集成电路运算放大器中的电流源

合集下载

集成运算放大器电路-模拟电子电路-PPT精选全文完整版

集成运算放大器电路-模拟电子电路-PPT精选全文完整版

第4章 集成运算放大器电路
4―3―2差动放大器的工作原理及性能分析 基本差动放大器如图4―12所示。它由两个性能参
数完全相同的共射放大电路组成,通过两管射极连接 并经公共电阻RE将它们耦合在一起,所以也称为射极 耦合差动放大器。
I UE (UEE ) UEE 0.7
RE
RE
第4章 集成运算放大器电路
IC2
R1 R2
Ir
(4―7) (4―8)
第4章 集成运算放大器电路
可见,IC2与Ir成比例关系,其比值由R1和R2确定。 参考电流Ir现在应按下式计算:
UCC
Ir
UCC U BE1 Rr R1
UCC Rr R1
(4―9)
Ir
Rr
IC2
IB1
V1

UBE1 -
IE1
R1
IB2 +
UBE2 - R2
(4―11)
Ir
IC1
IB3
IC1
IC3
IC1 IC2,
IC3
3 1 3
IE3
IE3
IC2
IC1
1
IC2
2
若三管特性相同,则β1=β2=β3=β,求解以上各
式可得
IC3
(1 2ຫໍສະໝຸດ 222)Ir
(4―12)
第4章 集成运算放大器电路
利用交流等效电路可求出威尔逊电流源的动态内阻
Ro为
Ro 2 rce
4―2 电流源电路
电流源对提高集成运放的性能起着极为重要的作 用。一方面它为各级电路提供稳定的直流偏置电流, 另一方面可作为有源负载,提高单级放大器的增益。 下面我们从晶体管实现恒流的原理入手,介绍集成运 放中常用的电流源电路。

集成运算放大电路

集成运算放大电路



uA741 (单运放)是高增益运算放大器,用于军 事,工业和商业应用 .这类单片硅集成电路器件提 供输出短路保护和闭锁自由运作。

这些类型还具有广泛的共同模式,差模信号范围和 低失调电压调零能力与使用适当的电位。 uA741 芯片引脚和工作说明: 1和5 为偏置 (调零端) ,2 为正向输入端, 3为反向输入端,4 接地, 6为输出, 7接电源 8空脚
集成运放的输出电压与输入电压(即同相输入端与反相输入端之 间的差值电压)之间的关系曲线称为电压传输特性。对于正、负两 路电源供电的集成运放,其电压传输特性如图3 -4(a)所示。 曲线分线性区(图中斜线部分)和非线性区(图中斜线以外的部 分)。在线性区,输出电压随输入电压(Up - UN)的变化而变化; 但在非线性区,只有两种可能:或是正饱和,或是负饱和。
低输入偏置电流:100nA最大值(LM324A)
每个封装有4个放大器 内部补偿 共模范围扩展至负电源 行业标准的引脚分配 输入端的ESD钳位提高了可靠性,且不影响器件工作 提供无铅封装
特性(Features):
· 内部频率补偿
· 直流电压增益高(约100dB) · 单位增益频带宽(约1MHz)
· 电源电压范围宽:单电源(3—30V);
· 双电源(±1.5 一±15V) · 低功耗电流,适合于电池供电 · 低输入偏流 · 低输入失调电压和失调电流 · 共模输入电压范围宽,包括接地 · 差模输入电压范围宽,等于电源电压范围 · 输出电压摆幅大(0 至Vcc-1.5V)
由于外电路没有引入负反馈,集成运放的开环增益非常高,只要加 很微小的输入电压,输出电压就会达到最大值所以集成运放电压传 输特性中的线性区非常窄,如图3 -4(a)所示。理想运放传输特性无 线性区,只有正、负饱和区,如图3 -4(b)所示。

第八章:集成运放放大电路

第八章:集成运放放大电路
u i1 - + +VCC Rc Rb T1 u ic
+
+ uo uo1 IR e
-
Rc
+ RL u -o2 T2 Rb E
u ic
uo= 0 (理想化)。
_V
Re
+ ui2 -
EE
共模电压放大倍数
Auc 0
8.2.3 具有恒流源的差分放大电路
根据共模抑制比公式: Re K CMR Rb rbe 加大Re,可以提高共模抑 制比。为此可用恒流源T3来 + 代替Re 。 u
8.2 差分放大电路
差分放大电路(Differential Amplifier) 又称差动放大电路,简称差放,是构成 多级直接耦合放大电路的基本单元电路。 它具有温漂小、便于集成等特点,常用 作集成运算放大器的输入级。
8.2.1 直接耦合放大电路的零点漂移现象 1. 零点漂移现象及其产生的原因 直接耦合放大电路在输入信号为零时, 会出现输出端的直流电位缓慢变化的现 象,称为零点漂移,简称零漂。
uo2 T2 Rb -
Au d
u i1 RL - ( Rc // )
u id
2
Rb rbe
2
+ ui2 -
+
ib
+
ic rbe β ib RL uo1
2
差模输入电阻:
+
Rid 2Rb rbe
输出电阻:
ui1 +
Rb
+
RC
-+
Ro 2Rc
(2)加入共模信号
ui1=ui2 =uic, uid=0。 设ui1 ,ui2 uo1 , uo2 。 因ui1 = ui2, uo1 = uo2

