数字图像处理技术图像数据压缩

合集下载

数字图像处理数字图像的压缩编码

数字图像处理数字图像的压缩编码

debbie. bmp BMP是一种与设备无关的位图格式。 256×256,65KB 一般采用非压缩模 式
8
400×400,10.9KB,
原图像数据468KB
5.1.1 图像压缩编码的必要性
2000年5月植被指数遥感图.bmp,原图像数据976×720=2MB
9
5.1.1 图像压缩编码的必要性
Buaa.jpg,0.98MB ,原图像数据1900×1560=8.5MB
35
5.1.3 图像压缩编码的分类
3.按压缩方法进行分类
静图:静止图像(要求质量高) 动图:活动的序列图像(相对质量要求低,压缩 倍数要高)
36
5.1.3 图像压缩编码的分类
4.按失真与否进行分类
无失真压缩:经压缩后再恢复图像与原图像无任何 区别, 一般压缩倍数 < 2
有限失真压缩:单帧(静)4~20倍。图像序列 (x、y、t)50~200倍
像素相关性大:压缩潜力大
评价受人的影响大(军标)
4
5.1 概述
图像的特点
数据量大,为其存储、传输带来困难,需压缩
例:电话线传输速率一般为56kbit/s(波特率)
一幅彩色图像640×480×24bit = 7Mbit大小 1.传输一幅图像:时间约2分钟左右 如压缩20倍,传一幅图6s左右,可以接受,实用 2.实时传送:640×480×24bit×25帧/s=175Mbit/s,
小,这种信息就被称为视觉心理冗余。
33K
15K
28
5.1.2 图像压缩编码的可能性
图像无损压缩的原理
RGB RGB RGB RGB
RGB
RGB RGB
RGB
RGB RGB

数字图像处理中的图像压缩算法

数字图像处理中的图像压缩算法

数字图像处理中的图像压缩算法随着科技和计算机技术的不断发展,数字图像处理成为了一个非常重要的领域。

数字图像处理技术广泛应用于各个领域,如图像储存、通信、医疗、工业等等。

在大量的图像处理中,图像压缩算法是非常关键的一环。

本文将介绍一些数字图像处理中的图像压缩算法。

一、无损压缩算法1. RLE 算法RLE(Run Length Encoding)算法是常见的图像无损压缩算法之一,它的主要思想是将连续的像素值用一个计数器表示。

比如将连续的“aaaa”压缩成“a4”。

RLE 算法相对比较简单,适用于连续的重复像素值较多的图像,如文字图片等。

2. Huffman 编码算法Huffman 编码算法是一种将可变长编码应用于数据压缩的算法,主要用于图像无损压缩中。

它的主要思想是将频率较高的字符用较短的编码,频率较低的字符用较长的编码。

将编码表储存在压缩文件中,解压时按照编码表进行解码。

Huffman 编码算法是一种效率较高的无损压缩算法。

二、有损压缩算法1. JPEG 压缩算法JPEG(Joint Photographic Experts Group)压缩算法是一种在有损压缩中广泛应用的算法。

该算法主要是针对连续色块和变化缓慢的图像进行处理。

JPEG 压缩算法的主要思想是采用离散余弦变换(DCT)将图像分割成小块,然后对每个小块进行频率分析,去除一些高频信息,再进行量化,最后采用 Huffman 编码进行压缩。

2. MPEG 压缩算法MPEG(Moving Picture Experts Group)压缩算法是一种针对视频压缩的算法,它主要是对视频序列中不同帧之间的冗余信息进行压缩。

该算法采用了空间域和时间域的压缩技术,包括分块变换编码和运动补偿等方法。

在分块变换编码中,采用离散余弦变换或小波变换来对视频序列进行压缩,再通过运动估计和补偿等方法,去除冗余信息。

三、总结数字图像处理中的图像压缩算法有很多种,其中无损压缩算法和有损压缩算法各有特点。

数字图像处理其中的第4部分学习使用

数字图像处理其中的第4部分学习使用
(1)首先把一幅图像划提成一系列旳图像块,每个图像块包括8×8个 像素。假如原始图像有640×480个像素,则图片将包括80列60行旳 方块。假如图像只包括灰度,那么每个像素用一种8比特旳数字表达。 所以能够把每个图像块表达成一种8行8列旳二维数组。数组旳元素 是0~255旳8比特整数。离散余弦变换就是作用在这个数组上。
JPEG编码思想
思想:人对亮度比对色彩敏感,在光线不足旳情况下,所观察 物体都是黑白旳。所以能够对色调和饱和度做粗略处理。
措施:对8*8图像块矩阵,Y成份数据不变,U每2*2个数据求平 均,V每2*1个数据求平均。称为YUV421系统。
除此, 还有YUV422, 411, 420等系统.
2)FDCT与IDCT 思想:人眼对低频数据比对高频数据敏感。 FDCT 为前向 离散余弦变换,JPEG原则不要求FDCT和IDCT旳算法。 措施:
组旳函数,也就是说,把一种数组经过一种变换,变成另一种数组。 如图下图所示,对每个图像块做离散余弦变换。经过DCT变换能够把能量集
中在矩阵左上角少数几种系数上。
f(i,j)经DCT变换之后得到F(i,j),其中F(0,0)是直流系数,
称为DC系数,其他为交流系数,称为AC系数。
2023/10/10
思想:将每个DCT系数除以各自量化步长并四舍五入后取整, 得到量化系数。
F
u,
v
INT
F S
u,v u,v
0.5
F u,v F u,vS u,v
JPEG系统分别要求了亮度分量和色度分量旳量化表,显然色 度分量相应旳量化步长比亮度分量大。
4)对量化系数旳处理和组织
思想:JPEG采用定长和变长相结合旳编码措施。 直流系数:一般相邻8*8图像块旳DC分量很接近,所以

