恒温恒湿plc编程控制
恒温箱PLC系统控制.
一、题目恒温箱PLC系统控制二、指导思想和目的要求1)通过毕业设计培养学生综合运用所学的基础理论、基础知识、基本技能进行分析和解决实际问题的能力。
2)使学生受到PLC系统开发的综合训练,达到能够进行PLC 系统设计和实施的目的。
3)使学生掌握利用PLC对温度进行PID控制方法。
三、主要技术指标1、选用三菱FX2N系列可编程控制器作为主机2、主要参数温度范围:200—1050℃控制精度:±1℃输入电压:AC200—240V消耗功率:2KW外形尺寸:40×45×45cm3、系统构成通过一个温度传感器检测恒温箱的温度值并把它转换成标准电流(或电压)信号后,送到A/D转换模块,转换成的数字信号输送到PLC主机。
PLC主机得到一个控制量,该控制量的大小决定PLC输出控制的继电器的导通时间,从而控制温度值的大小。
4、控制要求采用PID控制算法,使PLC控制的恒温箱的温度变化能按照给定的曲线运行,如图所示四、要求1.设计电气控制原理图。
2、进行PLC的选择及I/O分配。
3、设计PLC硬件系统。
4、对系统所需电气元器件选型,编制电气元件明细表。
5、PLC控制程序设计。
五、主要参考书及参考资料1、自动控制原理及系统2、PLC及应用、目录摘要 (1)第1章可编程控制器基础知识 (2)1.1 PLC的定义 (2)1.2 PLC的类型选择 (3)第2章可编程器的系统运用 (5)2.1恒温箱工艺过程及控制要求 (5)2.2模块功能指令 (9)2.2.1展热电阻/热电偶模块用法 (9)2.2.2系统输入输出控制 (10)第3章恒温箱工作的基本原理 (13)3.1恒温箱工作原理 (13)3.2控制系统温度采集 (17)3.3恒温控制装置PLC接线图 (19)3.4系统的配置及I/O地址 (20)3.5梯形图(附录) (21)总结 (22)致谢 (23)附录 (24)参考文献 (31)摘要在日常生活、工业生产和实验室中电热恒温箱的应用随处可以见到。
恒温箱PLC系统控制.
一、题目恒温箱PLC系统控制二、指导思想和目的要求1)通过毕业设计培养学生综合运用所学的基础理论、基础知识、基本技能进行分析和解决实际问题的能力。
2)使学生受到PLC系统开发的综合训练,达到能够进行PLC 系统设计和实施的目的。
3)使学生掌握利用PLC对温度进行PID控制方法。
三、主要技术指标1、选用三菱FX2N系列可编程控制器作为主机2、主要参数温度范围:200—1050℃控制精度:±1℃输入电压:AC200—240V消耗功率:2KW外形尺寸:40×45×45cm3、系统构成通过一个温度传感器检测恒温箱的温度值并把它转换成标准电流(或电压)信号后,送到A/D转换模块,转换成的数字信号输送到PLC主机。
PLC主机得到一个控制量,该控制量的大小决定PLC输出控制的继电器的导通时间,从而控制温度值的大小。
4、控制要求采用PID控制算法,使PLC控制的恒温箱的温度变化能按照给定的曲线运行,如图所示四、要求1.设计电气控制原理图。
2、进行PLC的选择及I/O分配。
3、设计PLC硬件系统。
4、对系统所需电气元器件选型,编制电气元件明细表。
5、PLC控制程序设计。
五、主要参考书及参考资料1、自动控制原理及系统2、PLC及应用、目录摘要 (1)第1章可编程控制器基础知识 (2)1.1 PLC的定义 (2)1.2 PLC的类型选择 (3)第2章可编程器的系统运用 (5)2.1恒温箱工艺过程及控制要求 (5)2.2模块功能指令 (9)2.2.1展热电阻/热电偶模块用法 (9)2.2.2系统输入输出控制 (10)第3章恒温箱工作的基本原理 (13)3.1恒温箱工作原理 (13)3.2控制系统温度采集 (17)3.3恒温控制装置PLC接线图 (19)3.4系统的配置及I/O地址 (20)3.5梯形图(附录) (21)总结 (22)致谢 (23)附录 (24)参考文献 (31)摘要在日常生活、工业生产和实验室中电热恒温箱的应用随处可以见到。
恒温恒湿空调机PLC控制程序优化
