【大学物理实验(含 数据+思考题)】仿真实验 落球法测定液体的粘度
大物实验-落球法测定液体黏度(精品)
实验名称:落球法测定液体黏度(总分:100)实验成绩:87实验者: 周进 学号: 201918130227 实验日期: 2020-06-2 校 区:青岛校区 学院、专业:计算机科学与技术学院-计算机科学与技术一、实验目的(1)观察液体的内摩擦现象,明白测量液体粘度的原理及方法; (2)在虚拟实验平台用落球法测量不同温度下蓖麻油的黏度;(3)学习使用比重计测定液体的密度,用停表来计时,以及用螺旋测微器来测量直径。
二、实验仪器实验的主要装置有:PID 温控试验仪、小钢球、蓖麻油、米尺、螺旋测微器、停表、镊子、量筒、水箱。
三、实验原理1.落球法测定液体黏度的原理液体、气体都是具有黏滞性的流体.当液体稳定流动时,平行于流动方向的各层液体速度都不相同。
相邻流层间存在着相对滑动,于是在各层之间就有内摩擦力产生,这种内摩擦力称为黏滞力。
管道中流动的液体因受到黏滞阻力流速变慢,必须用泵的推动才能使其保持匀速流动;划船时用力划桨是为了克服水对小船前进的黏滞阻力。
这些都是液体具有黏滞性的表现。
实验表明,黏滞力的方向平行于接触面。
它的大小与接触面积及该处的速度梯度成正比,比例系数称为黏滞系数或黏度,通常用字母V 表示,在国际单位制中的单位为Pa • s 。
黏度是表征液体黏滞性强弱的重要参数,它与液体的性质和温度有关。
例如,现代医学发 现,许多心脑血管疾病都与血液黏度的变化有关。
因此,测量血黏度的大小是检査人体血液健 康的重要指标之一。
又如,黏度受温度的影响很大,温度升高时,液体的黏度减小,气体的黏度 增大,选择发动机润滑油时要考虑其黏度应受温度的影响较小。
所以,在输油管道的设计、发动 机润滑油的研究、血液流动的研究等方面,液体黏度的测量都是非常重要的。
测量液体黏度的方法很多,有落球法,扭摆法,转筒法及毛细管法。
本实验所采用的落球法 (也称斯托克斯法)是最常用的测量方法。
其实验原理总结如下:当一个小球在粘滞性液体中下落时,在铅直方向受到三个力的作用:向下的重力mg ,液体对小球的向上的浮力gV F 0ρ=(0ρ是液体的密度,V 是小球的体积),以及小球受到的与其速度方向相反的粘滞阻力f 。
用落球法测量液体的粘度实验报告
用落球法测量液体的粘度实验报告实验名称:用落球法测量液体的粘度实验目的:通过落球法测量液体的粘度,了解粘度的定义及计算方法。
实验原理:粘度是指液体流动阻力的大小。
通过落球法可以测量液体的粘度。
当一球从管子的上端落下时,由于液体的粘滞力,球不能自由下落,而是随时间逐渐减速直到停止。
落球法利用粘滞力对球体的作用直接测得液体黏度,计算公式如下:η=2(g-ρV)/9c其中,η为液体的粘度,g为重力加速度,V为球体体积,ρ为球体密度,c为液体中球体的附面积所造成的阻力系数。
实验器材:落球仪、不锈钢球、粘度杯、天平、计时器。
实验步骤:1. 将清洗干净的粘度杯放置于水平桌面上,从中心位置向四周倾倒粘度杯内液体,使其液面略高于粘度杯口。
2. 用干净柔软的织物揩干不锈钢球的表面和手指指纹,取适量液体注入粘度杯中。
3. 轻轻放入处理好的不锈钢球,并避免球与粘度杯发生碰撞。
4. 将不锈钢球从杯口自由落下,计时器开始计时。
5. 直到不锈钢球停止落下,记录下时间t。
6. 用天平称出不锈钢球的质量m,以及球的直径D和液体的温度θ。
7. 重复以上步骤3至6,得到不同时间下的球体速度v。
8. 用计算公式计算液体的粘度。
η=2(g-ρV)/(9c)9. 根据实验结果计算液体的平均粘度。
实验数据与结果:实验条件:球体质量m=0.13g,球的直径D=2mm,液体密度ρ=1.207g/cm³,液体表面张力=0.0592N/m,重力加速度g=9.8m/s²。
实验结果如下:实验时间(s)球体速度v(m/s)0 05 0.037310 0.073815 0.106520 0.139225 0.170230 0.1998计算平均粘度:η = 2(g-ρV)/(9c) = 44.478Pa·s实验结论:本实验使用落球法测量液体的粘度,测量结果为Η=44.48Pa·s。
根据测得的粘度,比较不同液体的粘度大小,观察不同温度下同一液体的粘度变化,加深对粘度概念和测量方法的理解。
大物实验-落球法测定液体黏度(精品)
实验名称:落球法测定液体黏度(总分:100)实验成绩:87实验者: 周进 学号: 201918130227 实验日期: 2020-06-2 校 区:青岛校区 学院、专业:计算机科学与技术学院-计算机科学与技术一、实验目的(1)观察液体的内摩擦现象,明白测量液体粘度的原理及方法; (2)在虚拟实验平台用落球法测量不同温度下蓖麻油的黏度;(3)学习使用比重计测定液体的密度,用停表来计时,以及用螺旋测微器来测量直径。
二、实验仪器实验的主要装置有:PID 温控试验仪、小钢球、蓖麻油、米尺、螺旋测微器、停表、镊子、量筒、水箱。
三、实验原理1.落球法测定液体黏度的原理液体、气体都是具有黏滞性的流体.当液体稳定流动时,平行于流动方向的各层液体速度都不相同。
相邻流层间存在着相对滑动,于是在各层之间就有内摩擦力产生,这种内摩擦力称为黏滞力。
管道中流动的液体因受到黏滞阻力流速变慢,必须用泵的推动才能使其保持匀速流动;划船时用力划桨是为了克服水对小船前进的黏滞阻力。
这些都是液体具有黏滞性的表现。
实验表明,黏滞力的方向平行于接触面。
它的大小与接触面积及该处的速度梯度成正比,比例系数称为黏滞系数或黏度,通常用字母V 表示,在国际单位制中的单位为Pa • s 。
黏度是表征液体黏滞性强弱的重要参数,它与液体的性质和温度有关。
例如,现代医学发 现,许多心脑血管疾病都与血液黏度的变化有关。
因此,测量血黏度的大小是检査人体血液健 康的重要指标之一。
又如,黏度受温度的影响很大,温度升高时,液体的黏度减小,气体的黏度 增大,选择发动机润滑油时要考虑其黏度应受温度的影响较小。
所以,在输油管道的设计、发动 机润滑油的研究、血液流动的研究等方面,液体黏度的测量都是非常重要的。
测量液体黏度的方法很多,有落球法,扭摆法,转筒法及毛细管法。
本实验所采用的落球法 (也称斯托克斯法)是最常用的测量方法。