集成运放中的电流源汇总

集成运放中的电流源汇总
特点:
1.
2.
电路简单,应用广泛;
要求IC1电流较大情况下,R 的功耗较 大,集成电路应避免; 要求IC1电流较小时,要求R 数值较大, 集成电路难以实现。
3.
若 2 ,I C I R
VCC U BE R
2. 比例电流源
VCC
U BE1 I E1 Re1 U BE2 I E2 Re2
I C4 T4
I
T2
I B1
Re2
Re3
Re4
I E1 Re1 I E2 Re2 I E3 R31 I REF Re1
I C2 I E2 I REF Re1 Re2
I REF Re1 I C3 I E3 Re3
I C4 I E4
I REF Re1 Re4
rbe
对于此电路Rc就是镜
像电流源的交流电阻,
电流源的交流电阻很大
放大管
因此增益比用电阻Rc作负载时大大提高了。
在温度变化情况下,比例电流源的输出电流IC2具有更高的温度稳定性。
3. 微电流源
要求提供很小的静态电流, 又不能用大电阻。
I C2 U BE1 U BE2 I E2 Re2 I C2 U T I E1 ln Re2 I E2
VCC
I REF
I C1 T1
R I B1 I B2
IC
2
I REF
VCC U BE 若 2 ,I C I R R VCC和R一定时,IC电流随之确定。
镜像电流源的温度补偿作用:
I C1 I C1 T I C0 I R U R ( I R R) U B I B

集成运算放大电路

集成运算放大电路

VCCUBE0 R
(1)
当 1 时,T1管的集电极电流
IC1IE1UBE0ReUBE1
(2)
(2)式中 (UBE0 – UBE1) 大概几十毫伏,因此只要 几千欧的 Re 就可以得到几十微安的IC1,所以称 为微电流源。
由式
IC1
Re0 Re1
IRU ReT1lnIICR1
可得
IC1
UT Re
ln
+VCC
IC0=IC1=IC ,IR为基准电流。
T0
C
T1
A点的电流方程I为E2:IC2IBIC2IC
IC0
2IB
IC
A
1
IC
2
IE2
2
IC2
IB2
IE2
1
B
T2
2
IC2
(1)
IR R
IC2 B点的电流方程为:
IR IB 2 IC IC 2 1 2 IC 22 2 2 2 2 IC 2
பைடு நூலகம்
UBE
UT
ln
IE IS
(2)
B
IC0
T0
A T1
IB0
IB1
Re0 IE0
IE1 Re1
因 将T(30)与式T代1 特入性 (1)完式全得U相:B同E0,U 故B:E1UTlnIIE E10 IE1Re1IE0Re0UTlnIIE E1 0
(3) (4)
当 2时,IC0IE0IR,IC1 IE1,所以
IC2(122 22)IRIR
(2)
2.4 多路电流源电路
基于比例电流源的多路电流源:
+VCC
IR R
C B
IC0

第4章 集成运算放大器的结构及特性

第4章  集成运算放大器的结构及特性

4.输入失调电压温漂 dVio /dT
在规定工作温度范围内,输入失调 电压随温度的变化量与温度变化量 之比值。
5.输入失调电流温漂dIio /dT
在规定工作温度范围内,输入失调电 流随温度的变化量与温度变化量之比 值。
6.最大差模输入电压Vidmax
(maximum differential mode input voltage) 运放两输入端能承受的最大差模输入电压, 超过此电压时,差分管将出现反向击穿现象。
五、运算放大器的符号和型号
运算放大器的符号中有三个引线端,两个 输入端,一个输出端。一个称为同相输入端, 即该端输入信号变化的极性与输出端相同,用 符号‘+’或‘IN+’表示;另一个称为反相输入 端,即该端输入信号变化的极性与输出端相异, 用符号“-”或“IN-”表示。输出端一般画在输 入端的另一侧,在符号边框内标有‘+’号。实 际的运算放大器通常必须有正、负电源端,有 的品种还有补偿端和调零端。
7.最大共模输入电压Vicmax
(maximum common mode input voltage) 在保证运放正常工作条件下,共模输入 电压的允许范围。共模电压超过此值时, 输入差分对管出现饱和,放大器失去共 模抑制能力。
二、运算放大器的动态技术指标
1.开环差模电压放大倍数 Avd :(open loop voltage gain)运放在无外加反馈条件下,输出电 压的变化量与输入电压的变化量之比。 2.差模输入电阻rid :(input resistance)输入差模 信号时,运放的输入电阻。 3.共模抑制比 KCMR :(common mode rejection ratio)与差分放大电路中的定义相同,是差模电压 增益 Avd 与共模电压增益 Avc 之比,常用分贝数 来表示。 KCMR=20lg(Avd / Avc ) (dB)