图像处理中的数字图像压缩

图像处理中的数字图像压缩

图像处理中的数字图像压缩数字图像压缩在图像处理中扮演着重要的角色。

数字图像压缩可以将图像数据压缩成更小的文件大小,更方便存储和传输。

数字图像压缩分为有损和无损两种不同的技术,本文将详细讨论这两种数字图像压缩方法。

一、无损压缩无损压缩是数字图像压缩中最常用的技术之一。

无损压缩的优点是可以保持图片原始数据不被丢失。

这种方法适用于那些需要保持原始画质的图片,例如医学成像或者编程图像等。

无损压缩的主要压缩方法有两种:一种是基于预测的压缩,包括差异编码和改进变长编码。

另一种是基于统计的压缩,其中包括算术编码和霍夫曼编码。

差异编码是一种通过计算相邻像素之间的差异来达到压缩目的的方法。

它依赖于下一像素的值可以预测当前像素值的特性。

改进的变长编码是一种使用预定代码值来表示图像中频繁出现的值的压缩技术。

它使用变长的代码,使得频繁出现的值使用较短的代码,而不常用的值则使用较长的代码。

算术编码是一种基于统计的方法,可以将每个像素映射到一个不同的值范围中,并且将像素序列编码成一个单一的数值。

霍夫曼编码也是一种基于统计的压缩方法。

它通过短代码表示出现频率高的像素值,而使用长代码表示出现频率较低的像素值。

二、有损压缩有损压缩是另一种数字图像压缩技术。

有损压缩方法有一些潜在的缺点,因为它们主要取决于压缩率和压缩的精度。

在应用有损压缩技术之前,必须确定压缩强度,以确保压缩后的图像满足预期的需求。

有损压缩方法可以采用不同的算法来实现。

这些算法包括JPEG、MPEG和MP3等不同的格式。

JPEG是最常用的有损压缩算法,它在压缩时可以通过调整每个像素所占用的位数来减小图像的大小。

MPEG是用于压缩视频信号的一种压缩技术。

它可以将视频信号分成多个I帧、P帧和B帧。

I帧代表一个完整的图像,而P帧和B帧则包含更少的信息。

在以后的编码中,视频编码器使用压缩技术将视频序列压缩成较小的大小。

MP3是一种广泛使用的音频压缩技术,它使用了同样的技术,包括频域转换、量化和哈夫曼编码。

图像编码中的数据重排与压缩技巧(九)

图像编码中的数据重排与压缩技巧(九)

图像编码是数字图像处理中一个非常重要的环节。

在图像编码的过程中,数据重排与压缩技巧起着至关重要的作用。

本文将从数据重排与压缩技巧两个方面进行论述。

一、数据重排技巧在图像编码中,数据重排是将原始的图像数据重新排列以满足一定的编码要求。

数据重排技巧主要有以下几种:1. 空间相关性重排:图像中的像素数据存在一定的空间相关性,即相邻像素之间存在一定的关联。

通过对图像中的像素数据进行重排,可以提取出这种相关性,并且减少冗余信息的传输,从而实现图像数据的压缩。

2. 颜色重排:在图像编码中,颜色信息是非常重要的一部分。

通过对图像中的颜色信息进行重排,可以将相似的颜色聚集在一起,从而提高编码效率。

常见的颜色重排方法有HSV重排、RGB重排等。

3. 傅里叶变换重排:傅里叶变换广泛应用于图像处理领域。

通过将原始图像进行傅里叶变换,可以将图像数据转换到频域中,并通过对频域数据的重排来实现图像数据的压缩。

二、图像压缩技巧图像压缩技巧是对图像进行编码时用于减少数据量的方法,包括有损压缩和无损压缩两种方法。

1. 有损压缩:有损压缩是一种在压缩图像数据的同时,会造成一定损失的压缩方法。

常用的有损压缩方法有JPEG压缩、JPEG2000压缩等。

这些方法通过对图像数据进行采样、量化和编码等操作,以牺牲一定的图像质量来实现数据的压缩。

2. 无损压缩:无损压缩是一种在保证图像数据质量不变的前提下,对图像进行压缩的方法。

常用的无损压缩方法有GIF压缩、PNG压缩等。

这些方法通过对图像中的冗余信息进行编码、重排等操作,以减少数据量的同时保持图像质量的完整性。

数据重排和压缩技巧的应用使得图像编码在传输和存储中更加高效。

通过合理选择数据重排和压缩技巧,可以大幅度减小图像数据的体积,并保持较高的图像质量。

在实际应用中,我们可以根据图像的特点和需求选择合适的数据重排和压缩技巧,以达到最佳的编码效果。

总之,数据重排与压缩技巧在图像编码中起着重要作用。

医学影像的图像处理技术

医学影像的图像处理技术

医学影像的图像处理技术一、前言医学影像学是一门应用广泛而又不断发展的学科,医学影像的图像处理技术应用十分广泛,它们不仅可以为临床医生诊疗提供重要的辅助手段,而且也可以用于多领域的研究。

