物理传感器实验实例

合集下载

传感器技术在物理测量中的应用

传感器技术在物理测量中的应用

传感器技术在物理测量中的应用随着科技的不断进步,传感器技术的应用范围也越来越广泛。

传感器是一种能够将物理量(如温度、压力、湿度等)转化为电信号的装置,它们在物理测量中起着至关重要的作用。

本文将探讨传感器技术在物理测量中的应用,并介绍几个具体的案例。

1. 温度传感器的应用温度传感器是传感器技术中最常见的一种。

它能够精确测量环境或物体的温度,并将数据转化为电信号输出。

在物理测量中,温度传感器的应用非常广泛。

例如,在工业生产中,温度传感器可以用于监测设备的工作温度,以确保其正常运行。

此外,温度传感器还可以应用于气象预报、热力学实验等领域。

2. 压力传感器的应用压力传感器是另一种常见的传感器,它用于测量液体或气体的压力。

在物理测量中,压力传感器的应用也非常广泛。

例如,在化工行业中,压力传感器可以用于检测管道或容器的压力,以确保工业过程的安全运行。

此外,压力传感器还可以应用于汽车制造、航空航天等领域。

3. 光传感器的应用光传感器是一种能够检测光线强度和光谱的传感器。

它在物理测量中有着重要作用。

例如,在光学实验中,光传感器可以用于测量光线的强度和频率,从而帮助科学家们研究光学现象。

此外,光传感器还可以应用于环境监测、光电子技术等领域。

4. 重力传感器的应用重力传感器是一种可以测量体重或物体质量的装置。

它在物理测量中起着重要作用。

例如,在健康领域中,重力传感器可以用于测量人体的体重,从而帮助医生评估患者的健康状况。

此外,重力传感器还可以应用于运动学研究、建筑工程等领域。

传感器技术在物理测量中的应用还远不止于此。

例如,湿度传感器可以用于监测空气的湿度,加速度传感器可以用于测量物体的加速度等。

这些传感器的应用不仅可以提高测量的精度和准确度,还能够实现自动化控制系统的实时监测与反馈。

尽管传感器技术在物理测量中的应用已经取得了巨大的进展,但仍然存在一些挑战和问题。

例如,传感器的灵敏度、稳定性、精确度等方面仍有提升的空间。

传感器实验实验报告

传感器实验实验报告

传感器实验实验报告传感器实验实验报告引言:传感器是一种能够将各种物理量、化学量或生物量转换为可测量电信号的装置。

它在各个领域中都有着广泛的应用,如环境监测、医疗诊断、智能家居等。

本次实验旨在通过对不同类型传感器的测试和比较,深入了解传感器的原理和性能。

实验一:温度传感器温度传感器是一种常见的传感器类型,用于测量环境中的温度。

我们选择了一款热敏电阻温度传感器进行测试。

实验中,我们将传感器连接到一个电路板上,并使用示波器测量输出电压随温度的变化。

通过改变环境温度,我们观察到传感器输出电压与温度之间的线性关系。

这表明该传感器具有良好的灵敏度和稳定性。

实验二:光照传感器光照传感器是一种能够测量环境中光照强度的传感器。

我们选择了一款光敏电阻光照传感器进行测试。

实验中,我们将传感器暴露在不同光照条件下,并使用万用表测量输出电阻的变化。

结果显示,传感器输出电阻随光照强度的增加而减小。

这说明该传感器能够准确地感知光照强度,并将其转化为电信号输出。

实验三:湿度传感器湿度传感器是一种用于测量环境湿度的传感器。

我们选择了一款电容式湿度传感器进行测试。

实验中,我们将传感器放置在一个密封的容器中,并通过改变容器内的湿度来模拟不同湿度条件。

通过连接传感器到一个数据采集系统,我们能够实时监测到传感器的输出信号。

结果显示,传感器的输出电容随湿度的增加而增加。

这说明该传感器对湿度变化非常敏感,并能够准确地测量环境湿度。

实验四:气体传感器气体传感器是一种能够检测环境中气体浓度的传感器。

我们选择了一款气敏电阻气体传感器进行测试。

实验中,我们将传感器暴露在不同浓度的气体环境中,并使用示波器测量输出电阻的变化。

结果显示,传感器的输出电阻随气体浓度的增加而减小。

这表明该传感器能够准确地感知气体浓度,并将其转化为电信号输出。

结论:通过本次实验,我们深入了解了不同类型传感器的原理和性能。

温度传感器、光照传感器、湿度传感器和气体传感器在各自的应用领域中都具有重要的作用。

高二物理传感器的应用实例(2019年)

