y=ax的二次方+bx+c(a不等于)的图像是以(- 2a/b,4a/4ac一b的二次方)为顶点,直线x=一2a/b为对称轴的抛物线二次函数的图像特征与性质轴对称的抛物线顶点坐标为原点(0,0)子主题反比例函数的有关概念比例函数的图像与性质反比例函数一般的弄y=x/k(K是常数,k≠0)的函数叫做反比例函数反比例函数的一般形式y=K/x(其中,k为常数x≠0),以分式形式呈现在分母中,x,指数为1待定系数法求反比例函数解析式的一般步骤1求反比例函数的解析式2求y的值3求x的值反比例关系与反比例函数的区别与联系反比例关系不一定是反比例函数双曲线他的两个分支分别位于第一,第三或第二,第四限反比例函数的图像特征与性质k>0;函数的图像在第一,第三象限在每个象限内y随x的增大而减小 k<0函数的图像在第二,第四象限在每个象限内y随x增大而增大反比例函数y=K/x (k≠0)中比例系数k的几何意义矩形的面积三角形的面积子主题子主题反比例函数图像的对称性其对称轴为直线y=x和y=一x,对称中心为原点反比例函数与正比例函数的联系与区别区别反比例函数正比例函数联系子主题空间图形直线射线线段直线及其表示方法直线没有尽头,是向两方无限延伸的,直线AB和直线BA ,字母无序射线及其表示方法o是这条线的端点,把线段oA,向一方无限延伸,端点的字母必须写在前面线段及其表示方法直线上两个点和它们之间的部分叫做线段角角的定义具有公共端点的两条射线组成角的表示方法角的度量用字母,大写字母,数字,希腊字母,表示度,分,秒角的和差角AOC是角aob与角BOC的和,角aob是角AOC与角COD的差角的平分线一个角从顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线余角和补角如果两个角的和等于90度,则这两个角互为余角,如果两个角的和等于180度,则这两个角互为补角方向角与方位角(1)方向角正北或正南方向线与目标方向线所成的小于90度的角叫做方向角(2)方位角从正北方向逆时针转到目标方向线的水平角,这叫做方位角,取0到360度,比如正东方向就是方位角为90度,正西方向就是方位角为270度相交线相交线中的角平行线图形的平移直线的位置关系在同一平面内不重合的两条直线的位置关系只有两种相交或平行垂线当两条直线相交所成的四个角中,有一个角是直角时说明这两条直线互相垂直,其中一条直线叫做另外一条直线的垂线,它们的交点叫做垂足垂线的性质在同一平面内过一点,有且只有一条直线与已知直线的垂直,垂线段最短对顶角有一个公共的顶点且一个角两边分别是另一个角的两边的反向延长线,对顶角相等邻补角两个角有一条公共边,且它们的另一边互为反向延长线,具有这种关系的两个角互为邻补角,两个角只有数量关系,没有位置关系和等于180度同位角内错角与同旁内角同位角在截线的同一侧,F形内错角在截线的两侧,z字形同旁内角在截线同一侧,c字形平行线的画法平行公理平行线的判定平行线的性质平行线的判定与性质的区别和联系一落二靠三移四画经过直线外一点有且只有一条直线与这条直线平行两条直线平行同位角相等两脚间的数量关系一一判定一一两直线间的位置关系一一性质一一两脚间的数量关系连接各组对应点的线段平移,或在同一直线上且相等三角形的性质多边形的有关概念和性质三角形的三边关系三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边,判断三条线是否能组成三角形,已知三角形的两边,求第三边的取值范围三角形的内角和定理角的和等于180度三角形的外角三角形的一个外角等于它不相邻的两个内角的和,三角形的一个外角大于与它不相邻的任何一个内角三角形的外角和三角形的外角和是360度三角形的稳定性除三角形外其他图形都不具备稳定性多边形及其组成要素边顶点内角外角对角线正多边形各边都相等,各角都相等组成多边形的各条线段叫做多边形的边每相邻两边的公共端点叫做多边形的顶点多边形相邻,两边所组成的多边形的内部的角叫做多边形的内角简称,多边形的角多边形的,一边和它的邻边的延长线组成的角角,多边形的外角连接多边形不相邻的两个顶点的线段叫做多边形的对角线凸多变形多边形分为凸多边形和凹多边形,整个图形都在这条直线的同一侧,这样的多边形称为凸多边形,整个多边形都不在这条直线的同一侧,我们称它为凹多边形多边形内角和定理N边形的内角和等于(n- 