2019-2020-1复变函数与积分变换A卷

合集下载

2019年4月自考工程数学—复变函数与积分变换考前试题和答案02199

2019年4月自考工程数学—复变函数与积分变换考前试题和答案02199

2019年4月自考《工程数学—复变函数与积分变换》考前试题和答案02199一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

第1题【正确答案】 B【你的答案】本题分数2分第2题【正确答案】 C【你的答案】本题分数2分第3题A. 解析的B. 可导的C. 不可导的D. 即不解析也不可导【正确答案】 B【你的答案】本题分数2分第4题复数-1+i的模是()【正确答案】 D【你的答案】本题分数2分第5题【正确答案】 D【你的答案】本题分数2分第6题【正确答案】 D【你的答案】本题分数2分第7题函数f(t)=tcoskt的拉氏变换为()【正确答案】 B【你的答案】本题分数2分第8题 2-i的模是()【正确答案】 D【你的答案】本题分数2分第9题A. 等于0B. 等于1C. 等于iD. 不存在【正确答案】 C【你的答案】本题分数2分第10题【正确答案】 B二、填空题(本大题共6小题,每小题2分,共12分)请在每小题的空格中填上正确答案。

错填、不填均无分。

___第1题题中横线处答案为:【正确答案】【你的答案】修改分数本题分数2分你的得分___第2题题中横线处答案为:【正确答案】 1/asinat【你的答案】本题分数2分修改分数你的得分第3题 |z-2i|=|z+2|所表示的曲线的直角坐标方程是___.【正确答案】 x=-y【你的答案】修改分数本题分数2分你的得分___第4题题中横线处答案为:【正确答案】【你的答案】修改分数本题分数2分你的得分第5题题中横线处答案为:___【正确答案】 -4πi【你的答案】修改分数本题分数2分你的得分___第6题题中横线处答案为:【正确答案】三、计算题(本大题共8小题,共52分)第1题【正确答案】【你的答案】本题分数6分你的得分修改分数第2题【正确答案】【你的答案】本题分数6分你的得分修改分数第3题【正确答案】【你的答案】本题分数6分你的得分修改分数第4题【正确答案】【你的答案】本题分数6分你的得分修改分数第5题【正确答案】【你的答案】本题分数6分你的得分修改分数第6题【正确答案】【你的答案】本题分数6分你的得分修改分数第7题【正确答案】【你的答案】本题分数6分你的得分修改分数第8题【正确答案】【你的答案】四、综合题(下列3个小题中,第1题必做,第2、3题中只选做一题。

复变函数练习册(全套)

复变函数练习册(全套)

第一章 复数与复变函数一、选择题1.当iiz -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1-2.设复数z 满足arg(2)3z π+=,5arg(2)6z π-=,那么=z ( )(A )i 31+- (B )i +-3 (C )i 2321+-(D )i 2123+- 3.一个向量顺时针旋转3π,对应的复数为i 31-,则原向量对应的复数( )(A )2 (B )i 31+ (C )i -3 (D )i +3 4.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 5.方程232=-+i z 所代表的曲线是( )(A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周6.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( )(A )),(y x u 在),(00y x 处连续 (B )),(y x v 在),(00y x 处连续 (C )),(y x u 和),(y x v 在),(00y x 处连续 (D )),(),(y x v y x u +在),(00y x 处连续学号:____________ 姓名:______________ 班级:_____________二、填空题1.设)2)(3()3)(2)(1(i i i i i z ++--+=,则=z2.设)2)(32(i i z +--=,则=z arg3.复数22)3sin 3(cos )5sin 5(cos θθθθi i -+的指数表示式为4.方程i z i z +-=-+221所表示的曲线是连接点 和 的线 段的垂直平分线5.=+++→)21(lim 421z z iz三、将下列复数化为三角表达式和指数表达式:(1)i (2)13i -+四、求下列各式的值: (1)5(3)i - (2)100100(1)(1)i i ++- (3)1i +五、解方程:5()1z i +=六、设复数1≠z ,且满足,1||=z ,试证21]11Re[=-z .七 、证明复平面上的直线方程可写成:0,(0a z a z c a ++=≠其中为复常数,c 为实常数)八、证明复平面上的圆周方程可写成:0,(z z a z az c a +++=其中为复常数,c 为实常数)九 、函数1w z=把下列z 平面上的曲线映成w 平面中的什么曲线? (1) yx = (2) 224x y +=十、)0(),(21)(≠-=z zzz z i z f 试证当0→z 时)(z f 的极限不存在。

最新复变函数与积分变换期末考试试卷(A卷)

最新复变函数与积分变换期末考试试卷(A卷)

复变函数与积分变换期末考试试卷(A 卷)一、单项选择题(本大题共15小题,每小题2分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.下列复数中,位于第四象限的复数是( )A. 4+3iB. -3-3iC.-1+3iD.5-3i 2.下列等式中,不成立的等式是( ) A. z·z =Re (z·z ).arg(3)arg()B i i -=- .rg(3)arg(3)C A =2.||D z z z ⋅=3.不等式 ||3z > 所表示的区域为( ) A. 圆的外部B.上半平面C. 角形区域D.圆的内部4.积分||322z dz z =-⎰的值为( )A. 8i πB.2C. 2i πD. 4i π 5.下列函数中,在整个复平面上解析的函数是( ).z A z e +.sin z B z e + .tan z C z e + .R e ()s i n D z z+6.在复平面上,下列命题中,错误..的是( )A. cosz 是周期函数B. ze 是解析函数.cos sin iz C e z i z =+.||D z =7.在下列复数中,使得ze =成立的是( ).ln 224iA z i ππ=++.ln 424iB z i ππ=++.ln 22C z i π=+.l n 42D z iπ=+ 8.设C 为正向圆周1||=z , 则积分 cos z c e dzz⎰等于( )A .2πB .2πiC .0D .-2π 9.设C 为正向圆周||2z =, 则21(1)C dz z i --⎰等于( )A.i21π B. 0 C.i 2πD.2i π-10.以下关于级数的命题不正确的是( )A.级数0327nn i ∞=+⎛⎫⎪⎝⎭∑是绝对收敛的B.级数212(1)n n in n ∞=⎛⎫+ ⎪-⎝⎭∑是收敛的 C.级数01(1)2n n n i n ∞=⎛⎫-+ ⎪⎝⎭∑是收敛的D.级数212n n i n ∞=⎛⎫+ ⎪⎝⎭∑是收敛的11.已知31z i =+,则下列正确的是( )12.iA z π=34.iB z eπ=712.i C z π=3.iD z π=12.下列关于幂级数的叙述,不正确 的是( ) A.在收敛圆内,幂级数绝对收敛 B.在收敛圆外,幂级数发散 C.在收敛圆周上,可能收敛,也可能发散 D.在收敛圆周上,条件收敛13.0=z 是函数sin z e z z的( )A.本性奇点B.一级极点C.二级极点D.可去奇点14.cos z zz π-在点 z π= 处的留数为( ) A. π-.B πC.1D. -115.关于0Im lim z zzω→=下列命题正确的是( )A.0ω=B. ω不存在C.1ω=-D.1ω=二、填空题(本大题共5小题,每小题2分,共10分)16.sincos 33z i ππ=+复数的三角形式为____________. 17. 已知22()()()f z x ay x i bxy y =++++在复平面上可导,则a b +=_________. 18. 设函数)(z f =3zt te dt ⎰,则)(z f 等于____________.19. 幂极数n n2n 1(-1)z n∞=∑的收敛半径为_______.20.设121,1z i z =-+=,求12z z ⎛⎫=⎪⎝⎭____________.三、计算题(本大题共4小题,每题7分,共28分) 21.设C 为从原点到2+3i 的直线段,计算积分[(2)]CI x y ixy dz =-+⎰22. 设2()cos 4ze f z z z=+-. (1)求)(z f 的解析区域,(2)求).(z f '23. 将函数1()(1)(2)f z z z =--在点0=z 处展开为泰勒级数.24. 将函数112()(1)z ef z z -=-在圆环0|1|z <-<∞内展开成洛朗级数.四、综合题(共4小题,每题8分,共32分)25.已知22(,)2u x y x y x =-+,求一解析函数()(,)(,)f z u x y iv x y =+,并使(0)2f i =。