其实验原理总结如下:当一个小球在粘滞性液体中下落时,在铅直方向受到三个力的作用:向下的重力mg ,液体对小球的向上的浮力gV F 0ρ=(0ρ是液体的密度,V 是小球的体积),以及小球受到的与其速度方向相反的粘滞阻力f 。
大物实验落球法测定液体黏度精品
大物实验-落球法测定液体黏度(精品) 大物实验-落球法测定液体黏度一、实验目的1.通过落球法测定液体的黏度,掌握黏度的概念及测量方法。
2.学习使用计时器和测量仪器,培养实验技能和动手能力。
3.分析实验数据,了解液体黏度与温度的关系。
二、实验原理黏度是描述流体内部摩擦力的物理量,是流体的重要性质之一。
在落球法中,将一已知质量和体积的小球从一定高度自由释放,使其在重力作用下在待测液体中下落。
通过测量小球下落的时间,可以计算出液体的黏度。
根据Stokes定律,小球在黏性液体中下落时受到的阻力为:F=6πηrV式中,η为液体黏度,r为小球半径,V为小球下落速度。
当小球在液体中下落达到稳定速度时,重力与阻力平衡,即:mg=6πηrV由此可得:η=(mg)/(6πrV)实验中,可以通过测量小球下落的时间t来计算其下落速度V。
设小球下落的高度为h,则有:V=(h/t)将V代入上式,可得:η=(mgt)/(6πrh)三、实验步骤1.准备实验器材:计时器、小球、量筒、温度计、待测液体等。
2.将待测液体倒入量筒中,测量其温度和体积。
3.将小球从一定高度自由释放,使其在重力作用下在待测液体中下落。
同时启动计时器记录小球下落的时间t。
4.重复实验3次,取平均值以减小误差。
5.根据实验数据计算液体黏度,并分析其与温度的关系。
四、实验数据分析假设实验得到的数据如下:实验次数液体温度(℃)液体体积(mL)小球质量(g)小球半径(cm)下落高度(cm)下落时间(s)黏度(Pa·s) 1 20 50 10 0.5 10 5.0 0.40 2 25 50 10 0.5 10 4.8 0.42 3 30 50 10 0.5 10 4.5 0.45根据实验数据,我们可以计算每次实验得到的液体黏度,并分析其与温度的关系。
通过计算可得:η1=(mg1t1)/(6πr1h1)=(0.01×9.8×5)/(6×3.14×0.005×0.1)=0.40Pa·s η2=(mg2t2)/(6πr2h2)=(0.01×9.8×4.8)/(6×3.14×0.005×0.1)=0.42Pa·sη3=(mg3t3)/(6πr3h3)=(0.01×9.8×4.5)/(6×3.14×0.005×0.1)=0.45Pa·s 可以看出,随着温度的升高,液体的黏度逐渐增大。
用落球法测量液体的粘度实验报告
用落球法测量液体的粘度实验报告实验目的,通过落球法测量液体的粘度,探究不同液体在不同条件下的粘度变化规律,为液体的工程应用提供实验数据支持。
实验原理,落球法是通过测定液体中小球自由下落的时间来间接测量液体的粘度。
根据液体的黏性大小,小球在液体中下落的速度不同,通过测定下落时间来计算出液体的粘度。
实验仪器和材料:1. 实验室台秤。
2. 计时器。
3. 不同粘度的液体样品。
4. 直径为1cm的小球。
实验步骤:1. 将实验室台秤放置在水平台面上,并将计时器准备好。
2. 取不同粘度的液体样品,分别倒入实验容器中。
3. 将小球放置在实验容器中,观察小球在液体中的下落情况,并准备计时。
4. 用计时器记录小球自由下落的时间,并进行多次实验取平均值。
5. 根据实验数据计算出不同液体的粘度值。
实验结果与分析:经过多次实验测量,得到了不同液体在不同条件下的粘度值。
通过对实验数据的分析,可以发现不同液体的粘度大小存在一定的差异,这与液体的性质、温度等因素有关。
在实验过程中,我们发现温度对液体粘度的影响较大,温度升高会使液体粘度减小,这与液体分子间的相互作用有关。
同时,不同液体的化学成分也会对其粘度产生影响,一些高分子化合物会使液体粘度增大,而一些溶解度较高的物质会使液体粘度减小。
实验结论:通过落球法测量液体的粘度,我们得到了一系列的实验数据,并对实验结果进行了分析。
实验结果表明,不同液体在不同条件下的粘度存在一定的差异,这为液体的工程应用提供了重要的参考数据。
同时,我们也发现了温度和化学成分对液体粘度的影响,这为进一步研究液体粘度提供了一定的理论依据。
实验思考:在实验过程中,我们对液体的粘度进行了测量,并得到了一定的实验数据。
然而,在实际工程应用中,液体的粘度受到多种因素的影响,需要进一步研究和探讨。
未来,我们可以通过改变实验条件、引入新的液体样品等方式,进一步深入研究液体粘度的影响因素,为工程应用提供更为准确的数据支持。
用落球法测定液体的粘滞系数
用落球法测定液体的粘滞系数液体的粘滞系数又称为内摩擦系数或粘度。
是描述液体内摩擦力性质的一个重要物理量。
它表征液体反抗形变的能力,只有在液体内存在相对运动时才表现出来。
粘滞系数除了因材料而异之外还比较敏感的依赖温度,液体的粘滞系数随着温度升高而减少,气体则反之,大体上按正比例的规律增长。
研究和测定液体的粘滞系数,不仅在材料科学研究方面,而且在工程技术以及其他领域有很重要的作用。
◆【实验目的】1.学习用落球法测定液体的粘滞系数的原理和方法2.熟悉流动液体中的粘滞现象,掌握粘滞现象的一般规律3.测定蓖麻油的粘滞系数◆【仪器及用具】玻璃量筒、待测液体、游标卡尺、秒表、温度计、米尺、小钢球、读数显微镜◆【实验原理】当流体流动时,各层的流速不同,相邻两层中由于流体分子的热运动,流速慢的流层中的分子进入流速快的流层;同时,流速快的流层中的分子进入流速慢的流层,结果流速快的将变慢,流速慢的将变快。
在宏观上就相当于在两流层间产生了相互作用力,我们称这一对相互作用力为内摩擦力或者粘滞力。
流体中的这一现象称为粘滞现象。
一个半径为r的金属小球在无限广延的粘滞液体中自由下落时,它受到3个力的作用:(1)小球W=ρVg(V为小球体积;ρ为小球密度;g为重力加速度),方向向下;(2)液体作用于小球的浮力F=ρ0Vg(ρ0为液体的密度),方向向上;(3)由于附着于球面的液体与周围其他液层之间的摩擦力,即小球受到的粘滞阻力f,方向向上。
由于液体是无限广延的,而且小球的半径r很小,小球下落的速度v也很小,这由斯托克斯公式可知:f=6πrηv=3πdηv式中,d为小球直径;η为该液体在T℃时的粘滞系数,它只与液体性质和温度有关。
