陶瓷基复合材料

合集下载

陶瓷基复合材料

陶瓷基复合材料

陶瓷基复合材料陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。

陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。

这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。

而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。

纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。

陶瓷基复合材料具有优异的耐高温性能,主要用作高温及耐磨制品。

其最高使用温度主要取决于基体特征。

陶瓷基复合材料已实用化或即将实用化的领域有刀具、滑动构件、发动机制件、能源构件等。

法国已将长纤维增强碳化硅复合材料应用于制造高速列车的制动件,显示出优异的摩擦磨损特性,取得满意的使用效果。

工制备艺浆体浸渍-热压法适用于长纤维。

首先把纤维编织成所需形状,然后用陶瓷泥浆浸渍,干燥后进行烧结。

优点是加热温度较晶体陶瓷低,层板的堆垛次序可任意排列,纤维分布均匀,气孔率低,获得的强度较高。

缺点则是不能制造大尺寸的制品,所得制品的致密度较低,此外零件的形状不宜太复杂,基体材料必须是低熔点或低软化点陶瓷。

晶须与颗粒增韧陶瓷基复合材料的加工与制备晶须与颗粒的尺寸均很小,只是几何形状上有些区别,用它们进行增韧的陶瓷基复合材料的制造工艺是基本相同的。

基本上是采用粉末冶金方法。

制备工艺比长纤维复合材料简便很多。

所用设备也不复杂设备。

过程简单。

混合均匀,热压烧结即可制得高性能的复合材料制造工艺也可大致分为配料-成型-烧结-精加工等步骤。

直接氧化沉积法方法:将纤维预制体置于熔融金属上面,添加有镁、硅添加剂的熔融金属铝,在氧化气氛中,不断地浸渍预制体,在浸渍过程中,熔融金属或其蒸汽与气相氧化剂反应生成氧化物。

随着时间的延长,边浸渍边氧化,最终可制得纤维增强CMC。

优点:纤维几乎无损伤、纤维分布均匀、CMC性能优异,工艺简单、效率高成本低先驱体热解法方法:将单独合成的先驱体,通过加温调节其粘度,在高压-真空联合作用下使其浸入并充满多向纤维编织坯件的空隙,在高温下使先驱体热解。

陶瓷基复合材料(CMC

陶瓷基复合材料(CMC
特点: 低密度,2.0-2.8g/cm3 高弹性模量(80-140GPa)和弯曲强度
(70-350MPa)
7
第三节 陶瓷粉末的烧结
粉末状物料在压制成型后,含有大量气孔,颗粒 之间接触面积较小,强度也比较低。经过高温作 用后,坯体中颗粒相互烧结,界面逐渐扩大成为 晶界,最后数个晶粒结合在一起,产生再结晶与 聚集再结晶,使晶粒长大。气孔体积缩小,大部 分甚至全部从体坯中排出,体收缩而致密,强度 增加,成坚固整体。上述整个过程叫烧结过程。
10
烧结作用力分析
表面张力产生的作用于ABCD表面上切线方向的力, 可由表面张力定义求出
11
由表可以看出,曲面压力随颗粒半径之降低而 增加,随曲面圆内角θ之减小而降低,亦即随 烧结之进行而降低。所以颗粒越细,曲面压力 越大,颈部成长越快。颈部长大表面积减小, 表面能也降低。
12
三、烧结机理
(一)颗粒的粘附作用
(7)氮化硅的电绝缘性也很好
5
三、碳化硅陶瓷
由反应烧结法(α-SiC+C粉 烧结)和 热压烧结(SiC+促进剂)法制备 特点: 较高的高温强度 较高的热导率 较好的热稳定性、耐磨性、耐腐蚀性和 抗蠕变性
6
四、玻璃陶瓷
含有大量微晶体的玻璃称为微晶玻璃或 玻璃陶瓷。常用的玻璃陶瓷有锂铝硅 (Al2LOi23O-S-iAOl22O,3M-SAiOS)2两,L个AS体)系和。镁铝硅(MgO-
39
模量
40
断裂韧性
没有增强时,断裂韧性随温度升高而降低,有晶须 增强后,因纤维拔出,在高温随温度升高而增大 41
2.蠕变
在高温或高应力的作用下,玻璃发生粘性流动, 应变急剧增大 42
3.热冲击性(热震性)