2〉×180%多边形外角和定理多边形的外角和内角和等于360度与边数无关四边形的不稳定性三角形的三边确定后,他们的大小形状就确定了,这是三角形的稳定性,但是四边形的四边确定后,它的形状不能确定,这就是四边形的不稳定性全等三角形及其性质全等三角形的判断角平分线的性质全等图形能够完全我的两个图形叫全等图形全等三角形能完全重合的两个三角形叫做全等三角形,用符号≌表示,读作全等于全等变换全等变换是指改变图形的位置,而不改变图形的形状和大小的变换全等三角形的性质全等三角形的对应,边相等全等三角形的对应角相等如△ABC≌A'B'C'边边边定理三遍对应相等的两个三角形全等(简写成边边边或sss)边角边定理两边及其夹角分别等于的两个三角形全等(简写成边角边或sas)角边角定理两个角及其夹边分别相等的两个三角形全等,(简写成角边角或asa)角角边定理两个及其中一个角的对边对应相等的两个三角形全等(简写成角角边或aas)斜边直角边定理斜边和一条直角边分别相等的两个直角三角形全等(简写成斜边直角边或HL)角平分线的性质定理望着点到角的两边的距离相等点在角平分线上的判定角的内部到角的两边的距离相等的点在角的平分线上三角形中角平分的性质三条边的距离相等图形的轴对称线段的垂直平分等腰三角形轴对称把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么这两个图形关于这条直线对称,也叫轴对称,折叠后重叠的河叫对应点叫做对称点,这条直线叫做对称轴轴对称图形如果一个平面图形沿着一条直线折叠直线两旁的部分,能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴对称轴图形和轴对称的区别与联系轴对称图形轴对称轴对称的性质如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线作轴对称图形的一般步骤1在原图形上找特殊点2做个个特殊点,关于已知直线的对称轴3按原图对应连接个对称点平面直角坐标系中的轴对画图表示射线的垂直平分线垂直于一条线段,并平分这条线段的直线,叫做这条线段的垂直平分线线段的垂直平分线的性质线上的点与这条线段两个端点的距离相等线段的垂直平分线的判定与线段两个端点距离相等的点,在这条线段的垂直平分线上三角形三边的垂直平分线的性质三边三角形的垂直平分线相交于一点,这个点到三个顶点的距离相等垂直平分线与角平分线的区别与联系角平分线垂直平分线等腰三角形等腰三角形的判断定理等边三角形的判定定理等边三角形及其性质有两条边相等的三角形就是等腰三角形等腰三角形的两个底角相等(简称等边对等角)如果一个三角形有两个角相等,那么这两个角所对的边也相等,(简写成等角对等边()三条边都相等的三角形叫做等边三角形,两边三角形的三边都相等,三个内角都相等,并且每一个内角都等于60度等边三角形的判定123直角三角形与勾股定理勾股定理的逆定理直角三角形的性质123勾股定理直角三角形两条直角边的平方和等于斜边的平方 a二次方=c的二次方一b的二次方,B二次方=c的二次方一a的二次方勾股数勾股定理的逆定理勾股定理与勾股定理的逆定理的区别与联系能构成直角三角形,,三条边长的三个正整数,称为勾股数如果三角形两边的平方和等于第三边的平方,那么该三角形是直角三角形勾股定理勾股定理的逆定理平行四边形中位线矩形菱形正方形平行四边形的性质定理子主题平行线间的距离两条平行线间的距离处处相等平行四边形的判定定理子主题平行四边形的对称性三角形的中位线连接三角形的两边中点的线段叫做三角形的中位线三角形中位线定理三角形的中位线平行于第三边,并且等于第三边的一半平行线等分线段定理如果一组平行线在一条直线上截得线段相等,那么在其他直线上截的线段也相等矩形有一个角是直角的平行四边形叫做矩形矩形的性质定理四个角都是直角,对角线相等矩形的判定定理矩形的对称性矩形是轴,对称图形有两条对称轴,且对称轴都是过对边中心的直线菱形有一组邻边相等的平行四边形叫做菱形菱形的性质定理子主题子主题菱形的判定定理1平行四边形加一组邻边相等,加一个角为直角2矩形加一组邻边相等2矩形加对角线互相垂直4菱形加一个角为直角5菱形加对角线相等图形的旋转中心对称绕着某一点旋转180度中心对称图形把一个图形绕着某一点旋转,180度,如果旋转后的图形能够与原来的图形重合,那么这个图形称为中心对称图形,这个点就是它的对称中心,中心对称图形是一种特殊的旋转对称图形中心对称图形的基本性质1中心对称的两个图形是全等图形2对称点所连线段都经过对称中心,而且被对称中心所平分3对应线段平行(或在同一直线上)且相等作已知图形成中心对称的图形的一般步骤1连接原图形上的所有关键点与对称中心2再将以