单项式乘以多项式练习题

合集下载

单项式乘多项式练习题及答案

单项式乘多项式练习题及答案

单项式乘多项式练习题一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.2.计算:(1)6x2•3xy (2)(4a﹣b2)(﹣2b)3.(3x2y﹣2x+1)(﹣2xy)4.计算:(1)(﹣12a2b2c)•(﹣abc2)2= _________ ;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)= _________ .5.计算:﹣6a•(﹣﹣a+2)6.﹣3x•(2x2﹣x+4)7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2 8.(﹣a2b)(b2﹣a+)9.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?10.2ab(5ab+3a2b)11.计算:.12.计算:2x(x2﹣x+3)13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)= _________ .14.计算:xy2(3x2y﹣xy2+y)15.(﹣2ab)(3a2﹣2ab﹣4b2)16.计算:(﹣2a2b)3(3b2﹣4a+6)17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.多项式一、填空题1.计算:_____________)(32=+y x xy x .2.计算:)164(4)164(24242++-++a a a a a =________.3.若3k (2k-5)+2k (1-3k )=52,则k=____ ___.4.如果x+y=-4,x-y=8,那么代数式的值是 cm 。

《单项式乘以多项式》典型例题

《单项式乘以多项式》典型例题

《单项式乘以多项式》典型例题例1 计算: (1))123()4(2-+⋅xy x xy(2))478()21(3+-⋅-x x x(3))47(2)24(3)(22222b ab a b b a ab b ab a a +-+----例2 计算题:(1))1944)(3(22+--x x x ; (2)ab b a ab m m 32)1353(11⋅++--.例3 求值:)43(3)129(1n n n n y y y y y ---++,其中2,3=-=n y .例4 化简(1))323(5132n n n n n n y y x y x y x +-⋅--++; (2)])2(3)2[(2222ab b ab b ab ab -+-.例5 设012=-+m m ,求2000223++m m 的值.例6 计算: (1))123()4(2-+⋅xy x xy(2))478()21(3+-⋅-x x x(3))47(2)24(3)(22222b ab a b b a ab b ab a a +-+---- 例7 计算题:(1))1944)(3(22+--x x x ; (2)ab b a ab m m 32)1353(11⋅++--。

例8 求值:)43(3)129(1n n n n y y y y y ---++,其中2,3=-=n y 。

例9 化简(1))323(5132n n n n n n y y x y x y x +-⋅--++; (2)])2(3)2[(2222ab b ab b ab ab -+-。

例10 设012=-+m m ,求2000223++m m 的值。

参考答案例1 解:(1)原式)1(424342-⋅+⋅+⋅=xy xy xy x xy xy y x y x 4812223-+=(2)原式4)21()7()21(8)21(3⋅-+-⋅-+⋅-=x x x x xx x x 227424-+-=(3)原式322222232814612222b ab b a ab b a ab b a a +-++---= 323242b ab a +-=说明:单项式乘以多项式,积仍是一个多项式,其项数与所乘多项式的项数相等,要注意积的各项符号的确定.若是混合运算,运算顺序仍然是先乘方,再乘除,运算结果要检查,如有同类项要合并,结果要最简.例2 分析:(1)中单项式为23x -,多项式里含有24x ,x 94-,1,乘积结果为三项,特别是1这项不要漏乘.(2)中指数为字母,计算时要注意底数幂相乘底数不变指数相加.解:(1)原式1)3()94()3(432222⋅-+⋅-+⋅-=x x x x x24433412x x x -+-=(2)ab ab b a ab m m 3232)1353(11+⋅++--.322523232332532211ab b a b a ab ab b a ab ab m m m m ++=+⨯+⨯=--说明:单项式与多项式的第一项相乘时,要注意积的各项符号的确定;同号相乘得正,异号相乘得负.例3 解:原式n n n n n y y y y y 129129112+--+=++ n y 2=当2,3=-=n y 时,81)3()3(4222=-=-=⨯n y说明:求值问题,应先化简,再代入求值.例4 分析:在计算单项式乘以多项式时,仍应按有理数的运算法则,先去小括号2)2(ab 和)(32b a ab b +,再去中括号.解:(1)原式)35()2)(5(3521232n n n n n n n n n n y y x y x y x y x y x --+--+⋅-=+-+++ 22122332151015++++-+-=n n n n n n y x y x y x (2)原式])3()3(4[22222ab b a b ab b b a ab --+-+=323322222222222282)4(22]4[2]334[2b a b a ab ab b a ab ab b a ab ab b a ab b a ab -=-+⋅=-=---=例5 分析:由已知条件,显然12=+m m ,再将所求代数式化为m m +2的形式,整体代入求解.解: 2000223++m m2000223+++=m m m20012000120002000)(200022222=+=++=+++=++⋅+⨯=m m m m m m m m m m m说明:整体换元的数学方法,关键是识别转化整体换元的形式. 例6 解:(1)原式)1(424342-⋅+⋅+⋅=xy xy xy x xy xy y x y x 4812223-+=(2)原式4)21()7()21(8)21(3⋅-+-⋅-+⋅-=x x x x xx x x 227424-+-=(3)原式322222232814612222b ab b a ab b a ab b a a +-++---= 323242b ab a +-=说明:单项式乘以多项式,积仍是一个多项式,其项数与所乘多项式的项数相等,要注意积的各项符号的确定。

《单项式乘以多项式》典型例题

《单项式乘以多项式》典型例题

《单项式乘以多项式》典型例题例1 计算:(1))123()4(2-+⋅xy x xy(2))478()21(3+-⋅-x x x (3))47(2)24(3)(22222b ab a b b a ab b ab a a +-+----例2 计算题:(1))1944)(3(22+--x x x ; (2)ab b a ab m m 32)1353(11⋅++--. 例3 求值:)43(3)129(1n n n n y y y y y ---++,其中2,3=-=n y .例4 化简(1))323(5132n n n n n n y y x y x y x +-⋅--++;(2)])2(3)2[(2222ab b ab b ab ab -+-.例5 设012=-+m m ,求2000223++m m 的值.例6 计算:(1))123()4(2-+⋅xy x xy(2))478()21(3+-⋅-x x x (3))47(2)24(3)(22222b ab a b b a ab b ab a a +-+----例7 计算题:(1))1944)(3(22+--x x x ; (2)ab b a ab m m 32)1353(11⋅++--。

例8 求值:)43(3)129(1n n n n y y y y y ---++,其中2,3=-=n y 。

例9 化简(1))323(5132n n n n n n y y x y x y x +-⋅--++;(2)])2(3)2[(2222ab b ab b ab ab -+-。

例10 设012=-+m m ,求2000223++m m 的值。

参考答案例1 解:(1)原式)1(424342-⋅+⋅+⋅=xy xy xy x xyxy y x y x 4812223-+=(2)原式4)21()7()21(8)21(3⋅-+-⋅-+⋅-=x x x x x x x x 227424-+-= (3)原式322222232814612222b ab b a ab b a ab b a a +-++---=323242b ab a +-=说明:单项式乘以多项式,积仍是一个多项式,其项数与所乘多项式的项数相等,要注意积的各项符号的确定.若是混合运算,运算顺序仍然是先乘方,再乘除,运算结果要检查,如有同类项要合并,结果要最简.例2 分析:(1)中单项式为23x -,多项式里含有24x ,x 94-,1,乘积结果为三项,特别是1这项不要漏乘.(2)中指数为字母,计算时要注意底数幂相乘底数不变指数相加.解:(1)原式1)3()94()3(432222⋅-+⋅-+⋅-=x x x x x 24433412x x x -+-= (2)ab ab b a ab m m 3232)1353(11+⋅++-- .322523232332532211ab b a b a ab ab b a ab ab m m m m ++=+⨯+⨯=-- 说明:单项式与多项式的第一项相乘时,要注意积的各项符号的确定;同号相乘得正,异号相乘得负.例3 解:原式n n n n n y y y y y 129129112+--+=++n y 2=当2,3=-=n y 时,81)3()3(4222=-=-=⨯n y说明:求值问题,应先化简,再代入求值.例4 分析:在计算单项式乘以多项式时,仍应按有理数的运算法则,先去小括号2)2(ab 和)(32b a ab b +,再去中括号.解:(1)原式)35()2)(5(3521232n n n n n n n n n n y y x y x y x y x y x --+--+⋅-=+-+++ 22122332151015++++-+-=n n n n n n y x y x y x(2)原式])3()3(4[22222ab b a b ab b b a ab --+-+=323322222222222282)4(22]4[2]334[2b a b a ab ab b a ab ab b a ab ab b a ab b a ab -=-+⋅=-=---=例5 分析:由已知条件,显然12=+m m ,再将所求代数式化为m m +2的形式,整体代入求解.解: 2000223++m m2000223+++=m m m20012000120002000)(200022222=+=++=+++=++⋅+⨯=m m m m m m m m m m m说明:整体换元的数学方法,关键是识别转化整体换元的形式.例6 解:(1)原式)1(424342-⋅+⋅+⋅=xy xy xy x xyxy y x y x 4812223-+=(2)原式4)21()7()21(8)21(3⋅-+-⋅-+⋅-=x x x x x x x x 227424-+-= (3)原式322222232814612222b ab b a ab b a ab b a a +-++---=323242b ab a +-=说明:单项式乘以多项式,积仍是一个多项式,其项数与所乘多项式的项数相等,要注意积的各项符号的确定。