集成运算放大电路

集成运算放大电路

多路电流源电路如图所示,已知所有晶体管的特性均相同, UBE均为0.7V。试求IC1、IC2各为多少。:
因为T1、T2、T3的特性均相同, 且UBE均相同,所以它们的基极、 集电极电流均相等, 设集电极电流为IC。 先求出R中电流,再求解IC1、IC2
IR
VCC U BE3 U BE 0 100μA R
偏置电路:用于设置各级放大电路的静态工作点,采用电流源电路
4.1.3 集成运放的符号和电压传输特性
非线性区
线性区
从外部看,可认为集成运放是一个双端输入、单端输 出、具有高差模放大倍数、高输入电阻、低输出电阻、能 较好抑制温漂的差分放大电路。 uo=Aod(uP-uN) 差模开环放大倍数Aod,通常非常高可达几十 万倍。对理想运放:Aod→∞ Rid →∞ Ro=0
集成运放的选择: 1 信号源的性质 根据信号源是电压源还是电流源,内阻大小、输入信号幅 值及频率的变化范围等,选择运放的rid、-3dB带宽、转换 速率SR等参数 2 负载的性质 根据负载电阻大小,确定所需运放的输出电压和输出电流 幅值。 3 精度要求 根据精度要求选择运放的Aod、UIO、IIO、SR等参数 4 环境条件 根据环境温度变化范围,选择运放失调电压及失调电流的 温漂dUIO/dT dIIO/dT
供偏置电流,又可以作为放大器的有源负载使用。
3.集成运放的主要品种是BJT集成运放、FET集成运放
以及由这两种工艺结合而得到的BiMOS和BiCMOS集成 运放。集成运放的参数有几十个之多,正确掌握了它的 主要参数的物理意义,才能在使用中恰当地选择元器件。 4.除了通用集成运放以外,还有大量特殊类型的运放。
输入级:一般是双端输入的差分放大电路,它的好坏直接影响集成运放 的性能参数(如输入电阻、共模抑制比等)。一般要求输入电阻大、差模 放大倍数高,抑制共模信号能力强。 中间级:主要是放大作用,多采用共射或共源放大电路,经常用复合管 做放大管,以恒流源作集电极负载,Au可达千倍以上。 输出级:应具有输出电阻小、输出电压线性范围宽,非线性失真小等特 点。多采用互补对称输出电路。

集成电路运算放大器-电流源-差分放大电路

集成电路运算放大器-电流源-差分放大电路
以双倍的元器件换 取抑制零漂的能力 接入负载时
Avd = −
β ( Rc // rbe
1 RL ) 2
PDF 文件使用 "pdfFactory Pro" 试用版本创建
3. 主要指标计算 (1)差模情况
<B> 双入、单出 Avd1
vo1 vo1 = = v id 2vi1
差分式放大电路对共模信号有很强抑制作用
PDF 文件使用 "pdfFactory Pro" 试用版本创建
3. 主要指标计算 (1)差模情况
<A> 双入、双出
vo1 − vo2 vo = Avd = vi1 − vi2 vid 2vo1 βR =− c = rbe 2vi1
2. 抑制零点漂移原理 温度变化和电源电压波 动 , 都 将 使 集电极电 流 产 生 变 化 。 且 变 化趋势是相 同的, 其 效果相当 于 在 两 个 输入端加入了共模信号。
PDF 文件使用 "pdfFactory Pro" 试用版本创建
2. 抑制零点漂移原理
6.1 集成电路运算放大器中的电流源
在模拟集成电路中,广泛地使用电流源,为放大电路 提供稳定的偏置电流,或作为放大电路的有源负载。
• 镜像电流源 • 微电流源 • 多路电流源 • 电流源用作有源负载
PDF 文件使用 "pdfFactory Pro" 试用版本创建
6.1.1 BJT电流源电路
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
6.1.2 FET电流源