陶瓷基复合材料

陶瓷基复合材料

陶瓷基复合材料
陶瓷基复合材料是一种由陶瓷基体和其他增强材料组成的复合材料。

陶瓷基体
通常具有优异的耐高温、耐腐蚀和硬度等特性,而增强材料则可以进一步提升复合材料的力学性能。

由于其独特的性能和广泛的应用领域,陶瓷基复合材料受到了广泛的关注和研究。

首先,陶瓷基复合材料具有优异的耐高温性能。

由于陶瓷基体本身具有高熔点
和良好的热稳定性,因此陶瓷基复合材料可以在高温环境下保持稳定的性能,这使得它在航空航天、能源和化工等领域有着重要的应用。

例如,碳纤维增强碳化硅复合材料可以在高温高压下保持优异的力学性能,因此被广泛应用于航空发动机零部件的制造。

其次,陶瓷基复合材料具有良好的耐腐蚀性能。

陶瓷基体通常具有优异的化学
稳定性,能够抵抗酸碱腐蚀和氧化腐蚀,而增强材料的加入可以进一步提升复合材料的抗腐蚀性能。

因此,陶瓷基复合材料在化工、海洋工程和环保设备等领域有着广泛的应用前景。

例如,氧化锆纤维增强氧化锆复合材料具有优异的耐腐蚀性能,被广泛应用于化工设备的制造。

此外,陶瓷基复合材料还具有优异的硬度和耐磨损性能。

陶瓷基体通常具有高
硬度和良好的耐磨损性,而增强材料的加入可以进一步提升复合材料的耐磨损性能。

因此,陶瓷基复合材料在汽车制造、机械加工和精密仪器等领域有着重要的应用。

例如,碳化硅纤维增强碳化硅复合材料具有优异的硬度和耐磨损性能,被广泛应用于机械零部件的制造。

综上所述,陶瓷基复合材料具有优异的耐高温、耐腐蚀和硬度等特性,具有广
泛的应用前景。

随着材料科学和工程技术的不断发展,相信陶瓷基复合材料将会在更多领域得到应用,并为人类社会的发展做出更大的贡献。

陶瓷基复合材料(CMC)

陶瓷基复合材料(CMC)

陶瓷基复合材料(CMC)第四节陶瓷基复合材料(CMC)1.1概述⼯程中陶瓷以特种陶瓷应⽤为主,特种陶瓷由于具有优良的综合机械性能、耐磨性好、硬度⾼以及耐腐蚀件好等特点,已⼴泛⽤于制做剪⼑、⽹球拍及⼯业上的切削⼑具、耐磨件、发动机部件、热交换器、轴承等。

陶瓷最⼤的缺点是脆性⼤、抗热震性能差。

与⾦属基和聚合物基复合材料有有所不同的,是制备陶瓷基复合材料的主要⽬的之⼀就是提⾼陶瓷的韧性。

特别是纤维增强陶瓷复合材料在断裂前吸收了⼤量的断裂能量,使韧性得以⼤幅度提⾼。

表6—1列出了由颗粒、纤维及晶须增强陶瓷复合材料的断裂韧性和临界裂纹尺⼨⼤⼩的⽐较。

很明显连续纤维的增韧效果最佳,其次为品须、相变增韧和颗粒增韧。

⽆论是纤维、晶须还是颗粒增韧均使断裂韧性较整体陶瓷的有较⼤提⾼,⽽且也使临界裂纹尺⼨增⼤。

陶瓷基复合材料的基体为陶瓷,这是⼀种包括范围很⼴的材料,属于⽆机化合物纳构远⽐⾦属与合⾦复杂得多。

使⽤最多的是碳化硅、氮化硅、氧化铝等,它们普遍具有耐⾼温、耐腐蚀、⾼强度、重量轻和价格低等优点。

陶瓷材料中的化学键往注是介于离⼦键与共价键之间的混合键。

陶瓷基复合材料中的增强体通常也称为增韧体。

从⼏何尺⼨上可分为纤维(长、短纤维)、晶须和颗粒三类。

碳纤维是⽤来制造陶瓷基复合材料最常⽤的纤维之⼀。

碳纤维主要⽤在把强度、刚度、重量和抗化学性作为设计参数的构件,在1500霓的温度下,碳纤维仍能保持其性能不变,但对碳纤维必须进⾏有效的保护以防⽌它在空⽓中或氧化性⽓氛中被腐蚀,只有这样才能充分发挥它的优良性能。

其它常⽤纤维是玻璃纤维和硼纤维。

陶瓷材料中另⼀种增强体为晶须。

晶须为具有⼀定长径⽐(直径o 3。

1ym,长30—lMy”)的⼩单晶体。

从结构上看,晶须的特点是没有微裂纹、位偌、孔洞和表⾯损伤等⼀类缺陷,⽽这些缺陷正是⼤块晶体中⼤量存在且促使强度下降的主要原因。

在某些情况下,晶须的拉伸强度可达o.1Z(Z为杨⽒模量),这已⾮常接近⼗理论上的理想拉伸强度o.2Z。

陶瓷基复合材料介绍

陶瓷基复合材料介绍

陶瓷基复合材料介绍一、材料定义与特性陶瓷基复合材料(Ceramic Matrix Composites,简称CMC)是一种以陶瓷为基体,复合增强体材料的高性能复合材料。

它具有高强度、高硬度、耐高温、抗氧化、耐腐蚀等优异性能,被广泛应用于航空航天、汽车、能源、化工等领域。

二、基体与增强体材料陶瓷基体的主要类型包括氧化铝、氮化硅、碳化硅、氮化硼等,它们具有高熔点、高硬度、耐腐蚀等特性。

增强体材料主要包括纤维、晶须、颗粒等,它们可以显著提高陶瓷基体的强度和韧性。

三、制备工艺与技术陶瓷基复合材料的制备工艺主要包括:热压烧结法、液相浸渍法、化学气相沉积法、粉末冶金法等。

其中,热压烧结法和液相浸渍法是最常用的制备工艺。

四、增强纤维与基体的界面增强纤维与基体的界面是影响陶瓷基复合材料性能的关键因素之一。

为了提高材料的性能,需要优化纤维与基体的界面特性,包括润湿性、粘结性、化学稳定性等。

五、材料的应用领域陶瓷基复合材料具有广泛的应用领域,主要包括:航空航天领域的发动机部件、机载设备;能源领域的燃气轮机叶片、核反应堆部件;汽车领域的刹车片、发动机部件;化工领域的耐腐蚀设备、管道等。