单项式乘多项式练习题(含答案)

单项式乘多项式练习题(含答案)

单项式乘多项式练习题参考答案与试题解析一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.2.计算:(1)6x2•3xy(2)(4a﹣b2)(﹣2b)3.(3x2y﹣2x+1)(﹣2xy)4.计算:(1)(﹣12a2b2c)•(﹣abc2)2=﹣a4b4c5;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)=﹣6a3b3+8a2b4+10a2b3+2ab2.abc,;a5.计算:﹣6a•(﹣﹣a+2)﹣a+26.﹣3x•(2x2﹣x+4)7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣28.计算:(﹣a2b)(b2﹣a+)(﹣b a+)a•a(﹣(﹣,a a a9.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?[a+× aaa+a aba ab10.2ab(5ab+3a2b)11.计算:.(﹣xx x12.计算:2x(x2﹣x+3)13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=16a5﹣48a4b+28a5b3.14.计算:xy2(3x2y﹣xy2+y)15.(﹣2ab)(3a2﹣2ab﹣4b2)16.计算:(﹣2a2b)3(3b2﹣4a+6)17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.①∴有方程组.,得到方程组。

单项式乘多项式练习题(含答案)

单项式乘多项式练习题(含答案)

2014—2015年武汉重点中学单项式乘多项式练习题一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.2.计算:(1)6x2•3xy (2)(4a﹣b2)(﹣2b)3.(3x2y﹣2x+1)(﹣2xy)4.计算:(1)(﹣12a2b2c)•(﹣abc2)2=_________;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)=_________.5.计算:﹣6a•(﹣﹣a+2)6.﹣3x•(2x2﹣x+4)7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2 8.(﹣a2b)(b2﹣a+)9.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?10.2ab(5ab+3a2b)11.计算:.12.计算:2x(x2﹣x+3)13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=_________.14.计算:xy2(3x2y﹣xy2+y)15.(﹣2ab)(3a2﹣2ab﹣4b2)16.计算:(﹣2a2b)3(3b2﹣4a+6)17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.参考答案与试题解析一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.2.计算:(1)6x2•3xy(2)(4a﹣b2)(﹣2b)3.(3x2y﹣2x+1)(﹣2xy)4.计算:(1)(﹣12a2b2c)•(﹣abc2)2=﹣a4b4c5;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)=﹣6a3b3+8a2b4+10a2b3+2ab2.abc,;a5.计算:﹣6a•(﹣﹣a+2)﹣6.﹣3x•(2x2﹣x+4)7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣28.计算:(﹣a2b)(b2﹣a+)(﹣(﹣a+a b(﹣a(﹣,a a a9.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?[a+× aaba aba+10.2ab(5ab+3a2b)11.计算:.(﹣x12.计算:2x(x2﹣x+3)13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=16a5﹣48a4b+28a5b3.14.计算:xy2(3x2y﹣xy2+y)15.(﹣2ab)(3a2﹣2ab﹣4b2)16.计算:(﹣2a2b)3(3b2﹣4a+6)17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.,得①有方程组.,得到方程组。

(完整版)单项式乘多项式练习题(含答案)

(完整版)单项式乘多项式练习题(含答案)

单项式乘多项式练习题一.解答题(共18小题)1. 先化简,再求值:2 (a 2b+ab 2)- 2 (a 2b - 1)- ab 2 - 2,其中 a=-2, b=2.2. 计算:2 (1) 6x ?3xy 23. (3x 2y - 2x+1 ) (- 2xy )4. 计算:2 2 1 2 2(1) (- 12a b c ) ? (- pabc ) = ________________ ;(2) (3a 2b - 4ab 2- 5ab - 1) ? (- 2ab 2) =_____________________ .1^-1 25. 计算:-6a?(-专耳-£a+2)6. - 3x? (2x - x+4)2 27.先化简,再求值 3a ( 2a 2- 4a+3)- 2a 2 (3a+4),其中 a=- 29.一条防洪堤坝,其横断面是梯形,上底宽 a 米,下底宽(a+2b )米,坝高米.(1)求防洪堤坝的横断面积; 2(2) ( 4a - b ) (- 2b )(2)如果防洪堤坝长 100米,那么这段防洪堤坝的体积是多少立方米?16.计算: (-2a 2b ) 3 (3b 2- 4a+6)17.某同学在计算一个多项式乘以-3x 2时,因抄错运算符号,算成了加上- 3x 2,得到的结果是x 2- 4x+1,那么正确的计算结果是多少? 18.对任意有理数 x 、y 定义运算如下:x △ y=ax+by+cxy ,这里a 、b 、c 是给定的数,等式右边是通常数的加法及 乘法运算,如当 a=1, b=2, c=3时,I △ 3=1 X +2 X 3+3X1 >3=16,现已知所定义的新运算满足条件,2=3, 2△ 3=4 ,并且有一个不为零的数 d 使得对任意有理数 x △ d=x ,求a 、b 、c 、d 的值. 210. 2ab (5ab+3a b ) 11•计算:(一斗瓷/)° (3砂-4,+1)212 .计算:2x (x - x+3) 13. (- 4a 3+12a 2b - 7a 3b 3) (- 4a 2) = ________________14 .计算:xy 2 (3x 2y - xy 2+y )15 . (- 2ab ) (3a 2- 2ab - 4b 2)参考答案与试题解析一.解答题(共18小题)1. 先化简,再求值:2 (a2b+ab2)- 2 (a2b- 1)- ab2- 2,其中a=-2, b=2.考点:整式的加减一化简求值;整式的加减;单项式乘多项式.分析:先根据整式相乘的法则进行计算,然后合并冋类项,最后将字母的值代入求出原代数式的值. 解答:解:原式=2a2b+2ab2- 2a?b+2 - ab2- 22 2 2 2=(2a b- 2a b) + (2ab - ab ) + (2 - 2)2=0+ab=ab2当a=- 2, b=2 时,原式=(-2)疋2= - 2^4O点评:一 8.本题是一道整式的加减化简求值的题,考查了单项式乘以多项式的法则,合并冋类项的法则和方法.2. 计算:(1)6x2?3xy(2)(4a- b2) (- 2b)考点:单项式乘单项式;单项式乘多项式.分析:(1)根据单项式乘单项式的法则计算;(2)根据单项式乘多项式的法则计算.解答:解:(1) 6x ?3xy=18x y;2 3(2) (4a- b2) (- 2b) = - 8ab+2b3.点评:本题考查了单项式与单项式相乘、单项式与多项式相乘,熟练掌握运算法则是解题的关键.23. (3x y - 2x+1 ) (- 2xy)考点:单项式乘多项式.分析:解答:点评:根据单项式乘多项式的法则,用单项式乘多项式的每一项,再把所得的积相加,计算即可.2 32 2解:(3x y- 2x+1 ) (- 2xy) =- 6x y +4x y - 2xy .本题考查单项式乘多项式的法则,熟练掌握运算法则是解题的关键,本题一定要注意符号的运算.4. 计算:2 2 2、2 '445(1) (- 12a b c) ? (—abc ) = -— a b e4 4(2) (3a2b - 4ab2- 5ab- 1) ? (- 2ab2) = - 6a3b3+8a2b4+10a2b3+2ab2.考点:单项式乘多项式;单项式乘单项式.分析:(1)先根据积的乘方,等于把积中的每一个因式分别乘方,再把所得的幕相乘;单项式乘单项式,把他们的系数,相同字母的幕分别相乘,其余字母连同他的指数不变,作为积的因式的法则计算;(2)根据单项式乘多项式,先用单项式去乘多项式的每一项,再把所得的积相加的法则计算即可.