聚合反应工程基础

合集下载

聚合反应工程基础(全套课件567P)

聚合反应工程基础(全套课件567P)
polyvinyl acetate polyvinyl alcohol polybutadiene polyacrylnitrile
1.1.1 高分子化合物的分类和命名
2. 结构系统命名法:由(International Union of Pure and Applied
Chemistry, IUPAC)提出
I 26
1.1.2 高分子化合物的基本特点
H--NH(CH2)6NH--CO(CH2)4CO--OH
重复结构单元
结构单元
结构单元
n
例2:尼龙66 的重复单元与结构单元
----( CH2--CH=CH--CH 2 -)--(-CH --CH-)---2 y x
n
例3:丁苯橡胶 的重复结构单元与结构单元
I 24
1.1.2 高分子化合物的基本特点
实际上,分子量的大小并无明确的界限,一般
-- -- - --< 1,000 < - - - - - - < 10,000 < - - - - - < 1,000,000 < - - - - 低分子物 低/齐聚物 (Oligomer) 高聚物 (Polymer)
PS
PVC PTFE PAA PET
polystyrene
Polyvinyl chloride Polytetrafluoroethylene polyacrylic acid polyester
聚甲基丙烯酯 甲酯
聚醋酸乙烯 聚乙烯醇 聚丁二烯 聚丙烯腈
PMMA
PVAc PVA PB PAN
polymethylmet hacrylate
主要参考书目
1. 陈甘棠著,《聚合反应工程基础》,中国石化出版社,1991 2. 史子瑾主编,《聚合反应工程基础》,化学工业出版社, 1991 3. C.McGreavy(Ed),“Polymer Reactor Engineering”,Blackie

聚合反应工程基础_第四章

聚合反应工程基础_第四章

22
聚合反应工程
聚合反应速度分析 (间歇过程自由基均聚)
kd 引发剂引发 : I 2 R, rd 2kd [ I ] f ki R M P , ri ki [ R] [ M ] 1
链增长 : Pj M Pj 1 , rp k p [ M ] [ Pj ]
2013-10-7
4
聚合反应工程
本章主要内容
聚合反应速度的工程分析 连锁聚合反应的平均聚合度及聚合度分布 缩聚反应及非均相反应的工程分析 流动与混合对聚合度分布的影响
2013-10-7
5
聚合反应工程
聚合反应工程的目标
反应器流动模型 结合起来 建立统一的反应器模型 聚合反应动力学 预计所需质量和产量的聚合物。 现实情况: 高聚物流体一般是非牛顿流体,在流动过程还有物 态的变化。 对反应机理的认识; 对结构与性能的认识; 反应器影响反应结果的认识不深透。
平均分子量及聚合度分布可表征聚合物 性质,所以首先寻找,然后确定目标函数.
2013-10-7 12
聚合反应工程
自由基聚合反应动力学
• 自由基聚合微观动力学
研究聚合初期(通常转化率在5%~10%以下)聚合速率与 引发剂浓度、单体浓度、温度等参数间的定量关系。
说明:由于组成自由基聚合的三步主要基元反应: 链引发、链增长和链终止对总聚合速率均有所贡 献;链转移反应一般不影响聚合速率。 所以聚合反应总的动力学方程的建立过程为:首 先从自由基聚合反应的三个基元反应的动力学方 程推导出发,再依据等活性、长链和稳态三个基 本假设推导出总方程。
_
_
重均分子量 重均聚合度 重基分子量分布函数
2013-10-7