运算放大器电路原理

运算放大器电路原理

运算放大器电路原理运算放大器(Operational Amplifier,简称Op-Amp)是一种极为重要的电子元器件,广泛应用于各种电路中。

它具有高增益、差分输入、单端输出等特点,能够放大电压、电流和功率等信号,并提供微弱信号的放大和处理功能。

本文将介绍运算放大器的基本原理及其电路结构。

一、运算放大器的基本原理运算放大器是一个多元件集成电路(IC),通常由几个晶体管、电阻和电容器等元件组成。

它的核心部分是一个差分放大器,具有高增益特性。

运算放大器的输出电压与输入电压之间的关系可以通过下面的公式表示:Vout = Av (V+ - V-)其中,Vout为输出电压,Av为放大器的开环增益,V+和V-分别为非反相输入和反相输入。

二、运算放大器的电路结构运算放大器的电路图可以简化为以下几个主要部分:1.差动放大器:差动放大器是运算放大器的核心部分,它由两个输入电源、两个输入电容和两个晶体管等电路组成。

它的作用是将输入信号进行差分放大,增益高达几千倍。

2.电流镜:电流镜是一个由晶体管组成的电流源,用于提供稳定的电流输出。

它的作用是保持差动放大器的工作点稳定,使得差动放大器的输出可以线性放大。

3.级联放大器:级联放大器由多个差分放大器组成,用于提高整个运算放大器的放大倍数。

每个差分放大器都会放大之前的放大器的输出信号。

4.反馈网络:反馈网络是运算放大器的重要部分,通过它可以实现对输出信号进行控制和调整。

反馈网络可以分为正反馈和负反馈两种形式,具体的选择取决于应用的要求。

三、运算放大器的应用运算放大器在电子电路中具有广泛的应用,主要包括以下几个方面:1.信号放大:运算放大器可将输入信号放大到所需的幅度,用于增强微弱信号。

2.滤波:运算放大器可以配合电容器和电阻等元件,构成滤波电路,用于滤除不需要的频率成分,提取特定频率的信号。

3.比较器:运算放大器可以作为比较器使用,用于判断输入信号的大小关系,并输出相应的逻辑电平。

运放内部偏置电流源工作原理

运放内部偏置电流源工作原理

运放内部偏置电流源工作原理全文共四篇示例,供读者参考第一篇示例:运放(运算放大器)是一种重要的电子元器件,广泛应用于各种电子设备中。

运放内部偏置电流源是运放中的一个重要组成部分,它起着关键的作用。

本文将介绍运放内部偏置电流源的工作原理。

首先,让我们了解一下运放的基本原理。

运放是一种差分电路,具有高增益和高输入阻抗的特点。

它通常由一个反馈电路和一个差分放大器组成。

而运放的内部偏置电流源则用于提供稳定的工作点,以保证运放的正常工作。

内部偏置电流源通常由多个晶体管组成,通过适当的电路设计和工艺加以实现。

其主要作用是通过控制晶体管的基极电压和灵敏度,来确保输出端的电压稳定在设定的工作点。

在运放内部偏置电流源的工作原理中,关键的因素是晶体管的工作方式。

晶体管是一种半导体器件,通过控制基极电压可以控制电流的流动。

当基极电压增加时,晶体管的导通电流也会增加,反之亦然。

这种特性被巧妙地利用在运放的内部偏置电流源中。

在运放内部偏置电流源中,晶体管通常被设置为工作在放大区域。

这样,当输入信号过大时,晶体管的工作状态会发生改变,以限制输出信号的幅度,避免过大的输出误差。

同时,内部偏置电流源会通过反馈电路,使晶体管的工作点不断调整,以保证输出端的稳定性和准确性。

此外,内部偏置电流源还可以起到抑制噪声的作用。

在运放中,噪声是一个不可避免的问题,会对输出信号的准确性和稳定性造成影响。

通过控制晶体管的工作方式和电路设计,内部偏置电流源可以有效地抑制噪声的干扰,提高信号的质量和精确度。

总的来说,运放内部偏置电流源是运放中的一个重要组成部分,通过控制晶体管的工作方式和电路设计,确保了运放的正常工作和稳定性。

同时,它还可以帮助提高信号的质量和精确度,抑制噪声的干扰。

在电子设备中,内部偏置电流源的工作原理具有重要的意义,对于保证设备的正常运行和性能优化起着重要作用。

总的来说,运放内部偏置电流源的工作原理是通过控制晶体管的工作方式,实现对输出端工作点的稳定性和准确性的控制。

运放内部偏置电流源工作原理

运放内部偏置电流源工作原理

运放内部偏置电流源工作原理全文共四篇示例,供读者参考第一篇示例:运放内部偏置电流源是指运放内部集成的电路模块,用于提供运放的偏置电流,以确保运放的正常工作。

在运放电路中,电流源的作用非常重要,它可以影响运放的输入阻抗、共模抑制比、微分增益等关键性能指标。

了解运放内部偏置电流源的工作原理对于理解运放电路的设计和性能优化至关重要。

我们需要了解什么是偏置电流。

在运放电路中,由于晶体管的间接开启和温度漂移等因素,会产生一定的静态电流,称为偏置电流。