恒温恒湿空调机PLC控制程序优化戴建国【摘要】optimized the PLC control program of constant temperature and humidity air conditioners in the production areas of Guangzhou Cigarette Factory. Using the methods of adjusting air moisture content of the air supply outlet to adjust relative air humidity, adopting cascade PID double loop adjustment in the PID algorithm of temperature and humidity, increasing the working condition recognition and correction of logic in each air conditioner and constructing intelligent air conditioning control module to realize automatic temperature and humidity adjustment, remarkable energy-saving effect has been achieved.%优化了广州卷烟厂生产区域空调恒温恒湿空调机的PLC控制程序,采取的措施包括调节送风口的空气中的含湿量从而调节环境的空气相对湿度,在温度及湿度的PID算法上采用串级PID双环调节,在各台空调机增加工况识别及修正逻辑,构建智能空调控制模块实现温湿度自动偏移等,取得了显著的节能效果。
【期刊名称】《机电工程技术》【年(卷),期】2014(000)010【总页数】4页(P10-12,43)【关键词】空调环境;温湿度;PLC程序;优化;节能【作者】戴建国【作者单位】广州卷烟厂,广东广州 510385【正文语种】中文【中图分类】TP273广州卷烟厂生产区域共有61台恒温恒湿空调机,其分布如表1,均采用PLC控制,分别用于各个生产区域的温湿度控制。
基于PLC控制的恒温恒湿空调系统
基于PLC控制的节能型恒温恒湿控制系统设计王兆明,张萃,王治刚(吉林大学应用技术学院,吉林长春 130022)摘要:随着世界资源的不断减少,节能越来越显示出其重要性。
中国北方大部分地区冬、春、秋季室外温度较低,可以达到对通信、银行等大型控制机房进行降温的标准。
本文研究的节能型恒温恒湿控制系统采用欧姆龙CP1H型PLC具有良好的控制性能和稳定性,利用14℃以下时的环境低温降低室内温度的方法,在吉林省白山市网通经过一年的运行,与同功率空调比较节能达到55%。
关键词:PLC控制恒温恒湿控制室外空气节能The study on Energy-Save Constant Humidity and Temperature Control System Based on PLC WANG Zhao-ming , ZHANG Cui, WANG Zhi-gang(School of application technology, Jilin University, Changchun, 130022)Abstract:Considering the importance of high performance and stability of humidity and temprature control system in large center control room, especially for comunication system and bank system, an energy-save constant humidity and temprature control system was designed.In that system the PLC was used to ensure high control performance and stability;SCM to finish long-range digital transmisstion of humidity and temprature values;The control way of taking in cool air to lower the indoor temprature when it was lower than 14℃outside to save energy effectively.Key words:PLC control;constant humidity and temprature;energy save ;digital transmission0 引言通信系统、银行等联网系统在国民经济发展中起着至关重要的作用,对其工作稳定性要求极高,一旦发生故障,经济损失巨大。