聚合反应工程基础 - 整理

聚合反应工程基础 - 整理

理想流动和理想反应器的设计
进行化学反应时,动量、热量、与质量的传递对反应速率有直接的影响, 所以在设计反应器时必须进行物料,热量及动量的衡算。
由于在有的反应器内,物料的浓度和温度是随着时间和空间的变化而变化 的,要准确地建立物料衡算方程式,有必要先对时间或空间进行微分,然后再 积分的方法进行计算。
不为零。
理想流动和理想反应器的设计
理想化学反应器
理想化学反应器的定义: 当反应器中没有任何传递过程的影响因素存在,反应的结果唯一地
由化学因素决定时,就称它为理想化学反应器。
实践中性能和行为接近于这种理想化学反应器的两种反应器: • 搅拌充分的间歇釜式反应器 • 连续流动的理想管式反应器
作为问题的另一方面,有时把无限偏离理想化学反应器的反应器也 作为“理想”化学反应器,如:
2 聚合反应的装置
2.塔式聚合反应器
一般用于连续生产且对物料的停留时间有一定要求的较高粘度的物 料体系,主要是一些缩聚反应。
苯乙烯本体聚合反应器
己内酰胺连续缩聚用的VK塔
2 聚合反应的装置
3. 管式聚合反应器
优点:简单,单位体积所具有的传热面积大,单位体积生产能力大、 单程转化率高,适用高温、高压操作。
均相反应动力学
2.化学反应动力学的表达式 影响化学反应速率的最主要因素是反应物料的浓度和反应温度,可
写成:
ri f (C,T )
式中: r i——组份I 的反应速率; C——反应物料的浓度向量; T——反应温度。
对于多组分多反应的系统,由于化学计量关系的约束,在反应过程
中只要某一组分的浓度确定,其它各组分的浓度也将随之而定 :
3 聚合反应的操作方式
2.连续式操作(有反混)

聚合反应工程基础课后习题答案

聚合反应工程基础课后习题答案

聚合反应工程基础课后习题答案聚合反应工程基础课后习题是学生在学习课程过程中用来巩固所学知识的重要环节。

通过完成习题,学生可以检验自己对知识点的掌握程度,及时发现和纠正错误,提高学习效果。

下面是聚合反应工程基础课后习题的答案。

1. 考虑以下聚合反应的机理:A +B -> ABAB + C -> ABCABC + D -> ABCD请回答以下问题:a) 这个反应的总反应方程是什么?b) 这个反应的反应级数是什么?c) 这个反应的速率方程是什么?d) 如果初始浓度为[A]₀、[B]₀、[C]₀和[D]₀,那么在任意时刻t,聚合物的浓度是多少?答案:a) 总反应方程是A + B + C + D -> ABCDb) 反应级数是4c) 速率方程是v = k[A][B][C][D]d) 在任意时刻t,聚合物的浓度是[A]₀ - [A]t,[B]₀ - [B]t,[C]₀ - [C]t 和[D]₀ - [D]t。

2. 一个聚合反应的速率方程是v = k[A][B]^2,其中k为速率常数。

如果初始浓度为[A]₀和[B]₀,那么在任意时刻t,[B]的浓度是多少?答案:根据速率方程可知v = k[A][B]^2,将其变形为d[B]/dt = -2k[B]^2,然后分离变量并积分,得到∫[B]₀^t d[B]/[B]^2 = -2k∫0^t dt。

将其求解,得到[ B]t = 1/([B]₀ - 2kt)。

3. 考虑以下聚合反应的机理:A +B -> AB (快速平衡)AB + C -> ABC (慢速平衡)ABC + D -> ABCD (快速平衡)请回答以下问题:a) 这个反应的总反应方程是什么?b) 这个反应的反应级数是什么?c) 这个反应的速率方程是什么?d) 如果初始浓度为[A]₀、[B]₀、[C]₀和[D]₀,那么在任意时刻t,聚合物的浓度是多少?答案:a) 总反应方程是A + B + C + D -> ABCDb) 反应级数是4c) 速率方程是v = k[A][B][C][D]/([AB][ABC])d) 在任意时刻t,聚合物的浓度是[A]₀ - [A]t,[B]₀ - [B]t,[C]₀ - [C]t 和[D]₀ - [D]t。

聚合反应工程基础教学设计 (2)

聚合反应工程基础教学设计 (2)

聚合反应工程基础教学设计1. 背景聚合反应工程是高分子化学重要分支之一,它涉及到反应动力学、传热传质、流体力学等多学科知识。

聚合反应工程的发展极大地促进了高分子材料的生产和应用。

在高等学校化学工程专业中,聚合反应工程已经成为一个必修课程,对于专业技能的培养和研究生的继续深造也非常重要。

针对聚合反应工程的教学,如何使学生掌握基本理论和实验操作,成为一个重要的问题。

本文针对聚合反应工程的教学进行设计和讨论。

2. 教学目标本课程旨在让学生掌握以下内容:•完全和半聚合反应的定义、判别及其动力学•树枝状聚合及其分支反应机理•高分子的重量平均和数平均分子量的计算方法•溶液聚合反应的条件、过程及反应控制方法3. 教学内容3.1 完全和半聚合反应完全聚合反应和半聚合反应是高分子聚合反应中最基本的两种类型。