六、发展现状与趋势随着科技的不断进步,陶瓷基复合材料的研究和应用不断深入。

目前,国内外研究者正在致力于开发低成本、高性能的陶瓷基复合材料,并探索其在更多领域的应用。

同时,研究者还在研究如何更好地控制材料的微观结构和性能,以提高材料的综合性能。

七、挑战与机遇尽管陶瓷基复合材料具有许多优异的性能,但它们的制备工艺复杂、成本高,且存在易脆性等挑战。

然而,随着科技的不断进步和新材料的发展,陶瓷基复合材料的成本逐渐降低,应用领域也在不断扩大。

同时,随着环保意识的提高和能源需求的增加,陶瓷基复合材料在能源和环保领域的应用前景广阔。

因此,陶瓷基复合材料在未来仍具有巨大的发展潜力。

陶瓷基复合材料

陶瓷基复合材料

陶瓷基复合材料引言。

陶瓷基复合材料是一种由陶瓷基体和其他增强材料组成的复合材料。

它具有优异的耐磨、耐腐蚀、高强度和高温稳定性等特点,因此被广泛应用于航空航天、汽车制造、化工等领域。

本文将介绍陶瓷基复合材料的组成、性能和应用,并对其未来发展进行展望。

一、陶瓷基复合材料的组成。

陶瓷基复合材料通常由陶瓷基体和增强材料组成。

陶瓷基体可以是氧化铝、碳化硅、氮化硅等陶瓷材料,而增强材料则可以是碳纤维、玻璃纤维、陶瓷颗粒等。

这些材料通过复合加工技术,如热压、注射成型等,将陶瓷基体与增强材料紧密结合,形成具有优异性能的复合材料。

二、陶瓷基复合材料的性能。

1. 耐磨性,陶瓷基复合材料具有优异的耐磨性,可以在高速、高负荷条件下保持较长的使用寿命,因此被广泛应用于机械设备的零部件制造。

2. 耐腐蚀性,由于陶瓷基复合材料具有优异的化学稳定性,可以在酸、碱等腐蚀性介质中长期稳定运行,因此在化工领域得到广泛应用。

3. 高强度,陶瓷基复合材料在高温、高压条件下依然保持优异的强度和刚性,因此被广泛应用于航空航天领域。

4. 高温稳定性,陶瓷基复合材料在高温条件下依然保持稳定的性能,因此被广泛应用于发动机、燃气轮机等高温设备的制造。

三、陶瓷基复合材料的应用。

1. 航空航天领域,陶瓷基复合材料被广泛应用于航空发动机、航天器外壳等高温、高压零部件的制造。

2. 汽车制造领域,陶瓷基复合材料被应用于汽车刹车片、离合器片等零部件的制造,以提高其耐磨性和耐高温性能。

3. 化工领域,陶瓷基复合材料被应用于化工设备的制造,以提高其耐腐蚀性和耐高温性能。

四、陶瓷基复合材料的发展展望。

随着科学技术的不断进步,陶瓷基复合材料将会在性能和应用范围上得到进一步提升。

未来,我们可以期待陶瓷基复合材料在新能源领域、生物医药领域等新兴领域的广泛应用,为人类社会的发展做出更大的贡献。

结论。

陶瓷基复合材料具有优异的耐磨、耐腐蚀、高强度和高温稳定性等特点,因此在航空航天、汽车制造、化工等领域得到广泛应用。

陶瓷基复合材料

陶瓷基复合材料

陶瓷基复合材料
陶瓷基复合材料是一种由陶瓷基体和增强相组成的新型材料。

陶瓷基复合材料具有优异的耐高温、耐磨损、耐腐蚀性能,因此在航空航天、汽车制造、机械制造等领域有着广泛的应用。

本文将从材料特性、制备工艺、应用领域等方面对陶瓷基复合材料进行介绍。

首先,陶瓷基复合材料的材料特性是其具有的重要特点之一。

陶瓷基复合材料具有高温强度高、热震稳定性好、耐磨损、耐腐蚀等优异性能。