解答:解: (1) (- 12a2b2e) ? (- gabc2) 2,4=(-12a2b2c) ?舄廿|16=—3 J 4 5.故答案为:-上a4b4c5;42 2 2(2) (3a2b —4ab2—5ab—1) ? (—2ab2),=3a2b? (—2ab2)—4ab2? (—2ab2)—5ab? (—2ab2)—1? (—2ab2),=—6a3b3+8a2b4+10a2b3+2ab2.故答案为:-6a b +8a b +10a b +2ab .点评:本题考查了单项式与单项式相乘,单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意运算符号的处理.5. 计算:—6a? (― 2^2 —ga+2)考点:单项式乘多项式.分析:根据单项式乘以多项式,用单项式去乘多项式的每一项,再把所得的积相加,计算即可.解答:解:—6a? ( —2 '—丄a+2) =3a3+2a2—12a.2 3点评:本题主要考查单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意运算符号.26. —3x? (2x —x+4)考点:单项式乘多项式.分析:根据单项式与多项式相乘,用单项式去乘多项式的每一项,再把所得的积相加,计算即可.解答:解:-3x? (2x2—x+4),=—3x?2x2—3x? (—x)—3x?4, =-6x3+3x2—12x.点评:本题主要考查单项式与多项式相乘的运算法则,熟练掌握运算法则是解题的关键,计算时要注意运算符号.7•先化简,再求值3a ( 2a2—4a+3)—2a2(3a+4),其中a=—2考点:单项式乘多项式.分析:首先根据单项式与多项式相乘的法则去掉括号,然后合并冋类项,最后代入已知的数值计算即可.解答:解:3a (2a2- 4a+3)—2a2(3a+4)3 2 3 2 2=6a —12a +9a - 6a —8a = - 20a +9a, 当a=—2 时,原式=—20 >4 —9 >2= —98.点评:本题考查了整式的化简.整式的加减运算实际上就是去括号、合并冋类项,这是各地中考的常考点.8 计算:(-=a2b)(二b2-二a+二)考点:单项式乘多项式.专题:计算题.分析:此题直接利用单项式乘以多项式,先把单项式乘以多项式的每一项,再把所得的积相加,利用法则计算即可.31 2.3 3. 1 2. =——a b +—a b — — a b. 3 战本题考查单项式乘以多项式的运算,熟练掌握运算法则是解题的关键.9.一条防洪堤坝,其横断面是梯形,上底宽a 米,下底宽(a+2b )米,坝高米.(1) 求防洪堤坝的横断面积; (2) 如果防洪堤坝长 100米,那么这段防洪堤坝的体积是多少立方米?考点:单项式乘多项式.专题:应用题.分析:(1)根据梯形的面积公式,然后利用单项式乘多项式的法则计算;(2)防洪堤坝的体积=梯形面积 >坝长.解答:解:(1)防洪堤坝的横断面积 S=_[a+ (a+2b ) ] J a2 2=^a (2a+2b ) 4= ^a 2+」ab .2 2故防洪堤坝的横断面积为(ga 2+gab )平方米;(2)堤坝的体积 V=Sh= (ga 2』ab ) J 00=50a 2+50ab .故这段防洪堤坝的体积是(50a 2+50ab )立方米.点评:本题主要考查了梯形的面积公式及堤坝的体积=梯形面积 >长度,熟练掌握单项式乘多项式的运算法则是解题的关键.2 10. 2ab (5ab+3a b )考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:2ab ( 5ab+3a 2b ) =10a 2b 2+6a 3b 2;故答案为:10a 2b 2+6a 3b 2.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.11.计算:(.一 2〔3勒- + l )考点: 单项式乘多项式.分析: 先根据积的乘方的性质计算乘方,再根据单项式与多项式相乘的法则计算即可.解答:解:(—丄xy 2) 2 ( 3xy — 4xy 2+1)」x 2y 4 (3xy — 4xy 2+1)4解答: 解:「甕)嚕飞叫),(-丄 a2b )匕, 点评: =(- 驴(—护)(4a )3 6 124 y +才 y • 点评:本题考查了积的乘方的性质,单项式与多项式相乘的法则,熟练掌握运算法则是解题的关键,计算时要注意运算顺序及符号的处理.212 .计算:2x (x 2- x+3) 考点:单项式乘多项式.专题:计算题.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答: 解:2x (x 2- x+3)=2x?x 2 - 2x?x+2x?33 2=2x - 2x +6x .点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理. 13. (- 4a 3+12a 2b -7a 3b 3) (- 4a 2) = 16a 5- Ag/b+ZBa 'b 3考点:单项式乘多项式.专题:计算题.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答: 解:(-4a 3+i2a 2b -7a 3b 3) (- 4a 2) =16a 5- 48a 4b+28a 5b 3.故答案为:16a 5- 48a 4b+28a 5b 3.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.14 .计算:xy 2 (3x 2y - xy 2+y )考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答: 解:原式=xy 2 (3x 2y )- xy 2?xy 2+xy 2?y33 v 2 4 3=3x y - x y +xy .点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.2 215. (- 2ab ) (3a - 2ab - 4b )考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答: 解:(-2ab ) (3a 2- 2ab - 4b 2)2 2=(-2ab ) ? (3a 2)- (- 2ab ) ? (2ab )- (- 2ab ) ? (4b 2)c 3’ ,2’ 2 c ’ 3=-6a b+4a b +8ab .点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.16 .计算:(-2a 2b ) 3 (3b 2- 4a+6)考点:单项式乘多项式.分析:首先利用积的乘方求得(- 2a 2b ) 3的值,然后根据单项式与多项式相乘的运算法则:先用单项式乘多项式 的每一项,再把所得的积相加计算即可.解答:解:(-2 a 2 b ) 3 (3b 2- 4a+6) = - 8a 6b 3? (3b 2- 4a+6) =-24a 6b 5+32a 7b 3 - 48a 6b 3.点评:本题考查了单项式与多项式相乘.此题比较简单,熟练掌握运算法则是解题的关键,计算时要注意符号的 处理.Jx 3y 5- x417.某同学在计算一个多项式乘以- 3x2时,因抄错运算符号,算成了加上- 3x2,得到的结果是x2- 4x+1,那么正确的计算结果是多少?考点:单项式乘多项式.专题:应用题.分析:用错误结果减去已知多项式,得出原式,再乘以- 3x2得出正确结果.解答:解:这个多项式是(x2- 4x+1) -( - 3x2) =4x2- 4x+1 , (3 分)正确的计算结果是:(4x2-4x+1) ? (- 3x2) = - 12x4+12x3- 3x2. (3 分)点评:本题利用新颖的题目考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.18.对任意有理数x、y定义运算如下:x△ y=ax+by+cxy ,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2, c=3时,I△ 3=1 X+2 X3+3X1 >3=16,现已知所定义的新运算满足条件,2=3, 2△ 3=4 , 并且有一个不为零的数d使得对任意有理数x△ d=x,求a、b、c、d的值.考点:单项式乘多项式.专题:新定义.分析:—1 —ij由*△ d=x,得ax+bd+cdx=x,即(a+cd - 1)x+bd=0,得J ①,由2=3,得a+2b+2c=3②,[bd=O2△ 3=4,得2a+3b+6c=4③,解以上方程组成的方程组即可求得a、b、c、d的值.解答:解:T %△ d=x, /• ax+bd+cdx=x ,(a+cd - 1) x+bd=0 ,•/有一个不为零的数d使得对任意有理数x △ d=x,则有Lbd=O•••〔△ 2=3 , ••• a+2b+2c=3 ②, •/ 2^ 3=4 , • 2a+3b+6c=4 ③,1=0•有方程组a+2c=3詔亦址二4护5解得_1卫二4故a的值为5、b的值为0、c的值为-1、d的值为4.点评: 本题是新定义题,考查了定义新运算,解方程组.解题关键是由一个不为零的数d使得对任意有理数x △ d=x ,得出方程(a+cd - 1)x+bd=0,得到方程组fa+cd- 1=0\bd=0,求出b的值.。