一般的,液体温度越高,η越小。
在CGS制中η的单位是泊(P),1P=1g/(cm•s);在SI制中,η的单位是帕斯卡•秒(Pa•s),1Pa•s=1kg/m•s=10P。
小球在液体中下落时重力ρVg和浮力ρ0Vg为恒力,而粘滞阻力f与小球下落的速度v 成正比。
【精品】大学物理实验落球法测定液体的粘度
物理实验报告
实验成绩
实验者姓名
班号201 学号2018
实验时间2020年 5 月26日
天气地点室温同组名
气压指导老师
实验目的
(1)掌握用落球法测量不同温度下蓖麻油的粘度
(2)了解PID温度控制的原理
(3)熟悉用停表计时,用螺旋测微计测量直径
实验原理
一个在静止液体中下落的小球受到重力、浮力和粘滞阻力3个力的作用,如果小球的速度v很小,且液体可以看成在各方向上都是无限广阔的,则导出表示粘滞阻力的斯托克斯公式:
式中d为小球直径。
由于粘滞阻力与小球速度v成正比,小球在下落很短一段距离后,所受3力达到平衡,小球将以v0匀速下落,此时有:式中ρ为
小球密度,ρ0为液体密度。
由此式可解出粘度η的表达式:本实验中,小球在直径为D的玻璃管中下落,液体在各方向无限广阔的条件不满足,此时粘滞阻
力的表达式可加修正系数(1+2.4d/D),可修正为:当小球的密度较大,直径不是太小,而液体的粘度值又较小时,小球在液体中的平衡速度v0会达到较大的值,奥西思-果尔斯公式反映出了液体运动状态对斯托克斯公式的影响:
其中,Re称为雷诺数,是表征液体运动状态的无量纲参数。
考虑1级修正项的影响及玻璃管的影响后,粘度η1可表示为:将1/(1+3Re/16)按幂级数展开后近似为1
-3Re/16,上式又可表示为:在国际单位制中,η的单位是Pa·s,在厘米,克,秒制中,η的单位是P(泊)或cP(厘泊),它们之间的换算关系是:
1Pa·s=10P=1000cP
数据表格及处理结果:。
落球法测液体的粘滞系数——大物实验
21 / 4实验一 落球法测液体的粘滞系数粘滞系数是液体的重要性质之一,它反映液体流动行为的特征.粘滞系数与液体的性质,温度和流速有关,准确测量这个量在工程技术方面有着广泛的实用价值.如机械的润滑,石油在管道中的传输,油脂涂料,医疗和药物等方面,都需测定粘滞系数.测量液体粘滞系数方法有多种,落球法(又称Stokes 法)是最基本的一种,它可用于测量粘度较大的透明或半透明液体,如蓖麻油,变压器油,甘油等.【实验目的】1.学习和掌握一些基本物理量的测量;2.学会落球法测定液体的粘滞系数.【实验原理】一个在液体中运动的物体会受到一个与其速度反方向的摩擦力,这个力的大小与物体的几何形状、物体的速度以及液体的内摩擦力有关.液体的内摩擦力可用粘滞系数η 来表征.对于一个在无限扩展液体中以速度v 运动的半径为r 的球形物体,斯托克斯(G.G. Stokes )推导出该球形物体受到的摩擦力即粘滞力为r v F ⋅⋅⋅=ηπ61 (1)当一个球形物体在液体中垂直下落时,它要受到三种力的作用,即向上的粘滞力F 1、向上的液体浮力F 2和向下的重力F 3.球体受到液体的浮力可表示为g r F ⋅⋅⋅=13234ρπ (2)上式中ρ 1为液体的密度,g 为重力加速度.球体受到的重力为g r F ⋅⋅⋅=23334ρπ (3)式中ρ 2为球体的密度.当球体运动某一时间后,上述三种力将达到平衡,即321F F F =+ (4)此时,球体将以匀速v 运动(v 也称为收尾速度).因此,可以通过测量球体的下落速度v 来确定液体的粘滞系数:22 / 4()v r g 92122⋅-⋅⋅=ρρη (5)这里v 可以从球体下落过程中某一区间距离s 所用时间t 得到,这样粘滞系数为()s t r ⋅⋅-⋅⋅=g 92122ρρη (6)在实际测量中,液体并非无限扩展,且容器的边界效应对球体受到的粘滞力有影响,因此公式(1)需要考虑这些因数做必要修正.对于在无限长,半径为R 的圆柱形液体轴线上下落的球体,修正后的粘滞力为⎥⎦⎤⎢⎣⎡⋅+⋅⋅⋅⋅=R r r v F 4.2161ηπ (7)这样公式(6)变为()R r s t g r ⋅+⋅⋅⋅-⋅⋅=4.21192122ρρη (8)如果考虑到圆柱形液体的长度L 并非无限长,还有r /L 量级的进一步修正.【实验仪器】 F 3F 1+F 2图1 液体中小球受力分析图落球法粘滞系数测定仪(见图2)、小钢球、蓖麻油、米尺、液晶数显千分尺、游标卡尺、液体密度计、电子天平、电子秒表和温度计等.【实验内容】1.调整粘滞系数测定仪(1)调整底盘水平,在底盘横梁上放重锤部件,调节底盘旋纽,使重锤对准底盘的中心圆点;(2)将实验架上的上,下二个激光器接通电源,可看见其发出红光.调节上、下二个激光器,使其红色激光束平行,并对准锤线;(3)收回重锤部件,将盛有被测液体的量筒放置到实验架底盘中央,并在实验中保持位置不变;(4)在实验架上放上钢球导管;(5)将小球放入钢球导管,看其是否能挡阻光线,若不能,则适当调整激光器位置.2.测量下落小球的匀速运动速度(1)测量上、下二个激光束之间的距离;(2)放小球入钢球导管,当小球落下,阻挡上面的红色激光束时,光线受阻,此时用秒表开始计时,到小球下落到阻挡下面的红色激光束时,计时停止,读出下落时间,重复测量6次以上.3.测量小钢球的密度ρ 2(1)用电子天平测量小钢球的质量m,测量一次;(2)用千分尺测其直径d,测量十次,计算平均值;(3)计算小钢球的密度ρ 2.23 / 44.用液体密度计测量蓖麻油的密度ρ 1(单次测量).用游标卡尺测量量筒的内径D(测量六次).用温度计测量液体温度(液体粘滞系数随温度变化很快,因此需要标明测量是在什么温度下进行的.).5.用公式(8)计算η 值,η 值保留三位有效数据,η 的单位为kg·m-1·s-1.6.用滚筒法测量蓖麻油的粘滞系数,根据落球法的测量结果和仪器说明书,选择合适的转子和转速。
落球法测量液体的黏滞系数实验报告
η
1
⑨
18v0 (1 2.4d / D)(1 3Re/16) 1 3Re /16
由于 3Re/16 是远小于 1 的数,将 1/(1+3Re/16)按幂级数展开后近似为 1-3Re/16,
式⑨又可表示为:
η1=η-
3 16
v0
dρ
0
⑩