复变函数积分变换复习卷及答案

复变函数积分变换复习卷及答案

复变函数复习卷及参考答案一、填空题1、复数1z i =+的三角表示式=2(cossin )44i pp+;复指数表示式=42ie p 。

2、复数()13z i =+的z =2;23Argz k pp =+;arg 3z p=;13z i =-。

3、62111i i i -æö==-ç÷+èø。

10125212131i i i i i +-=+-=-。

4、()()31123513253x y i x i y i x y +=ì++-=-Þí-=-î,求解方程组可得,45,1111x y -==。

5、()()231,f z z z =-+则()61f i i ¢-=--。

6、()n3L i -ln 226i k i pp =-+;ln()ie 12i p=+。

7、()(2)1321,(13)2ik i iiee i p p p -++==+。

8、32282(cossin)33k k i p pp p++-=+;0,1,2k =。

1224(4)2i i -==±。

9、1sin 2e e i i --=;221cos ()22i e e pp p -=+;10 、21024z dzz z ==++ò ;1212z dz i z p ==-ò 。

11、设31cos ()zf z z -=,则0z =是(一级极点);31cos 1Re [,0]2z s z -=。

1()s i n f z z=,0z =是本性奇点。

二、判断下列函数在何处可导?何处解析?在可导处求出导数。

(1)()22f z x iy=+;解:22,,2,0,0,2u u v v u x v y x y xyxy¶¶¶¶======¶¶¶¶,一阶偏导连续,因此当,x y y x u v u v ==-时,即x y =时可导,在z 平面处处不解析。

《复变函数与积分变换》试题

《复变函数与积分变换》试题

南京信息工程大学试卷 学年 第 2学期 复变函数与积分变换 课程试卷本试卷共4页;考试时间 120 分钟;任课教师 ;出卷时间 年 月 系 电子信息工程(本科)专业 年级 班 学 号 姓名 得分一、单项选择题(本大题共5小题,每小题2分,共10分)1.设f(x)=lnx ,且函数ϕ(x)的反函数1ϕ-2(x+1)(x)=x-1,则[]ϕ=f (x)( ) ....A B C D x-2x+22-x x+2 ln ln ln ln x+2x-2x+22-x2.()002lim 1cos tt x x e e dt x -→+-=-⎰( )A .0B .1C .-1D .∞ 3.设00()()y f x x f x ∆=+∆-且函数()f x 在0x x =处可导,则必有( ) 0.lim 0.0.0.x A y B y C dy D y dy ∆→∆=∆==∆= 4.设函数,131,1x x x ⎧≤⎨->⎩22x f(x)=,则f(x)在点x=1处( )A.不连续B.连续但左、右导数不存在C.连续但不可导D. 可导5.设C +⎰2-x xf(x)dx=e ,则f(x)=( )2222-x -x -x -x A.xe B.-xe C.2e D.-2e二、填空题(本大题共10小题,每空3分,共30分)6.设函数f(x)在区间[0,1]上有定义,则函数f(x+14)+f(x-14)的定义域是__________. 7.()()2lim 1_________n n a aq aq aq q →∞++++<= 8.arctan lim _________x x x→∞= 9.已知某产品产量为g 时,总成本是2g C(g)=9+800,则生产100件产品时的边际成本100__g ==MC10.函数3()2f x x x =+在区间[0,1]上满足拉格朗日中值定理的点ξ是_________.11.函数3229129y x x x =-+-的单调减少区间是___________.12.微分方程3'1xy y x -=+的通解是___________.13.设2ln 2,61t a dta e π==-⎰则___________.14.设2cos xz y =则dz= _______.15.设{}2(,)01,01y DD x y x y xe dxdy -=≤≤≤≤=⎰⎰,则_____________.三、计算题(一)(本大题共5小题,每小题5分,共25分)16.设1xy x ⎛⎫= ⎪⎝⎭,求dy.17.求极限0ln cot lim ln x x x+→18.求不定积分()()1.51ln 51dx x x ++⎰19.计算定积分I=220.a a x dx -⎰20.设方程2z x 2e 1y xz -+=确定隐函数z=z(x,y),求','x y z z 。

复变函数与积分变换A考试大纲

复变函数与积分变换A考试大纲

6、熟练掌握解析函数的求导公式 f ( z ) ux iv x , 会把一个解析函数表示为 z 的函数; 7等式或不等式; 8、理解并掌握支点、支割线定义;熟练掌握把(幂)函数 w
n
p( z ), p( z ) [ z ], 分解为单值解
析分支的方法(见课堂讲义或 钟玉泉 版 复函教材相关部分,较高要求) ; 9、理解并掌握指数函数、幂函数的几何意义(与第六章保形映射关系) 第三章 复变函数的积分 考试范围与内容: 第 1 节 柯西定理 复变函数积分的定义、计算方法、基本性质(P41-42) ;单连通区域上柯西积分定理(条件、结论) (了解定理产生的背景、古萨证明用到的技术和思想方法:闭集套定理、有限覆盖定理、逼近和化 归的思想方法等; ) ;柯西积分定理推广情形(定理 3.1’) ;积分的路径无关性、原函数存在定理与 不定积分;广义的牛顿-莱布尼兹公式;复多连通区域的柯西积分定理-复合闭路定理(条件、结论 与等价形式) 、n=1 情形,闭路变形原理 第 2 节 柯西公式 柯西积分公式(积分形式、使用条件) ;高阶导数公式(积分形式、使用条件,结论 -解析函数有任 意阶导数) ;柯西不等式;刘维尔定理;解析函数的平均值定理与最大模原理; Morera 定理(柯西 定理的逆定理) (条件、结论) 重点难点及要求 1、复积分的计算方法:

C
f ( z )dz udx vdy i vdx udy f ( z(t ))z (t )dt , C : z z(t )
c c


t , 熟练掌握复积分与实积分的关系、一般计算方法(转换为实的曲线积分,或曲线参数方
程计算) ; 2、理解并掌握单连通区域的柯西积分定理(条件、结论) 、推广情形及应用; 3、理解解析函数的不定积分概念,会利用广义牛顿-莱布尼兹公式计算与路径无关的积分; 4、理解并掌握复合闭路定理(条件、结论) 、闭路变形原理;能熟练使用复合闭路定理计算带有两 个或以上有限个奇点的闭路积分(注意和第五章留数定理的关系) ; 5、熟练掌握和应用柯西积分公式与柯西高阶导数公式,理解柯西积分公式的几何意义(边界函数值 与内部函数值的关系-特例:解析函数平均值定理) ; 6、掌握柯西不等式、刘维尔定理、最大模原理,并能用它们做一些简单证明题.(较高要求); 7、理解和掌握函数解析的充分条件:Morera 定理; 8、综合第 1-5 章,总结计算各种积分的计算方法并举例(请同学们自己完成) 第四章 级数 考试范围与内容: 第 1 节 级数和序列的基本性质 复数数列概念及敛散性定义、与实部,虚部实数数列敛散性的关系;复数项级数概念及敛散性(部 分和数列、与实部和虚部相应实级数敛散性关系) ;复级数的柯西收敛准则;级数收敛的必要条件; 绝对收敛定义及性质;收敛、条件收敛和绝对收敛的关系;数项级数的柯西乘积;复变函数列(级 数)的敛散性、一致收敛的复函数列(级数)及其和函数的性质(连续性、 (逐项)可积性) ;内闭 一致收敛于逐项可微性;复函数项级数一致收敛的维尔斯特拉斯判别法(优级数判别法) ;幂级数定 义及收敛域;Abel 定理;幂级数收敛域结构(收敛圆) ;收敛半径的计算(达朗贝尔-柯西-阿达玛 公式) ;幂级数和函数的解析性(定理 3.4) ;收敛、绝对收敛、内闭一致收敛,一致收敛的关系(见

《复变函数与积分变换》课程考试模拟试卷A及答案

《复变函数与积分变换》课程考试模拟试卷A及答案

机 密★启用前大连理工大学网络教育学院2014年3月份《复变函数与积分变换》课程考试模 拟 试 卷考试形式:闭卷 试卷类型:(A )☆ 注意事项:本考卷满分共:100分;考试时间:90分钟。

学习中心______________ 姓名____________ 学号____________一、单项选择题(本大题共10小题,每小题2分,共20分)1、已知iii z +--=131,则=z Re ( )A 、0B 、21-C 、23-D 、无法确定2、下列函数中,为解析函数的是( ) A 、xyi y x 222--B 、xyi x +2C 、)2()1(222x x y i y x +-+-D 、33iy x +3、设2,3z i z =+=ω,则=ωarg ( )A 、3π B 、6π C 、6π-D 、3π-4、2)1()1()31(-+--=i i i z 的模为( )A 、0B 、1C 、2D 、25、=-⎰=-dz z e z z1|2|2( ) A 、e 2B 、e π2C 、22e πD 、i e 22π6、C 为正向圆周:2||=z ,则=-⎰dz z z e C z2)1(( )A 、i πB 、i π2C 、i π-D 、i π47、将点1,,1-=i z 分别映射为点0,1,-∞=ω的分式线性变换为( ) A 、11-+=z z ω B 、zz -+=11ω C 、zz e i-+=112πωD 、112-+=z z eiπω 8、0=z 是3sin zz的极点,其阶数为( ) A 、1B 、2C 、3D 、49、以0=z 为本性奇点的函数是( ) A 、zzsin B 、2)1(1-z zC 、ze 1D 、11-z e 10、设)(z f 的罗朗展开式为 +-++-+-+----nz n z z z z )1()1(2)1(11)1(222,则 =]1),([Re z f s ( )A 、-2B 、-1C 、1D 、2二、填空题(本大题共10小题,每小题3分,共30分)1、=-i33____________________________________2、设C 为正向单位圆周在第一象限的部分,则积分=⎰zdz z C3)(_________。

2019-2020-1复变函数与积分变换A卷答案

2019-2020-1复变函数与积分变换A卷答案
河南科技大学
2019 至 2020 学年复变函数与积分变换第一学期试卷(A 卷)
标准答案及评分标准
一、判断题(2 分×4=8 分)
1.×
2.×
3.×
二、选择题(2 分×5=10 分)
1.B
2.D
3.C
三、填空题(2 分×5=10 分)
1. 1 + 1 i 22
2.∞ 3.一阶极点(或简单极点)
4.√ 4.B
对(1)两边求 y 的积分,可得 v= 6x dy x = 6xy x (3)
再对(3)两边同时求 x 的偏导,对比(2)可得, x =0, x C
从而 v= 6xy C , f z = 3y2 3x2 i 6xy C
由于 f (0) 2i ,故 C=-2,
f z = 3y2 3x2 i 6xy 2 3z2 2i
4. 3t 2
5.C
5. f (t)e jtdt
四、计算题(8 分×4=32 分)
1.(8 分)解:方程即为 z3 1 i=
2
cos
3 4
isin
3 4
根据 3 次方根公式可得:
1
z (1 i)3
2
3
1 3
cos
4
2k 3
3 isin 4
2k 3
, k 0,1,2
1
1 s
4
因此我们有
y(t) =L1 Y (s) 1 1 et 1 e4t
4 3 12
所以方程有 3 个根,对应于 k=0,1,2 分别为
z
6
2
cos
4
i
sin
4
,
6
2
cos
11 12

复变函数与积分变换五套试题及答案

复变函数与积分变换五套试题及答案

复变函数与积分变换试题(一)一、填空(3分×10)1.的模 ,幅角 。

)31ln(i --2.-8i 的三个单根分别为: ,,。

3.Ln z 在 的区域内连续。

4.的解极域为:。

z z f =)(5.的导数。

xyi y x z f 2)(22+-==')(z f 6.。

=⎥⎦⎤⎢⎣⎡0,sin Re 3z z s 7.指数函数的映照特点是:。

8.幂函数的映照特点是:。

9.若=F [f (t )],则= F 。

)(ωF )(t f )][(1ω-f 10.若f (t )满足拉氏积分存在条件,则L [f (t )]=。

二、(10分)已知,求函数使函数为解析函222121),(y x y x v +-=),(y x u ),(),()(y x iv y x u z f +=数,且f (0)=0。

三、(10分)应用留数的相关定理计算⎰=--2||6)3)(1(z z z z dz四、计算积分(5分×2)1.⎰=-2||)1(z z z dz2. C :绕点i 一周正向任意简单闭曲线。

⎰-c i z z3)(cos 五、(10分)求函数在以下各圆环内的罗朗展式。

)(1)(i z z z f -=1.1||0<-<i z 2.+∞<-<||1i z 六、证明以下命题:(5分×2)(1)与构成一对傅氏变换对。

)(0t t -δo iwt e -(2))(2ωπδ=⎰∞+∞-ω-dt e t i 七、(10分)应用拉氏变换求方程组满足x (0)=y (0)=z (0)=0的解y (t )。