在医学影像学的实践中,图像处理技术已经成为一项不可或缺的技术。

二、数字图像处理技术数字图像处理技术是处理数字图像的技术,它将数字图像转换为数字信号,再利用数字信号处理技术对图像进行处理和分析。

数字图像处理技术可分为以下几类:1. 信号处理技术信号处理技术是数字图像处理的基础,主要用于处理图像的亮度、对比度、平滑度等特征。

常用的信号处理技术有空域滤波、频域滤波等。

2. 图像压缩技术图像压缩技术是将数字图像经过压缩算法处理,达到减小文件大小的目的。

常见的图像压缩技术有JPEG、PNG、GIF等。

3. 形态学图像处理技术形态学图像处理技术是用于提取图像的形态学特征的一种处理技术,常用于边缘检测、形态学滤波等。

4. 分割图像处理技术分割图像处理技术是将图像分成不同的部分或区域的处理技术,常用于医学影像中对人体组织、器官的分割。

5. 三维图像处理技术三维图像处理技术是处理医学影像中三维模型的技术,其主要方法包括体绘制、表面绘制、投影法等。

6. 人工智能技术人工智能技术在医学影像处理中也越来越常见,主要包括机器学习、深度学习两种方法。

三、医学影像的处理在医学影像学中,可以应用以上数字图像处理技术,包括形态学处理、直方图均衡化、二值化、边缘检测、基于特征的分析等方法,实现对图像的增强、分割和分析。

以下是介绍几种较为常见的处理方法:1. 直方图均衡化直方图均衡化是医学影像中应用较广泛的一种图像增强技术。

图像直方图是指统计图像中各像素强度的数量分布情况。

通过直方图均衡化,可以增强图像的对比度,使得图像细节更加清晰,更易于观察和分析。

2. 空域滤波空域滤波技术是医学影像处理中最基础的滤波方法之一。

常用的空域滤波方法包括平滑滤波、锐化滤波、边缘检测滤波等。

数字图像处理图像压缩与编码

数字图像处理图像压缩与编码

数字图像处理
28
#include <stdio.h> #include <stdlib.h> #include <string.h> const char *o = ""; int main() {
char *d = malloc(2*strlen(o)); char *oc = malloc(strlen(o)); int rl = rle_encode(d, o, strlen(o)); int ocl = rle_decode(oc, d, rl); fwrite(oc, 1, ocl, stdout); free(d); free(oc); return 0; }
无损压缩的格式可以很容易的转换为其它有损压缩格式, 而不存在多次有损压缩所带来的更大失真问题
当然,无损压缩的缺点也是明显的,包括:
占用空间大,压缩比有限
解码无损压缩格式需要更大的计算量,所以对解码硬件 具有更高的要求
数字图像处理
18
游程编码
差分脉冲编码调 制
熵编码
LZW字典算法
Huffman编码
小波分析是把一个信号分解成由原始小波经过移位 和缩放后的一系列小波,因此小波是小波变换的基 函数,即小波可用作表示一些函数的基函数。
经过多年的努力,小波理论基础已经基本建立并成为应 用数学的一个新领域,引起了众多数学家和工程技术人 员的极大关注。
数字图像处理
9
压缩的完成主要依靠,一是使用线性变换来剔 除图像数据的相关性,二是对所得到的变换系 数进行量化,三是对不同类型的数据分配比特 位,四是对量化后的结果进行熵编码。
return dl;
}
数字图像处理