这种偏置电流会流过运放的输入端,并导致偏置点的偏移,从而影响运放的工作状态。

为了抑制这种影响,运放内部集成了电路模块,提供恒定的偏置电流,从而稳定运放的工作状态。

在运放内部偏置电流源的工作原理中,常用的是基于差分放大器的设计。

差分放大器是运放的核心模块之一,它实质上就是一个比较器,用于比较输入信号与偏置电压之间的差异,从而输出不同的电压。

在差分放大器中,内部偏置电流源会提供一个恒定的偏置电流,通过晶体管和电阻网络的调节,使得输入信号和偏置电压能够得到合理的比较,从而实现运放的正常工作。

运放内部偏置电流源还可以通过反馈电路进行调节。

在运放电路中,一般都会设置反馈电路,用来调节输出电压并提高电路的稳定性和线性度。

当输入信号发生变化时,差分放大器会输出不同的电压,进而调节反馈网络中的元件,包括电容、电阻等,从而实现对偏置电流的调节和控制。

运放内部偏置电流源还可以根据实际需求进行调节,如调节偏置点、提高电路的稳定性等。

通过合理设计偏置电流源的电路结构和参数,可以有效解决运放电路中偏置电流带来的问题,提高电路的性能和可靠性。

第二篇示例:运放(Operational Amplifier,简称Op-Amp)是集成电路中一种常用的放大电路元件,具有高增益、高输入阻抗、低输出阻抗等特点。

运放内部的偏置电流源是运放工作的关键部件之一,它能够提供所需的偏置电流,保证运放的正常工作。

集成运算放大器(压控电流源)运用电路及详细解析

集成运算放大器(压控电流源)运用电路及详细解析

微分器的电路结构与积分器类似,包括集成运算放大器、 电容和反馈电阻。
微分器在信号处理、控制系统和电子测量等领域有广泛 的应用。
06 结论与展望
结论总结
01
集成运算放大器(压控电流源)在电路中具有重要作用,能够实现信号的放大、运 算和处理等功能。
02
通过对不同类型集成运算放大器(压控电流源)的特性、应用和电路设计进行比较 ,可以更好地选择适合特定需求的集成运算放大器(压控电流源)。
差分输入电路
总结词
差分输入电路是一种较为特殊的集成运算放大器应用电路,其输出电压与两个输 入电压的差值呈线性关系。
详细描述
差分输入电路的输出电压与两个输入电压的差值呈线性关系,适用于信号比较、 差分信号放大等应用。这种电路具有高输入阻抗和低输出阻抗的特点,能够有效 地减小外界干扰对信号的影响。
03 压控电流源的应用电路
详细描述
反相输入电路的输出电压与输入电压呈反相关系,即当输入 电压增加时,输出电压减小,反之亦然。这种电路具有高输 入阻抗和低输出阻抗的特点,适用于信号放大、减法运算等 应用。
同相输入电路
总结词
同相输入电路是一种较为简单的集成运算放大器应用电路,其输出电压与输入 电压呈同相关系。
详细描述
同相输入电路的输出电压与输入电压保持一致,适用于信号跟随、缓冲等应用。 这种电路具有低输入阻抗和低输出阻抗的特点,能够提高信号的驱动能力。
积分器可以将输入的电压信号 转换成电流信号,再通过负载 电阻转换成电压信号,实现信 号的积分运算。
案例三:微分器的应用
微分器是集成运算放大器的另一种应用可以将输入的电压信号转换成电流信号,再通过 负载电阻转换成电压信号,实现信号的微分运算。

第四章集成运算放大电路

第四章集成运算放大电路

( R L // rce 2 // rce 4 )
rbe
若RL<<(rce1∥rce2), 则
Au
RL
rbe
返回
4.3 集成运放电路简介
图4.3.1 F007电路原理图
图4.3.2 F007电路中的放大电路部分
1. 输入级 在输入级中,T1 、T3 和T2 、T4 组成共集-共基差分放大电 路, T5~T7和电阻R1~R3构成改进型电流源电路,作为差放的有
号变化速度的适应能力,是衡量运放在大幅值信号作用时工作
速度的参数,单位为V/μs。在实际工作中,输入信号的变化律
一定不要大于集成运放的SR。信号幅值越大、频率越高,要求 集成运放的SR就越大。
理想运算放大器
理想运放的技术指标
在分析集成运放的各种应用电路时,常常将集成运放看成 是理想运算放大器。所谓理想运放, 就是将集成运放的各项技术
图4.2.2 比例电流源
图4.2.3 微电流源
二、 改进型的镜像电流源(获得稳定输出的电流)
1. 加射极输出器的电流源
2. 威尔逊电流源
三、 多路电流源电路
IR IE0 I C1 I E1 IC 2 IE2 IC3 IE3 Re0 R e1 Re0 Re2 Re0 Re3 IR
IR I c1 V CC U R
BE
2
IR IR
2. 比例电流源
IR V cc U
BE 0
3. 微电流源
Re0 R e1 IR
I C1 I E1 U BE 0 U BE 1 Re
IC1 UT Re 1n IR IC1
R Re0
, I c1