基于PLC的温湿度自动控制系统的设计
基于PLC的温湿度自动控制系统的设计空调系统的耗能量大,通常一栋建筑物总耗能量约有60%为空调系统所消耗。
当前建筑空调系统缺乏规范化管理,导致室内温度湿度缺乏合理的控制,从而导致资源的浪费。
本着节能减排的原则,本文从PLC自动控制技术作为切入点,探讨了基于PLC的温湿度自动控制系统的设计,在有效保证合理温湿度的基础上,达到温度湿度自动调节的目的,从而有效降低能源消耗,高效利用能源,希望能为相关人士提供些许参考。
标签:PLC;温湿度;自动控制;系统;设计基于PLC温湿度自动控制系统的设计,是从传统人工控制模式存在的弊端出发,以日本三菱公司生产的Fx2n系列的PLC自动控制器为核心,同时加入温度、湿度传感器作为检测装置,共同构建出一套室内温湿度自动调控系统,具体设计思路如下。
1 PLC技术的内涵概述PLC即可编程逻辑控制器,最初是应用在机械加工等工业领域的智能技术,能够通过预先的程序设定,来根据程序指令实现自动控制的功能[1]。
随着该技术的不断发展,以及各行业对自动控制的需求,现如今PLC技术已经延伸至多个行业,并均取得了较为理想的开展效果。
出于对节能减排的考量,笔者就尝试从PLC技术入手,构建基于PLC的温湿度自动控制系统,以满足节能减排的新时期要求。
2 系统的设计基于PLC的温湿度自动调节系统共包括PLC控制器、现场采集装置、信号传送装置、温湿度调节装置等几个模块。
首先在PLC模块中编辑程序,它通过信号传输装置和现场的采集装置、温度湿度调节装置相连,根据现场采集装置收集的温湿度结果,发出温度调节指令,并将指令传送至温度湿度调节装置上,实现自动调节温湿度的目的。
2.1 PLC控制器PLC是自动控制系统的核心模块,结合机型、容量、通信联网、功能扩展等,选择最佳性价比的三菱Fx2n-48mr型PLC自動控制器作为系统的核心控制模块。
2.2 温度传感器温度传感器是系统中负责采集实时温度的装置,本系统采用PTL00铂电阻作为温度采集装置,具有精度高、稳定的特点[2]。
基于PLC控制的节能恒温恒湿空调系统设计
基于PLC控制的节能恒温恒湿空调系统设计
基于PLC控制的节能恒温恒湿空调系统设计【摘要】本文针对通信系统、银行等大型控制机房对温度和湿度控制的高性能和高稳定性的要求,提出了节能型恒温恒湿控制系统。
系统采用欧姆龙cp1h型plc保证了高控制性能和稳定性;应用单片机实现远程温湿度数字化传送,无传送误差,控制距离远。
利用14℃以下时的环境低温降低室内温度的方法,达到系统节能效果。
【关键词】plc控制;恒温恒湿控制;节能;数字化传输the study on energy-save constant humidity and temperature control system based on plc【abstract】considering the importance of high performance and stability of humidity and temprature control system in large center control room, especially for comunication system and bank system, an energy-save constant humidity and temprature control system was designed. in that system the plc was used to ensure high control performance and stability;scm to finish long-range digital transmisstion of humidity and temprature values;the control way of taking in cool air to lower the indoor temprature when it was lower than 14℃outside to save energy effectively.