数字图像处理在医学影像中的应用:技术、原理与应用研究

数字图像处理在医学影像中的应用:技术、原理与应用研究

数字图像处理在医学影像中的应用:技术、原理与应用研究引言数字图像处理在医学影像中的应用已经成为医学领域中不可或缺的一部分。

随着技术的发展和进步,数字图像处理在医学影像中的应用越来越广泛,为医生提供了更多的信息和工具来辅助诊断、治疗和研究。

本文将介绍数字图像处理在医学影像中的技术、原理和应用研究。

一、数字图像处理的基础知识1.1 数字图像处理的定义和概念数字图像处理是将图像的采集、处理、存储和传输等过程转化为数字形式,并利用计算机进行处理和分析的技术。

它包括图像增强、图像恢复、图像压缩、图像分割、图像配准等多个方面。

1.2 数字图像处理的基本原理数字图像处理的基本原理是通过对图像的像素点进行操作,利用数学方法和算法对图像进行处理和分析。

常见的数字图像处理方法包括灰度变换、滤波、傅里叶变换等。

二、数字图像处理在医学影像中的技术与方法2.1 图像增强技术图像增强技术是指通过对图像进行处理,提高图像的质量、清晰度和对比度,使医生能够更好地观察和分析图像。

常用的图像增强技术包括直方图均衡化、线性滤波、非线性滤波等。

2.2 图像分割技术图像分割技术是指将图像划分为不同的区域或物体,用于定位和识别不同的组织结构和病变。

常用的图像分割技术包括阈值分割、边缘检测、区域生长等。

2.3 图像配准技术图像配准技术是指将不同位置、不同时间或不同模态的图像进行对齐和匹配,以实现图像的比较和融合。

常用的图像配准技术包括基于特征的配准、基于相似度度量的配准等。

2.4 图像压缩技术图像压缩技术是指通过减少图像数据的冗余性和冗长性,以减小图像文件的尺寸,使得图像的存储和传输更加高效。

常用的图像压缩技术包括无损压缩和有损压缩。

三、数字图像处理在医学影像中的应用研究3.1 诊断辅助数字图像处理在医学影像中的应用最主要的是辅助医生进行疾病的诊断。

通过对医学影像进行处理和分析,可以提取更多的信息和特征,帮助医生更准确地判断病变的位置、形状和大小,从而提高诊断的准确性和可靠性。

图像压缩的国际标准

图像压缩的国际标准

图像压缩的国际标准图像压缩是数字图像处理中的重要技术,它通过减少图像文件的大小,从而节省存储空间和传输带宽。

随着数字图像在各个领域的广泛应用,图像压缩的国际标准也变得越来越重要。

本文将介绍图像压缩的国际标准,以及这些标准的作用和意义。

首先,图像压缩的国际标准主要由国际标准化组织(ISO)和国际电工委员会(IEC)制定和管理。

ISO/IEC 10918-1是图像压缩的国际标准之一,它定义了一种被广泛使用的图像压缩算法——JPEG。

JPEG算法通过去除图像中的冗余信息和不可见细节,将图像压缩到较小的文件大小,同时保持图像的视觉质量。

这一标准的制定,使得不同厂商生产的设备和软件能够相互兼容,用户可以自由地在不同平台上使用和传输JPEG格式的图像。

其次,图像压缩的国际标准还包括了一些针对特定应用领域的标准。

比如,ISO/IEC 14495-1是针对无损图像压缩的国际标准,它定义了一种无损压缩算法——JPEG-LS。

与JPEG算法不同,JPEG-LS算法能够在不损失图像质量的前提下,将图像文件压缩到更小的尺寸。

这对于医学影像、卫星图像等对图像质量要求较高的领域来说,具有重要的意义。

除了JPEG和JPEG-LS,图像压缩的国际标准还涉及到了其他一些常见的压缩算法,比如PNG、GIF等。

这些标准的制定,不仅促进了图像压缩技术的发展和应用,也为用户提供了更多的选择和便利。

图像压缩的国际标准在实际应用中发挥着重要的作用。

首先,它为不同厂商和开发者提供了统一的规范和标准,使得他们能够更好地进行图像压缩技术的研发和应用。

其次,它为用户提供了更广泛的图像格式支持,使得用户能够更加灵活地处理和传输图像文件。

再次,它促进了图像压缩技术的国际交流与合作,推动了该领域的不断创新和进步。

总之,图像压缩的国际标准对于数字图像处理技术的发展和应用具有重要的意义。

它不仅规范了图像压缩技术的各个方面,也为用户提供了更好的体验和便利。

随着数字图像在各个领域的广泛应用,图像压缩的国际标准将继续发挥着重要的作用,推动着整个行业的发展和进步。

