2019年浙江省杭州市中考数学试卷及答案解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年浙江省杭州市中考数学试卷

一、选择题:本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的;

1.(3分)计算下列各式,值最小的是( )

A.2×0+1﹣9B.2+0×1﹣9C.2+0﹣1×9D.2+0+1﹣9

2.(3分)在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则( )A.m=3,n=2B.m=﹣3,n=2C.m=2,n=3D.m=﹣2,n=﹣3 3.(3分)如图,P为圆O外一点,PA,PB分别切圆O于A,B两点,若PA=3,则PB=( )

A.2B.3C.4D.5

4.(3分)已知九年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树,设男生有x人,则( )

A.2x+3(72﹣x)=30B.3x+2(72﹣x)=30

C.2x+3(30﹣x)=72D.3x+2(30﹣x)=72

5.(3分)点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的各位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是( )

A.平均数B.中位数C.方差D.标准差

6.(3分)如图,在△ABC中,点D,E分别在AB和AC上,DE∥BC,M为BC边上一点(不与点B,C重合),连接AM交DE于点N,则( )

A.=B.=C.=D.=

7.(3分)在△ABC中,若一个内角等于另外两个内角的差,则( )A.必有一个内角等于30°B.必有一个内角等于45°

C.必有一个内角等于60°D.必有一个内角等于90°

8.(3分)已知一次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是( )A.B.

C.D.

9.(3分)如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内),已知AB=a,AD=b,∠BCO=x,则点A到OC的距离等于( )

A.a sin x+b sin x B.a cos x+b cos x

C.a sin x+b cos x D.a cos x+b sin x

10.(3分)在平面直角坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图象与x轴有M个交点,函数y=(ax+1)(bx+1)的图象与x轴有N个交点,则( )

A.M=N﹣1或M=N+1B.M=n﹣1或M=N+2

C.M=N或M=N+1D.M=N或M=N﹣1

二、填空题:本大题有6个小题,每小题4分,共24分;

11.(4分)因式分解:1﹣x2= .

12.(4分)某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这m+n个数据的平均数等于 .

13.(4分)如图是一个圆锥形冰淇淋外壳(不计厚度),已知其母线长为12cm,底面圆半径为3cm,则这个冰淇淋外壳的侧面积等于 cm2(结果精确到个位).14.(4分)在直角三角形ABC中,若2AB=AC,则cos C= .

15.(4分)某函数满足当自变量x=1时,函数值y=0,当自变量x=0时,函数值y=1,写出一个满足条件的函数表达式 .

16.(4分)如图,把某矩形纸片ABCD沿EF,GH折叠(点E,H在AD边上,点F,G 在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A′点,D点的对称点为D′点,若∠FPG=90°,△A′EP的面积为4,△D′PH的面积为1,则矩形ABCD的面积等于 .

三、解答题:本小题7个小题,共66分,解答应写出文字说明、证明过程或演算步骤. 17.(6分)化简:﹣﹣1

圆圆的解答如下:

﹣﹣1=4x﹣2(x+2)﹣(x2﹣4)=﹣x2+2x

圆圆的解答正确吗?如果不正确,写出正确的答案.

18.(8分)称量五筐水果的质量,若每筐以50千克为基准,超过基准部分的千克数记为正数,不足基准部分的千克数记为负数,甲组为实际称量读数,乙组为记录数据,并把所得数据整理成如下统计表和未完成的统计图(单位:千克).

实际称量读数和记录数据统计表

12345序号

数据

甲组4852474954

乙组﹣22﹣3﹣14

(1)补充完成乙组数据的折线统计图.

(2)①甲,乙两组数据的平均数分别为,,写出与之间的等量关系.

②甲,乙两组数据的方差分别为S甲2,S乙2,比较S甲2与S乙2的大小,并说明理由.19.(8分)如图,在△ABC中,AC<AB<BC.

(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B.(2)以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连接AQ.若∠AQC =3∠B,求∠B的度数.

20.(10分)方方驾驶小汽车匀速地从A地行驶到B地,行驶里程为480千米,设小汽车的行驶时间为t(单位:小时),行驶速度为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.

(1)求v关于t的函数表达式;

(2)方方上午8点驾驶小汽车从A地出发.

①方方需在当天12点48分至14点(含12点48分和14点)间到达B地,求小汽车行

驶速度v的范围.

②方方能否在当天11点30分前到达B地?说明理由.

21.(10分)如图,已知正方形ABCD的边长为1,正方形CEFG的面积为S1,点E在DC 边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为S2,且S1=S2.(1)求线段CE的长;

(2)若点H为BC边的中点,连接HD,求证:HD=HG.

22.(12分)设二次函数y=(x﹣x1)(x﹣x2)(x1,x2是实数).

(1)甲求得当x=0时,y=0;当x=1时,y=0;乙求得当x=时,y=﹣.若甲求得的结果都正确,你认为乙求得的结果正确吗?说明理由.

(2)写出二次函数图象的对称轴,并求该函数的最小值(用含x1,x2的代数式表示).(3)已知二次函数的图象经过(0,m)和(1,n)两点(m,n是实数),当0<x1<x2<1时,求证:0<mn<.

23.(12分)如图,已知锐角三角形ABC内接于圆O,OD⊥BC于点D,连接OA.(1)若∠BAC=60°,

①求证:OD=OA.

②当OA=1时,求△ABC面积的最大值.

(2)点E在线段OA上,OE=OD,连接DE,设∠ABC=m∠OED,∠ACB=n∠OED(m,n是正数),若∠ABC<∠ACB,求证:m﹣n+2=0.

相关文档
最新文档