集成电路运算放大器中的电流源

集成电路运算放大器中的电流源

二、精密镜象电流源
精密镜象电流源和普通镜象电流源相比,其
镜象精度提高了b 倍。
电路中增加了T3 管,
I
C2
= =
IICR1EF=I2REIFBI1B3
b3
IB3 比镜象电流源的2IB小
β3倍。因此IC2和IREF之间的
镜象精度提高了1 b3 倍。
精密电流源
三、微电流源
微电流源电路,接入Re2电阻得到一个比基准电流 小许多倍的微电流源,适用微功耗的集成电路和集成
V V V V I R =
=
CEQ1
CEQ 2
CC
E1
CQ1 C
= 12 0.2 2.13.3 5V
二、动态分析:
r I be1,2 = 300 1 b 26
300 80 26 2.1 1.3k
EQ1
等效的发射极耦合电阻REE—比例式电流源的输出电阻
REE = Ro4 1 b4rce4 = 81 50 = 4050k
放大器的前置级中。
VBE1 VBE2 = VBE = I E 2 Re2
IC2
IE2
=
VBE Re2
IC2 远小于IREF ,
I V
REF
CC
R。
当R取 几k 时, IREF 为mA量级,
而IC2可降至A量级的微电流源。且 IC2 的稳定性也比IREF 的稳定性好。
微电流源
四、比例式电流源
在镜象电流源电路的基础上,增加两个发射极电 阻,使两个发射极电阻中的电流成一定的比例关系, 即可构成比例电流源。
电流源概述
二、电流源电路的用途:
1、给直接耦合放大器的各级电路提供直流偏 置电流,以获得极其稳定的Q点。 2、作各种放大器的有源负载,以提高增益、 增大动态范围。 3、由电流源给电容充电,可获得随时间线性 增长的电压输出。

第四章 集成运算放大电路

第四章 集成运算放大电路

(输出级偏臵的一部分;中间级的有源负载。)
34
§4-3.集成运放电路简介
F007简介 输入级
T1—T4:CC-CB差动放大
偏置电路
各部分的作用: 1.输入级:KCMR↑,Ri↑,IQ↓, 一般采用双端输入的差放电路。
5
§4-1.集成运算放大电路概述
三、集成运放的电压传输特性
集成运放符号: 电压传输特性:
uo f (uP uN )
同(反)相输入端是指运放的输入电 压与输出电压的相位关系。 可以认为集成运放是双端输入、单 端输出的差放电路。
10
集成运算放大器的符号和基本特点
3. 理想运放工作在线性区的两个特点 证:uo = Aud (u+ – u–) = Aud uid u+ – u– = uo/Aud 0 2) i+ i– 0 (虚断) 证: i+ = uid / Rid 0 同理 i – 0 1) u+ u–(虚短)
32
§4-3.集成运放电路简介
33
§4-3.集成运放电路简介
F007简介 偏臵电路 T12、R5、T11:主偏臵—R5中电流为基准电流
Im 2VCC U EB12 U BE11 0.73mA R5
T10、T11:微电流源
T8、T9:镜像电流源
T12、T13:镜像电流源
(输入级偏臵)
21
IR
Re2的作用:增大IE2,提高β。
§4-2.集成运放中的电流源电路
二、改进型电流源电路 2.威尔逊电流源 工作点稳定,输出电阻大。
I C2
2 (1 2 )IR IR 2 2
22
§4-2.集成运放中的电流源电路