数字媒体技术基础知识

数字媒体技术基础知识

数字媒体技术基础知识数字媒体技术是指利用计算机技术和数字技术来处理和传播信息的一种技术。

它涵盖了数字图像处理、数字音频处理、数字视频处理、数字动画制作等多个方面。

在数字媒体技术的发展过程中,有一些基础知识是非常重要的。

接下来,我们将介绍一些数字媒体技术的基础知识。

首先是数字图像处理。

数字图像处理是将传感器获取的模拟图像转化为数字信号,并对其进行处理和分析的过程。

常见的数字图像处理技术包括图像增强、图像压缩和图像恢复等。

图像增强可以提高图像的质量和可视化效果,图像压缩可以减小图像数据的存储空间,图像恢复可以修复受损或模糊的图像。

其次是数字音频处理。

数字音频处理是将模拟音频信号转化为数字信号,并对其进行处理和分析的过程。

常见的数字音频处理技术包括音频采样、音频编码和音频解码等。

音频采样是将模拟音频信号转化为数字信号的过程,音频编码和音频解码是将数字音频信号进行压缩和解压缩的过程。

再次是数字视频处理。

数字视频处理是将模拟视频信号转化为数字信号,并对其进行处理和分析的过程。

常见的数字视频处理技术包括视频采样、视频编码和视频解码等。

视频采样是将模拟视频信号转化为数字信号的过程,视频编码和视频解码是将数字视频信号进行压缩和解压缩的过程。

最后是数字动画制作。

数字动画制作是利用计算机技术和数字技术来制作动画的过程。

常见的数字动画制作技术包括帧动画、骨骼动画和物理引擎等。

帧动画是将一系列图像帧按照一定顺序播放,形成动画效果。

骨骼动画是通过给定骨骼结构和关节运动,生成动画效果。

物理引擎可以模拟真实世界中物体的运动和碰撞效果。

总之,数字媒体技术基础知识包括数字图像处理、数字音频处理、数字视频处理和数字动画制作等多个方面。

掌握这些基础知识将有助于我们更好地理解和应用数字媒体技术。

数字媒体技术是现代社会中不可或缺的一部分,它在许多领域中发挥着重要作用,如广告、娱乐、教育和通信等。

了解数字媒体技术的基础知识能够帮助我们更好地理解数字媒体的原理和应用,提高我们对数字媒体内容的创作和欣赏能力。

数字图像处理第6章_图像编码与压缩技术.

数字图像处理第6章_图像编码与压缩技术.

霍夫曼编码
例 假设一个文件中出现了8种符号S0、S1、S2、S3、S4、S5、S6、 S7,那么每种符号编码至少需要3bit S0=000, S1=001, S2=010, S3=011, S4=100, S5=101, S6=110, S7=111 那么,符号序列S0 S1 S7 S0 S1 S6 S2 S2 S3 S4 S5 S0 S0 S1编码后 000 001 111 000 001 110 010 010 011 100 101 000 000 001 (共42bit) 和等长编码不同的一种方法是可变长编码。在这种编码方法中, 表示符号的码字的长度不是固定不变的,而是随着符号出现的概率 而变化,对于那些出现概率大的信息符号编以较短的字长的码,而 对于那些出现概率小的信息符号编以较长的字长的码。
6.3.3 霍夫曼编码
霍夫曼(Huffman)编码是根据可变长最佳编码定理,应用霍夫曼算
1.
对于每个符号,例如经过量化后的图像数据,如果对它们每 个值都是以相同长度的二进制码表示的,则称为等长编码或均匀 编码。采用等长编码的优点是编码过程和解码过程简单,但由于 这种编码方法没有考虑各个符号出现的概率,实际上就是将它们 当作等概率事件处理的,因而它的编码效率比较低。例6.3给出了 一个等长编码的例子。
6.1.1 图像的信息冗余
图像数据的压缩是基于图像存在冗余这种特性。压缩就是去掉 信息中的冗余,即保留不确定的信息,去掉确定的信息(可推知 的);也就是用一种更接近信息本身的描述代替原有冗余的描述。 8 (1) 空间冗余。在同一幅图像中,规则物体或规则背景的物理表 面特性具有的相关性,这种相关性会使它们的图像结构趋于有序和 平滑,表现出空间数据的冗余。邻近像素灰度分布的相关性很强。 (2) 频间冗余。多谱段图像中各谱段图像对应像素之间灰度相关 (3) 时间冗余。对于动画或电视图像所形成的图像序列(帧序 列),相邻两帧图像之间有较大的相关性,其中有很多局部甚至完