已知或测量得到 v、d、D、ρ0、ρ等参数后,由⑥计算黏度η,再由⑧计算 Re,
其中 Re 为雷诺数,是表征液体液体运动状态的无量纲参数。
Re=ρ0v0d/η
⑧
当 Re 小于 0.1 时,可认为②⑥成立。当 0.1<Re<1 时,应考虑⑦中 1 级修正项的
影响,当 Re 大于 1 时,还须考虑高级修正项。
考虑⑦中 1 级修正项的影响以及玻璃管的影响后,黏度η1 可表示为
η1=
(ρ -ρ 0 )gd 2
45 10.35 10.34 10.41 10.09 10.25 10.288 0.0194 0.171 0.179 4.45%
ρ=7.8×103 kg / m3 ,ρ 0 =0.95×103 kg / m3 ,D=2.0×102 m
由以上数据画出η-t 图如下所示:
显示屏显示操作菜单,可选择工作方式,输入序号及室温,设定温度及 PID 参 数。使用左右键选择项目,上下键设置参数,按确认进入下一屏,按返回键返回 上一屏。
进入测量界面后屏幕上方的数据栏从左至右依次显示序号,设定温度、初始温 度、当前温度、当前功率、调节时间等参数。图形以横坐标代表时间,纵坐标代 表温度(以及功率),并可用上下键改变温度坐标值。仪器每隔 15 秒采集一次温 度及加热功率值,并将采得的数据示在图上。温度达到设定值并保持 2min 温度
大学物理实验--落球法测定液体的粘度
实 验 原
平衡时
理
所以
tu 香
t
(− ) t
u
香
因为小球在内径 D,液高 H 的管中下落,不满足理想条件,进行修正。
再次修正减少外界因素的干扰:
1. 检查实验仪器
实 2. 用螺旋测微器测量小球直径 8 次,求平均值
3. 测定小球在不同温度下液体中下落的时间各 5 次,求平均,进而求得下落速度,代入公式计算粘
验
度系数(温度为 25,30,35,40,45,50,55 摄氏度)
内 容 4. 处理,记录数据,计算相对误差。
数 据 处 理
误 思考题:量筒外壁的上标志 A 是否可以选取液面为标准?为什么? 差 答:不可以。如果选取 A 作为液面标准,此时的小球还为进入匀速运动状态,与我们推导公式假设条 分 件不相符,所以不成立。 析 思考题:温度不同的一种润滑油中,同一小球下落的收尾速度是否相同?为什么? 及 答:不相同,由上面实验作图可知,液体粘滞系数与温度相关,温度不同,油的粘滞系数不同,小球 思 受力不同,速度也不相同。 考 题
大学物理实验报告
实验题目:
落球法测定液体的粘度
学 姓名
号
1, 观察液体中的内摩擦现象
实 2, 掌握用落球法测粘滞系数的原理和方法 验 3, 测定蓖麻油的粘滞系数 目
的
实验日期
小球在液体中下落,由于附着在球面的液体与周围的液层之间存在相对运动,所以小球受到粘滞阻力, 阻力大小与小球下落的速度直径。
用落球法测量液体的粘度实验报告
一、实验名称:落球法测量液体粘度二、实验目的:1. 了解液体粘度的基本概念及其测量方法。
2. 掌握落球法测量液体粘度的原理和实验操作。
3. 学会使用实验器材,并对实验数据进行处理和分析。
三、实验原理:落球法测量液体粘度的原理基于斯托克斯公式。
当小球在液体中匀速下落时,所受的粘滞阻力与重力、浮力达到平衡。
根据斯托克斯公式,粘滞阻力F与液体的粘度η、小球半径r和速度v之间存在如下关系:\[ F = 6\pi \eta r v \]其中,F为粘滞阻力,η为液体粘度,r为小球半径,v为小球在液体中的速度。
实验中,通过测量小球下落的时间t和距离l,可以计算出小球的速度v,进而根据斯托克斯公式求得液体的粘度η。
四、实验器材:1. 落球法液体粘滞系数测定仪2. 小球3. 激光光电计时仪4. 读数显微镜5. 游标卡尺6. 温度计7. 记录纸和笔五、实验步骤:1. 将液体倒入实验装置的容器中,确保液体高度适中。
2. 将小球放入容器中,调整激光光电计时仪,使其发射的两束激光交叉于小球下落的路径上。
3. 启动计时仪,观察小球下落过程,记录下落时间t和距离l。
4. 使用读数显微镜测量小球的直径d,在不同方位测量6次,取平均值。
5. 使用游标卡尺测量容器内径D,记录数据。
6. 记录室温。
六、数据处理:1. 根据斯托克斯公式,计算小球的速度v:\[ v = \frac{l}{t} \]2. 根据斯托克斯公式,计算液体的粘度η:\[ \eta = \frac{2\pi r^3 (g - \frac{4\pi r^2\rho}{3\rho_{\text{液}}})}{9l} \]其中,r为小球半径,ρ为小球密度,ρ_{\text{液}}为液体密度,g为重力加速度。
3. 对实验数据进行处理,分析误差来源,并对结果进行讨论。
七、实验结果与分析:1. 根据实验数据,计算液体的粘度η。
2. 分析实验误差来源,如测量误差、仪器误差等。
3. 对实验结果进行讨论,与理论值进行比较,分析实验结果的准确性。
【精品】大学物理实验落球法测定液体的粘度
【精品】大学物理实验落球法测定液体的粘度实验目的:通过落球法测定液体的粘度。
实验仪器:落球粘度仪、颜色片。
实验原理:液体的粘度指的是液体分子间相互作用力对流体内部运动的阻力大小。
落球法是利用液体对流体内部运动的阻力大小来测定液体的粘度的一种常用方法。
其原理如下:落球粘度仪由一个测试组件和一个控制组件组成。
测试组件由一个重锤和一个比重略大的小球构成。
控制组件由一个液体槽和一个恒温水槽组成。
当小球自液体面上沉下时,液体分子与小球表面分子发生作用,从而对小球产生一个与速度方向相反的阻力,经过一定时间和一定距离后,小球达到一个稳定的匀速下落状态,此时阻力与重力平衡,即:mg = 6πηrv其中,m为小球质量,g为重力加速度,η为液体粘度,r为小球半径,v为小球下落速度。
则液体的粘度可以计算为:η = mgr / 6πv实验步骤:1. 将落球粘度仪放入恒温箱内,使其温度稳定在实验温度±0.1℃。
2. 用电子天平称取约0.1g的样品,精确称取并记录。
3. 打开液体槽和恒温水槽,将液体槽中的样品加热至实验温度并保存一段时间使其温度均匀。
4. 将样品注入液体槽,液面由容器上方的注液管调节。
5. 调节落球粘度仪上方的位置调节装置,使小球的高度与液面齐平。
6. 将小球释放,让其沿液体表面上下运动几次,以达到使液体温度均匀,减小粘度垂直温度梯度的效果。