这些特性使得陶瓷基复合材料在高温、高压、腐蚀等恶劣环境下能够发挥出色的性能,因此在航空航天领域得到了广泛的应用。

其次,陶瓷基复合材料的制备工艺是影响其性能的重要因素之一。

陶瓷基复合材料的制备工艺包括原料的选择、配比、成型、烧结等多个环节。

其中,原料的选择和配比直接影响着复合材料的成分和性能,而成型和烧结工艺则决定了复合材料的内部结构和组织。

因此,制备工艺的优化对于提高陶瓷基复合材料的性能具有重要意义。

最后,陶瓷基复合材料在航空航天、汽车制造、机械制造等领域有着广泛的应用。

在航空航天领域,陶瓷基复合材料被用于制造发动机涡轮叶片、导向器、复合材料轴承等部件,以提高其耐高温、耐磨损、耐腐蚀等性能。

在汽车制造领域,陶瓷基复合材料被用于制造发动机零部件、刹车盘、离合器等,以提高汽车的性能和安全性。

在机械制造领域,陶瓷基复合材料被用于制造轴承、密封件、刀具等,以提高机械设备的使用寿命和性能。

总之,陶瓷基复合材料具有优异的性能和广泛的应用前景。

随着科学技术的不断进步,陶瓷基复合材料将在更多领域得到应用,并为人类社会的发展做出更大的贡献。

陶瓷基复合材料及其应用

陶瓷基复合材料及其应用

界面相设计
优化界面相的组成和结构,提高 陶瓷基复合材料的力学性能和热 稳定性。
发展历程
起步阶段
20世纪50年代,陶瓷基复合材料开始研究和发 展。
突破阶段
20世纪70年代,随着碳纤维的发展,陶瓷基复 合材料在力学性能方面取得了重大突破。
应用阶段
20世纪80年代以后,陶瓷基复合材料在航空航天、汽车等领域得到广泛应用。
陶瓷基复合材料及其 应用
• 陶瓷基复合材料简介 • 陶瓷基复合材料的种类 • 陶瓷基复合材料的应用领域 • 陶瓷基复合材料的挑战与前景 • 案例分析
目录
01
陶瓷基复合材料简介
定义与特性
定义
陶瓷基复合材料是以陶瓷为基体,与 各种增强材料复合而成的一种力学性 能优异、具有特殊功能的新型复合材 料。
02
陶瓷基复合材料的种类
氧化铝基复合材料
总结词
氧化铝基复合材料是以氧化铝为基体 ,与其他陶瓷或金属材料复合而成的 一种高性能复合材料。
详细描述
氧化铝基复合材料具有高强度、高硬 度、耐磨、耐高温和抗氧化等优异性 能,广泛应用于航空航天、汽车、能 源和化工等领域。
碳化硅基复合材料
总结词
碳化硅基复合材料是以碳化硅为基体,与其他陶瓷或金属材料复合而成的一种 高性能复合材料。
其他陶瓷基复合材料
总结词
除了上述几种常见的陶瓷基复合材料外,还有许多其他种类的陶瓷基复合材料, 如氮化硼基复合材料、碳化钛基复合材料等。
详细描述
这些陶瓷基复合材料也具有优异的力学性能和化学稳定性,在各种领域都有广泛 的应用前景。
03
陶瓷基复合材料的应用领域
航空航天
航空发动机部件
陶航空发动机的燃烧室、涡轮叶片等 关键部件。

陶瓷基复合材料综述

陶瓷基复合材料综述

陶瓷基复合材料综述陶瓷基复合材料是指以陶瓷材料为基体,通过添加其他材料或者通过热处理等方式形成的一种具有复合结构的新型材料。

陶瓷基复合材料具有许多优异的性能,包括高温稳定性、高硬度、高抗磨损性和良好的化学稳定性等。

本文将对陶瓷基复合材料的制备方法、性能以及应用方面进行综述。

一、陶瓷基复合材料的制备方法陶瓷基复合材料的制备方法可以分为两大类:一种是在陶瓷基体中添加其他材料,如纳米颗粒、纤维、碳纳米管等;另一种是通过热处理等方式改变陶瓷基体的结构和性能。