上连线延长找对称点,使得关键点与其对称点到对称中心的距离相等3将对称点按原图形的形状顺次连接起来,即可得出与原图形成中心对称的图形关于原点对称的点的坐标在平面直角坐标系中,如果两个点关于原点对称,那么它们的坐标符号相反与圆的有关概念圆的基本性质与圆的位置关系与圆有关的基本概念弦直径弧半圆劣弧优弧同心圆和等圆同心圆:圆心相同半径不相等的两个圆叫做同心圆等圆:能够完全重合的两个圆叫做等圆半径相等的两个圆是等圆同圆或等圆的半径相等圆心圆和圆周角圆心角:顶点在圆心的角叫做圆心角圆周角:顶点在圆上,且两边都和圆相交的角叫做圆周角三角形的外接圆与外心1经过三角形三个顶点的圆,叫做三角形的外接圆,这个三角形叫做圆的内接三角形2三角形外接圆的圆心叫做三角形的外心,三角形的外心是三角形,三边垂直平分线的交点弓形,扇形弓形:由弦及其所对的弧组成的图形叫做弓形扇形:一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形圆的对称性圆的中心对称性圆的轴对称性垂经定理及其推论垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧圆心角,孤,弦,之间的关系在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等圆周角定理及其推论在同圆或等圆中,一条弧所对的圆周角等于它所对的圆心角的一半圆内接四边形及其性质定理圆内接四边形的对角互补,并且任何一个外角都等于它的内对角点与圆的位置关系1点在圆内2点在圆上3点在圆外过己知点的圆直线与圆的位置关系直线与圆的位置关系的性质与判定切线的性质定理切线的判定定理切线长定理三角形的内切圆与内心相交相切相离直线与圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线直线和圆有唯一公共点时叫做直线和圆相切,这时直线叫做圆的切线为一的公共点叫做切点直线和圆没有公共点时,叫做直线和圆相离子主题圆的切线垂直于过切的半径经过半径的外端,并且垂直于这条半径的直线是圆的切线在经过圆外一点的圆的切线上,这点和切点之间的线段的长叫做这点到圆的切线长与三角形各边都相切的圆叫做三角形的内切圆正多边形与圆的有关计算正多边形与圆的关系都有一个外地人和一个内切圆,这两个圆是同心圆正多边形的中心与中心角子主题正多边形的半径与边心距正多边形的有关计算子主题正多边形的对称性子主题弧长公式扇形面积公式圆柱侧面展开图圆锥侧面展开图比例线段及有关性质相似三角形相似多边形与位似图形两条线段的比比例线段比例的基本性质平行线分线段成比例定理如果选中同一长度单位的两条线段A,B的长分别是m和n,就说这两条线段的比是a:b=m:n,或写成a/b=m/n,合数的比一样,两条线段的比A:B中a角比的前列必较比的后列在四条线段中,如果其中两条线段比等于另外两条线段的比,那么这四条线段叫做成比例线段简称比例线段如A/b=c/d,那么AD=BC如果AD=BC,那么a/b=c/d(b,d≠0两条直线被一组平行线所截所得的对应线段成比例平行于三角形一边的直线与其他两边相交,截得的对应线段成比例相似图形把形状相同的图形叫做相似图形相似图形之间的互相变换,称为相似变换相似三角形角对应相等,边对应成比例的两个三角形叫做相似三角形相似比三相似三角形对应边的比叫做相似比相似三角形的判定三个角分别相等三条边成比例的两个三角形相似相似三角形的性质对应边成比例对应角相等相似多边形及其性质两个边数相同的多边形,如果他们的角分别相等边成比例,那么这两个多边形叫做相似多边形相似多边形的性质:12345相似多边形的判定如果两个边数相同的多边形的角对应相等边对应成比例,那么这两个多边形相似位似图形位似图形的性质图形不仅是相似图形,而且对应顶点的连线所在直线相交于一点,那么这两个图形叫做位似图形1234画位似图形的一般步骤1234位似变换的坐标特征一般的在平面直角坐标系中,如果以原点为位,似中心画出一个与原图形位似的图形,使它与原图形的相比为k,那么与原图形上的点xk对应的位似图形上的点的坐标为(Kx, ky)或(负kx,负ky)解直角三角形锐角三角函数解直角三角形已知元素求出所有未知元素的过程叫做解直角三角形解直角三角形的常见类型子主题解直角三角形应用题中的常见概念仰角,俯角方向角坡角,坡度解直角三角形应用题的一般步骤123正弦和余弦正切三角函数特殊角的三角函数值锐角三角函数的关系锐角三角函数的性质子主题投影三视图尺规作图命题证明