【key words】plc control;constant humidity and temprature;energy save ;digital transmission引言通信系统、银行等联网系统在国民经济发展中起着至关重要的作用,其工作稳定性要求极高,一旦发生故障,经济损失巨大。
温湿度可编程控制器操作手册
温湿度可编程控制器操作手册目录1.前言 (3)2.概要 (3)2.1 SYSTEMP构成图 (3)2.2 电气连接示意图 (4)3. 主画面介绍 (5)3.1 主画面 (5)3.2 定值(FIX)运行 (6)3.3程序(PROGRAM)运行 (8)3.4故障显示画面 (10)4. 运行相关操作设定 (11)5. 程序组设定 (11)5.1 程序组模式设定 (12)5.2程序循环设定 (14)5.3 等待动作 (15)5.4 时间信号操作 (15)6. 曲线显示 (16)7. 画面显示设定 (17)8. 预约设定 (17)9.通信故障 (18)10.系统设置画面 (19)10.1 报警设置画面 (20)10.2 I输入设定画面 (21)10.3 PID设定画面 (21)10.4 T设定画面 (22)10.5 IS设置画面 (22)10.6 DI设定画面 (23)10.7 继电器设定画面 (23)10.8 初始化设置画面 (26)1.前言本操作说明书针对日常操作之参数祥加说明。
安全注意事项记载了有关安全的重要内容,请务必遵守。
1、本控制器可以正常工作于一般场合,如果担心本控制器的故障或异常会造成重大事故或损坏其它设备时,请另外设置避免事故的紧急停止电路和保护回路,以防止事故的发生。
2、为避免发生控制器故障,请提供额定电压范围内的电源。
3、为了防止触电或产生误动作和故障,在安装和连线结束之前,请不要接通电源。
4、本产品为非防爆产品,请不要在有可燃或爆炸性气体的环境中使用。
5、绝对不能擅自拆卸、加工、改造或修理本控制器,否则会产生异常动作、触电或火灾的危险。
6、接通电源后,请不要触摸电源端子,否则会有触电危险或产生误动作。
7、关闭电源后,才可进行接线的拆卸,否则会有触电危险或产生误操作。
8、连接测温电阻(PT100)输入时,要使用3条阻值相等且小于10Ω的导线,否则会造成显示误差或动作异常。
9、控制器在运转中,进行修改设定、信号输出、启动、停止等操作之前,应充分地考虑安全性,错误的操作会使工作设备损害或发生故障。
恒温恒湿plc编程控制
组合式空调恒温恒湿的自动控制【关健词】组合式空调恒温恒湿除湿【摘要】如何符合特殊的生产线温湿度的使用要求,是空调系统及其控制系统设计的难题。
组合式空调的自控系统较好地解决了这难题,它采用了除湿优先的控制方法,利用最小能量能使该系统达到恒温恒湿控制精度。
我国为了更加快速与国际形势市场接轨,在原加入WTO的基础上,历经金融风暴后,大多数医疗手术室、电子、烟草、化工、制药、食品、民用建筑、商场、工业厂房及印刷等洁净空间,都感觉到无形的压力。
这样强迫他们不断地更新设备、更新工业、更新观念,不断提高产品档次,提高产品质量。
特别是国内的喷涂生产线,他们从国外引入先进的机器人喷涂生产线替代即将淘汰残旧的设备。
这种机器人喷涂生产线对环境要求很高,温湿度不稳均会影响产品的外观及喷涂率,甚至导致涂料成本增加、喷涂不匀等质量问题。
面对这烦恼的问题,恰好遇到了组合式空调,它完全可以满足工艺要求。
按国家相关标准要求,室内温度要求±1℃,相对湿度要求±5%。
如何符合特殊的生产线温湿度的使用要求,成为了空调系统及其控制系统设计的难题。
组合式空调的自控系统较好地解决了这难题,它典型结构如图1所示。
图1 组合式空调结构示意图根据喷涂生产线对空气的质量精度要求不同、南北方气候差异,选配较合理功能段的组合式空调对空气进行混合、加热、冷却、加湿、除湿、过滤等处理也相当重要,满足车间温湿度时积极提倡节能回收。