完全聚合反应是指反应物完全转化为高分子聚合物的反应过程,而半聚合反应则是反应物转化为高聚物的同时,部分未反应物参与组成高聚物。

本部分将介绍完全聚合反应和半聚合反应的定义、判别及其动力学。

3.2 树枝状聚合树枝状聚合是高分子聚合反应中的一种重要分支反应机理。

树枝状聚合相比于线性聚合更具有分支特点,使聚合物的结构更加复杂和多样化。

本部分将介绍树枝状聚合的分支反应机理。

3.3 高分子量的计算方法高分子量是高分子聚合物物理性质的重要指标之一,它可以通过重量平均分子量和数平均分子量来计算。

在本课程中将介绍这两种计算方法及其公式。

3.4 溶液聚合反应溶液聚合反应是高分子化学中常见的一种反应类型。

本部分将介绍溶液聚合反应的条件、过程及反应控制方法,并通过实验操作帮助学生更好地理解和掌握相关知识。

4. 教学方式和教学手段本课程采用一系列教学方式和教学手段,包括:•理论讲授:通过课堂讲授、多媒体演示等方式,讲解相关理论知识点。

•实验操作:通过根据课程内容设计的实验方案,让学生亲身参与实验操作,掌握相关实验技能和知识点。

•课程练习:通过作业、练习题等方式,让学生巩固和回顾所学知识,并提高思维能力和解题能力。

第一章 聚合反应工程基础1-2

第一章 聚合反应工程基础1-2
20世纪30年代,丹克莱尔(Damhohler)论述了扩散、流体流 动和传热对反应器产率的影响——奠定了基础 梯尔(Thiele)和史尔多维奇对扩散反应问题作了开拓性的工作
40年代,霍根(Hougen)、华生(Waston)著作《化学过程原理》 法兰克-卡明聂斯基著作《化学动力学中的扩散与传热》问世 1957年,荷兰阿姆斯特丹第一次欧洲反应工程会议——确立 了化学反应工程的名称
• 计其达.《聚合过程及设备》化工出版社,1981;
第二章 化学反应工程基础
2.1 化学反应和反应器分类
2.1.1 化学反应分类
表2-1 按化学反应的特性分类
反应机理 反应的可逆性 反应分子数 反应级数
简单、复杂反应 可逆、不可逆反应 单分子、双分子、三分子反应 一级、二级、三级、分数级反应
反应热效应 放热反应、吸热反应
1.3 聚合物合成材料的发展
1910年,美国正式工业化生产酚醛树脂,随后相继合成出丁 苯橡胶、丁腈橡胶、氯丁橡胶、尼龙-66、聚酯纤维、高压聚乙 烯和聚氯乙烯,产量和品种在世界大战中得到快速发展。 1920年,H. Staudinger提出了“高分子化合物的概念,建立 了大分子链的学术观点并系统研究了加聚反应。
聚合反应工程基础
第一章 绪论 1.1 课程简介 一)课程产生背景
高分子化学 高分子物理
化学反应工程
聚合反应工程
连接桥梁
二)课程研究对象与拟解决的关键问题
• 研究对象:工业规模的聚合过程 • 关键问题:聚合反应动力学
聚合物系的传递过程 聚合反应器设计、放大
三)聚合反应工程的任务
创新与选择最适反应器型式 确定最优工艺条件 估算反应器尺寸大小
1994年,全世界三大合成材料的产量超过1.4×104万吨,按体 积计算超过钢铁。