收集数据与整理数据的描述数据的代表数据的波动概率的有关概念概率的计算方法投影用光线照射物体,在某个平面上得到的影子叫做物体的投影,其中,照射光线叫做投影线,投影所在的平面叫做投影面平行投影太阳光线可以看成平行光线,像这样的光线所形成的投影称为平行投影平行投影的变化规律同一时刻,所有物体的影子与其高度成正比,一天之中影子的方向变化为正西,西北,正北,东北,正东,一天之中,影子的长度变化为长短长中心投影若一束光线是从一点发出的,这样的光线形成的投影称为中心投影,这个点就是中心,相当于物理上学习的点,光源生活中的点光源主要有探照灯,手电筒,路灯,台灯平行投影与中心投影的区别与联系正投影在平行投影中,如果投影线与投影面互相垂直,就称为正投影几何体的三视图行常见几何体的三视图行几何体三视图形的画法组合体的三视图当我们从某一个角度观察一个物体时,所看到的图形叫做物体的一个视图正方形长方形圆柱圆锥球123判断组合体的组成部分,然后按照画几何体三视图的方法正确画出它的三视图尺规作图把限定用无刻度的直尺和圆规的画图称作尺规作图基本作图123命题判断一件事的语句叫做命题真命题,假命题子主题逆命题把原命题的结论作为命题的条件,把原命题的条件作为命题的结论公理定理子主题互逆定理证明的含义通过推理来判断命题的结论是否成立的过程叫做证明证明的一般步骤辅助线综合与分析法反证法12345子主题子主题子主题数据的收集与整理全面调查和抽样调查总体个体样本与样本容量全面调查与抽样调查全面调查与抽样调查的区别与联系全面调查可直接精确地获得总体的情况,抽样调查的优点是调查范围小,节省时间,人力,物力,财力频数与频率组数与组距频数分布表条形统计图,扇形统计图与折线统计图条形统计图,扇形统计图与折线统计图的区别与联系频数分布直方图频数折线图算数平均数加权平均数算数平均数与加权平均数的区别与联系中位数众数平均数中位数众数的优缺点方差极差方差的应用方法利用样本方差估计总体方差的方法利润方差进行决策的方法方差与平均数,众数,中位数的综合应用确定性事件随机事件概率的定义几何概型列举法画树状图法列表法用频率估计概率公平的游戏模拟实验省略加号的和的形式在一个合适中,通常把各个加数的括号及前面的+号省略不写,写成省略加号和括号的和的形式如(一3)+(+2.5)+(一0.5)+(一6)=一3+2.5一0.5-6代数式用运算符号如加减乘除等将数或数的字母连接起来,所得的式子叫做代数式单独的一个数或者一个字母也叫做代数式t如3+2c,2 x-y ,AB, 2( 3+3 b),3a,8j/单项式的系数单项式中的数字因数五叫做这个单项式的系数(1)一个单项式只含有字母因数它的系数就是1或一1(2)一个单项式是一个常数。
七年级数学上册第1章 有理数思维导图
有理数名词介绍正数和负数概念负数:比0小的数正数:比0大的数0既不是正数也不是负数注意:a表示任意数时,不一定是负数,当a<0则-a为正数表示相反意义的量负数可以表示该正数相反意义的量举例:零上8℃表示+8℃;零下8℃表示为-8℃0的意义表示没有正负数的分界线倒数定义乘积是1的两个数互为倒数,其中一个数叫做另一个数的倒数,用式子表示为a·1/a(a≠0),就是说a和1/a互为倒数注意点①0没有倒数②求假分数或真分数的倒数,只要把这个分数的分子、分母点颠倒位置即可;求带分数的倒数时,先把带分数化为假分数,再把分子、分母颠倒位置③正数的倒数是正数,负数的倒数是负数(求一个数的倒数,不改变这个数的性质)④倒数等于它本身的数是1或-1,不包括0定义概念正整数、0、负整数统称为正数(0和正整数统称为自然数)正分数和负分数统称为分数正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数注意点只有能化成分数的数才是有理数①π是无限不循环小数,不能写成分数形式,不是有理数②有理小数和无限循环小数都可化成分数,都是有理数分类按定义实数有理数整数正整数负整数分数正分数负分数无理数无限不循环小数有理数正有理数正整数正分数负有理数负整数负分数加减法加法运算法则同号两数相加,取相同的符号,并把绝对值相加绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值互为相反数的两数相加,和为零一个数与零相加,仍得这个数运算律加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)目的:化繁为简①互为相反数的两个数先相加——“相反数结合法"②符号相同