单项式乘多项式练习试题(含答案)

单项式乘多项式练习试题(含答案)

单项式乘多项式练习题一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.2.计算:(1)6x2•3xy (2)(4a﹣b2)(﹣2b)3.(3x2y﹣2x+1)(﹣2xy)4.计算:(1)(﹣12a2b2c)•(﹣abc2)2=_________;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)=_________.5.计算:﹣6a•(﹣﹣a+2)6.﹣3x•(2x2﹣x+4)7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2 8.(﹣a2b)(b2﹣a+)9.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?10.2ab(5ab+3a2b)11.计算:.12.计算:2x(x2﹣x+3)13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)= _________.14.计算:xy2(3x2y﹣xy2+y)15.(﹣2ab)(3a2﹣2ab﹣4b2)16.计算:(﹣2a2b)3(3b2﹣4a+6)17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.参考答案与试题解析一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.考点:整式的加减—化简求值;整式的加减;单项式乘多项式.分析:先根据整式相乘的法则进行计算,然后合并同类项,最后将字母的值代入求出原代数式的值.解答:解:原式=2a2b+2ab2﹣2a2b+2﹣ab2﹣2=(2a2b﹣2a2b)+(2ab2﹣ab2)+(2﹣2)=0+ab2=ab2当a=﹣2,b=2时,原式=(﹣2)×22=﹣2×4=﹣8.点评:本题是一道整式的加减化简求值的题,考查了单项式乘以多项式的法则,合并同类项的法则和方法.2.计算:(1)6x2•3xy(2)(4a﹣b2)(﹣2b)考点:单项式乘单项式;单项式乘多项式.分析:(1)根据单项式乘单项式的法则计算;(2)根据单项式乘多项式的法则计算.解答:解:(1)6x2•3xy=18x3y;(2)(4a﹣b2)(﹣2b)=﹣8ab+2b3.点评:本题考查了单项式与单项式相乘、单项式与多项式相乘,熟练掌握运算法则是解题的关键.3.(3x2y﹣2x+1)(﹣2xy)考点:单项式乘多项式.分析:根据单项式乘多项式的法则,用单项式乘多项式的每一项,再把所得的积相加,计算即可.解答:解:(3x2y﹣2x+1)(﹣2xy)=﹣6x3y2+4x2y﹣2xy.点评:本题考查单项式乘多项式的法则,熟练掌握运算法则是解题的关键,本题一定要注意符号的运算.4.计算:(1)(﹣12a2b2c)•(﹣abc2)2=﹣a4b4c5;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)=﹣6a3b3+8a2b4+10a2b3+2ab2.考点:单项式乘多项式;单项式乘单项式.分析:(1)先根据积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘;单项式乘单项式,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式的法则计算;(2)根据单项式乘多项式,先用单项式去乘多项式的每一项,再把所得的积相加的法则计算即可.解答:解:(1)(﹣12a2b2c)•(﹣abc2)2,=(﹣12a2b2c)•,=﹣;故答案为:﹣a4b4c5;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2),=3a2b•(﹣2ab2)﹣4ab2•(﹣2ab2)﹣5ab•(﹣2ab2)﹣1•(﹣2ab2),=﹣6a3b3+8a2b4+10a2b3+2ab2.故答案为:﹣6a3b3+8a2b4+10a2b3+2ab2.点评:本题考查了单项式与单项式相乘,单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意运算符号的处理.5.计算:﹣6a•(﹣﹣a+2)考点:单项式乘多项式.分析:根据单项式乘以多项式,用单项式去乘多项式的每一项,再把所得的积相加,计算即可.解答:解:﹣6a•(﹣﹣a+2)=3a3+2a2﹣12a.点评:本题主要考查单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意运算符号.6.﹣3x•(2x2﹣x+4)考点:单项式乘多项式.分析:根据单项式与多项式相乘,用单项式去乘多项式的每一项,再把所得的积相加,计算即可.解答:解:﹣3x•(2x2﹣x+4),=﹣3x•2x2﹣3x•(﹣x)﹣3x•4,=﹣6x3+3x2﹣12x.点评:本题主要考查单项式与多项式相乘的运算法则,熟练掌握运算法则是解题的关键,计算时要注意运算符号.7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2考点:单项式乘多项式.分析:首先根据单项式与多项式相乘的法则去掉括号,然后合并同类项,最后代入已知的数值计算即可.解答:解:3a(2a2﹣4a+3)﹣2a2(3a+4)=6a3﹣12a2+9a﹣6a3﹣8a2=﹣20a2+9a,当a=﹣2时,原式=﹣20×4﹣9×2=﹣98.点评:本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.8.计算:(﹣a2b)(b2﹣a+)考点:单项式乘多项式.专题:计算题.分析:此题直接利用单项式乘以多项式,先把单项式乘以多项式的每一项,再把所得的积相加,利用法则计算即可.解答:解:(﹣a2b)(b2﹣a+),=(﹣a2b)•b2+(﹣a2b)(﹣a)+(﹣a2b)•,=﹣a2b3+a3b﹣a2b.点评:本题考查单项式乘以多项式的运算,熟练掌握运算法则是解题的关键.9.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?考点:单项式乘多项式.专题:应用题.分析:(1)根据梯形的面积公式,然后利用单项式乘多项式的法则计算;(2)防洪堤坝的体积=梯形面积×坝长.解答:解:(1)防洪堤坝的横断面积S=[a+(a+2b)]× a=a(2a+2b)=a2+ab.故防洪堤坝的横断面积为(a2+ab)平方米;(2)堤坝的体积V=Sh=(a2+ab)×100=50a2+50ab.故这段防洪堤坝的体积是(50a2+50ab)立方米.点评:本题主要考查了梯形的面积公式及堤坝的体积=梯形面积×长度,熟练掌握单项式乘多项式的运算法则是解题的关键.10.2ab(5ab+3a2b)考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:2ab(5ab+3a2b)=10a2b2+6a3b2;故答案为:10a2b2+6a3b2.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.11.计算:.考点:单项式乘多项式.分析:先根据积的乘方的性质计算乘方,再根据单项式与多项式相乘的法则计算即可.解答:解:(﹣xy2)2(3xy﹣4xy2+1)=x2y4(3xy﹣4xy2+1)=x3y5﹣x3y6+x2y4.点评:本题考查了积的乘方的性质,单项式与多项式相乘的法则,熟练掌握运算法则是解题的关键,计算时要注意运算顺序及符号的处理.12.计算:2x(x2﹣x+3)考点:单项式乘多项式.专题:计算题.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:2x(x2﹣x+3)=2x•x2﹣2x•x+2x•3=2x3﹣2x2+6x.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=16a5﹣48a4b+28a5b3.考点:单项式乘多项式.专题:计算题.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=16a5﹣48a4b+28a5b3.故答案为:16a5﹣48a4b+28a5b3.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.14.计算:xy2(3x2y﹣xy2+y)考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:原式=xy2(3x2y)﹣xy2•xy2+xy2•y=3x3y3﹣x2y4+xy3.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.15.(﹣2ab)(3a2﹣2ab﹣4b2)考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(﹣2ab)(3a2﹣2ab﹣4b2)=(﹣2ab)•(3a2)﹣(﹣2ab)•(2ab)﹣(﹣2ab)•(4b2)=﹣6a3b+4a2b2+8ab3.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.16.计算:(﹣2a2b)3(3b2﹣4a+6)考点:单项式乘多项式.分析:首先利用积的乘方求得(﹣2a2b)3的值,然后根据单项式与多项式相乘的运算法则:先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(﹣2a2b)3(3b2﹣4a+6)=﹣8a6b3•(3b2﹣4a+6)=﹣24a6b5+32a7b3﹣48a6b3.点评:本题考查了单项式与多项式相乘.此题比较简单,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?考点:单项式乘多项式.专题:应用题.分析:用错误结果减去已知多项式,得出原式,再乘以﹣3x2得出正确结果.解答:解:这个多项式是(x2﹣4x+1)﹣(﹣3x2)=4x2﹣4x+1,(3分)正确的计算结果是:(4x2﹣4x+1)•(﹣3x2)=﹣12x4+12x3﹣3x2.(3分)点评:本题利用新颖的题目考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.考点:单项式乘多项式.专题:新定义.分析:由x△d=x,得ax+bd+cdx=x,即(a+cd﹣1)x+bd=0,得①,由1△2=3,得a+2b+2c=3②,2△3=4,得2a+3b+6c=4③,解以上方程组成的方程组即可求得a、b、c、d的值.解答:解:∵x△d=x,∴ax+bd+cdx=x,∴(a+cd﹣1)x+bd=0,∵有一个不为零的数d使得对任意有理数x△d=x,则有①,∵1△2=3,∴a+2b+2c=3②,∵2△3=4,∴2a+3b+6c=4③,又∵d≠0,∴b=0,∴有方程组解得.故a的值为5、b的值为0、c的值为﹣1、d的值为4.点评:本题是新定义题,考查了定义新运算,解方程组.解题关键是由一个不为零的数d使得对任意有理数x△d=x,得出方程(a+cd﹣1)x+bd=0,得到方程组,求出b的值.。

单项式乘多项式试题精选附答案(供参考)

单项式乘多项式试题精选附答案(供参考)

单项式乘多项式试题精选附答案(供参考)单项式乘多项式试题精选附答案(供参考)一、选择题1.将(x+2)(x-3)展开后的结果是:A. x^2 - x - 6B. x^2 - 6C. x^2 - 5D. x^2 + x - 62.将2x(3x^2 + 4x - 5)展开后的结果是:A. 6x^3 + 8x^2 - 10xB. 6x^3 + 8x^2 - 5xC. 6x^3 + 10x^2 - 5xD. 6x^3 + 10x^2 - 10x3.将3(4x^2 - 2x + 5)展开后的结果是:A. 12x^2 - 6x + 15B. 12x^2 - 6x - 15C. 12x^2 + 6x - 15D. 12x^2 + 6x + 15二、填空题1.将(a + 2b - c)(a - 2b + c)展开后的结果是________。

答案:a^2 - 4b^2 + c^22.将2(3x^2 - 4xy + 5y^2)展开后的结果是________。

答案:6x^2 - 8xy + 10y^23.将5(2x^2 - 3xy + 4y^2)展开后的结果是________。

答案:10x^2 - 15xy + 20y^2三、解答题1.将(x - 2)^2展开后的结果是什么?展开后的单项式是哪些?解答:展开后的结果是x^2 - 4x + 4。