聚合反应工程基础第二章3

聚合反应工程基础第二章3

C Ai 1 C Ai 1 i rAi (C Ai C Ai 1 ) rAi i
根据动力学方程做rA ~ CA关系曲线
rA
CA3 CA2 CA1 CA0
CA
设计多级串联理想混合反应器时,合理分配各级反应器
的出口转化率,可使反应器所需总体积最小。 以两只不等容的理想混合反应器串联操作为例: 对于第一级反应器 对于第二级反应器
1 2 ... n cA0 (
x A1
xA 0
x A 2 dx x A , N dx dxA A A ... ) x A1 r x A , N 1 r rA A A
c A0
xA ,N
xA 0
dxA rA
与单一平推流 反应器相同
请考虑要使并列的两路得到相同的转化率, 则两路的流量比是多少?
xA dx xA V A cA 0 c A0 0 0 V0 rA
例:
均相气相反应A→3R,其动力学方程为rA=kcA,该过程在
185℃,400kPa下在一平推流反应器中进行,其中k=10-2s-1, 进料量FA0=30kmol/h,原料含50%惰性气,为使反应器出口转
化率达80%,该反应器体积应为多大?
VR V0 cA 0
xA
0
0.8 dxA V0 cA0 0 kcA
dx A 1 xA kcA0 1 x A A
V0
0.8
0
dxA 3.34 0.8 1 xA 0 1 xA dxA 1 xA 3.23 k 1 x A
相同时没有返混。如果各支路之间的转化率
不同,就会出现不同转化率的物流相互混合,

聚合反应工程基础(全套课件567P)

聚合反应工程基础(全套课件567P)
聚合反应工程基础
I
1
传递过程 化学工程 (三传一反) 单元操作 化学反应工程
高分子化学 高分子物理 高分子科学与工程 聚合反应工程 聚合物加工工程
聚合反应工程
I
2
•Black box (experiential) model •Mechanism-based model
基本问题:
均相自由基均聚 均相自由基共聚 非均相自由基聚合 连续聚合 缩合聚合 Modeling? 聚合反应速度 Computable! 聚合物分子量及其分布 Designable! 共聚物组成及其分布 Operable! 聚合物粒径及粒径分布 Controllable!
均聚物:“聚(Poly)”+单体名,如:
乙烯 聚乙烯 (Polyethylene,PE) 甲酯聚甲基丙烯酸甲酯(Polymethyl methacrylate, PMMA)
甲基丙烯酸
也有以假想单体为基础命名,如聚 乙烯醇(polyvinyl alcohol)
[CH2
CH] n OH
乙烯醇为假想的单体,聚乙烯醇实际上是聚醋酸乙烯(polyvinyl acetate)的水解产物。 I
甘油+ 邻苯二甲酸酐
合成橡胶:
丁二烯(Butadiene)+ 苯乙烯(Styrene) 丁二烯(Butadiene)+ 丙烯腈(Acrylonitrile) 乙烯(ethylene)+丙烯(propylene)
I
乙丙橡胶(EPR)
15
1.1.1 高分子化合物的分类和命名
2) 以高分子链的结构特征命名
4. N.A.Dotson et al., “Polymerization Process Modeling”, VCH,

聚合物反应工程基础第二章

聚合物反应工程基础第二章
Ae
Company Logo
Company Logo
4. 复合反应
复合反应:是几个反应同时进行的,常
见的复合反应有平行反应,连锁反应,平行- 连锁反应等。
k1 A k2
R
A
k1
R
k2
S
S
Company Logo
⑴ 平行反应
k1 A k2 R S
rA =
dCA = k1CA + k2CA = ( k1+k2 )CA dt
Company Logo
例1 某厂以己二酸与己二醇等摩尔缩聚反应生产醇酸 树脂。用间歇反应器,反应温度70℃,催化剂为H2SO4。 已知:cA0=4 kmol· -3;反应动力学方程为: m
m3· kmol-1· -1 min 若每天处理2400kg己二酸,每批操作辅助生产时
间为1h,反应器装填系数为0.75,求:
第二章 化学反应工程基础
Company Logo
3. 等温恒容单一反应动力学方程
⑴ 一级不可逆反应
A
1 dnA rA= V dt
恒容
S
dCA 一级 KCA dt
对于等温系统,k为常数,初始条件: t=0,CA=CA0
1 lnCA0 1 1 t= = ln 1-x K CA K A
Company Logo
tr=tt-t‘
④ 求cAf:
⑤ 若计算的cAf小于任务要求的cAf则满足要求
rA = -
1 V
nA 0
dn A dt
= dx A dt
dx A dt
1 V
dn A0 (1-x A ) dt
= V 0 (1+ε A x A )
CA0 = 1+ε A x A