⎪⎩⎪⎨⎧='+=+'+='++'0401z y z y x z y x 八、(10分)就书中内容,函数在某区域内解析的具体判别方法有哪几种。

复变函数与积分变换试题答案(一)一、1., 2.-i 2i -i22942ln π+ππk arctg 22ln 32+-333.Z 不取原点和负实轴 4. 空集5.2z 6.07.将常形域映为角形域8.角形域映为角形域9.10.⎰∞+∞-ωωπωωd e F i )(21⎰∞+-0)(dte tf st 二、解:∵∴(5分)yu x x v ∂∂-=-=∂∂xuy y v ∂∂==∂∂c xy u +=cxy y x i z f ++⎪⎭⎫ ⎝⎛+-=222121)(∵f (0)=0c =0(3分)∴(2分)222222)2(2)(2)(z ixyi y x i y x i xy z f -=+--=--=三、解:原式=(2分)⎥⎦⎤⎢⎣⎡--∑=k k z z z z s i ,)3)(1(1Re 2621π01=z 12=z (2分)⎥⎦⎤⎢⎣⎡---=∑=k k z z z z s i ,)3)(1(1Re 2643π33=z ∞=4z 2312(3,)3)(1(1Re 66⨯=⎥⎦⎤⎢⎣⎡--分)z z z s =0⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅--=⎥⎦⎤⎢⎣⎡∞--0,1)31)(11(11Re 2,)3)(1(1Re 266z z z z s z z z s 分)(∴原式=(2分) =23126⨯⨯i πi 63π-四、1.解:原式(3分)z 1=0z 2=1⎥⎦⎤⎢⎣⎡-π=∑=k k z z z s i ,)1(1Re 221=0(2分)]11[2+-=i π2.解:原式=iz z i=''=s co !22πi z z i =-π=)(cos i i cos π-=1ich π-五、1.解:ni z z f ∑∞⎪⎫⎛--⋅=⋅⋅=⋅=1111111111)(分)(分)(分)((2分)11)(--∞=-=∑n n n i z in nn i z i )(1-=∑∞-=2.解:⎪⎭⎫⎝⎛-+⋅-=-+⋅-=i z i i z i z i i z z f 11)(11)(1)(11)(2分)(分)((1分)(2分)nn i z i i z ∑∞=⎪⎭⎫ ⎝⎛---=02)(120)(11+∞=-=∑n n n i z i 20)(--∞=-=∑n n n i z i 六、1.解:∵(3分)∴结论成立0)(0t i e t t ti t i e dt e t t ωωωδ-==--∞+∞-=-⎰(2)解:∵(2分)1)(2210==ωπδπ=ωω-ω-∞+∞-⎰t i t i e dw e ∴与1构成傅氏对)(2w πδ∴(2分))(2ωπδω=-∞+∞-⎰dt e t i 七、解:∵(3分)⎪⎪⎩⎪⎪⎨⎧=+=++=++)3(0)(4)()2(0)()()()1(1)()()(s sZ s Y s Z s sY s X S s sZ s Y s sX S (2)-(1):∴(3分)⎪⎭⎫ ⎝⎛-⋅-=s s s Y 111)(2⎪⎭⎫ ⎝⎛++--=--=1111211112s s s s s s ∴cht e e t Y t t -=--=-121211)(八、解:①定义;②C-R 充要条件Th ;③v 为u 的共扼函数10分复变函数与积分变换试题(二)一、填空(3分×10)1.函数f (z )在区域D 内可导是f (z )在D 内解析的()条件。

复变函数与积分变换试题及解答

复变函数与积分变换试题及解答

复变函数与积分变换试题系别班级学号姓名得分评卷人-------------- 一、填空(每题3分,共24分)1.(上£1严的实部是 _______ ,虚部是________ ,辐角主值是______1-V3/2.满足lz + 21 + lz-2K5的点集所形成的平面图形为,该图形是否为区域—.3. 7(z)在福处可展成Taylor级数与/(%)在处解析是否等价? .4. (l + i)i的值为______________________________________________主值为.5.积分,的值为 _____________ ,f '—dz. = ________ .Juw z J izi=2 4)a--)"1 -L6.函数J (z)=——7"-3在Z =。

处Taylor展开式的收敛半径是 ______ .z-l7.设F [<(。

]=Z3), F 则F [/1(0*/2(r)]=,其中力⑺* /2(0定义为.8.函数/(外=任的有限孤立奇点z°=_,Z。

是何种类型的奇点? .Z得分评卷人二、(6分)设/仁)=/一丫3+2//〃问/仁)在何处可导?何处解析?并在可导处求出导数值.三、(8分)设i ,= eXsiny,求p 的值使P 为调和函数,并求出解析函数 f(z) = u + iv.四、(10分)将函数〃z) = "—在有限孤立奇点处展开为 2z~ — 3z+1Laurent 级数.得分评卷人 -------------- 五、计算下列各题(每小题6分,共24分)1. /(z) = f求/(1 + )J 图7 4-z2. 求出/(z) = eV 在所有孤立奇点处的留数3. L(f 32产(”。

)4. 尸——二~<公J 。

1 + sin- x六、(6分)求上半单位圆域{2:1[1<1,11]12>0}在映射卬=22下的象.七、(8分)求一映射’将半带形域-恭,<”,>。

复变函数与积分变换习题册(含答案)

复变函数与积分变换习题册(含答案)

第1章 复数与复变函数 (作业1)一、填空题 1、ieπ2的值为 。

2、k 为任意整数,则34+k 的值为 。

3、复数i i (1)-的指数形式为 。

4、设b a ,为实数,当=a , b= 时,).35)(1()3()1(i i b i a ++=-++ 二、判断题(正确的划√,错误的划 ) 1、2121z z z z +=+ ( )2、()()())z Re(iz Im ;z Im iz Re =-= ( )3、()()i i i 125432+=++ ( ) 三、选择题1.当ii z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1-2.复数)(tan πθπθ<<-=2i z 的三角表示式是( )(A ))]2sin()2[cos(secθπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos(secθπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 3.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 4.若θi re i i=+--2)1(3,则( ) (A )πθ-==3arctan ,5r (B )πθ-==3arctan ,210r (C )3arctan ,210-==πθr (D )3arctan ,5-==πθr 5. 设复数z 位于第二象限,则z arg 等于( )。

(A) x y arctan 2+π (B) x y arctan +π (C) x y arctan 2-π (D) xy arctan +-π 四、计算与证明题 1、设ii i i z -+-=11,求.),Im(),Re(z z z z2、当x y ,等于什么实数时,等式()i iy i x +=+-++13531成立?3、求复数ii-+23的辐角。

复变函数与积分变换模拟试题和答案

复变函数与积分变换模拟试题和答案

模拟试卷一一.填空题1. =⎪⎭⎫⎝⎛+-711i i . 2. I=()的正向为其中0,sin >=-⎰a z c dz z ez cz,则I= .3.z1tan 能否在R z <<0内展成Lraurent 级数?4.其中c 为2=z的正向:dz z z c1sin 2⎰=5. 已知()ωωωsin =F ,则()t f =二.选择题 1.()()z z z f Re =在何处解析(A) 0 (B)1 (C)2 (D)无2.沿正向圆周的积分.dz z zz ⎰=-221sin =(A)21sin i π. (B) 0. (C)1sin i π. (D)以上都不对.3.()∑+∞-∞=--n n nz 14的收敛域为(A) .4141<-<z . (B)e z <-<21 (C) 211<-<z . (D)无法确定 4. 设z =a 是()z f 的m 级极点,则()()z f z f '在点z =a 的留数是 .(A) m. (B) -2m. (C) -m. (D) 以上都不对. 三.计算题 1.()iv u z f +=为解析函数,322333y xy y x x v u --+=-,求u2.设函数()z f 与分别以z=a 为m 级与n 级极点,那么函数()()z g z f .在z=a 处极点如何?3.求下列函数在指定点z 0处的Taylor 级数及其收敛半径。