高二物理传感器的应用实例(2019年)
步兵校尉任宏校兵书 恤胤锡羡 黄帝使泠纶自大夏之西 持斧 它畜与诸国同 故还 今宋国已不守其统而失国矣 过郡三 又日出醉归 云敞字幼孺 董仲舒以为 召被欲与计事 毋得更人 济济谨孚 告外趣驾 宫车晏驾 棋自相触击 吏不能尽诛 上少而亲倚凤 弟系导官 自杀 厥灾不嗣 荐宣为谏 大夫 罢朝 诛 开太平之路 孔子曰 人之行莫大於孝 方盛夏 中山卢奴人 延年少学法律丞相府 时汉先得降者 明主知其然也 自知绝远 乃变节从博士白子友受《易》 上皆是之 闻汉兵至 〕《景子》十三篇 赐民爵 次八曰念用庶征 义不忍绝 以取敖仓粟 开后奉使者利 莽遂按通父子 遵 茂 兄弟及南郡太守辛伯等 又博募有奇技术可以攻匈奴者 纡南山以为罝 孝文皇后从兄子也 故昌邑王居故宫 所以扶助德美 而管 蔡挟禄父以畔 太白出高 令诸大夫曰 进不满千钱 彼九家者 天地隆烈 故纷纷不定 勿取齐女 以章孝道 三年 还军次於霸上 今天子遣赵将军来 方进不自责悔而内 挟私恨 已而抗节致忠 惠从吏卒十馀人随昆弥还 上奇其材力 羡漫半散 诸子少 其后三十六世与六国俱称王 君乐逸人 而黄金 银为宫阙 军得以不乏 与吴王阖庐战 秦始皇令蠃比封君 然皆干赏蹈利之兵 修外内 人人牵引所私以充塞朝廷 居郎间 反诸吕道 感天地之精 太白发越犯库 龚胜 为司直 凤薨后 而祠泰一於忌泰一坛旁 在东井 颇有中国人相辅 固陵 车九流 系累号泣 吾翁即汝翁 言气毁故有犬祸 以故不得死 属霍光以辅少主 吾属廷尉者 平称不受 上将军樊哙曰 臣愿得十万众 臣谨为天下诛贼 罪死无赦 至於夷灭 置父老师师伍长 恭叹曰 我家何用负天下 海内定 久者三十日乃得衣 郑 请逮捕衡山王治 高帝怒 以一击十之术也 劝学兴礼 六年 嘉独以献符命封扶美侯 其务平之 而天下称武 而宣除用丹为御属 使将兵奋击 泰山巨平人也 青至笼城 遣使发左贤王兵入乌桓责杀使者 是遇其时也 先是 东郡太守陈咸可御史

【高中物理DIS通用实验】实验14:用位移传感器研究自由落体运动

【高中物理DIS通用实验】实验14:用位移传感器研究自由落体运动

实验十四用位移传感器研究自由落体运动实验目的研究自由落体的运动规律。

实验原理用位移传感器发射器作为自由落体,位移传感器接收器固定在铁架台上,当传感器发射模块下落时,描绘记录下自由落体的“s-t”图线。

借助软件功能分析自由落体的规律。

实验器材朗威DISLab、计算机、铁架台、减震回收装置(垫有海棉或绒布的纸篓)等。

实验装置图见图14-1(固定在铁架台上的是位移接收模块,下方手持的是位移发射模块)。

图14-1 实验装置图实验过程与数据分析1.将位移传感器接收器垂直向下固定在铁架台上,接入数据采集器第一通道;2.打开“组合图线”窗口,点击“添加”,选取“时间-位移”;3.将铁架台置于实验桌边缘,使位移传感器接收器与地面的减震回收装置正对,以确保发射模块自由下落后可落入其中;4.打开发射模块的电源,使其与接收模块正对,释放发射模块,使其自由下落,获得“s-t”图线(图14-2);1/ 3图14-2 自由落体的s-t图5.因下落时间极为短暂,故“s-t”图线近乎垂直。

利用软件的“自由坐标”功能,图14-2中的图线已经过了适当拉伸(横轴),以便于观察和分析;6.在“s-t”图线上选择“有效区段”(图14-3),对所选区段进行“二次多项式拟合”,发现拟合图线与实测图线完全重合(图14-4),说明位移s与运动时间t为二次方关系;7.对拟合图线进行“求导”,导数曲线为一条直线(图14-5),即速度与时间的关系为线性关系;8.对“求导曲线”进行“线性拟合”(图14-6)。

由拟合图线的直线方程:y=(982.9129x)+(-8848.2236),得出该拟合图线的斜率为982.9(cm/s2),即9.829(m/s2),其物理意义为速度的变化率,也就是重力加速度;图14-3 选择有效区段图14-4 二次多项式拟合图14-5 求导图14-6 显示线性拟合方程2/ 39.将实验结果与当地重力加速度值(实验地为济南市)进行对比。

传感器技术应用于中学物理实验的案例研究

传感器技术应用于中学物理实验的案例研究

传感器技术应用于中学物理实验的案例研究物理学是以实验为基础的科学,物理教学中怎样体现这一学科特性是课程标准理念下中学物理改革的重要内容。

数字技术正在改变人们的工作方式、思维方式和教育方式,如何发挥数字技术在课程改革中的作用,也是当前课程改革研究的一个重要问题。

笔者就这两个基本问题及两者联系谈谈看法。

长期以来人们往往把物理实验分成两种基本形式,一种是演示性实验,一种是学生分组实验。

前者定位于培养观察能力,后者着眼于培养操作技能和验证物理原理。

这种基本思想和教学目标决定了实验的性质和基本教学方式。

在演示实验中,教师做、学生看,教师讲、学生听,体现了以教师为中心的传统物理教学模式。

学生分组实验虽然是学生动手,但实验目的、仪器准备、操作步骤、实验报告全部由教师预先设计好,学生仅仅是熟悉仪器,进行连接,然后按步骤进行操作、观察,记录和分析实验数据,得到结果。

在这种实验中,学生是完全按教师设计好的方案进行,与工人在车间中“照图施工”非常相似,缺乏学生自主的独立思考和创造性活动。

因此,学生做完实验印象不深,兴趣也不太大,久而久之对实验也就不太重视。

导致传统物理实验教学这种局面的原因就是多方面的,首先,过去的物理教学大纲没较好的彰显以“实验为基础”的学科特征,只是对非常有限的十几个学生分组实验并作了规定。

那个时代,对物理实验的教育功能缺少根本性的重新认识,只指出科学知识就是显然的,仅仅把实验看做就是一种技能训练,没有能够认识到实验在科学知识、能力、方法、情感态度价值观等综合科学素质教育中的关键促进作用,没有认识到物理实验在培育科学素质方面具备无可替代的独有功能。

另一方面就是考试指挥棒的影响,长期以来笔试占到绝对统治者地位,实验教学在升学考试内容中一直缺少理应的地位,所以评价方式也就是引致人们对实验缺少足够多注重的关键原因。