展开后的单项式是x^2、-4x和4。

2.将(3a - 2b)^2展开后的结果是什么?展开后的单项式是哪些?解答:展开后的结果是9a^2 - 12ab + 4b^2。

展开后的单项式是9a^2、-12ab和4b^2。

3.将2(x + 3)^2展开后的结果是什么?展开后的单项式是哪些?解答:展开后的结果是2x^2 + 12x + 18。

展开后的单项式是2x^2、12x和18。

四、综合题将(x - 3)(x + 4)展开后的结果是什么?展开后的单项式是哪些?在展开中应用了什么运算法则?解答:展开后的结果是x^2 + x - 12。

单项式乘多项式试题精选附答案

单项式乘多项式试题精选附答案

单项式乘多项式试题精选一.选择题(共13小题)1.下列计算错误的是()A.(a2b3)2=a4b6B.(a5)2=a10C.4x2y•(﹣3x4y3)=﹣12x6y3D.2x•(3x2﹣x+5)=6x3﹣2x2+10x2.通过计算几何图形的面积可表示一些代数恒等式,如图可表示的代数恒等式是()A.(a﹣b)2=a2﹣2ab+b2B.(a+b)2=a2+2ab+b2C.2a(a+b)=2a2+2ab D.(a+b)(a﹣b)=a2﹣b23.计算(﹣2a3+3a2﹣4a)(﹣5a5)等于()A.10a15﹣15a10+20a5B.﹣7a8﹣2a7﹣9a6C.10a8+15a7﹣20a6D.10a8﹣15a7+20a64.下列计算正确的是()A.(﹣2a)•(3ab﹣2a2b)=﹣6a2b﹣4a3b B.(2ab2)•(﹣a2+2b2﹣1)=﹣4a3b4 C.(abc)•(3a2b﹣2ab2)=3a3b2﹣2a2b3D.(ab)2•(3ab2﹣c)=3a3b4﹣a2b2c5.一个长方体的长、宽、高分别3a﹣4,2a,a,它的体积等于()A.3a3﹣4a2B.a2C.6a3﹣8a2D.6a3﹣8a6.适合2x(x﹣1)﹣x(2x﹣5)=12的x的值是()A.2B.1C.0D.47.计算a(1+a)﹣a(1﹣a)的结果为()A.2a B.2a2C.0D.﹣2a+2a8.(2008•毕节地区)下列运算正确的是()A.(2x2)3=2x6B.(﹣2x)3•x2=﹣8x6C.3x2﹣2x(1﹣x)=x2﹣2x D.x÷x﹣3÷x2=x29.(2009•眉山)下列运算正确的是()A.(x2)3=x5B.3x2+4x2=7x4C.(﹣x)9÷(﹣x)3=x6D.﹣x(x2﹣x+1)=﹣x3﹣x2﹣x10.(2014•湖州)计算2x(3x2+1),正确的结果是()A.5x3+2x B.6x3+1 C.6x3+2x D.6x2+2x11.(2013•本溪)下列运算正确的是()A.a3•a2=a6B.2a(3a﹣1)=6a3﹣1 C.(3a2)2=6a4D.2a+3a=5a12.(2011•湛江)下列计算正确的是()A.a2•a3=a5B.a+a=a2C.(a2)3=a5D.a2(a+1)=a3+113.(2010•连云港)下列计算正确的是()A.a+a=a2B.a•a2=a3C.(a2)3=a5D.a2(a+1)=a3+1二.填空题(共10小题)14.通过计算几何图形的面积可以得到一些恒等式,根据如图的长方形面积写出的恒等式为_________.15.计算:2x2•(﹣3x3)=_________.16.当a=﹣2时,则代数式的值为_________.17.若2x(x﹣1)﹣x(2x+3)=15,则x=_________.18.若﹣2x2y(﹣x m y+3xy3)=2x5y2﹣6x3y n,则m=_________,n=_________.19.a n b2[3b n﹣1﹣2ab n+1+(﹣1)2003]=_________.20.(2014•盐城)已知x(x+3)=1,则代数式2x2+6x﹣5的值为_________.21.(2014•上海)计算:a(a+1)=_________.22.(1998•内江)计算:4x•(2x2﹣3x+1)=_________.23.(2009•贺州)计算:(﹣2a)•(a3﹣1)=_________.三.解答题(共7小题)24.计算:(﹣2x3y)•(3xy2﹣4xy+1).25.(2a2)•(3ab2﹣5ab3)26.长方形的长、宽、高分别是3x﹣4,2x和x,它们的表面积是多少?27.已知ab2=﹣1,求(﹣ab)(a2b5﹣ab3﹣b)的值.28.①xy•(x﹣y+1)②﹣3a(4a2﹣a+b)29.化简:(1)a(3+a)﹣3(a+2);(2)2a2b(﹣3ab2);(3)(x﹣)•(﹣12y).30.阅读下列文字,并解决问题.已知x2y=3,求2xy(x5y2﹣3x3y﹣4x)的值.分析:考虑到满足x2y=3的x、y的可能值较多,不可以逐一代入求解,故考虑整体思想,将x2y=3整体代入.解:2xy(x5y2﹣3x3y﹣4x)=2x6y3﹣6x4y2﹣8x2y=2(x2y)3﹣6(x2y)2﹣8x2y=2×33﹣6×32﹣8×3=﹣24.请你用上述方法解决问题:已知ab=3,求(2a3b2﹣3a2b+4a)•(﹣2b)的值.单项式乘多项式试题精选参考答案与试题解析一.选择题(共13小题)1.下列计算错误的是()A.(a2b3)2=a4b6B.(a5)2=a10C.4x2y•(﹣3x4y3)=﹣12x6y3D.2x•(3x2﹣x+5)=6x3﹣2x2+10x考点:单项式乘单项式;幂的乘方与积的乘方;单项式乘多项式.分析:根据单项式乘单项式,单项式乘多项式以及幂的乘方与积的乘方的知识求解即可求得答案.解答:解:A、(a2b3)2=a4b6,故A选项正确,不符合题意;B、(a5)2=a10,故B选项正确,不符合题意;C、4x2y•(﹣3x4y3)=﹣12x6y4,故C选项错误,符合题意;D、2x•(3x2﹣x+5)=6x3﹣2x2+10x,故D选项正确,不符合题意.故选:C.点评:此题考查了单项式乘单项式,单项式乘多项式以及幂的乘方与积的乘方等知识,解题的关键是熟记法则.2.通过计算几何图形的面积可表示一些代数恒等式,如图可表示的代数恒等式是()A.(a﹣b)2=a2﹣2ab+b2B.(a+b)2=a2+2ab+b2C.2a(a+b)=2a2+2ab D.(a+b)(a﹣b)=a2﹣b2考点:单项式乘多项式.专题:几何图形问题.分析:由题意知,长方形的面积等于长2a乘以宽(a+b),面积也等于四个小图形的面积之和,从而建立两种算法的等量关系.解答:解:长方形的面积等于:2a(a+b),也等于四个小图形的面积之和:a2+a2+ab+ab=2a2+2ab,即2a(a+b)=2a2+2ab.故选:C.点评:本题考查了单项式乘多项式的几何解释,列出面积的两种不同表示方法是解题的关键.3.计算(﹣2a3+3a2﹣4a)(﹣5a5)等于()A.10a15﹣15a10+20a5B.﹣7a8﹣2a7﹣9a6C.10a8+15a7﹣20a6D.10a8﹣15a7+20a6考点:单项式乘多项式.分析:根据单项式乘以多项式的法则,单项式去乘多项式的每一项,再把所得的积相加,单项式乘以单项式的法则,系数与系数相乘,相同字母与相同字母相乘,对于只在一个单项式里出现的字母,则连同它的指数作为积的一个因式,计算即可.解答:解:(﹣2a3+3a2﹣4a)(﹣5a5)=10a8﹣15a7+20a6.故选:D.点评:本题主要考查单项式乘以多项式的法则,以及单项式的乘法法则,需要熟练掌握.4.下列计算正确的是()A.(﹣2a)•(3ab﹣2a2b)=﹣6a2b﹣4a3b B.(2ab2)•(﹣a2+2b2﹣1)=﹣4a3b4 C.(abc)•(3a2b﹣2ab2)=3a3b2﹣2a2b3D.(ab)2•(3ab2﹣c)=3a3b4﹣a2b2c考点:单项式乘多项式.分析:根据单项式乘以多项式法则,对各选项计算后利用排除法求解.解答:解:A、应为(﹣2a)•(3ab﹣2a2b)=﹣6a2b+4a3b,故本选项错误;B、应为(2ab2)•(﹣a2+2b2﹣1)=﹣2a3b2+4ab4﹣2ab2,故本选项错误;C、应为(abc)•(3a2b﹣2ab2)=3a3b2c﹣2a2b3c,故本选项错误;D、(ab)2•(3ab2﹣c)=3a3b4﹣a2b2c,正确.故选D.点评:本题考查了单项式乘以多项式法则.单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.要熟记单项式与多项式的每一项都相乘,不能漏乘.5.一个长方体的长、宽、高分别3a﹣4,2a,a,它的体积等于()A.3a3﹣4a2B.a2C.6a3﹣8a2D.6a3﹣8a考点:单项式乘多项式;单项式乘单项式.分析:根据长方体的体积=长×宽×高,列出算式,再根据单项式乘多项式的运算法则计算即可.解答:解:由题意知,V=(3a﹣4)•2a•a=6a3﹣8a2.长方体故选C.点评:本题考查了多项式乘单项式的运算法则,要熟练掌握长方体的体积公式.6.适合2x(x﹣1)﹣x(2x﹣5)=12的x的值是()A.2B.1C.0D.4考点:单项式乘多项式;解一元一次方程.分析:先去括号,然后移项、合并化系数为1可得出答案.解答:解:去括号得:2x2﹣2x﹣2x2+5x=12,合并同类项得:3x=12,系数化为1得:x=4.故选D.点评:本题主要考查了单项式乘多项式的运算法则以及解一元一次方程.比较简单,去括号时,注意不要漏乘括号里的每一项.7.计算a(1+a)﹣a(1﹣a)的结果为()A.2a B.2a2C.0D.﹣2a+2a考点:单项式乘多项式.分析:按照单项式乘以多项式的法则展开后合并同类项即可.解答:解:原式=a+a2﹣a+a2=2a2,故选B.点评:本题考查了单项式乘以多项式的知识,属于基本运算,应重点掌握.8.(2008•毕节地区)下列运算正确的是()A.(2x2)3=2x6B.(﹣2x)3•x2=﹣8x6C.3x2﹣2x(1﹣x)=x2﹣2x D.x÷x﹣3÷x2=x2考点:单项式乘多项式;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法;单项式乘单项式.分析:根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;单项式的乘法法则,单项式乘多项式的法则,同底数幂的除法,对各选项分析判断后利用排除法求解.解答:解:A、应为(2x2)3=23•(x2)3=8x6,故本选项错误;B、应为(﹣2x)3•x2=﹣8x3•x2=﹣8x5,故本选项错误;C、应为3x2﹣2x(1﹣x)=3x2﹣2x+2x2=5x2﹣2x,故本选项错误;D、x÷x﹣3÷x2=x1﹣(﹣3)﹣2=x2,正确.故选D.点评:本题考查积的乘方,同底数幂的除法法则,单项式乘单项式,单项式乘多项式,熟练掌握运算法则是解题的关键.9.(2009•眉山)下列运算正确的是()A.(x2)3=x5B.3x2+4x2=7x4C.(﹣x)9÷(﹣x)3=x6D.﹣x(x2﹣x+1)=﹣x3﹣x2﹣x考点:单项式乘多项式;合并同类项;幂的乘方与积的乘方;同底数幂的除法.专题:压轴题.分析:根据幂的乘方,底数不变指数相乘;合并同类项的法则;同底数幂相除,底数不变指数相减;单项式乘多项式的法则,对各选项分析判断后利用排除法求解.解答:解:A、应为(x2)3=x6,故本选项错误;B、应为3x2+4x2=7x2,故本选项错误;D、应为﹣x(x2﹣x+1)=﹣x3+x2﹣x,故本选项错误;C、(﹣x)9÷(﹣x)3=x6正确.