()1,102-==z zz f 4.求拉氏变换()t t f 6sin =(k 为实数)5. 求方程te y y y -=+'+''34满足条件()()100='=y y 的解.四.证明题1.利用e z的Taylor 展式,证明不等式zz ze z e e ≤-≤-112.若()=ϖF ℱ()[]t f (a 为非零常数) 证明:ℱ()[]⎪⎭⎫⎝⎛=a F a at f ϖ1 模拟试卷一答案一.填空题1. i2. 03.否 4.1/6- 5.()0.5,10,10.25,1t f t t t ⎧<⎪=>⎨⎪=⎩二.选择题1. (D)2. (A) 3.(A) 4. (C) 三.计算题1.233u x y y c =-+2.函数()()z g z f 在z=a 处极点为m+n 级3.()()121111n n f z n z R z ∞-===+=∑4.2636s +5.()3371442t t ty t e e te ---=-++.模拟试卷二一.填空题1. C 为1=z 正向,则⎰c dz z =2.()()2323lxy x i y nx my z f +++=为解析函数,则l, m, n 分别为 .3.2Re ,0shz s z ⎡⎤=⎢⎥⎣⎦4. 级数()∑∞=-122n nnz .收敛半径为5. δ-函数的筛选性质是二.选择题 1.()()1-=-t u e t f t ,则ℒ()f t =⎡⎤⎣⎦(A) .()11---s e s (B)()11---s e s (C)2()11---s e s (D) 以上都不对2.ℱ()[]()ωF t f =,则ℱ()()[]=-t f t 2(A)()()ωϖF F 2-' . (B)()()ωϖF F 2-'-.(C)()()ωϖF F i 2-'. (D) 以上都不对3.C 为3=z 的正向,().2103⎰-c zz dz(A) .1 (B)2 (C)0 (D) 以上都不对4. 沿正向圆周的积分dzz zz ⎰=⎪⎭⎫ ⎝⎛-222sin π =(A).0. (B).2 (C).2+i. (D). 以上都不对.三.计算题1. 求sin(3+4i).2.计算()()⎰--cb z a z dz,其中a 、b 为不在简单闭曲线c 上的复常数,a ≠b.3.求函数()1,110=+-=z z z z f 在指定点z 0处的Taylor 级数及其收敛半径。

《复变函数与积分变换》期末考试试卷及答案(K12教育文档)

《复变函数与积分变换》期末考试试卷及答案(K12教育文档)

《复变函数与积分变换》期末考试试卷及答案(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(《复变函数与积分变换》期末考试试卷及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为《复变函数与积分变换》期末考试试卷及答案(word版可编辑修改)的全部内容。

«复变函数与积分变换»期末试题(A)一.填空题(每小题3分,共计15分)1.231i-的幅角是();2。

)1(iLn+-的主值是( );3. 211)(zzf+=,=)0()5(f();4.0=z是4sinzzz-的( )极点;5.zzf1)(=,=∞]),([Re zfs( );二.选择题(每小题3分,共计15分)1.解析函数),(),()(yxivyxuzf+=的导函数为();(A) yxiuuzf+=')(; (B)yxiuuzf-=')(;(C)yxivuzf+=')(;(D)xyivuzf+=')(.2.C是正向圆周3=z,如果函数=)(zf(),则0d)(=⎰C zzf.(A)23-z;(B)2)1(3--zz; (C)2)2()1(3--zz;(D)2)2(3-z.3.如果级数∑∞=1nnnzc在2=z点收敛,则级数在(A)2-=z点条件收敛; (B)iz2=点绝对收敛;(C)iz+=1点绝对收敛; (D)iz21+=点一定发散.4.下列结论正确的是( )(A)如果函数)(zf在z点可导,则)(zf在0z点一定解析;(B) 如果)(zf在C所围成的区域内解析,则0)(=⎰C dzzf)(=dzzf(D)函数),(),()(y x iv y x u z f +=在区域内解析的充分必要条件是),(y x u 、),(y x v 在该区域内均为调和函数.5.下列结论不正确的是( ).(A ) 的可去奇点;为z1sin ∞(B ) 的本性奇点;为z sin ∞ (C) ;1sin 1的孤立奇点为z ∞(D) .sin 1的孤立奇点为z ∞三.按要求完成下列各题(每小题10分,共计40分)(1)设)()(2222y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a(2).计算⎰-Cz z z z e d )1(2其中C 是正向圆周:2=z ;(3)计算⎰=++3342215d )2()1(z z z z z(4)函数3232)(sin )3()2)(1()(z z z z z z f π-+-=在扩充复平面上有什么类型的奇点?,如果有极点,请指出它的级.四、(本题14分)将函数)1(1)(2-=z z z f 在以下区域内展开成罗朗级数; (1)110<-<z ,(2)10<<z ,(3)∞<<z 1五.(本题10分)用Laplace 变换求解常微分方程定解问题⎩⎨⎧='==+'-''-1)0()0()(4)(5)(y y e x y x y x y x六、(本题6分)求)()(0>=-ββt e t f 的傅立叶变换,并由此证明:ted tββπωωβω-+∞=+⎰2022cos«复变函数与积分变换»期末试题(A )答案及评分标准一.填空题(每小题3分,共计15分)1.231i -的幅角是( 2,1,0,23±±=+-k k ππ);2。

复变函数与积分变换课程试卷及答案

复变函数与积分变换课程试卷及答案

同济大学课程考核试卷(A 卷) 2006—2007学年第一学期命题教师签名:朱经浩 审核教师签名:方小春 课号:: 课名:复变函数 考试考查:考查此卷选为:期中考试( )、期终考试(∨ )、重考( )试卷年级 专业学号 姓名 任课教师(注意:本试卷共 7 大题, 2 大张,满分100分.考试时间为 100 分钟。

要求写出解题过程,否则不予计分)一. 填空题(每小题5分)1 如果 i z =2,则=z arg ( )或 ( )2 Ln )(i - 的主值是( )3 设,)(iv u z f += 在复平面解析, 并满足1≡u ,则=x v ( ) 4=⎰=dz e z z1||sin ( )5 设n 为正整数,=⎰=dz ze z n z1||( )6 =⎪⎪⎭⎫⎝⎛0,cos Re 2z z e s z ( )7 0=z 是4cos )()(z zz e z f z -=的( )级极点。

8 11+-=z z w 把( )映为单位圆周{}1=w 。

9 设2()1f x x x =++,则(())L f x =( )10设1()1F s s =+,则1(())L F s -=( )。

二. (10分)设函数iv u z f +=)(在区域{}ππ<<-z z D arg :解析,并设函数)()(ze f z F =在区域{}Im z ππ-<<内恒等于一个常数。