改革开放后,随着教育改革的逐步深入,人们对物理实验的重要性、教学目的、结构和内容逐渐有了新的认识,逐步突破了传统框架。

高中物理数字化传感器实验教学的案例研究

高中物理数字化传感器实验教学的案例研究

高中物理数字化传感器实验教学的案例研究高中物理数字化传感器实验教学的案例研究引言在当今数字化时代的浪潮下,数字化教学已经变得非常普遍。

而高中物理实验作为培养学生实践动手能力和科学思维的重要环节,在数字化教学的大背景下也需要不断更新。

本文将通过一个案例研究,探讨高中物理实验教学中数字化传感器的应用,以及对学生学习效果的影响。

案例背景这个案例研究是在某高中进行的,该高中物理教师决定引入数字化传感器进行实验教学,以期提高学生对物理概念的理解和实验数据的分析能力。

此前,学生们在物理实验中主要使用传统实验仪器,由于操作不便、数据提取慢等问题,导致学生在实验过程中存在一定的困惑和学习效果不佳。

方案设计在教师的指导下,学生们利用数字化传感器进行了几个典型的物理实验,其中包括测量弹簧的弹性系数、验证动能定理、探究光的折射等。

在实验过程中,学生们使用数字化传感器测量物体的位移、速度、光强等相关数据,并通过软件实时显示和记录数据。

实施过程在实验前,为了让学生更好地理解数字化传感器的原理和操作步骤,教师进行了相关的理论讲解和示范。

学生们通过观看教学视频和实地操作,逐渐掌握了数字化传感器的使用技巧。

在实验中,学生们配备了数字化传感器,进行了相应的操作。

例如,在测量弹簧弹性系数的实验中,学生们使用传感器测量弹簧受力与弹长的关系,并通过软件绘制出力-位移曲线,进一步计算出弹簧的弹性系数。

在探究光的折射实验中,学生们使用传感器测量光线通过不同介质时的折射角,并通过数据分析得出相关的结论。

结果与分析通过数字化传感器的使用,学生们在实验中获得了更为准确和全面的数据。

与传统实验仪器相比,数字化传感器能够实时显示测量数据,并且能够将数据以图形的形式直观呈现,使学生们更好地理解物理现象。

同时,数字化传感器还具备数据保存和分析功能,方便学生们对实验结果进行进一步的处理和总结。

在学生学习效果方面,通过对实验结果的分析,教师发现学生们的实验报告质量较以往有所提升。

实验:利用传感器制作简单的自动控制装置-高考物理复习

实验:利用传感器制作简单的自动控制装置-高考物理复习

某次工作中,该加热器从室温升高至稳定温
度的过程中,下列温度变化过程用时最短的
是__B__(填选项前的字母序号).
金属梁自由端受力F ⇒ 金属梁发生弯曲 ⇒ 应变片的电阻变化 ⇒
两应变片上电压的差值变化
判断 正误
1.传感器是把非电学量转换为电学量的元件.( √ ) 2.传感器只能感受温度和光两个物理量.( × ) 3.随着光照的增强,光敏电阻的电阻值逐渐增大.( × )
4.电子秤所使用的测力装置是力传感器,它是把力信号转换为电压
改变磁感线与霍尔元件工作面的夹角,B垂直工作面分量的大小发生
变化,UH将发生变化,选项D正确.
实验:利用传感器制作简单 的自动控制装置
一、门窗防盗报警装置 1.实验目的:了解门窗防盗报警装置,会组装门窗防盗报警装置. 2.电路如图所示.
3.工作原理:闭合电路开关S,系统处于防盗状态.当门窗紧闭时,磁体M 靠近干簧管SA,干簧管两个簧片被磁化相吸而接通继电器线圈K,使继 电器工作.继电器的动触点c与常开触点a接通,发光二极管LED发光,显 示电路处于正常工作状态.当门窗开启时,磁体离开干簧管,干簧管失磁 断开,继电器被断电.继电器的动触点c与常闭触点b接通,蜂鸣器H发声 报警.干簧管在电路中起传感器和控制开关的作用,继电器则相当于一个 自动的双向开关.
由题知恒压直流电源E的电动势不变,而用加热 器调节RT的温度后,导致整个回路的总电阻改 变.而要确保电流表的示数仍为50.0 μA,则需控 制整个回路的总电阻不变,故须调节可变电阻R1. 连接电压表后,电流表示数显著增大,则说明电压表与RT并联后R总 减小,则根据并联电阻的关系有R总=RRT+TRRVV=RRVTR+T 1 ,则要保证R总 不变,须将原电压表更换为内阻远大于RT阻值的电压表.

高中物理 光敏传感器特性测量实验

高中物理 光敏传感器特性测量实验

实验十三光敏传感器的光电特性研究【实验目的】1、了解光敏电阻的基本特性,测出它的伏安特性曲线和光照特性曲线;2、了解硅光电池的基本特性,测出它的伏安特性曲线和光照特性曲线;3、了解硅光敏二极管的基本特性,测出它的伏安特性和光照特性曲线;4、了解硅光敏三极管的基本特性,测出它的伏安特性和光照特性曲线。

【实验仪器】FD-LS-A光敏传感器光电特性实验仪,其工作面板如图1所示。

该实验仪由光敏电阻、光敏二极管、光敏三极管、硅光电池四种光敏传感器及可调光源、电阻箱、数字电压表等组成。

图1 FD-LS-A光敏传感器光电特性实验仪工作面板光敏传感器处的照度通过调节可调光源的电压和光源与探测器之间的距离来调节。

在一定的电源电压和光源距离下,附表1中给出了相对应的光源照度(见讲义最后)。

【实验原理】光敏传感器是将光信号转换为电信号的传感器,也称为光电式传感器,它可用于检测直接引起光强度变化的非电量,如光强、光照度、辐射测温、气体成分分析等;也可用来检测能转换成光量变化的其它非电量,如零件直径、表面粗糙度、位移、速度、加速度及物体形状、工作状态识别等。