华南理工大学 模拟电子技术基础 5集成运算放大器单元电路PPT

华南理工大学 模拟电子技术基础 5集成运算放大器单元电路PPT

VCC
Rc
Rc
uC1
+
uC2
iC1
RL uO
iC2
+ uI
Rb +
uI1 -
iB1
V1
iE1 iEE
-
V2
e
iE2 Re
Rb iB2
uI2 -+
VEE
Aud1
Uod1 Uid
Uod1 2Uid1
RL
2(Rb rbe )
RL Rc // RL
Rid 2(Rb rbe ) ,Rod Rc
5.2.3-- 1.双端输入单端输出差放电路
单端输入
单端输出
双端输入
双端输出
1)差模信号 uI1 uI2
V1、V2管相对应极电流或电 压的变化量也是差模信号。
长尾式差分 放大电路
2)共模信号uI1 uI2
V1、V2管相对应极电流或电 压的变化量也是共模信号。
5.2.1 差分放大电路的组成及特点
2.基本特点 3)一般信号uI1 uI2
差模分量 uId uI1 uI2
由于输入回路没有变 化,所以IEQ、IBQ、ICQ 与双端输出时一样。但 是UCEQ1≠ UCEQ2。
VCC
RL Rc RL
VCC
Rc Rc // RL
UCQ1 VCC ICQ Rc UCQ2 VCC ICQ Rc
5.2.3-- 1.双端输入单端输出差放电路
(2)动态分析 1)对差模信号的作用
5.1.2 有源负载放大电路
5.1.1 基本电流源电路
电流源电路:提供恒定输出电流 1) 作为各级电路的偏置电路,以提供合适的静态电流; 2) 作为放大电路的有源负载,提高电路的增益。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