图像压缩教学设计

图像压缩教学设计

图像压缩教学设计摘要:本文是关于图像压缩的教学设计,旨在帮助学习者了解图像压缩的基本概念、原理和常见方法。

通过本教学设计,学习者将能够掌握图像压缩的基本技术,并了解其在数字图像处理中的应用。

一、引言图像压缩是数字图像处理中的一项重要技术,它能够减少图像数据的存储空间并降低传输所需的带宽。

图像压缩在许多领域有着广泛的应用,例如数字摄影、视频通话和网络传输等。

本教学设计将以简明扼要的方式介绍图像压缩的基本概念和原理,并探讨常用的图像压缩方法。

二、图像压缩的基本概念1. 图像压缩的定义:图像压缩是指通过压缩算法对图像数据进行处理,使其占据更少的存储空间或传输带宽。

2. 像素与图像:像素是图像的基本单元,它们构成了图像的二维矩阵,每个像素代表了图像上的一个点的亮度或颜色信息。

3. 颜色空间:颜色空间是用于描述图像中颜色信息的一种方式。

常见的颜色空间包括RGB、CMYK和YCbCr等。

三、图像压缩的原理1. 冗余性:图像中存在不同类型的冗余,包括空间冗余、视觉冗余和编码冗余。

图像压缩的原理是通过利用这些冗余来减少数据的存储和传输量。

2. 无损压缩和有损压缩:图像压缩可以分为无损压缩和有损压缩两种。

无损压缩保留了图像的所有细节,而有损压缩在压缩过程中会有一定的信息损失。

四、常用的图像压缩方法1. 无损压缩方法:无损压缩方法主要通过编码和预测来减少图像的冗余。

常见的无损压缩方法包括Run-Length Encoding(RLE)、Huffman编码和Lempel-Ziv-Welch(LZW)编码等。

2. 有损压缩方法:有损压缩方法主要通过量化和编码来减少图像的冗余,并在此过程中引入一定的信息损失。

常见的有损压缩方法包括JPEG、JPEG 2000和WebP等。

五、教学设计1. 教学目标:通过本教学设计,学习者将能够理解图像压缩的基本概念和原理,掌握常见的图像压缩方法,并了解其应用。

2. 教学内容:通过课堂讲授和实例演示,依次介绍图像压缩的基本概念、原理和常用方法。

图像压缩 毕业论文

图像压缩 毕业论文

图像压缩毕业论文图像压缩毕业论文引言:图像压缩是一项重要的技术,它在数字图像处理中起着至关重要的作用。

随着互联网的普及和数字图像的广泛应用,图像压缩成为了必不可少的环节。

本篇论文将探讨图像压缩的原理、方法以及应用,并对图像压缩技术的未来发展进行展望。

一、图像压缩的原理图像压缩的原理是通过减少图像数据的冗余性来实现的。

图像数据中存在着很多冗余信息,如空间冗余、频域冗余和视觉冗余等。

通过对这些冗余信息的处理,可以实现对图像的压缩。

1. 空间冗余在图像中,相邻像素之间往往存在着很强的相关性。

通过利用这种相关性,可以采用像素间差值编码、预测编码等方法来减少冗余信息,从而实现对图像的压缩。

2. 频域冗余图像在频域上存在着一定的冗余性。

通过对图像进行傅里叶变换,可以将其转换到频域中,然后利用频域的特性对图像进行压缩。

常用的方法有离散余弦变换(DCT)和小波变换等。

3. 视觉冗余人眼对图像的感知是有限的,对于一些细节信息的损失往往并不敏感。

通过利用人眼对图像的感知特性,可以对图像进行适当的压缩,从而减少冗余信息。

二、图像压缩的方法图像压缩的方法主要分为有损压缩和无损压缩两种。

1. 有损压缩有损压缩是指在压缩过程中对图像进行一定程度的信息丢失。

这种方法可以在一定程度上减小图像的数据量,从而实现对图像的高效压缩。

常用的有损压缩方法有JPEG、MPEG等。

2. 无损压缩无损压缩是指在压缩过程中不对图像的信息进行任何丢失。

这种方法可以保持图像的完整性,但相应地,压缩率较低。

常用的无损压缩方法有GIF、PNG等。

三、图像压缩的应用图像压缩技术广泛应用于各个领域,如图像传输、存储和显示等。

1. 图像传输在网络传输中,图像压缩可以减小图像的数据量,从而提高传输效率。

特别是在移动通信领域,图像压缩技术可以减少数据流量,提高用户体验。

2. 图像存储随着数码相机的普及,人们对图像存储的需求也越来越大。

图像压缩技术可以将大容量的图像数据压缩成较小的文件,从而节省存储空间。

数字图像处理技术的发展与应用

数字图像处理技术的发展与应用

数字图像处理技术的发展与应用数字图像处理技术是计算机科学与信息科学的交叉领域,随着科学技术的发展,数字图像处理技术得到了广泛的应用。

它能够从图片中提取出一些有用的信息,减轻人们的工作负担,在医学、天文学、遥感测绘、军事等领域发挥着越来越重要的作用。

本文将介绍数字图像处理技术的发展与应用。

一、数字图像处理技术的发展数字图像处理技术最初出现于20世纪60年代,当时计算机的运算速度较慢,只能处理黑白图像,并且需要大量的存储空间。

但随着计算机技术的进步,数字图像处理技术得到了快速的发展。

1.1 彩色图像处理技术随着计算机技术的进步,人们可以使用计算机对彩色图像进行处理。

彩色图像处理技术的研究,使得计算机可以处理长款比、色彩丰富的图像。

这种技术应用广泛,包括摄影、电影制作、出版业等等。

1.2 数字图像压缩技术数字图像的数据量巨大,这就需要大量的存储空间和传输带宽。

数字图像压缩技术能够大幅度减少数据总量,使得大量的数据可以更容易地进行储存、传输。

1.3 数字图像处理技术在计算机视觉领域数字图像处理技术在计算机视觉领域发挥着重要作用。

计算机视觉领域关注如何使计算机能够被人类视觉系统所理解,人们可以使用数字图像处理技术对计算机视觉领域中的各种问题进行研究。

二、数字图像处理技术的应用数字图像处理技术在各个行业都有应用,以下几个领域是数字图像处理技术应用最广泛、最令人关注的领域。

2.1 医学领域数字图像处理技术与医学领域的结合,使得医学诊断更加方便、准确。

医生通过数字图像处理技术可以对X光、CT、MRI等医学影像图像进行分析和诊断,提高了医生对病情的识别和定位。

2.2 遥感测绘领域数字图像处理技术与遥感测绘领域的结合,使得遥感影像更加清晰、精确。

通过数字图像处理技术能够对卫星拍摄的遥感影像进行处理,提取出需要的信息,以此来监测和管理自然资源,协助农业生产以及城市规划。

2.3 军事领域数字图像处理技术在军事领域的应用领域也非常广泛。

图像编码中的数据压缩技术介绍(九)

图像编码中的数据压缩技术介绍(九)