其中,添加其他材料的方法主要包括浸渍法、溶胶凝胶法、等离子熔融法等;热处理方法主要包括烧结、热压、热等静压等。

二、陶瓷基复合材料的性能陶瓷基复合材料具有许多独特的性能,其主要包括高温稳定性、高硬度、高抗磨损性和良好的化学稳定性。

其中,高温稳定性是指材料在高温下仍然能够保持物理和化学性能的稳定性。

高硬度则是指材料的硬度较高,能够抵抗外界的划痕和磨损。

高抗磨损性则是指材料能够在摩擦和磨损等条件下保持其表面的完整性和光洁度。

化学稳定性则是指材料对酸、碱、盐等化学介质的稳定性较好,不易发生腐蚀和溶解。

三、陶瓷基复合材料的应用方面由于陶瓷基复合材料具有优异的性能,因此在许多领域都得到了广泛的应用。

其中,陶瓷基复合材料在航空航天领域中被广泛应用于火箭发动机喷管、刹车盘等高温部件中。

此外,在能源领域,陶瓷基复合材料可以用于制备高效的催化剂、光催化剂和固态电解质等。

在汽车制造领域,陶瓷基复合材料可以应用于汽车刹车系统、传动系统和发动机部件等。

此外,陶瓷基复合材料还可以用于制备耐磨、耐蚀和高温结构件,如轴承、密封件和切割工具等。

综上所述,陶瓷基复合材料具有许多优异的性能,包括高温稳定性、高硬度、高抗磨损性和良好的化学稳定性等。

通过添加其他材料或者通过热处理等方式改变陶瓷基体的结构和性能,可以制备出具有不同功能和应用的陶瓷基复合材料。

由于其广泛的应用前景,陶瓷基复合材料在材料科学领域中受到了广泛的研究和开发。

陶瓷基复合材料的性质及其应用前景

陶瓷基复合材料的性质及其应用前景

陶瓷基复合材料的性质及其应用前景陶瓷基复合材料是一种新型的复合材料,它由陶瓷基体和增强材料组成。

其特点是硬度高、强度大、耐高温、耐腐蚀、绝缘性能好等。

由于其独特的性质,陶瓷基复合材料在航空航天、汽车制造、电子和电力工业等领域都有广泛的应用。

一、陶瓷基复合材料的组成陶瓷基复合材料由陶瓷基体和增强材料组成。

其中,陶瓷基体通常采用氧化物陶瓷或碳化物陶瓷,而增强材料则可以选择纤维材料、颗粒材料、层板材料等。

陶瓷基复合材料的制备方法很多,主要包括热压、热等静压、拉伸成型等。

二、陶瓷基复合材料的性质1. 高硬度由于陶瓷基复合材料的基体是陶瓷,因此具有非常高的硬度。

事实上,某些陶瓷基复合材料的硬度可以接近金刚石,达到20GPa以上。

这一优异的性能意味着它们可以耐受高度的磨损和冲击,适用于大多数需要高耐久性的应用领域。

2. 高强度在增强材料的加入下,陶瓷基复合材料具有很高的强度和刚性。

因此,它们可以承受非常大的载荷,并在极端条件下工作。

这种性质使它们成为航空航天、汽车制造和电力工业等相关领域中理想的结构材料。

3. 耐高温陶瓷基复合材料具有非常好的耐高温性能。

在高温环境下,它们保持不失效、不变形等特性。

因此,它们被广泛应用于航空航天、汽车制造等需要高温稳定性能的领域。

4. 耐腐蚀陶瓷基复合材料还具有良好的耐腐蚀性能。

在强酸、强碱、高浓度的腐蚀性环境下,它们仍然可以保持稳定。

这一性质使它们成为化工、电力工业领域中的理想材料。

5. 绝缘性能好陶瓷基复合材料具有很好的绝缘性能,因此广泛运用于电子和电力工业中。

它们可以承受高电压、高电流的特性,同时在工作过程中不会导电或产生电磁干扰。

三、陶瓷基复合材料的应用前景由于其优异的性能和多功能性,陶瓷基复合材料在多个领域都有很广泛的应用前景。

以下是一些典型应用案例:1. 航空航天陶瓷基复合材料可以用于制作飞机、火箭、导弹的部件,如机身、引擎、导向器等。

因为它们的低重量、高强度和耐高温性质可以降低飞行设备的质量和提高操作效率。

《陶瓷基复合材》课件

《陶瓷基复合材》课件

2
陶瓷基复合材料的问题及挑战
陶瓷基复合材料在制备过程中存在工艺复杂、成本高等问题,需要进一步解决和 改进。
结论
陶瓷基复合材料的综合性能评价
综合考虑陶瓷基复合材料的力学性能、热学性能、耐久性等方面,可以评价其综合性能水平。
陶瓷基复合材料的发展前景
陶瓷基复合材料在高科技领域有着广阔的应用前景,将为科学技术的发展提供重要支持。
参考文献
1. 文献1 2. 文献2 3. 文献3
陶瓷基复合材料的组成包括陶瓷基体和增强材料,其结构形式可以是颗粒增强、 纤维增强等。
性能测试
1 陶瓷基复合材料的力学性能测试
力学性能测试包括强度、硬度、韧性等方面的评估,以确保陶瓷基复合材料的可靠性和 耐久性。
2 陶瓷基复合材料的热学性能测试
热学性能测试包括热导率、热膨胀系数等方面的评估,以确保陶瓷基复合材料在高温环 境下的稳定性。
应用案例
陶瓷基复合材料在航天领域的应用
陶瓷基复合材料在航天器结构、导航系统和热保护 层等方面发挥重要作用。
陶瓷基复合材料在医疗领域的应用
陶瓷基复合材料应用于仿生器官、骨修复、人工关 节等方面,为医疗技术的发展带来新的突破。
进一步研究
1
陶瓷基复合材料的未来发展趋势
随着科学技术的不断进步,陶瓷基复合材料将会在性能、制备技术等方面取得更 大突破。
陶瓷基复合材 PPT课件
研究陶瓷基复合材料是为了探索新型材料的结构与性能,本PPT课件将介绍陶 瓷基复合材料的概述、制备方法、性能测试、应用案例、未来发展趋势以及 参考文献。Leabharlann 概述什么是陶瓷基复合材料
陶瓷基复合材料是一种由陶瓷基体和其他增强物质组成的复合材料,具有优异的力学和热学 性能。

陶瓷基复合材料概述

陶瓷基复合材料概述

陶瓷基复合材料概述陶瓷基复合材料的基本构成包括陶瓷基体和增强相。

陶瓷基体是复合材料的主要组成部分,其主要作用是提供材料的整体力学性能和化学稳定性。

常见的陶瓷基体材料包括氧化铝、碳化硅、氮化硼等。

增强相通常由纤维、微颗粒或涂层等形式存在,其主要作用是增强材料的力学性能。

常用的增强相材料包括碳纤维、硅碳纤维、碳化硅颗粒等。

陶瓷基复合材料的制备方法主要包括增强相预浸料注浆成型、陶瓷基体浸渍和化学气相沉积等。

增强相预浸料注浆成型是指将增强相(如碳纤维布或纱线)经过预处理后,浸渍在浆料中,制备成具有一定形状和大小的增强相预浸料;陶瓷基体浸渍是将陶瓷基体浸泡在含有滞留剂的浆料中,使其吸附一定量的浆料,然后经过干燥和烧结等工艺得到复合材料;化学气相沉积是利用化学反应在陶瓷基体表面生成陶瓷薄膜,然后在其表面沉积增强相。