的两个数先相加——"同号结合法"③分母相同的数先相加——"同分母结合法"④几个数相加得到整数,先相加——"凑整法"⑤整数与整数、小数与小数相加——“同形结合法"性质一个数加正数后的和比原数大b>0,a+b>a加负数后的和比原数小b<0,a+b<a加0后的和等于原数b=0,a+b=a减法运算法则减去一个数,等于加上这个数的相反数a-b=a+(-b)乘法运算法则两数相乘,同号得正,异号得负,并把绝对值相乘任何数同0相乘,都得0几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数几个数相乘,如果其中有因数为0,则积等于0运算律乘法交换律:一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。
七年级数学上册思维导图
七年级数学上册思维导图第一章有理数有理数是指可以表示为两个整数之比的数,包括整数、分数、正有理数、负有理数等。
其中,整数按照定义进行分类,分数则按照性质和符号进行分类,正有理数和负有理数则按照符号进行分类。
相反数是指只有符号不同的两个数,绝对值是指数在数轴上与原点的距离。
倒数是指乘积为1的两个数互为倒数,科学记数法是把一个数表示为a×10^n的形式(其中1≤a<10,n是正整数)的记数方法。
有理数的加、减、乘、除和乘方都有相应的法则和符号,包括加法交换律、减法法则、乘法交换律、除法法则、加法结合律、乘法结合律和分配律等。
第二章整式的加减整式是由数或字母的积组成的式子,包括单项式和多项式。
单项式中的数字因数称为系数,所有字母的同类项次数一致。
多项式是几个单项式的和,其中每个单项式称为项,不含字母的项称为常数项。
多项式的次数是指次数最高项的次数,合并同类项是把所含字母相同并且相减的同类项的系数相加,作为合并后项的系数。
常见几何图形的基本概念思维导图常见几何图形:平面图形:三角形、矩形、正方形、梯形、菱形、圆形等立体图形:正方体、长方体、圆柱、圆锥、球体等几何图形的基本概念:三角形:三条边和三个角矩形:四条边和四个角,对边相等且平行正方形:四条边和四个角,对边相等且平行,角度为90度梯形:四条边和四个角,有两个平行边菱形:四条边和四个角,对边相等,角度为90度圆形:由一条曲线组成,每一点到圆心的距离相等正方体:六个面,每个面都是正方形长方体:六个面,相对的面都是相等的矩形圆柱:两个平行的圆面和一个侧面圆锥:一个圆锥面和一个底面球体:一个球面以上是常见几何图形的基本概念和特点,掌握它们对于几何研究和解题都非常重要。
有理数的思维导图
有理数1.1.判断方法 (4)1.1.1.判断一个数是正是负,首先要把这个数的符号化到最简再判断。
(4)1.2.正数的前面加负号得到的数是负数,负数的前面添加负号得到的数是正数。
(5)2.概念 (5)2.1.按定义分 (5)2.1.1.整数 (5)•正整数 (5)•0 (5)•负整数 (5)2.1.2.分数 (5)•正负 (5)•正分数 (5)•负分数 (5)•种类 (5)•真分数 (5)•假分数 (5)•带分数 (5)•有限小数 (5)•无限循环小数 (5)2.2.按性质分 (5)2.2.1.正有理数 (5)•正整数 (5)•正分数 (6)2.2.2.0 (6)2.2.3.负有理数 (6)•负整数 (6)•负分数 (6)2.3.特别数 (6)2.3.1.非负数 (6)•0和正数 (6)2.3.2.非负整数 (6)•0和正整数 (6)3.数轴 (6)3.1.1.数轴是规定了原点、正方向和单位长度的直线 (6)3.2.画法 (6)3.2.1.1、先画一条水平直线,选取原点。
(6)3.2.2.2、确定正方向,选取单位长度。
(6)4.相反数 (7)4.1.几何意义 (7)4.1.1.在数轴上,互为相反数的两个数到原点的距离相等。
(7)4.2.性质 (7)4.2.1.任何一个数,都只有一个相反数。
(7)4.2.2.正数的相反数是负数,负数的相反数正数,0的相反数是0。
(7)5.绝对值 (7)5.1.定义 (7)5.1.1.绝对值是指一个数在数轴上所对应点到原点的距离,用“| |”来表示。
(7)5.1.2.|b-a|或|a-b|表示数轴上表示a的点到b的点的距离。
绝对值是一种求距离的运算,运算结果只能是正数或0。
(7)5.2.意义 (7)5.2.1.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