故选C.点评:本题考查幂的乘方,合并同类项,同底数幂的除法,单项式乘多项式,熟练掌握运算性质和法则是解题的关键.10.(2014•湖州)计算2x(3x2+1),正确的结果是()A.5x3+2x B.6x3+1 C.6x3+2x D.6x2+2x考点:单项式乘多项式.专题:计算题.分析:原式利用单项式乘以多项式法则计算即可得到结果.解答:解:原式=6x3+2x,故选:C.点评:此题考查了单项式乘多项式,熟练掌握运算法则是解本题的关键.11.(2013•本溪)下列运算正确的是()A.a3•a2=a6B.2a(3a﹣1)=6a3﹣1 C.(3a2)2=6a4D.2a+3a=5a考点:单项式乘多项式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:A、原式利用同底数幂的乘法法则计算得到结果,即可作出判断;B、原式利用单项式乘多项式法则计算得到结果,即可作出判断;C、原式利用积的乘方与幂的乘方运算法则计算得到结果,即可作出判断;D、原式合并同类项得到结果,即可作出判断.解答:解:A、a3•a2=a5,本选项错误;B、2a(3a﹣1)=6a2﹣2a,本选项错误;C、(3a2)2=9a4,本选项错误;D、2a+3a=5a,本选项正确,故选D点评:此题考查了单项式乘多项式,合并同类项,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.12.(2011•湛江)下列计算正确的是()A.a2•a3=a5B.a+a=a2C.(a2)3=a5D.a2(a+1)=a3+1考点:单项式乘多项式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的乘法法则:底数不变,指数相加,以及合并同类项:只把系数相加,字母及其指数完全不变,幂的乘方法则:底数不变,指数相乘,单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加分别求出即可.解答:解:A.a2•a3=a5,故此选项正确;B.a+a=2a,故此选项错误;C.(a2)3=a6,故此选项错误;D.a2(a+1)=a3+a2,故此选项错误;故选:A.点评:此题主要考查了整式的混合运算,根据题意正确的掌握运算法则是解决问题的关键.13.(2010•连云港)下列计算正确的是()A.a+a=a2B.a•a2=a3C.(a2)3=a5D.a2(a+1)=a3+1考点:单项式乘多项式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的乘法、幂的乘方和单项式乘以多项式的运算法则计算后利用排除法求解.解答:解:A、a+a=a2,很明显错误,应该为a+a=2a,故本选项错误;B、a•a2=a3,利用同底数幂的乘法,故本选项正确;C、应为(a2)3=a6,故本选项错误;D、a2(a+1)=a3+a2,故本选项错误.故选B.点评:本题主要考查幂的运算性质,单项式乘以多项式的法则,需要熟练掌握.二.填空题(共10小题)14.通过计算几何图形的面积可以得到一些恒等式,根据如图的长方形面积写出的恒等式为2a(a+b)=2a2+2ab.考点:单项式乘多项式.分析:由题意知,长方形的面积等于长2a乘以宽(a+b),面积也等于四个小图形的面积之和,从而建立两种算法的等量关系.解答:解:长方形的面积等于:2a(a+b),也等于四个小图形的面积之和:a2+a2+ab+ab=2a2+2ab,即2a(a+b)=2a2+2ab.故答案为:2a(a+b)=2a2+2ab.点评:本题考查了单项式乘多项式的几何解释,列出面积的两种不同表示方法是解题的关键.15.计算:2x2•(﹣3x3)=﹣6x5.考点:单项式乘多项式.专题:计算题.分析:根据单项式乘单项式的法则:系数的积作为积的系数,同底数的幂分别相乘也作为积的一个因式,进行计算即可.解答:解:2x2•(﹣3x3)=(﹣2×3)x2•x3=﹣6x5.故答案为:﹣6x5.点评:本题考查了单项式乘单项式法则的应用,通过做此题培养了学生的理解能力和计算能力,题目比较好,难度不大.16.当a=﹣2时,则代数式的值为﹣8.考点:代数式求值;单项式乘多项式.专题:计算题.分析:根据单项式乘多项式法则展开,再合并同类项,把﹣2代入求出即可.解答:解:a=﹣2,a﹣2(1﹣a)=a﹣2+ a=3a﹣2=3×(﹣2)﹣2=﹣8.故答案为:﹣8.点评:本题考查了单项式乘多项式法则和求代数式的值等知识点的应用,主要看学生展开时是否漏乘和能否正确合并同类项.17.若2x(x﹣1)﹣x(2x+3)=15,则x=﹣3.考点:单项式乘多项式.分析:根据单项式乘多项式的法则,先去括号,再移项、合并同类项,系数化1,可求出x的值.解答:解:2x(x﹣1)﹣x(2x+3)=15,去括号,得2x2﹣2x﹣2x2﹣3x=15,合并同类项,得﹣5x=15,系数化为1,得x=﹣3.点评:此题是解方程题,实质也考查了单项式与多项式的乘法,注意符号的处理.18.若﹣2x2y(﹣x m y+3xy3)=2x5y2﹣6x3y n,则m=3,n=4.考点:单项式乘多项式.分析:按照多项式乘以单项式的法则展开后即可求得m、n的值.解答:解:原式=2x m+2y2﹣6x3y4=2x5y2﹣6x3y n,∴m+2=5,n=4,∴m=3,n=4,故答案为:3,4.点评:本题考查了单项式乘以多项式,单项式乘以多项式就是用单项式乘以多项式中的每一项,然后相加.19.a n b2[3b n﹣1﹣2ab n+1+(﹣1)2003]=3a n b n+1﹣2a n+1b n+3﹣a n b2.考点:单项式乘多项式.分析:根据单项式成多项式,用单项式乘多向数的每一项,把所得的积相加,可得答案.解答:解:原式=a n b2(3b n﹣1﹣2ab n+1﹣1)=3a n b n+1﹣2a n+1b n+3﹣a n b2,故答案为:3a n b n+1﹣2a n+1b n+3﹣a n b2.点评:本题考查了单项式成多项式,用单项式乘多向数的每一项,把所得的积相加.20.(2014•盐城)已知x(x+3)=1,则代数式2x2+6x﹣5的值为﹣3.考点:代数式求值;单项式乘多项式.专题:整体思想.分析:把所求代数式整理出已知条件的形式,然后代入数据进行计算即可得解.解答:解:∵x(x+3)=1,∴2x2+6x﹣5=2x(x+3)﹣5=2×1﹣5=2﹣5=﹣3.故答案为:﹣3.点评:本题考查了代数式求值,整体思想的利用是解题的关键.21.(2014•上海)计算:a(a+1)=a2+a.考点:单项式乘多项式.专题:计算题.分析:原式利用单项式乘以多项式法则计算即可得到结果.解答:解:原式=a2+a.故答案为:a2+a点评:此题考查了单项式乘以多项式,熟练掌握运算法则是解本题的关键.22.(1998•内江)计算:4x•(2x2﹣3x+1)=8x3﹣12x2+4x.考点:单项式乘多项式.分析:根据单项式与多项式相乘,应用单项式与多项式的每一项都分别相乘,再把所得的积相加,计算即可.解答:解:4x•(2x2﹣3x+1),=4x•2x2﹣4x•3x+4x•1,=8x3﹣12x2+4x.点评:本题主要考查单项式乘以多项式的法则,熟练掌握运算法则是解题的关键,属于基础题.23.(2009•贺州)计算:(﹣2a)•(a3﹣1)=﹣a4+2a.考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(﹣2a)•(a3﹣1),=(﹣2a)•(a3)+(﹣1)•(﹣2a),=﹣a4+2a.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.三.解答题(共7小题)24.计算:(﹣2x3y)•(3xy2﹣4xy+1).考点:单项式乘多项式.专题:计算题.分析:利用单项式乘以多项式中的每一项后把所得的积相加即可得到结果.解答:解:(﹣2x3y)•(3xy2﹣4xy+1)=﹣2x3y•3xy2+(﹣2x3y)•4xy+(﹣2x3y)=﹣6x4y3+8x4y2﹣2x3y.点评:本题考查了单项式乘以多项式的知识,属于基础题,比较简单.25.(2a2)•(3ab2﹣5ab3)考点:单项式乘多项式.分析:单项式乘以多项式时用单项式和多项式中的每一项相乘,然后再相加即可.解答:解:(2a2)•(3ab2﹣5ab3)=(2a2)•3ab2﹣(2a2)•5ab3=6a3b2﹣10a3b3.点评:本题考查了单项式乘以多项式的知识,解题的关键是牢记法则并熟记有关幂的性质.26.长方形的长、宽、高分别是3x﹣4,2x和x,它们的表面积是多少?考点:单项式乘多项式.分析:根据“长方体的表面积=(长×宽+长×高+宽×高)×2”进行解答即可;解答:解:长方体的表面积=2×[(3x﹣4)×2x+(3x﹣4)•x+2x×x]=22x2﹣24x.点评:本题考查了单项式乘以多项式,解题的关键是牢记法则.27.已知ab2=﹣1,求(﹣ab)(a2b5﹣ab3﹣b)的值.考点:单项式乘多项式.分析:原式利用单项式乘以多项式法则计算,变形后将已知等式代入计算即可求出值.解答:解:∵ab2=﹣1,∴原式=﹣a3b6+a2b4+ab2=﹣(ab2)3+(ab2)2+ab2=1+1﹣1=1.点评:此题考查了因式分解的应用,利用了整体代入的思想,是一道基本题型.28.①xy•(x﹣y+1)②﹣3a(4a2﹣a+b)考点:单项式乘多项式.分析:利用单项式乘以多项式的运算法则进行运算即可.解答:解:①原式=xy•x﹣vy•y+xy=x2y﹣xy2+xy﹣12;②原式=②﹣3a•4a2+3a×a﹣3a × b=﹣12a3+5a2﹣2ab.点评:本题考查了单项式乘以多项式,解题的关键是牢记法则.29.化简:(1)a(3+a)﹣3(a+2);(2)2a2b(﹣3ab2);(3)(x﹣)•(﹣12y).考点:单项式乘多项式.分析:(1)根据单项式成多项式用单项式乘多向数的每一项,把所得的积相加,再根据合并同类项,可得答案;(2)根据单项式成多项式用单项式乘多向数的每一项,把所得的积相加,可得答案;(3)根据单项式成多项式用单项式乘多向数的每一项,把所得的积相加,可得答案;解答:解(1)原式=3a+a2﹣3a﹣6=a2﹣6;(2)原式=a3b2﹣6a3b3;(3)原式=﹣4xy+9xy2.点评:本题考查了单项式成多项式,单项式成多项式用单项式乘多向数的每一项,把所得的积相加.30.阅读下列文字,并解决问题.已知x2y=3,求2xy(x5y2﹣3x3y﹣4x)的值.分析:考虑到满足x2y=3的x、y的可能值较多,不可以逐一代入求解,故考虑整体思想,将x2y=3整体代入.解:2xy(x5y2﹣3x3y﹣4x)=2x6y3﹣6x4y2﹣8x2y=2(x2y)3﹣6(x2y)2﹣8x2y=2×33﹣6×32﹣8×3=﹣24.请你用上述方法解决问题:已知ab=3,求(2a3b2﹣3a2b+4a)•(﹣2b)的值.考点:单项式乘多项式.分析:根据单项式乘多项式,可得一个多项式,根据把已知代入,可得答案.解答:解:(2a3b2﹣3a2b+4a)•(﹣2b),=﹣4a3b3+6a2b2﹣8ab,=﹣4×(ab)3+6(ab)2﹣8ab,=﹣4×33+6×32﹣8×3,=﹣108+54﹣24,=﹣78.点评:本题考查了单项式乘多项式,整体代入是解题关键.11。