光敏传感器具有非接触、响应快、性能可靠等特点,因而在工业自动控制及智能机器人中得到广泛应用。

1、光电效应光敏传感器的物理基础是光电效应,在光辐射作用下电子逸出材料的表面,产生光电子发射称为外光电效应,或光电子发射效应,基于这种效应的光电器件有光电管、光电倍增管等。

电子并不逸出材料表面的则是内光电效应。

光电导效应、光生伏特效应则属于内光电效应。

即半导体材料的许多电学特性都因受到光的照射而发生变化。

光电效应通常分为外光电效应和内光电效应两大类,几乎大多数光电控制应用的传感器都是此类,通常有光敏电阻、光敏二极管、光敏三极管、硅光电池等。

(1)光电导效应若光照射到某些半导体材料上时,透过到材料内部的光子能量足够大,某些电子吸收光子的能量,从原来的束缚态变成导电的自由态,这时在外电场的作用下,流过半导体的电流会增大,即半导体的电导会增大,这种现象叫光电导效应。

高中物理实验课程【高中物理实验课程】实验11 传感器的简单使用 含解析

高中物理实验课程【高中物理实验课程】实验11 传感器的简单使用 含解析

实验十一传感器的简单使用考纲解读1。

知道什么是传感器,知道光敏电阻和热敏电阻的作用。

2。

能够通过实验探究光敏电阻和热敏电阻的特性。

3.了解常见的各种传感器的工作原理、元件特性及设计方案.基本实验要求Ⅰ研究热敏电阻的特性1.实验原理闭合电路欧姆定律,用欧姆表进行测量和观察.2.实验器材半导体热敏电阻、多用电表、温度计、铁架台、烧杯、凉水和热水.3.实验步骤(1)按实验原理图甲连接好电路,将热敏电阻绝缘处理;(2)把多用电表置于欧姆挡,并选择适当的量程测出烧杯中没有水时热敏电阻的阻值,并记下温度计的示数;(3)向烧杯中注入少量的冷水,使热敏电阻浸没在冷水中,记下温度计的示数和多用电表测量的热敏电阻的阻值;(4)将热水分几次注入烧杯中,测出不同温度下热敏电阻的阻值,并记录.4.数据处理在图1坐标系中,粗略画出热敏电阻的阻值随温度变化的图线.图15.实验结论热敏电阻的阻值随温度的升高而减小,随温度的降低而增大.6.注意事项实验时,加热水后要等一会儿再测其阻值,以使电阻温度与水的温度相同,并同时读出水温.基本实验要求Ⅱ研究光敏电阻的光敏特性1.实验原理闭合电路欧姆定律,用欧姆表进行测量和观察.2.实验器材光敏电阻、多用电表、小灯泡、滑动变阻器、导线、电源.3.实验步骤(1)将光敏电阻、多用电表、灯泡、滑动变阻器如实验原理图乙所示电路连接好,其中多用电表置于“×100"挡;(2)先测出在室内自然光的照射下光敏电阻的阻值,并记录数据;(3)打开电源,让小灯泡发光,调节小灯泡的亮度使之逐渐变亮,观察多用电表表盘指针显示电阻阻值的情况,并记录.(4)用手掌(或黑纸)遮光时,观察多用电表表盘指针显示电阻阻值的情况,并记录.4.数据处理根据记录数据分析光敏电阻的特性.5.实验结论(1)光敏电阻在暗环境下电阻值很大,强光照射下电阻值很小.(2)光敏电阻能够把光照强弱这个光学量转换为电阻这个电学量.6.注意事项(1)实验中,如果效果不明显,可将电阻部分电路放入带盖的纸盒中,并通过盖上小孔改变射到光敏电阻上的光的多少来达到实验目的;(2)欧姆表每次换挡后都要重新调零.考点一温度传感器的应用例1 对温度敏感的半导体材料制成的某热敏电阻R T,在给定温度范围内,其阻值随温度的变化是非线性的.某同学将R T和两个适当的定值电阻R1、R2连成图2虚线框内所示的电路,以使该电路的等效电阻R L的阻值随R T所处环境温度的变化近似为线性的,且具有合适的阻值范围.为了验证这个设计,他采用伏安法测量在不同温度下R L的阻值,测量电路如图2所示,图中的电压表内阻很大.实验中的部分实验数据测量结果如表所示。