聚合反应工程基础

聚合反应工程基础

聚合反应工程基础
聚合反应工程是一项对聚合反应做出反应结果的工程,是一种合成技术,旨在改善已有物质的性能,从而获取新物质。

与它相关的反应条件是:反应成分、反应温度、反应压力、反应时间和反应环境等因素。

反应成分是指反应时有害物质和原料,需要考虑事先性能和安全性;反应温度对反应有重要影响,选定的反应温度可能会影响反应的速度和产物的性质;反应压力也是影响反应的重要因素,一般情况下越高的压力会使反应终止更快;反应时间是指反应发生的时间,反应时间的不同可能会影响反应的结果;反应环境一般有液相反应和气相反应,液相反应对热反应有一定的特点,气相反应则更加灵活,在重要的应用领域可能会产生有用的物质。

通过调整上述反应因素,我们可以实现理想的反应结果,从而获取理想的物质。

聚合反应工程的研究主要集中在调节上述反应条件,以获得最终产品的最佳性能,重点是获得较高的生产效率。

同时,随着反应条件的变化,反应物和生成物之间的变化也会有所不同,这些变化也需要观察并进行改进。

总之,聚合反应工程主要是通过调节反应条件,使反应物和生成物在必要的条件下,实现理想的反应结果,以及高效的生产效率,为后续工程提供资源资源。

聚合反应工程基础复习提纲 2

聚合反应工程基础复习提纲 2

2. 在连锁聚合中,采用间歇操作和连续操作对其转化率和平均聚合度和 分子量分布有何影响?
同一歧化终止,无链转移时,理想混合流操作的瞬间聚合度及聚合度分布与 间歇操作相同;平均聚合度及聚合度分布不同。
单基终止,无链转移时,理想混合流操作的聚合度分布比间歇操作的窄; 平推流操作:平均聚合度和聚合度分布与间歇操作相同。 对于理想混合反应器,分子量分布窄;(浓度不变) 对于间歇反应器,分子量分布宽。(浓度从高到低)
也越均匀,分子量分布也越窄.
8.对非牛顿流体在圆管中层流流动规律进行研究有何重要意义? 非牛顿流体与牛顿流体不同流动特性,二者动量质量传递特性也有所差别,
进而影响到热量传递,质量传递,及反应结果.因此对流速分布及压力降等问题研 究,不仅能决定管中流体输送量与功率消耗,同时能了解影响管式反应,塔式反应 器中物料浓度,温度分布,进而影响反应速度和分子量分布情况.
②热量衡算: 随物料流入热量-随物料流出热量-反应系统与外界交换热量+ 反应过程的热效应-积累热量=0
15. 实现反应器的热稳定操作需满足哪些条件? ① Qr=Qc, 体 系 放 出 热 量 ; Qr ② dQc/dT>dQr/dT, 除 热 量 ; Qc ③ △ T=T-Tw<RT2/E, E 反应活化能,T 反应器温度,Tw 冷却液温度
5.返混和混合对聚合度分布的影响 。 当活性链的寿命较物料在反应器中的平均停留时间短时,浓度历程是影响聚
合度分布的主要因素,聚合度分布由窄至宽为:理想混合反应器,非理想混合反 应器,平推流反应器;
当活性链的寿命较平均停留时间长时,停留时间分布是决定聚合度分布的主 要原因。上述情况正好相反。
6.粘度对聚合物反应的影响。 粘度增加,链自由基卷曲,活性端基被包裹,双基扩散终止困难,链终止速

聚合反应工程基础

聚合反应工程基础

第二章化学反应工程基础1.说明聚合反应工程的研究内容及其重要性。

研究内容:①以工业规模的聚合过程为对象,以聚合反应动力学和聚合体系传递规律为基础;②将一般定性规律上升为数学模型,从而解决一般技术问题到复杂反应器设计,放大等提供定量分析方法和手段;③为聚合过程的开发,优化工艺条件等提供数学分析手段。