单项式乘多项式练习题

单项式乘多项式练习题

单项式乘多项式练习题一、单项式乘多项式概述在代数学中,单项式乘多项式是一个常见的运算。

本文将通过一些练习题来帮助读者巩固和加深对单项式乘多项式的理解和应用。

二、练习题11. 计算以下的单项式乘多项式:(1) 3a^2 * (4a - 2)(2) -2x * (-3x^2 + 5x - 1)解答:(1) 3a^2 * (4a - 2)= 3a^2 * 4a - 3a^2 * 2 (按分配律展开)= 12a^3 - 6a^2 (合并同类项)(2) -2x * (-3x^2 + 5x - 1)= -2x * -3x^2 + -2x * 5x + -2x * -1 (按分配律展开)= 6x^3 - 10x^2 + 2x (合并同类项)三、练习题22. 解开以下方程:(1) 2x^3y * (3x^2 - 5xy + 2y^2) = 0解答:(1) 2x^3y * (3x^2 - 5xy + 2y^2) = 0根据乘法的性质,如果一个乘积等于零,则其中至少有一个因子等于零。

因此,我们可以得到两个方程:2x^3y = 0 (第一个因子等于零)3x^2 - 5xy + 2y^2 = 0 (第二个因子等于零)解第一个方程得到x = 0或y = 0。

然后,我们将x = 0和y = 0代入第二个方程,得到:当x = 0时,2y^2 = 0,解为y = 0。

当y = 0时,3x^2 = 0,解为x = 0。

因此,方程的解是(x, y) = (0, 0)。

四、练习题33. 计算以下的单项式乘多项式:(1) 5p^2q * (2p^3q^2 - 3p + 4q)解答:(1) 5p^2q * (2p^3q^2 - 3p + 4q)= 5p^2q * 2p^3q^2 + 5p^2q * -3p + 5p^2q * 4q (按分配律展开)= 10p^5q^3 - 15p^3q^2 + 20p^2q^2 (合并同类项)五、练习题44. 计算以下的单项式乘多项式:(1) (-3a^2b) * (-2ab^3c + 3c^2)解答:(1) (-3a^2b) * (-2ab^3c + 3c^2)= -3a^2b * -2ab^3c + -3a^2b * 3c^2 (按分配律展开)= 6a^3b^4c - 9a^2bc^2 (合并同类项)六、练习题55. 解开以下方程:(1) 4x^3y * (2xy^2 - 5x + 3y) = 0解答:(1) 4x^3y * (2xy^2 - 5x + 3y) = 0根据乘法的性质,如果一个乘积等于零,则其中至少有一个因子等于零。

单项式乘多项式练习题(含标准答案)

单项式乘多项式练习题(含标准答案)