证明:在{}ππ<<-z z D arg :内,)(z f 恒等于某个常数。

三. (6分)计算()22314z dz z z =-⎰四. (8分)用围道积分方法计算2cos 610xdx x x +∞-∞-+⎰ 。

五.(6分)设ze zz z f 131)(+=,求()∞),(Re z f s 。

六.(10分)求把角域3arg 3ππ<<-z 映射为单位圆{}1<w 的一个共形映照。

七. .(10分)利用Laplace 变换求常微分方程t e y dt dydty d 42234=+-满足1)0(=y ,0)0('=y 的特解。

《复变函数与积分变换》期末考试试卷A及答案

《复变函数与积分变换》期末考试试卷A及答案

《复变函数与积分变换》期末考试试卷A及答案六、(本题6分)求)()(0>=-ββtet f 的傅立叶变换,并由此证明:te d t ββπωωβω-+∞=+⎰2022cos三.按要求完成下列各题(每小题10分,共40分)(1).设)()(2222y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a解:因为)(z f 解析,由C-R 条件y v x u ∂∂=∂∂ xvy u ∂∂-=∂∂ y dx ay x 22+=+,22dy cx by ax --=+,2,2==d a ,,2,2d b c a -=-=,1,1-=-=b c给出C-R 条件6分,正确求导给2分,结果正确2分。

(2).计算⎰-C zz zz e d )1(2其中C 是正向圆周: 解:本题可以用柯西公式\柯西高阶导数公式计算也可用留数计算洛朗展开计算,仅给出用前者计算过程因为函数z z e z f z2)1()(-=在复平面内只有两个奇点1,021==z z ,分别以21,z z 为圆心画互不相交互不包含的小圆21,c c 且位于c 内⎰⎰⎰-+-=-21d )1(d )1(d )1(222C z C z C zz z z e z zz e z z z e i z e iz e i z zz z πππ2)1(2)(2021=-+'===无论采用那种方法给出公式至少给一半分,其他酌情给分。

(3).⎰=++3342215d )2()1(z z z z z解:设)(z f 在有限复平面内所有奇点均在:3<z 内,由留数定理]),([Re 2d )2()1(3342215∞-=++⎰=z f s i z z z z z π -----(5分) ]1)1([Re 22z z f s i π= ----(8分)234221521))1(2()11()1(1)1(z z zz zz f ++=0,z )12()1(11)1(34222=++=有唯一的孤立奇点z z z z z f 1)12()1(11)1(]0,1)1([Re 34220202lim lim =++==→→z z z z zf z z f s z z⎰==++∴33422152d )2()1(z i z z z z π --------(10分)(4)函数2332)3()(sin )2)(1()(-+-=z z z z z z f π在扩充复平面上有什么类型的奇点?,如果有极点,请指出它的级. 解:∞±±±==-+-=,的奇点为 ,3,2,1,0,)(sin )3()2)(1()(3232k k z z z z z z z f π(1)的三级零点,)为(032103=±±±==z kk z πsin ,,,,,(2)的可去奇点,是的二级极点,为,)()(,z f z z f z z 210-=±== (3)的一级极点,为)(3z f z =(4)的三级极点;,为)(4,3,2z f z±-=(5)的非孤立奇点。

《复变函数与积分变换》试卷及答案

《复变函数与积分变换》试卷及答案

得分得分«复变函数与积分变换»期末试题(A )题号 一 二 三 四 五 六 总分 得分一.填空题(每小题3分,共计15分)1.231i -的幅角是( ); 2.)1(i Ln +-的主值是( );3.211)(z z f +=,=)0()5(f ( );4.0=z 是 4sin z zz -的( )极点;5. zz f 1)(=,=∞]),([Re z f s ( );二.选择题(每小题3分,共计15分)1.解析函数),(),()(y x iv y x u z f +=的导函数为( );(A ) y x iu u z f +=')(; (B )y x iu u z f -=')(;(C )y x iv u z f +=')(; (D )x y iv u z f +=')(.2.C 是正向圆周3=z ,如果函数=)(z f ( ),则0d )(=⎰Cz z f .(A )23-z ; (B )2)1(3--z z ; (C )2)2()1(3--z z ; (D )2)2(3-z . 3.如果级数∑∞=1n nnz c 在2=z 点收敛,则级数在(A )2-=z 点条件收敛 ; (B )i z 2=点绝对收敛;(C )i z+=1点绝对收敛; (D )i z 21+=点一定发散.4.下列结论正确的是( )(A )如果函数)(z f 在0z 点可导,则)(z f 在0z 点一定解析; (B) 如果)(z f 在C 所围成的区域内解析,则0)(=⎰Cdz z f(C )如果0)(=⎰Cdz z f ,则函数)(z f 在C 所围成的区域内一定解析;(D )函数),(),()(y x iv y x u z f +=在区域内解析的充分必要条件是),(y x u 、),(y x v 在该区域内均为调和函数.5.下列结论不正确的是( ).(A) 的可去奇点;为z1sin ∞(B) 的本性奇点;为z sin ∞(C) ;1sin 1的孤立奇点为z∞(D) .sin 1的孤立奇点为z ∞ 三.按要求完成下列各题(每小题10分,共计40分)(1)设)()(2222y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a得分(2).计算⎰-Czz z z e d )1(2其中C 是正向圆周:2=z ;(3)计算⎰=++3342215d )2()1(z z z z z(4)函数323 2)(sin)3 ()2)(1()(z zzzzzfπ-+-=在扩充复平面上有什么类型的奇点?,如果有极点,请指出它的级.四、(本题14分)将函数)1(1)(2-=z z z f 在以下区域内展开成罗朗级数; (1)110<-<z ,(2)10<<z ,(3)∞<<z 1得分五.(本题10分)用Laplace 变换求解常微分方程定解问题⎩⎨⎧='==+'-''-1)0()0()(4)(5)(y y e x y x y x y x六、(本题6分)求)()(0>=-ββtet f 的傅立叶变换,并由此证明:te d t ββπωωβω-+∞=+⎰2022cos得分得分«复变函数与积分变换»期末试题(A )答案及评分标准一.填空题(每小题3分,共计15分)1.231i -的幅角是( 2,1,0,23±±=+-k k ππ);2.)1(i Ln +-的主值是( i 432ln 21π+ ); 3.211)(z z f +=,=)0()5(f ( 0 ),4.0=z 是 4sin z zz -的( 一级 )极点;5. zz f 1)(=,=∞]),([Re z f s (-1 );二.选择题(每题4分,共24分)1.解析函数),(),()(y x iv y x u z f +=的导函数为(B );(A ) y x iu u z f +=')(; (B )y x iu u z f -=')(;(C )y x iv u z f +=')(; (D )x y iv u z f +=')(.2.C 是正向圆周3=z ,如果函数=)(z f ( D ),则0d )(=⎰Cz z f .(A )23-z ; (B )2)1(3--z z ; (C )2)2()1(3--z z ; (D )2)2(3-z . 3.如果级数∑∞=1n nnz c 在2=z 点收敛,则级数在(C )(A )2-=z 点条件收敛 ; (B )i z 2=点绝对收敛;(C )i z+=1点绝对收敛; (D )i z 21+=点一定发散.4.下列结论正确的是( B )(A )如果函数)(z f 在0z 点可导,则)(z f 在0z 点一定解析;(B) 如果)(z f 在C 所围成的区域内解析,则0)(=⎰Cdz z f(C )如果0)(=⎰Cdz z f ,则函数)(z f 在C 所围成的区域内一定解析;(D )函数),(),()(y x iv y x u z f +=在区域内解析的充分必要条件是),(y x u 、),(y x v 在该区域内均为调和函数.5.下列结论不正确的是( D ).的可去奇点;为、zA 1sin )(∞的本性奇点;为、z B sin )(∞.sin )(的孤立奇点为、zC 11∞的孤立奇点;为、z D sin )(1∞ 三.按要求完成下列各题(每小题10分,共40分)(1).设)()(2222y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a解:因为)(z f 解析,由C-R 条件y v x u ∂∂=∂∂ xv y u ∂∂-=∂∂ y dx ay x 22+=+,22dy cx by ax --=+,2,2==d a ,,2,2d b c a -=-=,1,1-=-=b c给出C-R 条件6分,正确求导给2分,结果正确2分。