简而言之:聚合反应工程研究内容为:进行聚合反应器最佳设计;进行聚合反应操作的最佳设计和控制。

2.动力学方程建立时,数据收集方式和处理方式有哪些收集方式:化学分析方法,物理化学分析方法处理方式:积分法,微分法。

3.反应器基本要求有哪些①提供反应物料进行反应所需容积,保证设备一定生产能力;②具有足够传热面积;③保证参加反应的物料均匀混合4.基本物料衡算式,热量衡算式①物料衡算:反应物A流入速度-反应物A流出速度-反应物A反应消失速度-反应物A积累速度=0(简作:流入量-流出量-消失量-积累量=0)②热量衡算:随物料流入热量-随物料流出热量-反应系统与外界交换热量+反应过程的热效应-积累热量=05.何谓容积效率影响容积效率的因素有哪些工业上,衡量单位反应器体积所能达到的生产能力称之为容积效率,它等于在同一反应,相同速度、产量、转化率条件下,平推流反应器与理论混合反应器所需总体积比:η=Vp/Vm=τp/τm。

影响因素:反应器类型,反应级数,生产过程中转化率有关6.何为平推流和理想混合流①反应物料在长径比很大的反应器中流动时,反应器内每一微元体积中流体均以同样速度向前移动,此种流动形态称平推流;②由于反应器强烈搅拌作用,使刚进入反应器物料微元与器内原有物料元瞬时达到充分混合,使各点浓度相等且不随时间变化,出口流体组成与器内相等此流动形态称理想混合流。

7.实现反应器的热稳定操作需满足哪些条件①Qr=Qc,Qr体系放出热量;②dQc/dT>dQr/dT,Qc除热量;③△T=T-Tw<RT2/E,E反应活化能,T反应器温度,Tw冷却液温度8.何为返混形成返混的主要原因有哪些返混:指反应器中不同年龄的流体微元间的混合;原因:①由于物料与流向相反运动所造成,②由于不均匀的速度分布所引起的,③由于反应器结构所引起死角、短路、沟流、旁路等。

聚合反应工程基础第二章3

聚合反应工程基础第二章3
0.8
VR 1.03 xA 2 ln 1 xA 0 2.50m 3
三、全混流反应器
全混流反应器又称全
混釜或连续流动充分搅拌
槽式反应器,简称CSTR。
流入反应器的物料,在瞬
间与反应器内的物料混合 均匀,即在反应器中各处 物料的温度、浓度都是相 同的。
1. 全混流反应器特性
体系,对关键组份A作物料衡算,如图所示,
这时dV=Stdl,式中St为截面积。
dl
L
进入量-排出量-反应量=累积量 FA-(FA+dFA)-rA· dV=0
由于
微分
FA=FA0(1-xA)
dFA=-FA0dxA
所以
FA0dxA=rAdV
为平推流反应器物料平衡方程的微分式。
对整个反应器而言,应将上式积分。
相同时没有返混。如果各支路之间的转化率
不同,就会出现不同转化率的物流相互混合,
即不同停留时间的物流的混合,就是返混。
因此应当遵循的条件:
1 2
VR1 : VR 2 V01 : V02
2. 全混流反应器的并联操作
多个全混流反应器并联操作时,达到
相同转化率使反应器体积最小,与平推流并
联操作同样道理,必须满足的条件相同。
x 1 A xA c A0 x A c A0 x A A 1 xA kcA k 1 xA kcA0 1 A xA
xA 1 A xA kcA0 1 xA
变容一级不可逆反应:

变容二级不可逆反应:
c A0 x A 2 kcA
VR V0 cA 0
xA
0
0.8 dxA V0 cA0 0 kcA

聚合物反应工程基础第二章概要

聚合物反应工程基础第二章概要
相和液相反应。
Company Logo
② 釜式反应器:一般高径比为1—3。适用于 液相、液-液相、气-液相及液-固相反应。 ③ 塔式反应器:一般高径比在3—30之间。 ④ 流化床反应器 ⑤ 固定床反应器
Company Logo
搅拌釜式反应器
重油的催化裂化流化床反应器
邻二甲苯氧化制苯酐多管式固定床反应器
Company Logo
⑵ 全混流反应器 由于反应器中强烈的搅拌作用,使刚
进入反应器的物料与器内原有的物料瞬间 达到充分混合,使各点浓度相等且不随时 间变化,出口流体组成与器内相等。
4. 基本概念
Company Logo
⑴ 化学反应式
aA bB rR sS
⑵ 化学反应计量式
aA bB rR sS
⑶ 化学反应动力学方程有多种形式,对于均相反应,方程多 数可以写为(或可以近似写为,至少在一定浓度范围之内可以写为) 幂函数形式,反应速率与反应物浓度的某一方次呈正比。
Company Logo
对于体系中只进行一个不可逆反应的过程
aA bB rR sS
rA kccAmcBn
mol m3s1
⑵ 具有足够的传热面积,保证反应过程中热 量的传递,使反应指控在最适合的温度下进行。
⑶ 保证参加反应的物料均匀混合。
2. 物料衡算
Company Logo
反应物A 的流入速度
反应物A 的流出速度ຫໍສະໝຸດ 反应物A由于 反应的消失速度
反应物A 的积累速度
0
上式是普遍的物料衡算式,无论对流动系统或 间歇系统均可适用。对于间歇反应器式中的流入项与 流出项都为零,对于稳态操作的连续流动反应器累积 项为零,而对于非稳态操作的连续流动反应器和半连 续反应器式中四项均不为零。

聚合反应工程基础复习提纲(精品PDF)

聚合反应工程基础复习提纲(精品PDF)

第一章绪论1. 说明聚合反应工程基础研究内容①以工业规模的聚合过程为对象,以聚合反应动力学和聚合体系传递规律为基础;②将一般定性规律上升为数学模型,从而解决一般技术问题到复杂反应器设计,放大等提供定量分析方法和手段;③为聚合过程的开发,优化工艺条件等提供数学分析手段.简而言之:聚合反应工程研究内容为:进行聚合反应器最佳设计;进行聚合反应操作的最佳设计和控制. 第二章化学反应工程基础1.间歇反应器、连续反应器间歇反应器:物料一次放入,当反应达到规定转化率后即取出反应物,其浓度随时间不断变化,适用于小规模,多品种,质量不均。

连续反应器:连续加料,连续引出反应物,反应器内任一点的组成不随时间而改变,生产能力高,易实现自动化,适用于大规模生产。

2. 平推流、平推流反应器及其特点:当物料在长径比很大的反应器中流动时,反应器内每一位原体积中的流体均以同样的速度向前移动,此时在流体的流动方向上不存在返混,这种流动形态就是平推流。

具有此种流动型态的反应器叫平推流反应器。

特点:①在稳态操作时,在反应器的各个截面上,物料浓度不随时间而变化,②反应器内物料的浓度沿着流动方向而改变,故反应速率随时间位置而改变,及反应速率的变化只限于反应器的轴向。

3. 理想混合流、理想混合流反应器及其特点:反应器中强烈的搅拌作用使刚进入反应器的物料微元与器内原有物料微元间瞬时达到充分混合,使各点浓度相等,且不随时间变化,出口流体组成与器内相等这种流动形态称之为理想混合流。

与理想混合流相适应的反应器称为理想混合流反应器。

特点:①反应器内物料浓度和温度是均一的,等于出口流体组成②物料质点在反应器内停留时间有长有短③反应器内物质参数不随时间变化。

5. 容积效率:指同一反应在相同的温度、产量、和转化率的条件下,平推流反应器与理想混合反应器所需的总体积比7.返混:指反应器中不同年龄的流体微元间的混合8、宏观流体、微观流体宏观流体:流体微元均以分子团或分子束存在的流体;微观流体:流体微元均以分子状态均匀分散的流体;9.宏观流动、微观流动宏观流体指流体以大尺寸在大范围内的湍动状态,又称循环流动;微观流体指流体以小尺寸在小范围内的湍动状态11.微观混合、宏观混合P70微元尺度上的均匀化称为宏观混合;分子尺度上的均匀化称为微观混合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档