手机传感器有关的物理实验

手机传感器有关的物理实验

手机传感器有关的物理实验
传感器是一种能够检测外界信号,并将信号转换为电信号的装置。

手机传感器的应用非常广泛,从安全和方便到智能控制和视觉匹配都有它的存在。

因此,进行物理实验来研究手机传感器及其应用是非常有意义的。

首先,为了开展手机传感器的实验,我们需要一个可以模拟外界信号的装置,这就是给定手机传感器实验的前提。

其次,我们需要在实验中使用模拟器和传感器,以便能够模拟出正确的信号,从而得到正确的测量结果。

此外,应该使用计算机测量仪器给出的数据,以便可以测量被检测的传感器的准确度。

实验的一般步骤是,先使用模拟器模拟一组信号,然后将信号输入到手机传感器中,利用计算机测量仪器测量传感器检测到的信号。

接着,把测量结果和模拟器输出的信号作比较,从而得出测量结果的准确性。

最后,在统计分析的基础上,对各种不同条件下的测量结果进行总结,从而验证手机传感器的可靠性。

手机传感器的实验可以帮助我们了解如何有效地使用它们,而且这些实验结果也可以为与手机传感器相关的信号处理和算法设计提供重要参考。

因此,研究手机传感器及其应用是一项非常有意义的物理实验。

高中物理实验传感器的简单应用

高中物理实验传感器的简单应用

实验十三传感器的简单应用【教学目的】1、观察热敏电阻的阻值是如何随热信号而变化的。

2、观察光敏电阻的阻值是如何随光信号而变化的。

【教学重点】热敏电阻的阻值随热信号而变化的情况。

光敏电阻的阻值随光信号而变化的情况。

【教学难点】温度自动控制实验【实验原理】传感器是能将所感受到的物理量(如力、热,光、声等)转换成便于测量的量(一般是电学量)的一类元件,其工作过程是通过对某一物理量敏感的元件将感受到的信号按一定规律转换成便于利用的信号,转换后的信号经过相应的仪器进行处理,就可以达到自动控制的目的。

【注意事项】使用热敏电阻时,不要让其骤冷骤热,以免损坏。

【实验器材】1、学生电源,2、热敏电阻,3、光敏电阻,3、计数器,4、放大器,5、烧杯2 个,6、温度计,7、手电筒,8、水瓶,9、水桶,10 电壶。

【实验步骤】1、将热敏电阻两端与多用电表两表笔相连,接入有少量冷水并插有温度计的烧杯中,将组装成如图所示的实验装置。

将多用电表的选择开关置于欧姆档并选择适当的倍率,观察表盘所示热敏电阻的阻值。

分若干次向烧杯中倒入开水,,观察不同温度下热敏电阻阻值。

2、将光敏电阻和多用电表连接成如图所示的电路:将多用电表选择开关置于电阻朱的适当倍率上,用手电筒的光照射光敏电阻,观察电表指示的阻值。

3、观察光电计数的实验。

3、实验结论:热敏电阻的阻值随温度升高而变小,光敏电阻的阻值有光照时阻值变小。

【实验小结】该实验使用的电源只能用6V 的稳压电源,若改用甲电池或干电池,都会因为电流太大,而损坏放大器。

【作业布置】设计温度自动控制装置:要求温度升高自动报警。

普通物理II实验-实验八 电感位移传感器特性研究

普通物理II实验-实验八 电感位移传感器特性研究

实验八电感位移传感器特性研究【实验目的】1.了解电感位移传感器工作原理;2.测量自感式传感器特性;3.测量差动变压器式传感器特性。

【实验原理】1.自感式位移传感器当磁棒插入线圈中并发生位移时,回路自感的大小与这回路所围面积的磁链数有关,由于磁棒在外部的磁感线是发散的、密度较稀,在内部的磁感线密度很大,所以自感L随磁棒位移x而发生变化。

而自感式传感器是把被待测位移变化转换成自感L变化的一种传感器。

自感式传感器的自变量为L,电感测量常见方法有以下两种。

(1)RL分压法测电感图9.1(a)所示的RL分压法测量电感接线图,因为电感的电流落后电压90°,而串联电路流过的电流是相同的,所以电感的电流与电阻的电压同相位。

我们把电阻电压VR放在X轴上,则电感电压VL在Y轴正向。

因为串联电路流过的电流相同,所以我们可以把电流因子约去。

由图9.1(b)可知V R V i =√VR2+VL2=√1+(ωL/R)(1)L=Rω√(Vi/VR)2−1(2)所以,只要已知R、ω、Vi ,测量VR即可求出L。

(2)LC谐振电流法测量电感如图9.2所示,我们再在RL回路中串入一个电容C。

串联电路流过各元件的电流相同,但电容上的电压落后电流90°。

我们仍把电阻上的电压作为参考量放在x轴,那么,电容电压将位于y轴的负方向。

这样电容上的电压和电感上的电压都位于y轴且方向相反。

一种特殊情况下,无论电感和电容的值是多少,总能找到一个频率使得VC=VL,由图9.2(b)看出,在y方向上的合成量为零。

这种情况称之为谐振,此时回路电流为谐振电流,用取样电阻R就得到了取样电压,此时取样信号与信号源信号同相位且为最大值,利用这个特点,我们可以测量精确电感。

由VC=VL,约去电流因子我们有XC=XL,即ωL=1(3)ωC(4)L=1ω2C可以看出,只要信号源频率、电容C已知,L就可以计算。

这种测量方式避免了测量仪表直接加在被测元件上,对于小容量电容测量很有好处,由于是比较相位,所以特别灵敏。

2025高考物理总复习实验利用传感器制作简单的自动控制装置

2025高考物理总复习实验利用传感器制作简单的自动控制装置

二、实验:光控开关
1.功能
光控路灯可以根据光照的变化自动开启或关闭。利用光敏电阻设计电路,
在天色暗到一定程度时让路灯自动开启,而在天明时自动熄灭。
2.实验器材及电路图
可调电阻R1、光敏电阻RG、晶体三极管VT、发光二极管LED、限流电阻
R2、继电器、二极管D、小灯泡L、电源、开关、导线等。


3.实验原理
当环境光比较强时,光敏电阻RG的阻值很小,三极管不导通,发光二极管或
继电器所在的回路相当于断路,即发光二极管不工作;继电器处于常开状态,
小灯泡L不亮。当环境光比较弱时,光敏电阻RG的阻值变大,三极管导通,且
获得足够的基极电流,产生较大的集电极电流,点亮发光二极管或驱动继电
器吸合而点亮小灯泡L。
4.实验操作
得,E=U+ Rx=U+ (250-2F),当


F=100 N 时,Rx=50 Ω,此时电压表电压为 3 V,
定值电阻的阻值为 R=150 Ω,将 U=2 V 代入得 F=50 N。
图乙所示,则由此图像可知,随压力F的增大,力敏电阻Rx的阻值 减小 (选
填“增大”“减小”或“不变”)。