除湿是恒温恒湿系统空气处理过程中必不可少的环节,在空调系统中常采用冷冻除湿技术。
因为制冷系统既要控制温度又要控制湿度,而被控制室内的温湿度也是密切关联,所以较难符合被控制生产线所要求达到理想的温湿度精度。
空气成分的温湿度是密切关联,如:温度精度≤±1℃与湿度精度≤±1%相比,湿度较难控制。
因此±1%湿度所对应的温度精度≤±1℃。
假设在12℃结露点上空气的含水率保持恒定,但空气温度在1.0℃之间变化,那么相对湿度就在47%和53%之间波动,0.2℃的空气温度变化将引起大于0.5%的相对湿度的变化。
plc控制恒温水箱的设计汇总
设计题目: plc控制恒温水箱的设计学校:姓名:学号:指导老师:目录1 设计方案的确定 (3)1.1 各控制方案的比较 (3)1.2 PLC温控系统原理 (4)2 系统硬件设计 (6)2.1硬件分配 (6)2.3 恒温控制的PLC 控制装置示意图 (7)2.4工艺过程及控制要求说明 (7)2.5 I/O地址表 (9)2.6温度传感器 (9)2.7 PLC主机 (11)2.8 执行单元 (13)2.9 LED显示器显示方式 (13)2.10 各电器元件的选择 (13)3 系统的软件设计 (14)3.1恒温系统控制流程图 (14)3.2 恒温系统梯形图 (16)3.3 恒温控制系统程序 (26)参考文献 (29)致谢 (30)1设计方案的确定1.1 各控制方案的比较根据任务设计要求,恒温水箱的水温需要运用PID控制。
在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID 调节。
当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。
即当我们不完全了解一个系统和被控对象﹐或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。
PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。
首先, PID 应用范围广。
虽然很多工业过程是非线性或时变的,但通过对其简化可以变成基本线性和动态特性不随时间变化的系统,这样 PID 就可控制了。
其次,PID 参数较易整定。
也就是PID 参数 Kp ,Ki 和 Kd 可以根据过程的动态特性及时整定。
如果过程的动态特性变化,例如可能由负载的变化引起系统动态特性变化, PID 参数就可以重新整定。
第三,PID 控制器在实践中也不断的得到改进,PID 参数自整定就是为了处理 PID 参数整定这个问题而产生的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
组合式空调恒温恒湿的自动控制
【关健词】组合式空调恒温恒湿除湿
【摘要】如何符合特殊的生产线温湿度的使用要求,是空调系统及其控制系统设计的难题。
组合式空调的自控系统较好地解决了这难题,它采用了除湿优先的控制方法,利用最小能量能使该系统达到恒温恒湿控制精度。
我国为了更加快速与国际形势市场接轨,在原加入WTO的基础上,历经金融风暴后,大多数医疗手术室、电子、烟草、化工、制药、食品、民用建筑、商场、工业厂房及印刷等洁净空间,都感觉到无形的压力。
这样强迫他们不断地更新设备、更新工业、更新观念,不断提高产品档次,提高产品质量。
特别是国内的喷涂生产线,他们从国外引入先进的机器人喷涂生产线替代即将淘汰残旧的设备。
这种机器人喷涂生产线对环境要求很高,温湿度不稳均会影响产品的外观及喷涂率,甚至导致涂料成本增加、喷涂不匀等质量问题。
面对这烦恼的问题,恰好遇到了组合式空调,它完全可以满足工艺要求。
按国家相关标准要求,室内温度要求±1℃,相对湿度要求±5%。
如何符合特殊的生产线温湿度的使用要求,成为了空调系统及其控制系统设计的难题。
组合式空调的自控系统较好地解决了这难题,它典型结构如图1所示。
图1 组合式空调结构示意图
根据喷涂生产线对空气的质量精度要求不同、南北方气候差异,选配较合理功能段的组合式空调对空气进行混合、加热、冷却、加湿、除湿、过滤等处理也相当重要,满足车间温湿度时积极提倡节能回收。
除湿是恒温恒湿系统空气处理过程中必不可少的环节,在空调系统中常采用冷冻除湿技术。