单项式乘多项式练习题(含答案)————————————————————————————————作者:————————————————————————————————日期:2单项式乘多项式练习题一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.2.计算:(1)6x2•3xy (2)(4a﹣b2)(﹣2b)3.(3x2y﹣2x+1)(﹣2xy)4.计算:(1)(﹣12a2b2c)•(﹣abc2)2=_________;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)=_________.5.计算:﹣6a•(﹣﹣a+2)6.﹣3x•(2x2﹣x+4)7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2 8.(﹣a2b)(b2﹣a+)9.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?10.2ab(5ab+3a2b)11.计算:.12.计算:2x(x2﹣x+3)13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=_________.14.计算:xy2(3x2y﹣xy2+y)15.(﹣2ab)(3a2﹣2ab﹣4b2)16.计算:(﹣2a2b)3(3b2﹣4a+6)17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.参考答案与试题解析一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.考点:整式的加减—化简求值;整式的加减;单项式乘多项式.分析:先根据整式相乘的法则进行计算,然后合并同类项,最后将字母的值代入求出原代数式的值.解答:解:原式=2a2b+2ab2﹣2a2b+2﹣ab2﹣2=(2a2b﹣2a2b)+(2ab2﹣ab2)+(2﹣2)=0+ab2=ab2当a=﹣2,b=2时,原式=(﹣2)×22=﹣2×4=﹣8.点评:本题是一道整式的加减化简求值的题,考查了单项式乘以多项式的法则,合并同类项的法则和方法.2.计算:(1)6x2•3xy(2)(4a﹣b2)(﹣2b)考点:单项式乘单项式;单项式乘多项式.分析:(1)根据单项式乘单项式的法则计算;(2)根据单项式乘多项式的法则计算.解答:解:(1)6x2•3xy=18x3y;(2)(4a﹣b2)(﹣2b)=﹣8ab+2b3.点评:本题考查了单项式与单项式相乘、单项式与多项式相乘,熟练掌握运算法则是解题的关键.3.(3x2y﹣2x+1)(﹣2xy)考点:单项式乘多项式.分析:根据单项式乘多项式的法则,用单项式乘多项式的每一项,再把所得的积相加,计算即可.解答:解:(3x2y﹣2x+1)(﹣2xy)=﹣6x3y2+4x2y﹣2xy.点评:本题考查单项式乘多项式的法则,熟练掌握运算法则是解题的关键,本题一定要注意符号的运算.4.计算:(1)(﹣12a2b2c)•(﹣abc2)2=﹣a4b4c5;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)=﹣6a3b3+8a2b4+10a2b3+2ab2.考点:单项式乘多项式;单项式乘单项式.分析:(1)先根据积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘;单项式乘单项式,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式的法则计算;(2)根据单项式乘多项式,先用单项式去乘多项式的每一项,再把所得的积相加的法则计算即可.解答:解:(1)(﹣12a2b2c)•(﹣abc2)2,=(﹣12a2b2c)•,=﹣;故答案为:﹣a4b4c5;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2),=3a2b•(﹣2ab2)﹣4ab2•(﹣2ab2)﹣5ab•(﹣2ab2)﹣1•(﹣2ab2),=﹣6a3b3+8a2b4+10a2b3+2ab2.故答案为:﹣6a3b3+8a2b4+10a2b3+2ab2.点评:本题考查了单项式与单项式相乘,单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意运算符号的处理.5.计算:﹣6a•(﹣﹣a+2)考点:单项式乘多项式.分析:根据单项式乘以多项式,用单项式去乘多项式的每一项,再把所得的积相加,计算即可.解答:解:﹣6a•(﹣﹣a+2)=3a3+2a2﹣12a.点评:本题主要考查单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意运算符号.6.﹣3x•(2x2﹣x+4)考点:单项式乘多项式.分析:根据单项式与多项式相乘,用单项式去乘多项式的每一项,再把所得的积相加,计算即可.解答:解:﹣3x•(2x2﹣x+4),=﹣3x•2x2﹣3x•(﹣x)﹣3x•4,=﹣6x3+3x2﹣12x.点评:本题主要考查单项式与多项式相乘的运算法则,熟练掌握运算法则是解题的关键,计算时要注意运算符号.7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2考点:单项式乘多项式.分析:首先根据单项式与多项式相乘的法则去掉括号,然后合并同类项,最后代入已知的数值计算即可.解答:解:3a(2a2﹣4a+3)﹣2a2(3a+4)=6a3﹣12a2+9a﹣6a3﹣8a2=﹣20a2+9a,当a=﹣2时,原式=﹣20×4﹣9×2=﹣98.点评:本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.8.计算:(﹣a2b)(b2﹣a+)考点:单项式乘多项式.专题:计算题.分析:此题直接利用单项式乘以多项式,先把单项式乘以多项式的每一项,再把所得的积相加,利用法则计算即可.解答:解:(﹣a2b)(b2﹣a+),=(﹣a2b)•b2+(﹣a2b)(﹣a)+(﹣a2b)•,=﹣a2b3+a3b﹣a2b.点评:本题考查单项式乘以多项式的运算,熟练掌握运算法则是解题的关键.9.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?考点:单项式乘多项式.专题:应用题.分析:(1)根据梯形的面积公式,然后利用单项式乘多项式的法则计算;(2)防洪堤坝的体积=梯形面积×坝长.解答:解:(1)防洪堤坝的横断面积S=[a+(a+2b)]× a=a(2a+2b)=a2+ab.故防洪堤坝的横断面积为(a2+ab)平方米;(2)堤坝的体积V=Sh=(a2+ab)×100=50a2+50ab.故这段防洪堤坝的体积是(50a2+50ab)立方米.点评:本题主要考查了梯形的面积公式及堤坝的体积=梯形面积×长度,熟练掌握单项式乘多项式的运算法则是解题的关键.10.2ab(5ab+3a2b)考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:2ab(5ab+3a2b)=10a2b2+6a3b2;故答案为:10a2b2+6a3b2.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.11.计算:.考点:单项式乘多项式.分析:先根据积的乘方的性质计算乘方,再根据单项式与多项式相乘的法则计算即可.解答:解:(﹣xy2)2(3xy﹣4xy2+1)=x2y4(3xy﹣4xy2+1)=x3y5﹣x3y6+x2y4.点评:本题考查了积的乘方的性质,单项式与多项式相乘的法则,熟练掌握运算法则是解题的关键,计算时要注意运算顺序及符号的处理.12.计算:2x(x2﹣x+3)考点:单项式乘多项式.专题:计算题.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:2x(x2﹣x+3)=2x•x2﹣2x•x+2x•3=2x3﹣2x2+6x.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=16a5﹣48a4b+28a5b3.考点:单项式乘多项式.专题:计算题.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=16a5﹣48a4b+28a5b3.故答案为:16a5﹣48a4b+28a5b3.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.14.计算:xy2(3x2y﹣xy2+y)考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:原式=xy2(3x2y)﹣xy2•xy2+xy2•y=3x3y3﹣x2y4+xy3.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.15.(﹣2ab)(3a2﹣2ab﹣4b2)考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(﹣2ab)(3a2﹣2ab﹣4b2)=(﹣2ab)•(3a2)﹣(﹣2ab)•(2ab)﹣(﹣2ab)•(4b2)=﹣6a3b+4a2b2+8ab3.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.16.计算:(﹣2a2b)3(3b2﹣4a+6)考点:单项式乘多项式.分析:首先利用积的乘方求得(﹣2a2b)3的值,然后根据单项式与多项式相乘的运算法则:先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(﹣2a2b)3(3b2﹣4a+6)=﹣8a6b3•(3b2﹣4a+6)=﹣24a6b5+32a7b3﹣48a6b3.点评:本题考查了单项式与多项式相乘.此题比较简单,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?考点:单项式乘多项式.专题:应用题.分析:用错误结果减去已知多项式,得出原式,再乘以﹣3x2得出正确结果.解答:解:这个多项式是(x2﹣4x+1)﹣(﹣3x2)=4x2﹣4x+1,(3分)正确的计算结果是:(4x2﹣4x+1)•(﹣3x2)=﹣12x4+12x3﹣3x2.(3分)点评:本题利用新颖的题目考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.考点:单项式乘多项式.专题:新定义.分析:由x△d=x,得ax+bd+cdx=x,即(a+cd﹣1)x+bd=0,得①,由1△2=3,得a+2b+2c=3②,2△3=4,得2a+3b+6c=4③,解以上方程组成的方程组即可求得a、b、c、d的值.解答:解:∵x△d=x,∴ax+bd+cdx=x,∴(a+cd﹣1)x+bd=0,∵有一个不为零的数d使得对任意有理数x△d=x,则有①,∵1△2=3,∴a+2b+2c=3②,∵2△3=4,∴2a+3b+6c=4③,又∵d≠0,∴b=0,∴有方程组解得.故a的值为5、b的值为0、c的值为﹣1、d的值为4.点评:本题是新定义题,考查了定义新运算,解方程组.解题关键是由一个不为零的数d使得对任意有理数x△d=x,得出方程(a+cd﹣1)x+bd=0,得到方程组,求出b的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

、选择题 1422 •单项式与多项式相乘
1 .化简 x(2x 1) X 2(
2 x )的结果是( C. x 2 1 D. x
3 1 2.化简 a(b c) b(c a) c(a b )的结果是( )
A. 2ab 2bc 2ac
B. 2ab 2bc
C. 2ab
D. 2bc
3.如图14-2是L 形钢条截面, 它的面积为(
)
A. ac+bc
B. ac+(b-c)c
C. (a-c)c+(b-c)c
D. a+b+2c+(a-c)+(b-c) 4.下列各式中计算错误的是( )
A. 2x (2x 3 3x 1) 4x 4 2
6x 2x B. b(b 2 b 1 C. x(2 x 2 2) x 3 x D. 2 3 3
x( x 3 2 1 2 1 2 5. (— ab a 2 3 b 6ab)( 6ab )的结果为( ) A. 36a 2b 2
B. 5a 3b 2 36a 2b 2
C. 3a 2b 3 2a 3b 2 36a 2b 2
D. a 2b 3 36a 2b 2 二、填空题 1. ( 3x 2)( x 2 2x 1) 。

2. (2x 4x 3 1 2 8)(尹)。

2 2 3. 2(a b ab 1) 3ab(1 ab)。

A. x 3 x B. x 3 x —■ ■ b -~
J
图 14-2
1) b 3 b 2 b
3x 1) x 4
2x 2
2 x 3
2 2
3 2 4. ( 3x )(x 2x 3) 3x(x 2x 5) ______________ 2 2 5. 8m(m 3m 4) m (m 3) ________________ 6. 7x(2x 1) 3x(4x 1) 2x(x 3) 1 ________________
7. ________________________________________ ( 2a 2b)2(ab 2
a 2
b a 3) ________________________________________ 。

8. ( x)2 ( 2x 2y)3 2x 2(x 6 y 3
1) ____________________ 。

9. 当t = 1时,代数式t 3 2t[2t 2 3t(2t 2)]的值为 ____________
10•若2x y 0,则代数式4x 3 2xy(x y) y 3的值为 ______________________ 三、解答题
1 •计算下列各题
1 1 1
(1)a -(a b) -(a b) -(a 2b)
3 2 6
2 1 2 2 1 3
(3) (3x ^y 3 y ) ( ^xy)
3
2
(4) 12时2a 4(a b) 3b]
(5) ( a)3 ( 2ab 2)3 4ab 2 (7a 5b 4 *ab 3
5)
(2
)打(2x
v 2)
(2x 2
y)(
1
xy) 3x 2y 2
z
2
4. 某地有一块梯形实验田,它的上底为 mm,下底为nm,高是hm 。

(1) 写出这块梯形的面积公式;
(2) 当m 8m, n 14m, h 7m 时,求它的面积。

5.
已知:a 2b 0,求证:a 3 2ab(a b) 4b 3
0。

四、探索题: 1. 先化简,再求值
2. 已知 2m 5
(2m 5n 20)2 0,
2 2
x(x 6x 9) x(x 8x 15)
2x(3 x),其中 x
3.若x 1,求 x(x 2
xy 2 2
y ) y(x xy
y 2
) 3xy(y x)的值。

求(2m2) 2m(5n 2m) 3n(6 m 5n) 3n(4m 5n)的值。

3•解方程:x(2x 5) x(x 2) x2 6
4.已知:单项式M N满足2x(M 3x) 6x2 y2 N,求M N。

五、应用题
1、某商家为了给新产品作宣传,向全社会征集广告用语及商标图案,结果下图商标
(图中阴影部分)中标,求此商标图案的面积。

图14—3
2、爱因斯坦公式
伟大的科学家爱因斯坦在谈到成功的秘诀时写下了公式:W x y z,并
解释说,W代表成功,x代表艰苦的劳动,y代表正确的方法,z代表少说空话。

关于数学名言,你知道多少?。

相关文档
最新文档