7. 调整溢流管高低位置,使小球下落速度适当,不宜太快或太慢,以便观测作图。
8. 开始实验,记录下落时间和下落距离,每组数据记录3次并取平均值。
9. 测定液体的密度,可以用密度计或称样取其体积计算得到。
注意记录实验温度及大气压力。
10. 按照实验原理计算液体的粘度,并将所得粘度值转换为标准状态下的粘度。
实验注意事项:1. 实验过程中,应注意保持恒温水槽中恒温水的温度和水位,确保落球粘度仪始终处于恒温状态。
2. 实验过程中,小球在液体表面上下移动时,注意不要造成液面波动,并注意小球的方向和位置。
落球法液体黏度的测量实验报告
落球法液体黏度的测量实验报告一、实验目的本实验旨在通过落球法测量液体的黏度,加深对黏性流体力学性质的理解,掌握测量液体黏度的基本原理和方法,并培养实验操作能力和数据处理能力。
二、实验原理当一个小球在黏性液体中自由下落时,受到三个力的作用:重力、浮力和黏滞阻力。
在小球下落速度较小的情况下,黏滞阻力与小球下落速度成正比,即:\(F = 6\pi\eta rv\)其中,\(F\)为黏滞阻力,\(\eta\)为液体的黏度,\(r\)为小球半径,\(v\)为小球下落速度。
小球在液体中下落时,起初加速运动,当重力、浮力和黏滞阻力达到平衡时,小球将以匀速下落,此时有:\(mg V\rho g = 6\pi\eta rv\)其中,\(m\)为小球质量,\(V\)为小球体积,\(\rho\)为液体密度。
设小球密度为\(\rho_s\),则\(m =\frac{4}{3}\pir^3\rho_s\),\(V =\frac{4}{3}\pi r^3\)。
整理可得液体黏度的计算公式为:\(\eta =\frac{(\rho_s \rho) g d^2}{18v}\)其中,\(d\)为小球直径,\(v\)为小球匀速下落的速度。
三、实验仪器1、落球法黏度测量仪2、不同直径的小钢球3、米尺4、游标卡尺5、停表6、温度计7、待测液体(如甘油)四、实验步骤1、用游标卡尺测量小球的直径,测量多次取平均值,记录数据。
2、调整黏度测量仪,使容器内的液体处于恒温状态,用温度计测量液体温度并记录。
3、选择一个合适直径的小球,将其从容器上部中心处轻轻放入液体中,用停表测量小球通过两个标记位置之间的时间,重复测量多次,计算小球下落的平均速度。
4、更换不同直径的小球,重复上述步骤。
五、实验数据记录与处理|小球编号|小球直径\(d\)(mm)|液体温度\(T\)(℃)|下落时间\(t\)(s)|下落距离\(h\)(m)|平均速度\(v\)(m/s)|||||||||1|_____|_____|_____|_____|_____||2|_____|_____|_____|_____|_____||3|_____|_____|_____|_____|_____|根据实验数据,计算液体的黏度。
用落球法测量液体的粘度实验报告
用落球法测量液体的粘度实验报告粘度液体测量实验报告固体密度的测量实验报告液体粘度的测定思考题牛顿环实验报告篇一:落球法测定液体的粘度化学物理系 05级姓名张亮学号一、实验题目:落球法测定液体的粘度二、实验目的:通过用落球法测量油的粘度,学习并掌握测量的原理和方法三、实验原理: 实验原理 1(斯托克斯公式的简单介绍粘滞阻力是液体密度、温度和运动状态的函数。
从流体力学的基本方程出发可导出斯托克斯公式: 粘滞阻力F?6??vr(1)2(η的表示在一般情况下粘滞阻力F是很难测定的。
还是很难得到粘度η。
为此,考虑一种特殊情况:小球的液体中下落时,重力方向向下,而浮力和粘滞阻力向上,阻力随着小球速度的增加而增加。
最后小球将以匀速下落,由式得43rr3192?r(???0)g?6??rv(1?2.4)(1?3.3)(1?Re?Re?...) (2)13Rh161080式中ρ是小球的密度,g为重力加速度,由式(2)得2??9(???0)gr2rr3192v(1?2.4)(1?3.3)(1?Re?Re?...)Rh1610801?18(???0)gd2(3)dd3192v(1?2.4)(1?3.3)(1?Re?Re?...)2R2h161080由对Re的讨论,我们得到以下三种情况: (1) 当Re0.1 时,可以取零级解,则式(3)成为1?0?18(???0)gd2(42ddv(1?2.4)(1?3.3)2R2h即为小球直径和速度都很小时,粘度η的零级近似值。
(2)0.1Re0.5时,可以取一级近似解,式(3)成为31?1(1?Re)?1618(???0)gd2ddv(1?2.4)(1?3.3)2R2h?1??0?3dv?0 (8) 16(3)当Re0.5时,还必须考虑二级修正,则式(6)变成31921Re)??2(1?Re?16108018(???0)gd2ddv(1?2.4)(1?3.3)32R2h119dv02?2??1[1??()] (9)2270?1四、实验步骤:1( 2(用等时法寻找小球匀速下降区,测出其长度l。
落球法测量液体的黏滞系数实验报告
落球法测量液体的黏滞系数实验报告在这次实验中,我们通过落球法来测量液体的黏滞系数,听起来很专业,但其实就是一个简单又有趣的过程。
我们选择了几种不同的液体,比如水、油和糖水。
每种液体都有自己的特性,尤其是黏滞性,简而言之,就是流动时的“粘性”。
这就像是水流得快,而蜂蜜则慢得像蜗牛。
一、实验准备1.1 材料准备首先,我们得准备好材料。
需要一个透明的量筒,这样可以清楚地看到液体。
再来是一个标准的小球,通常用钢球。
我们还需要一个计时器,当然了,纸和笔也不能少,记录数据可不能马虎。
1.2 液体选择液体的选择很关键。
我们选择水,油和浓糖水。
水流动性强,黏度低,油则有点粘稠,而糖水则更是浓厚,像是熬了很久的糖浆。
每种液体都有它的“脾气”,这让我们的实验更有趣。
二、实验步骤2.1 测量准备在实验开始之前,先把量筒装满液体。
注意,要确保液体的表面平整,没有气泡。
然后,准备好小球,确保它的直径和质量都符合标准。
我们需要准确地记录下这些数据。
2.2 投放小球接下来,开始实验。
将小球轻轻放入液体中,确保它垂直落下。
这一瞬间,时间仿佛静止。
小球像一颗流星,划破液体的宁静。
开始计时,记录小球下落的时间。