因为制冷系统既要控制温度又要控制湿度,而被控制室内的温湿度也是密切关联,所以较难符合被控制生产线所要求达到理想的温湿度精度。
空气成分的温湿度是密切关联,如:温度精度≤±1℃与湿度精度≤±1%相比,湿度较难控制。
因此±1%湿度所对应的温度精度≤±1℃。
假设在12℃结露点上空气的含水率保持恒定,但空气温度在1.0℃之间变化,那么相对湿度就在47%和53%之间波动,0.2℃的空气温度变化将引起大于0.5%的相对湿度的变化。
这一点可查空气H-D图(焓湿图)可以得到证明。
组合式空调系统中
表冷器有降温和除湿双重功能,致它接受两个控制量的控制,至于它在某一时刻接收那个信号控制,需要看哪个参数先满足要求而定。
对于室内有散湿负荷,特别是湿负荷变化大的对象(生产线),无疑是十分合适的,因为它不是控制固定露点温度来确保室内相对湿度。
虽然有人称它为无露点控制方式,但是这并不意味着经表冷器处理后的空气不必再处理到相应的露点温度。
要除湿从原理上说,必须把空气处理到相应的露点.这样的控制方式把它称为不定露点温度控制。
这样经此处理的冷气进入房间后,除非室内有大量显热负荷,在大多数情况下,都会导致室内过冷,相对湿度显得过高。
实际运行过程中控制器选择的控制信号多半是来自湿度控制器的信号,于是避免冷热抵消,该系统将在消耗最低能量下运行。
组合式空调是针对室外空气的经过过滤处理后用风机以一定的风量送往室内,来调节室内的空气。
F6、F9袋式及G4板式的过滤器作用是除去空气中的细菌来提高空气洁净度;调节冰水比例阀控制表冷器冰水流量对空气进行制冷和除湿;调节加湿比例阀控制干蒸汽加湿器过热蒸汽流量对空气进行加湿处理;调节加热比例阀控制加热盘管过热蒸汽流量进行加热处理。
自控系统采用西门子CPU226CN为控制核心的PLC,由温湿变送器采集0-10V的温湿度信号送到A/D模EM235,通过PLC的PID运算,输出D/A模块EM232由信号0-10V调节控制比例阀的运行控制温湿度;风量变送器采集0-10V的风量信号经过变换和计算,输出控制变频器的运行控制风量。
所有控制状态和有关数据可以在触摸(HMI)监控显示。
控制系统构成如图2所示,I/O接线示意图如图3所示,触摸屏(HMI)监控图如图4所示。
图4 触摸屏(HMI)监控图
温湿度变送器分别采集生产线温、湿度实际值后,经A/D变换把信号送到CPU与设定值比较。
根据计算结果,控制器输出相应信号自动控制比例调节阀,来调节冷量、蒸汽量,确保房间温、湿度达到设定范围。
当湿度≥设定值时,无论温度是处于何种状态下,这时冷水阀打开,进行制冷除湿;当温度≤设定值时,蒸汽加热比例阀调节打开,达到恒温恒湿的效果。
简单地说:控制了湿度精度就等于控制了温度精度,因此做PLC自控程式的设置以及该系统调试中,始终贯穿湿度控制优先的原则。
为保证表冷器的除湿能力,因此设定冷水阀的最小开度要特别注意。
自控程序调试的实质是对各控制环节的PID参数进行设置,其中考虑到温、湿度参数的关联性及冷水阀开度对被控参数的影响,对不同的温湿度情况深入分析,进行选择性控制。
随后确定PID的各个设定值,新版本的西门子S7-200CPU还支持PID自整定功能,在STEP 7-Micro/WIN V4.0中也添加了PID调节控制面板,用户可以使用用户程序或PID调节控制面板来启动自整定功能。
它可以实现多个PID回路同时进行自整定,PID调节控制面板还可以用手动来调试(注:旧版本的不支持PID自整定)CPU的PID控制回路。
PID自整定会根据响应类型而计算出最优化的比例P、积分I、微分D值,并可应用到控制系统中。
使得控制系统更易调试,温湿度控制精度更精确、稳定。
当湿度过程量≥设定湿度时,除湿PID调节输出,此时只要制冷和加热输出值≤除湿输出值,除湿输出值同时控制冷水比例阀和热水比例阀,这样可以快速除去空气中湿度,在这过程将影响温度回升,只要温度一偏高,制冷PID将控制冷水阀输出。
该系统波动几次后即可进入稳定状态,其PID控制梯形图如图5所示。
图5 PID控制梯形图
结束语
在组合式空调自控系统中采用除湿优先控制方法,利用最小能量能达到恒温恒湿控制精度。
此系统自控控制方法在富士康科技园、江淮汽车、奇瑞汽车、华硕电脑、上海华硕、德国霍富、上海采埃孚等五百强企业中的喷涂生产线上广泛应用都得到了高度评价。