图像编码是将图像数据转化为一系列数字信号的过程,其目的是通过减少冗余信息,将图像数据压缩存储,以便更有效地传输和处理图像。

在数字图像处理和计算机视觉的广泛应用中,图像编码技术起到了重要的作用。

本文将介绍几种常用的图像编码中的数据压缩技术。

一、无损压缩技术无损压缩技术是指在压缩过程中不损失图像质量的一种方法。

其中最常用的一种是无损预测编码技术。

该技术基于预测和差分编码的思想,将图像中每个像素的值与其周围像素值进行比较,并将差异值编码。

无损预测编码技术可以通过建立预测模型来推断像素值,从而减少编码量。

另一种常见的无损压缩技术是熵编码。

熵编码根据像素值的频率分布,将出现概率较高的像素值用较短的码字表示,而将出现概率较低的像素值用较长的码字表示。

熵编码技术可以充分利用图像中的统计特征,提高编码效率。

二、有损压缩技术有损压缩技术是指在压缩过程中会有部分信息的损失,但通过合理的算法设计,根据人类视觉系统的特性,使得图像的失真不太显著,以达到高压缩比的目的。

其中最常见的有损压缩技术是离散余弦变换(DCT)和小波变换。

离散余弦变换(DCT)将图像划分为小的块,对每个块进行DCT变换得到频域系数。

通过对频域系数进行量化和编码,可以将系数的精度降低,从而减少了数据量。

DCT技术广泛应用于JPEG图像压缩标准中。

小波变换将信号分解为时间和频率域,可以捕捉到信号的时频特征。

图像通过小波变换后,得到的系数可以在频域上局部集中,通过将低系数置零并压缩高系数,可以实现图像的高效压缩。

小波变换技术在图像压缩领域有着广泛的应用,特别是在JPEG2000标准中。

除了DCT和小波变换,还有一种常见的有损压缩技术是基于向量量化的编码方法。

向量量化通过将图像划分为矢量,并将每个矢量映射到一个预定的码本中,从而实现压缩。

向量量化技术在图像编码中具有较好的压缩效果和较低的失真。

当前,图像编码技术在数字图像处理和计算机视觉领域得到了广泛的应用。

数字图像处理实验报告图像压缩

数字图像处理实验报告图像压缩

竭诚为您提供优质文档/双击可除数字图像处理实验报告图像压缩篇一:数字图像处理实验报告数字图像处理实验报告课程:班级:学号:姓名:指导老师:日期:实验一内容一mATLAb数字图像处理初步一、实验目的与要求1.熟悉及掌握在mATLAb中能够处理哪些格式图像。

2.熟练掌握在mATLAb中如何读取图像。

3.掌握如何利用mATLAb来获取图像的大小、颜色、高度、宽度等等相关信息。

4.掌握如何在mATLAb中按照指定要求存储一幅图像的方法。

5.图像间如何转化。

二、实验内容及步骤1.利用imread()函数读取一幅图像,假设其名为flower.tif,存入一个数组中;解:读取图像,存入数组I 中:I=imread(flower.tif);2.利用whos命令提取该读入图像flower.tif的基本信息;解:查询数组I的信息:3.利用imshow()函数来显示这幅图像;解:因为imshow()方法不能直接显示tif图像矩阵,因此要先转换成Rgb模式,再调用imshow()显示。

代码如下:>>I1=I(:,:,1);>>I2=I(:,:,2);>>I3=I(:,:,3);>>Rgb=cat(3,I1,I2,I3);>>imshow(Rgb);显示的图像为:4.利用imfinfo函数来获取图像文件的压缩,颜色等等其他的详细信息;解:代码如下:>>imfinfo(flower.tif)结果截图:5.利用imwrite()函数来压缩这幅图象,将其保存为一幅压缩了像素的jpg文件,设为flower.jpg;语法:imwrite(原图像,新图像,‘quality’,q),q取0-100。

解:代码:>>imwrite(Rgb,flower.jpg,quality,80);结果截图:6.同样利用imwrite()函数将最初读入的tif图象另存为一幅bmp图像,设为flower.bmp。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章
图像数据压缩
5.1
概述:图像编码的研究背景
1. 信息传输方式发生了很大的改变