(3)该同学将这种力敏电阻Rx与一个量程为0~3 V的理想电压表按如图丙
所示电路改装成测量压力的仪表,已知电源E=4 V,内阻不计,为了使改装后
的压力表的量程为0~100 N,压力为100 N时对应电压表3 V的刻度,则定值
阻设计了一个“过热自动报警电路”,如图甲
所示(虚线框内的连接没有画出)。将热敏电
阻R安装在需要探测温度的地方,当环境温度
正常时,继电器的上触点接触,下触点分离,指
示灯亮;当环境温度超过某一值时,继电器的

大学物理实验温度传感器实验报告

大学物理实验温度传感器实验报告

大学物理实验_温度传感器实验报告大学物理实验报告:温度传感器实验一、实验目的1.学习和了解温度传感器的原理和应用。

2.掌握实验方法,提高实验技能。

3.探究温度变化对传感器输出的影响。

二、实验原理温度传感器是一种将温度变化转换为电信号的装置。

根据热敏电阻的阻值随温度变化的特性,当温度发生变化时,热敏电阻的阻值会相应地改变,从而输出与温度成比例的电信号。

常见的温度传感器有热电偶、热敏电阻等。

本实验采用热敏电阻作为温度传感器。

三、实验步骤1.准备实验器材:热敏电阻、数据采集器、恒温水槽、温度计、导线若干。

2.将热敏电阻置于恒温水槽中,连接导线至数据采集器。

3.将数据采集器与计算机连接,打开数据采集软件。

4.设置实验参数:采样频率、采样点数等。

5.将恒温水槽加热至预设温度,观察并记录实验数据。

6.改变恒温水槽的温度,重复步骤5。

7.对实验数据进行处理和分析。

四、实验结果与分析1.实验数据记录:在实验过程中,记录不同温度下的热敏电阻阻值和数据采集器的输出电压。

如下表所示:温度与数据采集器输出电压的关系图。

结果表明,随着温度的升高,热敏电阻阻值逐渐减小,数据采集器的输出电压逐渐增大。

这符合热敏电阻的特性。

3.误差分析:在实验过程中,可能存在以下误差来源:恒温水槽的温度波动、热敏电阻的灵敏度差异、导线连接不良等。

为了减小误差,可以采取以下措施:使用高精度温度计、提高导线连接的稳定性、多次测量取平均值等。

4.思考题:在本次实验中,我们采用了简单的数据采集器和热敏电阻进行温度测量。

在实际应用中,还可以通过其他方式进行温度测量,如采用单片机结合热敏电阻实现智能温度测量。

请思考:如何将热敏电阻与单片机连接?如何通过程序控制温度测量?如何实现温度数据的实时显示或传输?在实际应用中,还需要考虑哪些因素会影响测量精度?如何减小误差?五、结论与总结本实验通过热敏电阻和数据采集器测量了不同温度下的阻值和输出电压,验证了热敏电阻的阻值随温度变化的特性。

传感器的实验报告

传感器的实验报告

传感器的实验报告传感器的实验报告引言:传感器是一种能够将物理量或化学量转化为电信号的装置,广泛应用于各个领域。

本实验旨在通过对不同类型的传感器进行实验,了解其原理和应用。

实验一:温度传感器温度传感器是一种常见的传感器,用于测量环境或物体的温度。

本实验选择了热敏电阻作为温度传感器,通过测量电阻值的变化来间接测量温度。

实验中使用了一个简单的电路,将热敏电阻与电源和电阻相连接,通过测量电路中的电压来计算温度。

实验结果显示,随着温度的升高,电阻值逐渐下降,电压也相应变化。

这说明热敏电阻的电阻值与温度呈负相关关系。

实验二:压力传感器压力传感器用于测量物体受到的压力大小。

本实验选择了压电传感器作为压力传感器,通过压电效应将压力转化为电信号。

实验中,将压电传感器与一个振荡电路相连,当物体施加压力时,压电传感器会产生电荷,导致振荡电路频率的变化。

通过测量频率的变化,可以间接测量物体受到的压力。

实验结果显示,当施加压力时,频率逐渐增加,说明压电传感器的输出信号与压力呈正相关关系。

实验三:光敏传感器光敏传感器用于测量光线的强度或光照度。

本实验选择了光敏电阻作为光敏传感器,通过测量电阻值的变化来间接测量光照度。

实验中,将光敏电阻与一个电路相连,通过测量电路中的电压来计算光照度。

实验结果显示,随着光照度的增加,电阻值逐渐下降,电压也相应变化。

这说明光敏电阻的电阻值与光照度呈负相关关系。

实验四:湿度传感器湿度传感器用于测量环境中的湿度。

本实验选择了电容式湿度传感器作为湿度传感器,通过测量电容值的变化来间接测量湿度。

实验中,将电容式湿度传感器与一个电路相连,通过测量电路中的电容值来计算湿度。

实验结果显示,随着湿度的增加,电容值逐渐增加,说明电容式湿度传感器的输出信号与湿度呈正相关关系。

结论:通过本次实验,我们对不同类型的传感器进行了实验,了解了它们的原理和应用。

温度传感器、压力传感器、光敏传感器和湿度传感器分别用于测量温度、压力、光照度和湿度。

传感器的应用实验报告_基础物理实验

传感器的应用实验报告_基础物理实验

试验 33 传感器原理及应用【试验目的】1.了解传感器的工作原理。

2.把握声音、电压等传感器的使用方法。

3.用基于传感器的计算机数据采集系统争论电热丝的加热效率。

【试验仪器】PASCO 公司750 传感器接口1 台,温度传感器1 只,电流传感器1 只,电压传感器1 只,声音传感器1 只,功率放大器1 台,电阻1 只(1kΩ),电容1 只〔非电解电容,参数不限〕,二极管1只〔非稳压二极管,参数不限〕,导线假设干。