陶瓷基复合材料具有许多优越的性能,例如高温强度、高刚度、低热膨胀系数、优良的耐腐蚀性和较高的抗摩擦性能等。

这些性能使得陶瓷基复合材料在高温、高压、强腐蚀等恶劣条件下能够更好地发挥作用。

此外,陶瓷基复合材料还具有良好的抗热冲击性能和较低的密度,使其具备轻量化设计的优势。

陶瓷基复合材料在航空航天领域有广泛的应用。

例如,在航空发动机的制造中,使用陶瓷基复合材料可以减轻发动机重量、提高燃烧效率和减少燃料消耗。

此外,在航空航天器的外壳、导向系统和推进系统中也常使用陶瓷基复合材料,以提高材料的耐高温性能和抗氧化性能。

在汽车制造领域,陶瓷基复合材料可以用于发动机部件、制动系统和排气系统等关键部位,以提高汽车的安全性能、降低能源消耗和减少尾气排放。

陶瓷基复合材料的高温性能和耐腐蚀性能使其成为替代传统金属材料的理想选择。

在能源领域,陶瓷基复合材料可以用于核能装置、燃料电池和太阳能电池等设备,以提高能量转化效率和延长设备寿命。

陶瓷基复合材料的高温稳定性和化学稳定性使其在能源应用中具有重要的地位。

此外,陶瓷基复合材料还可用于电子器件、石油化工、医疗器械和船舶制造等领域。

陶瓷基复合材料资料

陶瓷基复合材料资料
• 定向的连续纤维可以明显提高强度,因为提高了增强效果、降低了应 力集中。
其他影响因素
• 气孔率:气孔率越大,韧性越差; • 增强材料的强度、刚度及含量:增强物的强度和刚度、含量越高,
CMC的性能越好; • 增强材料与基体的热膨胀系数的匹配:匹配性越好,CMC的性能好; • 纤维的损伤程度:成型时纤维损伤程度越低,CMC的性能越好。
3.44 0
473 247 19.3 3.7 4.62
2.7 30 454 188 4770 15.6 2.51
纤维与基体的结合强度的影响
• 纤维与基体的结合强度过大将使CMC的韧性降低,若其结合强度过 低,将使材料的强度降低。
纤维排布的影响
• 无规则排列短纤维增强CMC的拉伸和弯曲性能有时低于基体材料, 这是因为无规则排列纤维的应力集中的影响和热膨胀不匹配造成的, 将短纤维定向可以提高该方向的性能;
• 烧结方法:常压烧结工艺和反应烧结。
纳米CMC的成型工艺
纳米CMC(亦称纳米复相陶瓷)可分为三类 • 在陶瓷基体的晶粒内弥散纳米粒子第二相 • 在陶瓷基体晶粒间弥散纳米粒子第二相; • 纳米粒子同时弥散在陶瓷基体的晶粒内和晶界上。 • 工艺流程:
制粉 混合 制坯 烧结
陶瓷基复合材料的应用
• CMC的使用温度:主要取决于基体特性,其工作温度按下 列基体材料依次提高: 玻璃 玻璃陶瓷 氧化物陶瓷 非氧化物陶瓷 其最高使用温度可达1900℃。
• 主要应用领域:刀具、滑动器件、航空航天构件、发动机 构件、能源构件等。
应用例
• 制动件:法国已将长纤维增强碳化硅复合材料应用于 制作 超高速列 车的制动件,取得了传统 制动件所 无法比拟的优异的磨擦磨损特性;
• 航空航天领域:CMC制作的导弹的头锥、火箭的喷管、航天飞机的 结构件等也都收到了满意的效果;

陶瓷基复合材料(CMC)

陶瓷基复合材料(CMC)

CMC制备工艺
• 制造工艺也可大 致分为配料-成型 -烧结-精加工等 步骤。
• 改进的浆体法
陶瓷基复合材料的制备还有溶胶凝胶法、液态浸渍法、 直接氧化法等,新近发展起来的制备陶瓷基复合材料的 方法还有聚合物先驱体热解工艺、原位复合工艺等。
CMC界面
• 陶瓷基复合材料界面可分为两大类:无 反应界面和有反应界面。 • 无反应界面
概 述
• 陶瓷基复合材料的基体为陶瓷。
• 碳化硅、氮化硅、氧化铝等,具有耐高温、耐腐蚀、高强度、 重量轻和价格低等优点。化学键往往是介于离子键与共价键之 间的混合键。
• 陶瓷基复合材料中的增强体通常也 称为增韧体。
• 从几何尺寸上可分为纤维(长、短纤维)、晶须和颗粒三类。 • 碳纤维主要用在把强度、刚度、重量和抗化学性作为设计参数 的构件;其它常用纤维是玻璃纤维和硼纤维。 • 纤维增强陶瓷基复合材料,是改善陶瓷材料韧性的重要手段。
CMC制备工艺
CMC制备工艺
• 晶须与颗粒增韧陶瓷基复合材料的加工 与制备
• 晶须与颗粒的尺寸均很小,只是几何形状上有些区别, 用它们进行增韧的陶瓷基复合材料的制造工艺是基本 相同的。 • 基本上是采用粉末冶金方法。
制备工艺比长纤维复合材料简便很多。 所用设备也不复杂设备。 过程简单。混合均匀,热压烧结即可制得高性能的复合材料。
CMC性能
• 室温力学性能
• 拉伸强度
• 与金属基和聚合物基复合材料不同,对于陶瓷基复合 材料来说陶瓷基体的失效应变低于纤维的失效应变; 因此最初的失效往往是陶瓷基体的开裂,这种开裂是 由晶体中存在的缺陷引起的。
CMC性能与应用
单向连续纤维强化 陶瓷基复合材料的 拉伸失效有两种形 式:
(1)突然失效。纤维强度较 低,界面结合强度较高, 基体裂纹穿过纤维扩展, 导致突然失效。 (2)如果纤维较强,界面结 合相对较弱,基体裂纹沿 着纤维扩展,纤维失效前, 纤维-基体界面脱粘、因此 基体开裂并不导致突然失 效,复合材料的最终失效 应变大于基体的失效应变。