通信方式的改变
文字+语音图像+文字+语音

通信对象的改变
人与人人与机器,机器与机器
5.1 概述:图像编码的研究背景

数码图像的普及,导致了数据量的庞大。 图像的传输与存储,必须解决图像数据 的压缩问题。
5.1
w={w1,…,wn}
5.1
概述:图像压缩术语
(1)独立信源的熵
设信源符号表为{X1,X2,……,Xq},出现的概率分别为 {P(X1),P(X2),……,P(Xq)}, 则信源的熵为
H ( x) = P( xi ) log2 P( xi )
i =1
q
5.1
概述:图像压缩术语
(2)香农无干扰编码理论
信道解码
图像信源 解码
显示图像
5.1
概述:图像压缩的可能性
3. 图像压缩的可能性
(1)冗余度的概念
对于描述一幅图像所需要的最少信息之外的多余信 息,称为冗余度。 一般图像中都含有冗余度,去除图像里的冗余度便 完成了数据压缩
5.1
概述:图像压缩的可能性
在下面的例子中,用一种最简的方式来发送一封电报: 你的妻子,Helen,将于明天晚上6点零5分在上海的虹桥 机场接你。 (23*2+10=56个半角字符) 你的妻子将于明天晚上 6点零5分在虹桥机场接你。 (20*2+3=43个半角字符) Helen将于明晚6点在虹桥接你。 (10*2+7=27个半角字符) 结论:只要接收端不会产生误解,就 可以减少承载信息的数据量。
(248,27,4)
5.1
概述:图像压缩的可能性
图像冗余信息分析结论
由于一幅图像存在数据冗余和主观视觉冗余,我们的压 缩方式就是从这两方面着手来开展的。 1)因为有数据冗余,当我们将图像信息的描述方式改变之 后,可以压缩掉这些冗余。 2)因为有主观视觉冗余,当我们忽略一些视觉不太明显的 微小差异,可以进行所谓的“有损”压缩。
5.1
概述:图像压缩的可能性

描述语言 1)“这是一幅 2*2的 图像,图像的第一个像 素是红的,第二个像素 是红的,第三个像素是 红的,第四个像素是红 的”。

由此我们知道,整理图 像的描述方法可以达到 压缩的目的。
2)“这是一幅2*2的图 像,整幅图都是红色的”。
5.1

概述:图像压缩的可能性
5.1

概述是根据传统的信源编码方法。

第二代压缩编码
八十年代以后,突破信源编码理论,结合分形、模 型基、神经网络、小波变换等数学工具,充分利用 视觉系统生理心理特性和图像信源的各种特性。
5.1
概述:图像的压缩编码
行程编码
第 一 代 压 缩 编 码
图像冗余无损压缩的原理
RGB RGB RGB RGB
RGB
RGB RGB
RGB
RGB RGB
RGB
RGB RGB
RGB
RGB RGB
16 (采用8级量化)
RGB
从原来的16*3*8=284bits压缩为:(1+3)*8=32bits
5.1

概述:图像压缩的可能性
图像冗余有损压缩的原理
35 34 37 34 35 34 34 32 34 30 34 34 34 34 34 34 34 34 34 31 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34
36 34 33 34 34
25
34
5.1

概述:图像压缩的可能性
实际图像中冗余信息的表现(灰度图)
5.1

概述:图像压缩的可能性
图像的视觉冗余 (彩色)
R
G
B
2 *2 *2 =2 24 2 = 16,777,216
8 8 8
24
(248,27,4)
(251,32,15)
256级量化
(248,27,4)
5.1
概述:图像编码的研究背景
2.图像传输与存储需要的信息量空间:
2)传真数据 如果只传送2值图像,以200dpi(点/英寸)的分辨率 传输,一张A4稿纸的内容的数据量为: 1654(行点数)*2337(行数)*1=3888768bit=390K 按14.4K的电话线传输速率,需要传送的时间是:270秒 (4.5分)
像素编码
算术编码
熵编码
增量调制
预测编码 变换编码 其他编码
5.1
概述:图像压缩的分类
4.图像压缩的分类
以图像信息保真为出发点,图像压缩 技术分两种: 1)冗余度压缩 又称为无损压缩或无失真压缩。 2)熵压缩 又称为有损压缩。
5.1
概述:图像压缩保真度准则
5. 图像压缩保真度准则 保真度准则即压缩后图像质量评价的 标准,分两种: 1)客观保真度准则 压缩前后图像之间的均方根误差或均 方根信噪比。 2)主观保真度准则 以人的视觉为主,来评价图像的质量。
概述:图像编码的研究背景
2.图像传输与存储需要的信息量空间:
1)彩色视频信息 对于电视画面的分辨率640*480的彩色 图像,每秒30帧,则一秒钟的数据量为: 640*480*3*8*30=221.12M 所以播放时,需要221Mbps的通信回路。 存储时,1张CD可存640M,则仅可以存放 2.89秒的数据。
5.1
概述:图像压缩术语
6. 编码器的若干知识
如图为一编码器的示意图,输入X为信号单 元;输出W为代码,Wi为码字;A是构成码字的 符号集合,其元素称为码元。 编码器的作用:
(1)用符号集合A中的符号构成代码W (2)建立输入X和输出W的对应关系 X={x1,…,xn}
编码器
A={a1,…,an}
5.1
概述:图像编码的研究背景
图像压缩的必要性:
由于通信方式和通信对象的改变带来的最大问题是:
传输带宽、速度、存储器容量的限制。
给我们带来的一个难题,也给了我们一个机会:
如何用软件的手段来解决硬件上的物理极限。
5.1
概述:图像通信系统模型
图像信息源
图像预处理
图像信源 编码
信道编码
调制
信道传输
解调
在无干扰条件下,总存在一种无失真编码方法,使编码 的平均长度L(x)与信息源的熵H(x)任意的接近。即无失 真编码的平均码长存在一个下限,这个下限就是原始图 像的熵。由此定义: 编码效率 H ( x) = 冗余度
L( x)
L( x ) H ( x ) r = 1 = L( x)
相关文档
最新文档