75.3.性质 (7)5.3.1.实数a的绝对值永远是非负数,即|a|≥0。
七年级数学第一章有理数思维导图
1.1正数和负数概念正数:比0大的数,如3,4,5.......负数:比0小的数,如-3,-4,-5.......0:既不是正数也不是负数用字母表示数若a为正数,-a为负数若a为负数,-a为正数;如-2为负数,-(-2)=2为正数若a为0,-a也为0具有相反意义的量,如零上8℃:+8℃零下8℃:-8℃往东走20米:+20米往西走80米:-80米0表示的意义表示没有。
如教室里有0人,即教室里没有人是正数和负数的分界线1.2有理数1.2.1有理数按意义分整数正整数负整数分数正分数负分数按性质符号分正有理数正整数正分数负有理数负整数负分数1.2.2数轴有原点、正方向、单位长度的一条直线任何有理数都能找到一个点与之对应,右边的数大于左边的数两点间距离:右边点对应的数减左边点对应的数1.2.3相反数只有符号不相同的两个数字互为相反数,a的相反数记为-a0的相反数是0,正数的相反数为负,负数的相反数为正一个数和它的相反数关于原点对称互为相反数的两个数相加等于01.2.4绝对值数轴上表示数a的点与原点的距离叫做数a 的绝对值,写为|a|互为相反数的两个数:绝对值相等两个负数,绝对值大的反而小,绝对值小的反而大若a>0,则|a|=a;若a<0,则|a|=-a;|0|=01.3有理数的加减法1.3.1加法同号两数相加:取相同的符号,绝对值相加;如-3+(-4)=-7异号两数相加:谁绝对值大,就取谁的符号;再用大绝对值减小绝对值;如-5+3=-2互为相反数的两数相加得0,任何数加0等于它本身1.3.2减法减去一个数,等于加上这个数的相反数;即a-b=a+(-b)如:5-(-3)=5+3=8加减混合相反数结合法:互为相反数的两个数相加等于0同分母结合法:把含相同分母的数或可通分的数结合在一起有带分数时先拆分为整数和分数,再结合分数和小数混合时统一为分数或统一为小数同号结合法:把符号相同的加数相结合(-23)-(-18)+(-15)-(+1)+(+23)原式=-23+(+18)+(-15)+(-1)+(+23)=(-23-25-1)+(18+23)=-7凑整法:把和为整数的加数相结合(+6.6)+(-5.2)-(-3.8)+(-2.6)-(+4.8)原式=(+6.6)+(-5.2)+(+3.8)+(-2.6)+(-4.8)=(6.6-2.6)+(-5.2-4.8)+3.8=-2.2分组结合法2-3-4+5+6-7-8+9…+66-67-68+69原式=(2-3-4+5)+(6-7-8+9)+…+(66-67-68+69)=0先拆项后结合(-2-4-6-8...-100)+(1+3+5+7 (99)原式=(-2+1)+(-4+3)+......+(-100+99)=-501.4有理数的乘除法1.4.1乘法两数相乘,同号得正,异号得负,并把绝对值相乘任何数乘0得0多个有理数相乘1.4.2除法除以一个数等于乘以这个数的倒数两数相除,同号得正,异号得负,并把绝对值相除0除以任何一个非0数,等于0;0不能作除数只要一个因数为0则积为0如果因数都不是0,则结果符号根据负数的个数来定:奇负偶正1.5.1有理数的乘方求n个相同因数的积的运算,叫做乘方在aⁿ中,a 叫做底数,n 叫做指数。
有理数思维导图
负数的概念和意义
前面带有“-”号的数 相反意义的量
既不是正数,也数相加,取相同的符号,绝对值之和
概念 整数和分数统称有理数
异号两数相加,取绝对值大的符号,大的绝对值减小的 绝对值
法则
2定数字 1定符号 运算步骤
4拆分 3凑零 2凑整 1分组 运算技巧
减去一个数等于加上其相反数 法则
正有理数
正整数 正分数
非负数
0 负有理数
负整数 负分数
底数 指数(次数) 幂 概念 重点是指数管辖的范围
有
原点
理
数
三要素 正方向
有理数
数轴
单位长度 比较大小
交换律
拓展 两点之间的距离 数轴上到某点距离为2的点有两个
加法、乘法的巧算方法
结合律 运算律
乘方和混合运算
点的对称性
分配律 先乘方,后乘除,最后加减 同级运算,从左到右依次计算 运算顺序
a a>0
0 a=0 |a|
-a a<0
非负数的绝对值等于它本身 分正数的绝对值等于它的相反数
有理数的大小比较
绝对值比较法 数轴比较法
两个负数,绝对值大的反而小
3定数字 2定符号 1转为加法 运算步骤
同号得正,异号得负 法则
2定数字 1定符号 运算步骤
除以一个数等于乘以它的倒数 法则
3定数字 2定符号 1转为乘法 运算步骤
加法