陶瓷基复合材料

陶瓷基复合材料

陶瓷基复合材料陶瓷基复合材料是一种将陶瓷作为基体,同时添加其他材料形成的复合材料。

它具有优异的高温性能、耐磨性、耐腐蚀性和机械性能,广泛应用于航空航天、汽车、电子、能源和化工等领域。

本文将重点介绍陶瓷基复合材料的特点、制备方法和应用。

陶瓷基复合材料的特点有以下几个方面。

首先,它具有很高的耐高温性能。

陶瓷基复合材料可以在高温下长时间工作,不会烧结或软化,因此在航空航天和汽车引擎等高温环境中得到广泛应用。

其次,它具有优异的耐磨性。

陶瓷基复合材料的硬度和抗磨损性能远远超过金属材料,可以用于制造耐磨件,如轴承、机械密封件等。

此外,它还具有较高的抗腐蚀性能和较低的摩擦系数,可以用于制造化学装置和摩擦副。

陶瓷基复合材料的制备方法主要包括烧结法和浸渍法。

烧结法是将陶瓷粉末和其他材料混合后,通过高温加热使其熔结成型。

这种方法适用于制备纯陶瓷基复合材料,如氧化铝基陶瓷复合材料。

浸渍法是将陶瓷基体浸渍于其他材料溶液中,然后通过热处理使其形成复合材料。

这种方法可以制备各种类型的陶瓷基复合材料,如碳纤维增强陶瓷基复合材料和碳化硅增强陶瓷基复合材料。

陶瓷基复合材料在各个领域中都有广泛的应用。

在航空航天领域,它可用于制造发动机组件、航空轴承、导弹和卫星零部件等。

在汽车领域,它可用于制造发动机缸套、刹车片、活塞环等。

在电子领域,它可用于制造电子散热器、半导体器件等。

在能源领域,它可用于制造核燃料颗粒、核电站部件等。

在化工领域,它可用于制造化学反应器、蒸馏柱等。

综上所述,陶瓷基复合材料具有优异的高温性能、耐磨性、耐腐蚀性和机械性能,广泛应用于航空航天、汽车、电子、能源和化工等领域。

随着科技的进步和材料制备技术的发展,陶瓷基复合材料的应用前景将更加广阔。

陶瓷基复合材料

陶瓷基复合材料

碳/碳化硅陶瓷基复合材料一、简介陶瓷基复合材料(Ceramic matr ix composite ,CMC)是在陶瓷基体中引入第二相材料, 使之增强、增韧的多相材料, 又称为多相复合陶瓷(Multiphase composite ceramic)或复相陶瓷(Diphase ceramic)。

陶瓷基复合材料是20 世纪80 年代逐渐发展起来的新型陶瓷材料, 包括纤维(或晶须)增韧(或增强)陶瓷基复合材料、异相颗粒弥散强化复相陶瓷、原位生长陶瓷复合材料、梯度功能复合陶瓷及纳米陶瓷复合材料。

其因具有耐高温、耐磨、抗高温蠕变、热导率低、热膨胀系数低、耐化学腐蚀、强度高、硬度大及介电、透波等特点,在有机材料基和金属材料基不能满足性能要求的工况下可以得到广泛应用, 成为理想的高温结构材料。

报道,陶瓷基复合材料正是人们预计在21 世纪中可替代金属及其合金的发动机热端结构的首选材料。

鉴于此, 许多国家都在积极开展陶瓷基复合材料的研究, 大大拓宽了其应用领域, 并相继研究出各种制备新技术。

其中,C/SiC 陶瓷基复合材料是其中一个非常重要的体系。

C/SiC 陶瓷基复合材料主要有两种类型, 即碳纤维/碳化硅(Cf /SiC)和碳颗粒/碳化硅(Cp/SiC)陶瓷基复合材料。

Cf /SiC 陶瓷基复合材料是利用Cf 来增强增韧SiC 陶瓷, 从而改善陶瓷的脆性, 实现高温结构材料所必需的性能, 如抗氧化、耐高温、耐腐蚀等;Cp/SiC 陶瓷基复合材料是利用Cp 来降低SiC 陶瓷的硬度, 实现结构陶瓷的可加工性能,同时具有良好的抗氧化性、耐腐蚀、自润滑等。