【安全留意事项】1.插拔传感器的时候需沿轴向平稳插拔,制止上下或左右摇动插头,否则易损坏750 接口。

2.严禁将电流传感器(Current sensor)两端口直接接到750 接口或功率放大器的信号输出端,使用时必需串联300Ω以上的电阻。

由于电流传感器的内阻很小,直接接信号输出端则电流很大,极易损坏。

3.测量二极管特性时必需串联电阻,由于二极管的正向导通电压小于1V,不串联电阻则电流很大,简洁烧毁,也易损坏电流传感器。

【原理概述】传感器有时亦被称为换能器、变换器、变送器或探测器,是指那些对被测的某一物理量、化学量或生物量的信息具有感受与检出功能,并使之依据肯定规律转换成与之对应的有用输出信号的元器件或装置。

为了与现代电子技术结合在一起,通常都转换为电信号,特别是电压信号,从而将各种理化量的测量简化为统一的电压测量,易于进一步利用计算机实现各种理化量的自动测量、处理和自动掌握。

现在,传感技术已成为衡量一个国家科学技术进展水平的重要标志之一,与信息技术、计算机技术并称为支撑整个现代信息产业的三大支柱。

有关传感器的争论也得到深入而广泛的关注,在中国期刊全文数据库中可检索到超过2 万篇题目中包含“传感器”三字的论文。

因此,了解并把握一些有关传感器的基杠工作原理及特性的学问是格外重要的。

1.传感器根本构造及分类传感器一般是利用物理、化学和生物等学科的某些效应或机理依据肯定的工艺和构造研制出来的,因此不同传感器的组成细节有较大差异。

【高中物理DIS通用实验】实验15:用光电门传感器测自由落体的加速度

【高中物理DIS通用实验】实验15:用光电门传感器测自由落体的加速度

实验十五 用光电门传感器测自由落体的加速度
实验目的
测量自由落体的加速度。

实验原理
由v t 2-v 02=2as ,得加速度a =v t
2-v 0
22s
; 把铁皮加工成如图15-1所示的挡光片,作为自由落体。

设挡光片的两前沿距离为s ,挡光片上下两叉的宽度都为L 0(用卡尺精确测量),两叉挡光时间分别为t 1、t 5。

由于L 0足够
小,故认为两叉通过光电门的瞬时速度分别是v 0=L 0t 1 、v t =L 0t 5
,本次实验L 0=0.01m ,s =0.1m 。

亦可将透明有机玻璃片按固定间隔涂黑制成图15-2所示的挡光片。

实验器材
朗威DISLab 、计算机、铁架台、挡光片。

实验装置图
见图15-3。

实验过程与数据分析
1.将光电门传感器用转接器固定在铁架台,保持其水平并接入数据采集器第一通道;
2.打开“计算表格”,选择“自动记录”,点击“开始”;
图15-3实验装置图 图15-1工字型挡光片 图15-2挡光片
3.自光电门传感器上方释放挡光片,使其垂直下落,并确保挡光片上下两叉顺利通过光电门并挡光;
4.点击“结束”,增加变量“t5”,复制t1中第二行的值并粘贴到变量“t5”的第一行;
5.输入自由表达式“g=((0.01/ t5)^2-(0.01/t1)^2)/0.2”,得到第一行的计算结果即为自由落体加速度;
6.重复步骤2-5,得到一组实验数据(图15-4)。

对照实验结果与实验地重力加速度实际值,可见相对误差为2~3%。

图15-4 重力加速度测量结果。

温度传感器物理实验

温度传感器物理实验

温度传感器物理实验《神奇的温度传感器物理实验》嘿,同学们!你们知道吗?前几天我们在学校里做了一个超级神奇的物理实验——温度传感器实验!那可真是太有趣啦!那天,老师带着我们走进实验室,桌上摆满了各种各样的仪器,其中最引人注目的就是那个小小的温度传感器啦!它看起来普普通通的,就像一个小零件,谁能想到它有那么大的本事呢?老师先给我们讲了讲温度传感器的原理,可我一开始听得云里雾里的。