减法 乘法 除法
有理数的运算
分类
先性质后符号 先符号后性质
有理数 有理数
整数
正整数 0 负整数
非负整数
分数
正分数 负分数
有限小数 无限循环小数
混合运算法则
七年级数学上册思维导图
第一章有理数思维导图整数按定义分分数分类正有理数按性质符号分0负有理数相反数——只有符号不同的两个数,叫做互为相反数绝对值——一般地,数轴上表示数a的点与原点的距离,叫做数 a的绝对值倒数——乘积是 1的两个数互为倒数有理数相关概念求 n个相同因数的积的运算叫做乘方,乘方的结果叫做幂乘方——相同的因数叫做底数,相同因数的个数叫做指数n的形式(其中 1 a 10,n是正科学记数法——把一个数表示乘a 10整数),这种记数方法叫做科学记数法有理数的加法法则有理数的减法法则法则有理数的乘法法则有理数的除法法则乘方的运算符号法则运算加法交换律交换律乘法交换律加法结合律运算律结合律乘法结合律分配律第二章整式的加减思维导图用字母表示数定义——由数或字母的积组成的式子单项式系数——单项式中的数字因数次数——单项式中所有字母的指数的和定义——几个单项式的和项——组成多项式的每个单项式整多项式常数项——不含字母的项式的次数——多项式中次数最高项的次数加同类项——所含字母相同并且相同字母的指数也相同减把同类项的系数相加,所得的结果合并同类项——作为合并后项的系数括号外因数为正——整式的加减去括号后原括号内各项的符号与原来的符号相同去括号括号外因数为负——去括号后原括号内各项的符号与原来的符号相反去括号步骤合并同类项思维导图一元一次方程第三章一元一次方程方程:含有未知数的等式一元一次方程:只含有一个未知数 (元 ),未知数的次数都是 1,等号两边都是整式方程的解:使方程中等号左右两边相等的未知数的值解方程:求方程的解的过程性质 1:等式两边加 (或减 )同一个数 (或式子 ),结果仍相等等式的性质性质 2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等一元去分母一去括号次解一元一次方程的步骤移项方程合并同类项系数化为 1审:弄清题意,分清已知量和未知量,明确各数量间的关系设:设未知数,并且用含未知数的代数式表示与所列方程有关的数量列一元列:根据题目中的数量关系、相等关系、倍数关系以及若干倍多或少一次方程一个数字列方程解应用题解:解所列的方程,求出未知数的值以及题目中所要求的相关数量的值验:检验所求的解是否符合题意,是否符合实际意义第四章几何图形初步思维导图常见的立体图形从正面看立体图形从不同的方向看立体图形从左面看从上面看立体图形的平面展示图表示方法直线特点基本事实:两点确定一条直线线表示方法射线特点几何图形初步表示方法特点比较方法线段基本事实:两点之间线段最短平面图形两点之间的距离线段的中点线段的和、差与画法定义表示方法比较大小的方法角互余两角的特殊关系互补角的度量七是对工作细节重视不够。
有理数的思维导图
有理数的思维导图一、有理数的基本概念有理数是指可以表示为两个整数之比的数,即形如a/b的数,其中a和b都是整数,且b不等于0。
有理数包括正有理数、负有理数和0。
二、有理数的分类1. 正有理数:大于0的有理数,如1/2、3/4等。
2. 负有理数:小于0的有理数,如1/2、3/4等。
3. 0:既不是正有理数也不是负有理数,但可以表示为0/1。
三、有理数的运算1. 加法:有理数加法的法则与整数加法类似,只需将两个有理数的分子相加,分母保持不变。
如:1/2 + 3/4 = 5/4。
2. 减法:有理数减法的法则与整数减法类似,只需将减数的分子乘以减数的分母,然后加上被减数的分子,分母保持不变。
如:1/2 3/4 = 1/4。
3. 乘法:有理数乘法的法则是将两个有理数的分子相乘,分母相乘。
如:1/2 × 3/4 = 3/8。
4. 除法:有理数除法的法则是将除数的分子乘以被除数的分母,除数的分母乘以被除数的分子。
如:1/2 ÷ 3/4 = 2/3。
四、有理数的性质1. 有理数是稠密的:在任意两个有理数之间,都存在无穷多个有理数。
2. 有理数是有序的:可以比较任意两个有理数的大小。
3. 有理数是封闭的:有理数在加法、减法、乘法和除法运算下都保持封闭性,即运算结果仍然是有理数。
4. 有理数是可数的:有理数可以与自然数一一对应,因此有理数是可数的。
五、有理数与无理数的关系1. 无理数:不能表示为两个整数之比的数,如π、√2等。
2. 有理数与无理数的区别:有理数可以表示为分数,而无理数不能表示为分数。