本文主要综述了Cf /SiC 陶瓷基复合材料的制备及应用研究现状,并且从结构和功能一体化的角度, 提出了采用软机械力化学法制备Cp 与SiC 复合粉体, 通过无压烧结得到强度、抗氧化性、耐腐蚀等性能以满足普通民用工业用的Cp/SiC 陶瓷基复合材料的制备技术及应用前景。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1:4 2:7
1:3
1:3 4:11 4:10 1:2
实例
镁橄榄石Mg2[SiO4] 硅钙石Ca3[Si2O7] 蓝锥矿BaTi[Si3O9]
绿宝石Be3Al2[Si6O16] 透辉石CaMg[Si2O6] Ca2Mg5[Si4O11](OH)2 滑石Mg3[Si4O10] 石英SiO2 那长石Na[AlSi3O8]
6.2 陶瓷基复合材料的种类 因陶瓷材料的脆性,增韧是陶瓷复合研究的主要目的。陶瓷复合材料
强韧化的途径有:颗粒弥散增韧、纤维(晶须)补强增韧、层状复合增 韧、与金属复合增韧及相变增韧(指ZrO2),见第三章。本章主要介 绍常见的陶瓷基复合材料。陶瓷基复合材料的分类方法很多,常见的有 以下几种。 1.按材料作用分类
AlN
3.26
TiB2
4.5
TiC
4.9
TiN
5.4
MoSi2
6.25
t-ZrO2
6.1
m-ZrO2 5.55
Mullite 2.8
2.50 约2500 1900 2450 约3000 2300 2980 3070 3090 2100 2400 1850
弹性模 量/MPa
390 440 300 440 45 70 320 570 450 400 240 150
第七章 陶瓷基复合材料
6.1陶瓷基复合材料的基体与增强体 6.1.1陶瓷基复合材料的基体-陶瓷材料
陶瓷基材料具有耐高温、耐磨损、耐腐蚀的优点,但脆性大,增韧是研究重点 陶瓷材料中的化学键:一般为介于共价键和离子键间的混合键。 一般由电负性表征其与离子键或共价键的接近程度(离子键或共价键的比例) 陶瓷中离子键比例的计算经验公式:
泊松比
0.23 0.15 0.22 0.18 0.25 0.11 0.18 0.17 0.3 0.24
比热容 /J.(g.K)-
1
1.25 1.25 1.25 2.11 2 1.1 1.23 0.85 0.85 0.56 0.7 1
热导率 /W.(m.K )-1
6.0 40 15 5 21 14 50 25 30 约30 20 1~2 1~2 5
陶瓷材料中的硅酸盐结构较为复杂,其普遍特点是存在[SiO4]4-结构 单元,重要的有锆英石和橄榄石,见图6-2、6-3。
图6-2 锆英石结构
图6-3镁橄榄石结构
硅酸盐晶体根据[SiO4]-4的连接方式,可分为五种结构类型,见表6-2。
表6-2硅酸盐晶体结构类型
结构类型 岛状 组群状
[SiO4]共用O2
其制备工艺见第二章。 用于陶瓷基复合材料的纤维主要有碳纤维、玻璃纤维和硼纤维等,
其中碳纤维的应用较多。纤维表面涂有一层保护膜,一方面自身保护, 另一方面增强与基体的连接。硼纤维既属于多相,又是无定型。因它是 将无定型硼沉积在W丝或C丝上形成的。无定型硼纤维的强度下降到晶 体硼的一半左右。 晶须为一定长径比(长30~100微米,直径0.3~1微米)的单晶体,常 用晶须有SiC、Al2O3、Si3N4等。颗粒的增韧效果比不上纤维和晶须, 常见的颗粒有SiC、Si3N4等。
硅氧四面体的空间构型如图6-4所示。
(a)孤立时的各种形状
(b)层状结构
(c)单链结构
(d)双链结构
图6-4硅氧四面体的空间构型
表6-3陶瓷材料的典型性能
材料
密度 熔点 /g.cm-3 /℃
Al2O3
3.99
SiC
3.2
Si3N4
3.2
B4C
2.5
立方BN 3.5
六方BN 2.3
六方BN// 2.3
1)结构陶瓷基复合材料,用于制造各种受力零部件。 2)功能陶瓷基复合材料,具有各种特殊性能(如光、电、磁、热、 生物、阻尼、屏蔽等)。 2.按增强材料形态分类 1)颗粒增强陶瓷基复合材料。 2)纤维(晶须)增强陶瓷基复合材料。 3)片材增强陶瓷基复合材料。
颗粒增强体按其相对于基体的弹性模量大小,可分为两类:
PAB
1-
exp[
1 4
(xA
xB
)2 ]
xA xB差值愈大,离子键愈强,反之,共价键的比例愈大
xA xB时,则成完全的共价键
表6-1 元素的电负性
脆化原因:共价键,位错在共价键中移动的派纳力大。 陶瓷的屈服强度约E/30,金属约E/1000;
常见陶瓷的离子性与共价性的比例
材料
电负性差 离子键性比例 共价键性比例
延性颗粒:主要通过第二相粒子的加入在外力作用下产生一定的塑形变形 或沿晶界滑移产生蠕变来缓解应力集中,达到增强增韧的效果,如一些金 属陶瓷、反应烧结SiC、SHS法制备的Ti/Ni复合材料等均属此类;
CaO MgO ZrO2 Al2O3 ZnO ZrO2 TiN Si3N4 BN WC SiC 2.5 2.3 2.1 2.0 1.9 1.7 1.5 1.2 1.0 0.8 0.7 0.79 0.73 0.67 0.63 0.59 0.51 0.43 0.30 0.22 0.15 0.12 0.21 0.27 0.33 0.37 0.41 0.49 0.57 0.70 0.78 0.85 0.88
0 1
2
链状
层状 架状
2 2,3 3 4
形状
四面体 双四面体 三节环 四节环
六节环 单链 双链 平面层 骨架
络阴离子
Si:O
[SiO4] 4[Si2O7]6[Si3O9]6[Si4O12]8-
[Si6O16]12[Si2O6]4[Si4O11]6[Si4O10]4[SiO2] [(AlxSi4-x)O8]x-
热膨胀 电阻率
系数/10- (25℃)
6K-1
/.m
8.0
>
5.5
0.5
-
-
7.5
1011
0.8
-
6
21012
5.5
10-3
8.5
10-4
8.5
510-5
8.5
210-3
12
-
15
-
5.5
-
6.1.2陶瓷基复合材料的增强体 陶瓷基复合材料的增强体通常也称增韧体,一般有三种: 纤维(长、短) 晶须 颗粒。
氧化物的电负性差大于非氧化物,其离子性要高于碳化物和氮化物 陶瓷材料的典型结构:1)闪锌矿结构 6)金红石结构
2)铅锌矿结构 7)萤石结构 3)NaCl结构 8)赤铜矿结构 4)CsCl结构 9)刚玉结构 5)方石英结构 10)其他结构
陶瓷材料的典型结构
(a)闪锌矿结构 (b)铅锌矿结构 (c)NaCl结构 (d)CsCl结构(e) β-方石英结构 (f)金红石结构 (g)萤石结构 (h)赤铜矿结构 (i)刚玉结构
相关文档
最新文档