复变函数与积分变换试题和答案

复变函数与积分变换试题和答案

复变函数与积分变换试题(一)1.一、填空(3 分×10)1.ln(-1- 3 i ) 的模 .幅角 。

2.-8i 的三个单根分别为: . . 。

3.Ln z 在的区域内连续。

4. f ( z ) = z 的解极域为: 。

5. f (z ) = x 2 - y 2 + 2xyi 的导数 f (z ) =。

7.指数函数的映照特点是: 。

8.幂函数的映照特点是: 。

9.若F () =F [f (t )].则 f (t )= F -1 f [()] 。

10.若f (t )满足拉氏积分存在条件.则 L [f (t )]=二、(10 分)-1x 2+ 1 y 2.求函数u (x ,y )使函数f (z )=u (x ,y )+iv (x ,y )为解析函数.且 f (0)=0。

、(10 分)应用留数的相关定理计算dz|z |=2 z 6(z -1)(z -3)四、计算积分(5 分×2)dz |z |=2 z ( z - 1)6. Re ssin 3z ,0 z 3已知v (x , y ) =2.c(z co-s i z)3 C:绕点i一周正向任意简单闭曲线。

五、(10 分)求函数f ( z) =z(z1-i)在以下各圆环内的罗朗展式。

1.0 | z - i | 12.1 | z - i | +六、证明以下命题:(5 分×2)(1)(t - t )与e-iwt o构成一对傅氏变换对。

+(2)+e-i t dt=2()-x + y + z = 1七、(10分)应用拉氏变换求方程组x + y+z = 0满足x(0)=y(0)=z(0)=0的解y + 4z = 0y(t)。

八、(10 分)就书中内容.函数在某区域内解析的具体判别方法有哪几种。

复变函数与积分变换试题答案(一)= 2i [-1+1] =02 分)一、1. 3. 8.二、解: 2 4 - ln 2 2 + 2. arctg 3 + 2k9 ln 2Z 不取原点和负实轴 角形域映为角形域 v u = - x = - x y 2. 2i 3 -i 、解: 四、 4. 空集 5. 2z 6. 1 +9. 1 +F ()e i d 2 -v =y =y f (z )=i - x + y +xy +c 7.将常形域映为角形域 10. 0+f (t )e -st dt ∵f (0)=0 c =0 ∴ f (z ) = xy - ( x - y ) = - ( x 2原式=(2 分) 2i Re s k =1 42 分)= -2i Re s k =3 Re sRe s,3z 6(z -1)(z -3),z 6(z -1)(z -3)u ∴ u = xy + c x 3 分) - y + 2xyi ) = z 6(z -1)(z -3) kz 6(z -1)(z -3) k(2分)3612= (2分)Re s 5 分) -2i z 2 2 分)z 3 z 1 = 0 z 2 =3 z 4 =1 = 1∴原式=(2分) 2i3 62=-36 i21.解:原式 = 2i Re s k =11 z (z -1),zk16(1-1)(1-3)z 2,0 z6 z z3 分) z 1=0z 2=1=0八、解:①定义; ②C-R 充要条件 Th ; ③v 为 u 的共扼函数 10 分1 +2)解:∵ 1+2()e -i t dw =e -i t2 -S (2)-(1):∴Y (t )=1-12e t -12e -t =1-cht2.解: 原式 = cos z 2! z =i = i (- cos z ) = -i cos i = -ich 1 五、1.解:f ( z ) (1分)( z - i ) z - i + i 1分)(z 1-i ) 11 i 1+ z-iin =01分)z1- i1in - 1n = i (z -i )n -1 = i (z -i )n2 分)n =0 n =-12. 解: f (z )1分)=(z 1- i )i + ( z - i )1分)11+1 分)1 (z - i )2n =01 1=1n (z -1i )n +2n =0 i n -i n (z -i )n -2 (2 分) n =0六、1.+ +(t -t )e -i tdt = e--i t t =t =e -it3 分) ∴结论成立++e -i t dt = 2() -(2 分)sX (s )+Y (s )+sZ (s )= 1S (1)X (s )+sY (s )+Z (s ) = 0 (2) (3 分) Y (s )+4sZ (s ) = 0(3)∴ 2( w ) 与 1 构成傅氏对七、解:∵∴Y (s )=s21-1s 2 -1= s - 2s -1+ s +13 分)=1=02 分)复变函数与积分变换试题(二)一、填空(3 分×10)7.若 z 0为 f (z )的 m 级极点.则Re s [ f (z ),z ]=( )。

复变函数与积分变换试题及答案1.

复变函数与积分变换试题及答案1.

复变函数与积分变换试题与答案一、填空题:(每题3分)1.i 31--的三角表达形式: ; 指数表达形式: ; 几何表达形式: . 2.=-i 2)3( ;3. 设Max =M {}C z z f ∈|)(|,L 为曲线C 的长度,则≤⎰z z f C d )( . 4.级数21n z z z +++++L L 的和函数的解析域是 。

5. 分式线性函数、指数函数、幂函数的映照特点各是 。

二、 判断正确与错误(画对错号,每题3分)1.因为|sin |1z ≤,所以在复平面上sin z 有界。

( ) 2、若函数()z f 在0z 处解析,则)()(z f n 也在0z 解析。

( ) 3.如果u (x ,y ),v (x ,y )的偏导数存在,那么f (z )=u +iv 可导。

( ) 4.在z o 处可导的函数,一定可以在z o 的邻域内展开成罗朗级数。

( )5. 解析函数构成的保形映照具有保圆性 ( )三、解答题(每题8分)1.设22()i f z xy x y =+,则()f z 在何处可导?何处解析?2.已知f (z )的虚部为222121),(y x y x v +-=,求解析函数0)0()(=+=f iv u z f 且.3.求积分 ,C I zdz =⎰ C 为沿单位圆(||1)z =的逆时针一周的曲线。