双端输入 单端输入 双端输入 单端输

双端输出
单端输出
Avd bRL / rbe , RL = RC // RL 2 bRL 2 rbe , RL = RC // RL
Rid
Ro Avc
K CMR Ric
2 rbe
2 RC
RC
0
RL / 2REE
b REE / rbe g m rbe
rbe 1 b2REE
把直流电源、Vic 都短路;
RL 两臂各分一半; 两臂的差模信号电流大
小相等、方向相反,同
时流过T4 时抵消,使T4 无差模电流、也无差模
电压,T4、 R1 可视作短
路(或开路), 这里作短路处理;对于RW:两臂各分一半。
Avd
=
r be
b RL
1 b
RW
= 80 3.3 // 5.5 48
2 1.3 81 0.025
例2:b = 80 V BE = 0.2V rce = 50k
一、估算Q点:
I
CQ 4
I
R
V
CC V EE
R3 R2
=
24 5.7
4.2mA
I CQ1 = I CQ2 = I CQ4 2 = 2.1mA
V V V V I R =
=
CEQ1
CEQ 2
CC
E1
CQ1 C
= 12 0.2 2.13.3 5V
KCMR =
Avd Avc
K CMR
=
20 lg
Avd Avc
dB
(1)双端输出时KCMR为无穷大
K A A =
CMR
vd
vc
(2)单端输出时共模抑制比
K A A =
b ro
CMR
vd1
vc1
rbe
恒流源差分放大电路
为了提高共模抑制比应加大Re 。但Re加大后, 为保证工作点不变,必须提高负电源,这是不经济 的。可用恒流源T3来代替Re 。 恒流源动态电阻大,可提高
Ro = 2 Rc = 6.6k
Rid = 2rbe 1 b RW 2 = 21.3 81 0.025 = 6.65k
例2:
1.双出(双入或单入):
共模特性:已算得rbe=1.3k,电流源
的输出电阻(等效的REE)为4050k。
画共模信号通路:把直流电源、Vid 都短路;RL 两端共模信号电位相等, 故其中无共模电流流过,故可视作开
双电源差分放大电路
例1:
差动电路中,晶体管参数:b1=b2=60,rbb’=300, U I1 = 1V , U I 2 = 1.01V 。 求:(1)静态工作时的两管集电极电流 IC;
(2)双端输出时的 U o 和从 T1 单端输出时的 U o1 。
解: IC = 1/ 2 = 0.5mA
rbe
=
300
(1
b)
26mV IC
AVD
=
vo vid
=
U O U I1 U I 2
= UO =
1 1.01
U O 0.01
AVD
= b RC
rbe
= 6010000 3472
= 172
UO = 172 0.01
U O
= 1.72V
UO1
=
1 2
U O
=
0.86V
小 结(对于基本共发放大器构成的差放)
4、电流源还可单独制成稳流电源使用。
集成电路电流源
一、镜象电流源
三极管T1 、T2 匹配,
b =b =b
1
2
VBE1 = VBE2 = VBE ,则
IR = IC1 2 IB = IC2 2IB 2
= I C 2 (1 b )
且 IR
= VCC
VBE R
,当b 2 时,
IC2 = IR ,IC2 和 IR 是镜象关系。
共模抑制比。同时恒流源的
管压降只有几伏,可不必提
高负电源之值。
恒流源电流数值为 IE =(VZ - VBE3 )/ Re
差分放大电路的静态计算
将电路中信号源短路即可获得计算静态的直流 通路。已知:b=100,VBE=0.6V
IB
=
VEE VBE
Rs (1 b )2Re
V EE
1 b2
Re
12 100 20
镜象电流源
其中:基准电流 I R 是稳定的,故输出电流 I C 2 也是稳定的。
二、精密镜象电流源
精密镜象电流源和普通镜象电流源相比,其
镜象精度提高了b 倍。
电路中增加了T3 管,
I
C
2
= =
IICR1EF=I2REIFBI1B3
b3
IB3 比镜象电流源的2IB小
β3倍。因此IC2和IREF之间的
Rid = rbe 1 b RW 2
= 1.3 81 0.025 3.3k
Ro Rc = 3.3k
差模信号通路
A vd
=
1 2
rbe
bRL
1 b
RW
2
=
1 2
80 3.3
1.3 81
// 11
0.025
=
30.5
例2:
2. 单出-(双入或单入): (2)共模特性
Avc
=
voc vic
差分放大电路的组成
差分放大电路是由两个特性基本相同的三极管组成,电路 参数对称相等。 差分放大电路的静态和动态计算方法与基本放大电路基本相同。 静态分析 当输入信号为零时,即 vi1 = vi2 = 0时,
由于电路完全对称。 这时,iC1 = iC2 = IC = I0 / 2 VCE = VCC IC RC VBE vo = vC1 vC2 = 0
因 VBE1 VBE2
I E1 Re1 IE2 Re2
I E2 Re1 I E1 Re2
比例式电流源
五、多路电流源
通过一个基准电流源 稳定多个三极管的工作点 电流,即可构成多路电流 源。图中一个基准电流 IREF可获得多个恒定电流 IC2、IC3。
多路电流源
差分放大电路
vi1
电路完全对称的理想情况: vi2
= b RC
rbe
双端输入、单端输出
AVD1
=
1 2
AVD
=
b RC
2rbe
加负载电阻RL
AVD
=
b RL
rbe
式中:RL
=
RC
//
RL 2
共模电压增益 Avc
(1)双端输出时:
v v v Avc =
oc1 oc2
0
ic
共模电压增益越小, 放大电路的性能越好。
(2)单端输出时:
b
A v R R = oc1 =
零点漂移——动画6-1
零点漂移——动画6-2
差模电压增益
双端输入、双端输出
差分放大电路有两个输出端—集电极
C1和集电极C2。
若信号从C1 和C2输出,则称为双端
输出,反之,若信号仅从集电极 C1或
C2 对地输出,则称为单端输出。
AVD
=
vo vid
= vo1 vo2 vi1 vi2
= 2vo1 vid
路;由于两臂的共模信号电流同时流
过T4 、R1,因此,把它等效到每管发 共模信号通路 射极时,需用2REE表示。RW的影响可
略。
Avc
=
V oc V ic
=
0,
K CMR = Avd Avc
Ric = rbe 1 b2 REE
81 2 4050 = 656M
例2:
2. 单出-(双入或单入): (1)差模特性:
二、动态分析:
r I be1,2 = 300 1 b 26
300 80 26 2.1 1.3k
EQ1
等效的发射极耦合电阻REE—比例式电流源的输出电阻
REE = Ro4 1 b4rce4 = 81 50 = 4050k
例2:
1.双出(双入或单入):
差模特性: rbe=1.3k,
画差模信号通路:
C
C
vc1
v r ic
be
1 b
2ro
2ro
Avc1越小,抑制共模信号的能力越强。
(2)差模输入电阻
不论是单端输入还是双端输入,差模输 入电阻Rid是基本放大电路的两倍。
Rid = 2Rs rbe
(3)输出电阻
输出电阻在
单端输出时,Ro = Rc 双端输出时,Ro = 2Rc
共模抑制比
共模抑制比KCMR是差分放大器的一个重要指标。
而IC2可降至A量级的微电流源。且 IC2 的稳定性也比IREF 的稳定性好。
微电流源
四、比例式电流源
在镜象电流源电路的基础上,增加两个发射极电 阻,使两个发射极电阻中的电流成一定的比例关系, 即可构成比例电流源。
因两三极管基极对地电位 相等,于是有
VBE1 I E1 Re1 = VBE2 I E2 Re2
4、电流源电路一般都利用PN结的温度特性,对电流 源电路进行温度补偿,以减小温度对电流的影响。
电流源概述
二、电流源电路的用途:
1、给直接耦合放大器的各级电路提供直流偏 置电流,以获得极其稳定的Q点。 2、作各种放大器的有源负载,以提高增益、 增大动态范围。 3、由电流源给电容充电,可获得随时间线性 增长的电压输出。
=

A
IC b IB = 100 0.006 = 0.6mA
另一种工程估算法:
R IE VEE 2
= 12 20 = 0.6mA
相关文档
最新文档