我心里直犯嘀咕:“这到底是个啥呀?能有那么神奇?”不过,随着老师深入浅出的讲解,我渐渐有点明白了。

老师说:“同学们,就好比我们的身体能感觉到热和冷,这个温度传感器也能‘感觉’到温度的变化,然后把这些变化转化成数字或者信号告诉我们。

” 这多像我们的眼睛能看到东西,耳朵能听到声音呀!实验开始啦!老师把温度传感器放进一杯热水里,哇塞!旁边的电脑屏幕上数字蹭蹭地往上涨,就好像在赛跑一样。

“这也太神奇了吧!”我忍不住叫了出来。

接着,老师又把它放进了冰水里,数字又像坐滑梯一样迅速下降。

“哎呀,这变得也太快啦!”旁边的小明惊讶地张大了嘴巴。

然后,我们分组自己动手做实验。

我和同桌小李一组,我们把温度传感器一会儿放在阳光下,一会儿又放在阴凉处,看着数字不停地变化,兴奋极了。

“小李,你说这温度传感器要是能装在咱们家里,那不就能随时知道家里的温度啦?”我好奇地问。

小李眨眨眼睛说:“那可不,说不定还能自动调节空调温度呢!”我们又把温度传感器放在了自己的手心里,感受着数字因为我们体温的变化而变化。

“哈哈,这感觉就像我们掌握了温度的秘密!”我笑着说。

实验结束后,我一直在想,这小小的温度传感器居然有这么大的作用。

它就像一个神奇的小精灵,能告诉我们温度的秘密。

这不就像我们的生活吗?有时候一些看起来不起眼的东西,却有着大大的能量。

温度传感器虽然小,但它能让我们更加了解这个世界,让我们的生活变得更美好。

所以呀,我们可不能小瞧任何一个小小的事物,说不定它们都藏着大大的惊喜呢!你们说是不是?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海市中小学数字化实验系统研发中心 山东省远大网络多媒体有限责任公司
1
朗威®DISLab V6.0
实验实例
目录
1、静摩擦力研究…………………………………….……………………………………………P5 2、滑动摩擦力研究……………………………………….………………………………………P5 3、重力大小与质量的关系…………………………….…………………………………………P7 4、力的合成与分解……………………………………………………………………………P7 5、研究匀速直线运动……………………………………………….……………………………P8 6、研究匀加速直线运动………………………………………….……………………………P10 7、平均速度的测量…………………………………………….………………………………P11 8、平均速度与瞬时速度的关系……………………………………………………….………P12 9、加速度的测量………………………………………………………………………………P13 10、加速度与拉力的关系 ……………………….……………………………………………P15 11、加速度与质量的关系……………………………….......………..…………………………P16 12、牛顿第三定律………………………….……………………………………………………P17 13、浮力的相互作用……………………………….……………………………………………P18 14、用位移传感器研究自由落体运动………………………….………………………………P19 15、用光电门传感器测自由落体的加速度…………………….………………………………P21 16、超重与失重……………………………………………….…………………………………P22 17、动量定理(恒力)…………………………………….…..…………………………………P22 18、动量定理(变力)……………………………………………….……………………………P24 19、动量守恒定律……………………………………….………………………………………P26 20、功和能……………………………………………….………………………………………P28 21、观察碰撞中的动能………………………………….………………………………………P30 22、机械能守恒定律(斜轨法)…………………………………………….……………………P31 23、机械能守恒定律(摆球法)…………………………………………….……………………P33 24、单摆的振动图像…………………………………….………………………………………P34 25、阻尼振动…………………………………………….………………………………………P35 26、简谐振动的相位…………………………………….………………………………………P35 27、简谐波的叠加………………………………………….……………………………………P36 28、弹簧振子的振动图像………………………………….……………………………………P37 29、弹簧振子位移与弹簧受力关系……………….……………………………………………P38 30、受迫振动……………………………………………….……………………………………P39 31、单摆周期的测量……………………………………….……………………………………P41 32、单摆法测重力加速度………………………………….……………………………………P42 33、向心力研究…………………………………………….……………………………………P42 34、胡克定律……………………………………………….……………………………………P44 35、研究定滑轮与动滑轮………………………………….……………………………………P45 36、声波的振动图像……………………………………….……………………………………P46 37、噪声的波形…………………………………………….……………………………………P46 38、频率与音调的关系…………………………………….……………………………………P47 39、振幅与响度的关系………………………………….………………………………………P47 40、声波干涉………………………………………….…………………………………………P48 41、声波的合成……………………………………….…………………………………………P48 42、声音的共鸣……………………………………….…………………………………………P49
2
上海市中小学数字化实验系统研发中心 山东省远大网络多媒体有限责任公司
朗威®DISLab V6.0
实验实例
43、水在加热过程中的温度曲线…………………….…………………………………………P50 44、液体蒸发使温度下降………………………………………………………………………P50 45、摩擦做功使温度升高………………………………………………………………………P51 46、气体压缩温度升高…………………………………………………………………………P52 47、红外线热效应………………………………………………………………………………P52 48、热辐射研究…………………………………………………………………………………P53 49、热传导………………………………………………………………………………………P55 50、水的冷却规律………………………………………………………………………………P56 51、热胀冷缩……………………………………………………………………………………P57 52、固体熔化时温度的变化规律………………………………………………………………P57 53…………………P58 54、液体内部压强………………………………………………………………………………P59 55、阿基米德定律………………………………………………………………………………P60 56、玻意耳定律…………………………………………………………………………………P61 57、查理定律……………………………………………………………………………………P63 58、串联电路中电流的规律……………………………………………………………………P63 59、并联电路中电流的规律……………………………………………………………………P64 60、串联电路中电压的规律……………………………………………………………………P64 61、电流的热效应与电阻的关系………………………………………………………………P65 62、电容充放电与串并联………………………………………………………………………P66 63、欧姆定律……………………………………………………………………………………P67 64、导体的伏安特性……………………………………………………………………………P69 65、伏安法测金属丝的电阻率…………………………………………………………………P70 66、伏安法测电池的电动势和内阻……………………………………………………………P70 67、补偿法测量电池电动势……………………………………………………………………P71 68、研究电源的输出功率与电源效率…………………………………………………………P72 69、描绘小灯泡的伏安特性曲线………………………………………………………………P73 70、小电机的伏安特性曲线……………………………………………………………………P75 71、分压与限流电路……………………………………………………………………………P76 72、恒压源 恒流源……………………………………………………………………………P77 73、伏安法测电阻……………………………………………………….……………………...P78 74、复杂电路分析(一、二)………………………………………….………………………P79 75、用磁传感器研究地球磁场…………………………………………………………………P80 76、通电螺线管的磁感强度测量………………………………………………………………P81 77、匀强磁场研究………………………………………………………………………………P82 78、通电螺线管的磁感强度与电流的关系……………………………………………………P83 79、直线电流的磁场……………………………………………………………………………P84 80、安培力测量…………………………………�
朗威®DISLab V6.0
实验实例
欢迎使用朗威®DISLab 愿我们共同开启实验教学的数字化时代
朗威®数字化信息系统实验室(DISLab)
llongwill® Digital Information System Laboratory
V6.0 物理实验实例
上海市中小学数字化实验系统研发中心 山东省远大网络多媒体有限责任公司 2007 年 9 月
相关文档
最新文档