3. 有理数与无理数的联系:有理数和无理数共同构成了实数集,实数集包含了所有有理数和无理数。
六、有理数在实际生活中的应用1. 金融领域:有理数在金融领域中有着广泛的应用,如利率、汇率、股票价格等。
2. 科学研究:在科学研究中,有理数被用于表示各种物理量和化学量,如长度、质量、时间等。
3. 工程技术:在工程技术中,有理数被用于计算各种参数和指标,如建筑物的尺寸、材料的强度等。
北师大版七年级上册第二章有理数章节思维导图
北师大版七年级上册第二章有理数章节思维导图分类:按定义分,有整数、正有理数、负有理数等。
按性质分,有非负性、相反数等。
数轴四要素:正方向、原点、单位长度、直线代数意义。
改写:数可以按照定义或者性质进行分类。
例如,整数、正有理数、负有理数等。
另外,数轴有四个重要的要素,包括正方向、原点、单位长度和直线代数意义。
非负性是指一个数大于或者等于零。
改写:非负性是指一个数不小于零。
相反数是指只有符号不同的两个数,它们的绝对值相等。
改写:相反数是指绝对值相等但符号相反的两个数。
互为相反数的两个数和为零,即a+b=0.改写:互为相反数的两个数相加等于零,即a+b=0.在数轴上,一个数到原点的距离叫做该数的绝对值。
正数的绝对值是正数,负数的绝对值是它的相反数的绝对值是。
改写:在数轴上,一个数到原点的距离就是该数的绝对值。
正数的绝对值是它本身,负数的绝对值是它的相反数。
例如,-3的绝对值是3.有关概念绝对值的性质包括:/a/≥0,若/a/=b,则a=b或a=-b,0+0=0型,即/a/+/b/=0,则a=0,b=0.改写:绝对值有一些基本性质,包括:绝对值不小于零,即/a/≥0;如果两个数的绝对值相等,那么这两个数要么相等,要么互为相反数,即若/a/=b,则a=b或a=-b;如果两个数的绝对值相加等于零,那么这两个数都必须为零,即0+0=0型,即/a/+/b/=0,则a=0,b=0.零点分段法可以用来求最值。
改写:零点分段法是一种求最值的方法。
乘积为1的两个数互为倒数,即mn=1.改写:如果两个数的乘积为1,那么它们互为倒数,即mn=1.乘方运算是指求n个相同乘数乘积的运算,结果叫做幂。
改写:乘方运算是指将n个相同的数相乘的运算,结果叫做幂。
在进行乘方运算时,需要注意底数和指数的位置,如果需要改变位置,必须加上括号。
科学记数法是一种将一个绝对值大于10(或者小于1)的整数记为a×10^n的形式的记数法,其中1≤/a/<10.改写:科学记数法是一种表示绝对值大于10(或者小于1)的整数的方法,它的形式为a×10^n,其中1≤/a/<10.有理数包括整数、正有理数和负有理数。
七年级上册 第一章 有理数(人教版)思维导图
有理数正数和负数整数正整数大于零的整数如,1,2,3······0既不是整数,也不是负数负整数小于零的整数如,-1,-2,-3······分数正分数大于零的分数如,,,·······213254负分数小于零的分数如,-,-,-······213254有理数有理数整数和分数统称为有理数数轴可以用一条直线表示数,这条直线叫做数轴相反数只有符号不同的两个数叫做互为相反数绝对值一般地,数轴上表示数a的点与原点的距离叫做a的绝对值一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0数轴三要素原点在直线上任取一个点表示0,这个点叫做原点正方向通常规定直线上从原点向右(或上)为正方向单位长度选取适当的长度为单位长度有理数的加减法加法1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0.3一个数同0相加,仍得这个数减法减去一个数,等于加这个数的相反数有理数的乘除法乘法两数相乘,同号的正,异号得负,并把绝对值相加任何数0相乘,都得0.乘积是1的两个数互为倒数除法两数相除,同号得正,异号得负,并把绝对值相除除以一个不等于0的数,等于乘这个数的倒数0除以任何一个不等于0的数,都得0乘方乘方求n个相同的积的运算,叫做乘方乘方的结果叫做幂中,a叫做底数,n叫做指数a n 负数的积次幂是负数,负数的偶次幂是正数。
正数的任何次幂都是正数,0的任何正整数次幂都是0.科学计数法科学计数法可以使书写简短,同时还便于读数。
近似数近似数是指与准确数相近的一个数有理数运算加法加法交换律两个数相加,交换加数的位置,和不变加法结合律三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。