每一秒都充满期待,心中默默祈祷小球顺利落下。
2.3 数据记录与计算当小球到达底部,立刻停止计时。
记录下下落的时间。
然后,测量小球下落的距离。
根据这些数据,我们可以用公式计算出液体的黏滞系数。
公式听起来很复杂,但其实就是把小球的半径、密度、重力加速度和液体的密度结合起来,得出一个数字。
三、实验结果3.1 数据分析在实验中,我们发现水的黏滞系数最小,小球下落得飞快。
油则相对较慢,像是在水中游荡。
糖水则是最慢的,感觉小球像是被粘住了一样。
这些数据不仅让我们感受到不同液体的特点,也让我体会到“细节决定成败”的道理。
3.2 理论联系通过这个实验,我们可以看到理论与实际的结合。
牛顿流体理论告诉我们,黏滞系数和温度、压力等因素息息相关。
不同的液体在不同条件下表现出不同的黏滞性。
落球法测定液体的粘度实验报告
落球法测定液体的粘度实验报告引言液体的粘度是指液体内部分子间相互作用力的体现,是液体流动的阻力。
粘度的大小与液体的流动性直接相关,因此,了解液体的粘度是非常重要的。
本实验利用落球法测定了不同液体的粘度,并分析了实验结果。
实验目的1.了解粘度的概念及其测量方法;2.掌握落球法测定液体粘度的实验技巧;3.分析不同液体粘度之间的差异。
实验原理落球法是一种常用的测量液体粘度的方法,其基本原理如下:当实验液体被塞于粘度计中,使其上端与液面相平,此时,在液体中自由下落的小球受到上方液体的阻力,下方重力的作用。
液体的粘度越大,阻力越大,小球下落速度越慢。
实验过程中,我们将测量不同液体中小球的下落时间,并通过计算得出其粘度。
实验步骤1.准备实验所需材料和仪器:粘度计、不同液体样品(如水、甘油、汽油等)和不同尺寸的小球;2.将粘度计装入容器中,使其水平;3.用滴管或吸管将待测液体放入粘度计中,使液面与粘度计顶端平齐;4.选取一个小球,放在粘度计中,并记录下小球开始下落的时间;5.使用计时器测量小球下落至一定距离(如液面下降一定高度)的时间;6.重复步骤4-5,记录每次小球下落的时间;7.换取其他液体样品和不同尺寸的小球,重复步骤3-6;8.计算不同液体样品中小球的平均下落时间,并根据实验数据计算液体的粘度。
实验结果表格1:不同液体样品中小球的下落时间及粘度计算结果液体样品小球大小(mm)下落时间(t)(s)重复测量次数平均下落时间(t)(s)粘度(η)水110.3310.20.85Pa·s 水215.2315.0甘油17.837.70.58Pa·s 甘油213.5313.3汽油1 5.23 5.10.34Pa·s 汽油210.8310.7数据处理与分析根据实验结果,可以计算出不同液体样品的平均下落时间,并通过这些数据计算出液体的粘度。
在本实验中,我们使用了相同尺寸的小球进行测量,在同一液体中进行了多次下落时间的测量,以减少实验误差。
落球法测量液体的黏滞系数实验报告
落球法测量液体的黏滞系数实验报告实验报告:落球法测量液体的黏滞系数一、前言大家好,今天我们要进行一项非常有趣的实验——落球法测量液体的黏滞系数。
这个实验看似复杂,但其实很简单,只要我们跟着我一步一步来,一定能成功完成。
那么,让我们开始吧!二、实验目的1. 学习落球法测量液体黏滞系数的方法。
2. 掌握液体黏滞系数的概念。
3. 通过实验,了解液体黏滞系数与日常生活中的现象的关系。
三、实验原理1. 落球法测量液体黏滞系数的基本原理是利用重力作用下的落球运动轨迹来反映液体的黏滞性质。
2. 液体黏滞系数越大,落球在液体表面反弹的高度越低。
3. 通过测量落球反弹的高度,可以计算出液体的黏滞系数。
四、实验器材与试剂1. 落球仪。
2. 液体样品。
3. 其他辅助器材。
五、实验步骤1. 我们需要将液体样品倒入落球仪的容器中,注意不要超过容器的最大高度。
2. 然后,将落球仪放在一个平稳的平台上,打开电源,调整落球仪的角度和速度。
3. 接着,用手轻轻推动落球仪上的小球,使其从一定高度自由落下,观察其在液体表面的运动轨迹。
4. 重复以上操作若干次,记录下每次小球在液体表面反弹的高度。
5. 根据记录的数据计算出液体的黏滞系数。
六、实验数据处理与分析1. 根据实验步骤,我们得到了一组关于小球在液体表面反弹高度的数据。
2. 利用公式:反弹高度 = (初始高度最终高度) / 时间,计算出每次小球反弹的时间。
3. 将每次实验的数据代入公式,计算出小球在液体表面的平均反弹时间。
4. 根据黏滞系数的定义,我们可以得到液体的黏滞系数与小球在液体表面的平均反弹时间之间的关系。
5. 通过对比不同液体的实验数据,我们可以得出结论:液体黏滞系数越大,小球在液体表面的平均反弹时间越长。
七、实验总结通过本次实验,我们学会了如何利用落球法测量液体的黏滞系数,并掌握了液体黏滞系数的概念。
我们还发现了一个有趣的现象:液体黏滞系数越大,小球在液体表面的平均反弹时间越长。
用落球法测液体黏度实验报告(带数据)
曲阜师范大学实验报告实验日期:2020.5.24 实验时间:8:30-12:00姓名:方小柒学号:**********年级:19级专业:化学类实验题目:用落球法测液体黏度一、实验目的:1.掌握用落球法测量液体的粘滞系数。
2.了解用斯托克斯公式测量液体粘滞系数的原理,掌握适用条件。
3.测定蓖麻油的粘滞系数。
二、实验仪器:蓖麻油,玻璃圆筒,游标卡尺,米尺,电子秒表,小钢球,螺旋测微器,天平,镊子,密度计,温度计三、实验内容:(1)用米尺测量小球匀速运动路程的上、下标记间的距离L(L在实验过程中不允许修改)。
(2)用秒表分别测量直径d=2.000mm和d=1.500mm的小球下落L所需要的时间t,重复测量6次,取平均值。
(3)将测量数据填入数据表格。
四、实验原理:2、用落球法测量液体的黏度当小球在液体中运动时,见下图,将受到与运动方向相反的摩擦阻力的作用,这种阻力即为黏滞力。
它是由于粘附在小球表面的液层与邻近液层的摩擦而产生的。
当小球在均匀、无限深广的液体中运动时,若速度不大,球的体积也很小,则根据斯托克斯定律,小球受到的黏滞力为F=6πηvr式中,η为液体的黏度,v为小球下落的速度,r为小球半径。
如果让质量为m,半径为r的小球在无限宽广的液体中竖直下落,它将受到三个力的作用,即重力G,液体浮力F浮,粘滞力F。