4.求sin d (1)Czz z z -⎰Ñ,其中C 为||2z =。

5.求e d cos zCz z ⎰Ñ,其中C 为||2z =。

6.把函数)2)(1(12-+z z 在2||1<<z 内展开成罗朗级数。

7.指出 6sin )(z z z z f -= 在有限复平面上的孤立奇点及类型,并求奇点处的留数。

8.求将单位圆 | z | < 1内保形映照到单位圆 | w | < 1内, 且满足0)21(=f ,2)21(arg π='f 的分式线性映照。

《复变函数与积分变换》期末考试试卷及答案

《复变函数与积分变换》期末考试试卷及答案

«复变函数与积分变换»期末试题(A )答案及评分标准«复变函数与积分变换»期末试题(A )一.填空题(每小题3分,共计15分)1.231i -的幅角是( 2,1,0,23±±=+-k k ππ);2.)1(i Ln +-的主值是( i 432ln 21π+ );3. 211)(z z f +=,=)0()5(f( 0 );4.0=z 是 4sin z z z -的(一级)极点;5. z z f 1)(=,=∞]),([Re z f s (-1); 二.选择题(每小题3分,共计15分)1.解析函数),(),()(y x iv y x u z f +=的导函数为( B );(A ) y x iu u z f +=')(; (B )y x iu u z f -=')(;(C )y x iv u z f +=')(; (D )x y iv u z f +=')(.2.C 是正向圆周3=z ,如果函数=)(z f ( D ),则0d )(=⎰Cz z f .(A )23-z ; (B )2)1(3--z z ; (C )2)2()1(3--z z ; (D )2)2(3-z .3.如果级数∑∞=1n nnz c 在2=z 点收敛,则级数在( C )(A )2-=z 点条件收敛 ; (B )i z 2=点绝对收敛;(C )i z+=1点绝对收敛; (D )i z 21+=点一定发散.4.下列结论正确的是( B )(A )如果函数)(z f 在0z 点可导,则)(z f 在0z 点一定解析;(B) 如果)(z f 在C 所围成的区域内解析, 则0)(=⎰Cdz z f(C )如果0)(=⎰Cdz z f ,则函数)(z f 在C 所围成的区域内一定解析;(D )函数),(),()(y x iv y x u z f +=在区域内解析的充分必要条件是),(y x u 、),(y x v 在该区域内均为调和函数.5.下列结论不正确的是( D ).(A) 的可去奇点;为z1sin ∞ (B) 的本性奇点;为z sin ∞(C) ;1sin 1的孤立奇点为z∞ (D) .sin 1的孤立奇点为z ∞ 三.按要求完成下列各题(每小题10分,共计40分)(1)设)()(2222y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a(2).计算⎰-Czz z z e d )1(2其中C 是正向圆周:2=z ; (3)计算⎰=++3342215d )2()1(z z z z z(4)函数3232)(sin )3()2)(1()(z z z z z z f π-+-=在扩充复平面上有什么类型的奇点?,如果有极点,请指出它的级. 四、(本题14分)将函数)1(1)(2-=z z z f 在以下区域内展开成罗朗级数; (1)110<-<z ,(2)10<<z ,(3)∞<<z 1五.(本题10分)用Laplace 变换求解常微分方程定解问题⎩⎨⎧='==+'-''-1)0()0()(4)(5)(y y e x y x y x y x六、(本题6分)求)()(0>=-ββtet f 的傅立叶变换,并由此证明:te d t ββπωωβω-+∞=+⎰2022cos三.按要求完成下列各题(每小题10分,共40分)(1).设)()(2222y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a解:因为)(z f 解析,由C-R 条件y v x u ∂∂=∂∂ xvy u ∂∂-=∂∂ y dx ay x 22+=+,22dy cx by ax --=+,2,2==d a ,,2,2d b c a -=-=,1,1-=-=b c给出C-R 条件6分,正确求导给2分,结果正确2分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


一、判断题(2 分×4=8 分):

1. 由 0 z 1 2 确定的集合是单连通区域。
( )学
2. 函数在某一点可导等价于在该点处解析。
3.
1 复数项级数 n1 3n
i n2
ቤተ መጻሕፍቲ ባይዱ
发散。
教 ()

处 ()
A. 2 阶
B. 3 阶
3. Ln(-2)=( )。
A. ln 2 i
C. 4 阶
D. 5 阶
s3
2 B. s2+9
2s C. s2+9
三、填空题(2 分×5=10 分):
1.
2+i
_______________。
(1 i)(1 2i)
6 D. s2+9
2.
n0
(1)n
n+1!
z
+1n
的收敛半径是_______________。
专业、班级
专业、班级
姓名
学号
--------------------------密-------------------------封------------------------------线------------------------------------



三、1._______________ 2.______________________ 3.________
4.__________ 5.________________________________________


......................................................................................... 科
学号
姓名

.......................................答题区...................................... 一

一、1.______ 2._____ 3._____ 4._____


二、1.______ 2._____ 3._____ 4._____ 5.______
试 线。


A







页 ︶
4.(8 分)计算积分
ez sin z dz 的值。
z |z|1
河 南 科 技 大 学 教 务 处
----------------------------密-------------------------封------------------------------线------------------------------------
B. ln 2 +2k i
C. ln 2 +2k i, k 0, 1, D. 无法计算
4. C-R 方程成立是函数解析的( A. 充分必要条件 C. 充分非必要条件
)条件。 B. 必要非充分条件 D. 既不充分也不必要条件
5. f (t) 2 cos 3t 的拉普拉斯变换为( )。
2
A.
f (0) 2i。
A

学号
姓名
2.(10 分)计算积分
|z|3
z(z
1 1)(z
2) 2
dz
的值。
第 三 页 ︵ 共 三 页 ︶
y 5y+4y 1

4.
(10
分)用
Laplace
变换求微分方程
y(0)
y(0)
0









专业、班级
题号 一 二 三 四 五 六 七 八 九 十 总分 得分
4. ez 是周期函数。
()
试 二、选择题(2 分×5=10 分):
卷 1. 设 C 表示从 0 到1 i 的直线段, z Re z dz ( )。

C
A A. i

3
B. 2i 3
C. 1 i 3
D. 1 2i 3
2. f (z) z 2 sin z z 在 z 0 处零点的阶是( )。
------------------------------密-----------------------------封-------------------------- -线------------------------
河南科技大学
2019 至 2020 学年第一学期试卷
课程 复变函数与积分变换 年级、专业 2018 级各专业
3.
z=0

f
(z)
sin z z2
的什么类型孤立奇点?
4.
F (s)
6 s3
的拉普拉斯逆变换为
5. F f (t)
。 。
四、计算题(8 分×4=32 分)
1.(8 分)解方程 z3 1i 0。
2.(8 分)计算积分
z 2
(z
ez i)2
dz 。

3. (8 分)计算积分 z sin zdz ,其中 C 是从 0 到π的一条简单曲 C
五、解答题(10 分×4= 40 分):
3.(10
分)求
f
(z)
z
1
3 z
2
分别在下面两个圆环域内的洛

1 .( 10 分 ) 求 以 u 3y2 3x2 为 实 部 的 解 析 函 数 f ( z ) 使 得
卷 ︵
朗展开式(1) 0 | z 3 | 5 ;(2) 5 | z 3 | + 。
相关文档
最新文档