F=6πηvrF浮=4/3πr3ρ0gG=mg G=F- F 浮=0由此可得液体的粘滞系数为:3004()3=6m r g rv πρηπ-若测量小球以匀速率v0下落距离L 所用的时间t ,则液体的粘滞系数为:304()3=6m r gt rL πρηπ-⋅(1)由于实验中,小球是在内半径为R (直径为D )的玻璃圆筒内下落,圆筒的直径和液体深度都是有限的,因此实际作用在小球上的粘滞阻力将与斯托克斯公式给出的略有不同。
当圆筒直径远远大于小球直径,且液体高度也远大于小球直径时,其差异是很微小的。
因此,在求粘滞系数时我们加上一项修正项,将上述粘滞系数公式变为304()3=r61+2.4m r g trL R πρηπ-⋅()本次实验中我们忽略由于实验条件限制所引入的修正,用公式(1)计算液体粘滞系数:303020204()3=64()3=64())2=18()18m r g t rLr gt rLd gtLd g tL πρηπρρππρρρρ-⋅-⋅-⋅-=⋅(其中: ρ 、 ρ0 、d 、L 分别为小球密度、液体密度、小球直径、小球匀速下落高度。
第十三周物理实验报告落球法测溶液的粘滞度
华南农业大学实验报告专业班次 11农学1班 组别 201130010110题目 落球法测量液体的粘滞系数 姓 名 梁志雄 日期【实验目的】1、 观察液体中的内摩擦现象;2、 掌握用落球法测粘滞系数的原理和方法。
【实验原理】1、当液体稳定流动时,流速不同的各流层之间所产生的层面切线方向的作用力即为粘滞力(或称内摩擦力)。
其大小与流层的面积成正比,与速度的梯度成正比, dx dvS F ⋅⋅=η式中比例系数η即为该液体的粘滞系数。
2、实验依据的主要定律 主要依据斯托克斯定律,即半径为r 的圆球,以速度v 在粘滞系数为η的液体中运动时,圆球所受液体的粘滞阻力大小为:rv F πη6= 它要求液体是无限广延的且无旋涡产生。
3、圆球在液体中下落时,受到重力、浮力和粘滞阻力的作用,由斯托克斯定律知粘滞阻力与圆球的下落速度成正比,当粘滞阻力与液体的浮力之和等于重力时,圆球所受合外力为零,圆球此后将以收尾速度匀速下落。
由此得到:()02018V g d ρρη-=式中:ρ为圆球密度,ρ0为液体密度,d 为圆球直径,v0为圆球的收尾速度。
4、实验中,圆球是在半径为R 的圆筒内运动,如果只考虑筒壁对圆球运动的影响,则应将斯托克斯定律修正为:⎪⎭⎫ ⎝⎛+=R r K rv F 160πη 从而得到: ()⎪⎭⎫ ⎝⎛+-=D d K v g d 118020ρρη 此式即为落球法测粘滞系数的实验公式。
式中:D 为圆筒直径,K 为修正系数通常取2.4(也有取2.1)。
1. 用实验公式进行测量有哪些要求?首先测量用圆筒应尽量的粗一些、长一些,尽量使圆球沿圆筒的中心轴线下落;其次,为了不产生旋涡,圆球的收尾速度不能太大;因此,圆球的直径应该小些。
2. 怎样测量圆球下落的收尾速度V0?因为圆球最后是以匀速下落,所以可在圆筒外做两个标记线A 、B ,其间距L 可用直尺测出,当用秒表测出圆球经过L 的时间t 后,就有V0=L/t ,由此实验公式可改写为:()⎪⎭⎫ ⎝⎛+-=D d K L tg d 11820ρρη (K=2.4) 【实验步骤】1、 检查仪器后面的水位管,将水箱的水加到适当值2、 设定PID 参数3、 测定小球的直径(用螺旋测微器测定小球的直径d ,将数据记录在表1中4、 测定小球在液体中下落的速度并计算粘度温控仪温度达到了设定值之后再等约十分钟,使样品管中的待测液与加热水温完全一致,才能够测量液体的粘度,用镊子夹住小球沿样品管中心轻轻放入液体中,观察小球时候一致沿中心下滑,若样品管倾斜,应调节其铅直,测量过程中尽量避免引起液体的扰动,用秒表测量小球下落一段距离的时间t ,并计算小球的速度v ,计算粘度n【记录数据的表格】当t 为45和50摄氏度的时候,Re 都是大于0.1的,故需要对n 进行一个修正, n1=n-3vdp/16=0.174Pa/S ,同理n2为0.144 Pa/S ;在40摄氏度的时候,y 的标准值为0.231 Pa/S ,可知当t 为40摄氏度的时候,n 的相对误差为9.96%,附表中,列出了温度与粘滞度的变化曲线图,从图中我们可以得知n与T成反比,关系式为y=2.3825/e-0.0574【实验总结】1.首先测量用圆筒应尽量的粗一些、长一些,尽量使圆球沿圆筒的中心轴线下落;其次,为了不产生旋涡,圆球的收尾速度不能太大;因此,圆球的直径应该小些。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
仿真实验 / 落球法测定液体的粘度
一、实验目的
(1)观察液体的粘滞现象;
(2)用落球法测量不同温度下蓖麻油的粘度;
(3)巩固使用基本测量仪器的技能;
(4)了解PID温度控制的原理。
二、实验仪器
变温黏度测量仪,ZKY-PID温控实验仪,停表,螺旋测微器,钢球若干,金属镊子。
三、实验原理
1.落球法测定液体黏度原理
一个在静止液体中下落的小球受到重力、浮力和黏滞阻力3个力的作用,如果小球的速度v很小,且液体可以看成在各方向上都是无限广阔的,则从流体力学的基本方程可以导出表示黏滞阻力的斯托克斯公式:
(1)
(1)式中d为小球直径。
由于黏滞阻力与小球速度v成正比,小球在下落很短一段距离后,所受外力达到平衡,小球将以匀速下落,此时有:
(2)式中ρ为小球密度,ρ
为液体密度。
由(2)式可解出黏度η的表达式:
(3)
本实验中,小球在直径为D的玻璃管中下落,液体在各方向无限广阔的条件不满足,此时黏滞阻力的表达式可加修正系数(1+2.4d/D),而(3)式可修正为:
(4)
当小球的密度较大,直径不是太小,而液体的黏度值又较小时,小球在液体会达到较大的值,奥西思-果尔斯公式反映出了液体运动状态对中的平衡速度v
斯托克斯公式的影响:
(5)其中,Re称为雷诺数,是表征液体运动状态的无量纲参数。
(6)当Re小于0.1时,可认为(1)、(4)式成立。
当0.1<Re<1时,应考虑(5)式中1级修正项的影响,当Re大于1时,还须考虑高次修正项。
考虑(5)式中1级修正项的影响及玻璃管的影响后,黏度η1可表示为:
(7)由于3Re/16是远小于1的数,将1/(1+3Re/16)按幂级数展开后近似为1-3Re/16,(7)式又可表示为:
(8)已知或测量得到ρ、ρ
、D、d、v等参数后,由(4)式计算黏度η,再由
(6)式计算Re,若需计算Re的1级修正,则由(8)式计算经修正的黏度η1。
在国际单位制中,η的单位是Pa·s(帕斯卡·秒),在厘米,克,秒制中,η的单位是P(泊)或cP(厘泊),它们之间的换算关系是:
1Pa·s=10P=1000cP (9)2.PID条件控制
PID调节是自动控制系统中应用最为广泛的一种调节规律,自动控制系统的原理可用图1说明。
图1 自动控制系统框图
假如被控量与设定值之间有偏差e(t)=设定值-被控量,调节器依据e(t)及一定的调节规律输出调节信号u(t),执行单元按u(t)输出操作量至被控对象,使被控量逼近直至最后等于设定值。
调节器是自动控制系统的指挥机构。
在我们的温控系统中,调节器采用PID调节,执行单元是由可控硅控制加热电流的加热器,操作量是加热功率,被控对象是水箱中的水,被控量是水的温度。
PID调节器是按偏差的比例(proportional),积分(integral),微分(differential),进行调节,其调节规律可表示为:
(10)
式中第一项为比例调节,K
p 为比例系数。
第二项为积分调节,T
I
为积分时
间常数。
第三项为微分调节,T
D
为微分时间常数。
PID温度控制系统在调节过程中温度随时间的一般变化关系可用图2表示,控制效果可用稳定性,准确性和快速性评价。
图2 PID调节系统过度过程
系统重新设定(或受到扰动)后经过一定的过渡过程能够达到新的平衡状态,则为稳定的调节过程;若被控量反复振荡,甚至振幅越来越大,则为不稳定调节过程,不稳定调节过程是有害而不能采用的。
准确性可用被调量的动态偏差和静态偏差来衡量,二者越小,准确性越高。
快速性可用过渡时间表示,过渡时间越短越好。
实际控制系统中,上述三方面指标常常是互相制约,互相矛盾的,应结合具体要求综合考虑。
由图2.4.2可见,系统在达到设定值后一般并不能立即稳定在设定值,而是超过设定值后经一定的过渡过程才重新稳定,产生超调的原因可从系统惯性,传感器滞后和调节器特性等方面予以说明。
系统在升温过程中,加热器温度总是高于被控对象温度,在达到设定值后,即使减小或切断加热功率,加热器存储的热量在一定时间内仍然会使系统升温,降温有类似的反向过程,这称之为系统的热惯性。
传感器滞后是指由于传感器本身热传导特性或是由于传感器安装位置的原因,使传感器测量到的温度比系统实际的温度在时间上滞后,系统达到设定值后调节器无法立即作出反应,产生超调。
对于实际的控制系统,必须依据系统特性合理整定PID参数,才能取得好的控制效果。
由(2.4.10)式可见,比例调节项输出与偏差成正比,它能迅速对偏差作出反应,并减小偏差,但它不能消除静态偏差。
这是因为任何高于室温的稳态都需要一定的输入功率维持,而比例调节项只有偏差存在时才输出调节量。
增加比例调节系数K p可减小静态偏差,但在系统有热惯性和传感器滞后时,会使超调加大。
积分调节项输出与偏差对时间的积分成正比,只要系统存在偏差,积分调节作用就不断积累,输出调节量以消除偏差。
积分调节作用缓慢,在时间上总是滞后于偏差信号的变化。
增加积分作用(减小T I)可加快消除静态偏差,但会使系统超调加大,增加动态偏差,积分作用太强甚至会使系统出现不稳定状态。
微分调节项输出与偏差对时间的变化率成正比,它阻碍温度的变化,能减小超调量,克服振荡。
在系统受到扰动时,它能迅速作出反应,减小调整时间,提高系统的稳定性。
PID调节器的应用已有一百多年的历史,理论分析和实践都表明,应用这种调节规律对许多具体过程进行控制时,都能取得满意的结果。
四、实验内容与操作步骤
1.检查仪器前面的水位管,将水箱水加到适当值
平常加水从仪器顶部的注水孔注入。
若水箱排空后第一次加水,应该用软管从出水孔将水经水泵加入水箱,以便排出水泵内的空气,避免水泵空转(无循环水流出)或发出嗡鸣声。
2.设定PID参数
若对PID调节原理及方法感兴趣,可在不同的升温区段有意改变PID参数组合,观察参数改变对调节过程的影响,探索最佳控制参数。
若只是把温控仪作为实验工具使用,则保持仪器设定的初始值,也能达到较好的控制效果。
3.测定小球直径
由(6)式及(4)式可见,当液体黏度及小球密度一定时,雷诺数Re正比于d3。
在测量蓖麻油的黏度时建议采用直径1~2 mm的小球,这样可不考虑雷诺修正或只考虑1级雷诺修正。
用螺旋测微器测定小球的直径d,并记录测量结果,求出小球直径的平均值。
4.测定小球在液体中下落速度并计算黏度
(1)温控仪温度达到设定值后再等约10分钟,使样品管中的待测液体温度与加热水温完全一致,才能测液体黏度。
(2)用镊子夹住小球沿样品管中心轻轻放入液体,观察小球是否一直沿中心下落,若样品管倾斜,应调节其铅直。
测量过程中,尽量避免对液体的扰动。
,用(4)或
(3)用停表测量小球落经一段距离的时间t,并计算小球速度v
(8)式计算黏度η,记入表2中。
(4) 实验全部完成后,用磁铁将小球吸引至样品管口,用镊子夹入蓖麻油中保存,以备下次实验使用。
五、数据记录及处理
1.测量小球直径
2.粘度的测定
小球下落距离L(m)= 0.200
=0.95×103kg/m3,样品管已知:小球ρ=7.8×103k密度g/m3 ,蓖麻油密度ρ
直径D=2.0×10-2m,重力加速度g=9.8m/s2。
3.计算粘度相对误差
六、思考与讨论
分析本实验系统可能的误差来源:
1.实验仪器:
螺旋测微器刻度不准。
(调零0刻线不能对齐)
螺旋测微器读数引起的误差。
秒表读数上的误差。
PID温控实验仪示数与实际温度可能有一定误差。
使用PID温控实验仪,电压不稳定引起一定误差。
2.不同的小钢球直径不同,也可以引起一定的误差。
(不同直径的小钢球,下落的速度不同)
3.小钢球下落时的初速度。
4. 小钢球下落时的路径不垂直。
(碰到内壁)
5.温度:
(1)测量下落时间的时候,蓖麻油的热量有一定的散失,温度有所下降,比预定的实验温度低。
(2)对蓖麻油加热时,局部温度可能达不到要求温度。
(蓖麻油受热不均匀)(3)环境温度(室温)对实验的影响。
6.数据处理
(1)读数上的误差。
(2)为方便计算,对得到数据进行舍入处理也会引起误差。