几何图形初步专项训练
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【详解】
由折叠可得,∠ACD=∠ACE=90°,
∴∠BAC=90°,
又∵∠B=60°,
∴∠ACB=30°,
∴BC=2AB=6,
∴AD=6,
由折叠可得,∠E=∠D=∠B=60°,
∴∠DAE=60°,
∴△ADE是等边三角形,
∴△ADE的周长为6×3=18,
故选:C.
【点睛】
此题考查平行四边形的性质、轴对称图形性质以及等边三角形的判定.解题关键在于注意折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
【详解】
解:如图,延长CE交AB于点F,
∵AB∥CD,
∴∠AFE=∠C=60°,
在△AEF中,由三角形的外角性质得,∠AEC=∠A+∠AFE=45°+60°=105°.
故选:C.
【点睛】
本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记相关性质并作出正确的辅助线是解题的关键.
A. B. C. D.
【答案】C
【解析】
【分析】
先根据 得到 ,再通过对顶角的性质得到 ,最后利用三角形的内角和即可求出答案.
【详解】
解:给图中各角标上序号,如图所示:
∵
∴ (两直线平行,同位角相等),
又∵ (对顶角相等),
∴ .
故C为答案.
【点睛】
本题主要考查了直线平行的性质(两直线平行,同位角相等)、对顶角的性质(对顶角相等),熟练掌握直线平行的性质是解题的关键.
∴∠BOC=90°-32°=58°=∠DOF,
∴∠BFD=90°-58°=32°.
故选B.
【点睛】
本题考查了折叠的性质和矩形的性质和余角的性质,解题的关键是掌握折叠是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应角相等.
5.下列各图经过折叠后不能围成一个正方体的是()
A. B. C. D.
A. 是 的平分线B.
C.点 在 的中垂线上D.
【答案】D
【解析】
【分析】
根据作图的过程可以判定AD是∠BAC的角平分线;利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC的度数;利用等角对等边可以证得△ADB的等腰三角形,由等腰三角形的“三线合一”的性质可以证明点D在AB的中垂线上;利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.
几何图形初步专项训练
一、选择题
1.如图,在 中, , , 为 边上的中线, 平分 ,则 的值()
A. B. C. D.
【答案】D
【解析】
【分析】
根据角平分线定理可得AE:BE=AC:BC=3:4,进而求得AE= AB,再由点D为AB中点得AD= AB,进而可求得 的值.
【详解】
解:∵ 平分 ,
∴点E到 的两边距离相等,
【答案】D
【解析】
【分析】
由平面图形的折叠及正方体的表面展开图的特点解题.只要有“田”“凹”“一线超过四个正方形”字格的展开图都不是正方体的表面展开图.
【详解】
解:A、是正方体的展开图,不符合题意;
B、是正方体的展开图,不符合题意;
C、是正方体的展开图,不符合题意;
D、不是正方体的展开图,缺少一个底面,符合题意.
∴AD= AB,
∴ ,
故选:D.
【点睛】
本题主要考查了角平分线定理的应用及三角函数的应用,通过面积比证得AE:BE=AC:BC是解决本题的关键.
2.一副直角三角板如图放置,其中∠C=∠DFE=90°,∠A=45°,∠E=60°,点F在CB的延长线上.若DE∥CF,则∠BDF等于()
A.30°B.25°C.18°D.15°
∵∠EBF=80°=∠2+∠3,
∴∠3=∠EBF﹣∠2=80°﹣50°=30°,
∴此时的航行方向为北偏东30°,
故选A.
【点睛】本题考查了方向角,利用平行线的性质得出∠2是解题关键.
12.如图,将一副三角板如图放置,∠COD=28°,则∠AOB的度数为( )
A.152°B.148°C.136°D.144°
∴CD= AD,
∵AD=DB,
∴CD= DB,
∴CD= CB,
S△ACD= CD•AC,S△ACB= CB•AC,
∴S△ACD:S△ACB=1:3,
∴S△DAC:S△ABD≠1:3,错误,
故选:D.
【点睛】
本题考查了角平分线的性质、线段垂直平分线的性质以及作图—基本作图.解题时,需要熟悉等腰三角形的判定与性质.
8.一把直尺和一块三角板ABC(含30°,60°角)的摆放位置如图,直尺一边与三角板的两直角边分别交于点D、点E,另一边与三角板的两直角边分别交于点F、点A,且∠CED=50°,那么∠BAF=( )
A.10°B.50°C.45°D.40°
【答案】A
【解析】
【分析】
先根据∠CED=50°,DE∥AF,即可得到∠CAF=50°,最后根据∠BAC=60°,即可得出∠BAF的大小.
D选项中,展开图能折叠成一个三棱柱,符合题意;
故选:D.
点睛:本题主要考查了几何体的展开图,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.
4.如图,将矩形纸片沿EF折叠,点C在落线段AB上,∠AEC=32°,则∠BFD等于()
A.28°B.32°C.34°D.36°
故选:D.
【点睛】
本题考查由三视图判断几何体及展开图折叠成几何体,熟记常见几何体的平面展开图的特征,是解决此类问题的关键.
10.如图,一副三角板按如图所示的位置摆放,其中 , , , ,则 的度数为()
A.75°B.90°C.105°D.120°
【答案】C
【解析】
【分析】
延长CE交AB于点F,根据两直线平行,内错角相等可得∠AFE=∠C,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.
故选:D
【点睛】
本题是空间想象力的考查,解题关键是在脑海中折叠图形,看是否满足条件
7.已知:在Rt△ABC中,∠C=90°,BC=1,AC= ,点D是斜边AB的中点,点E是边AC上一点,则DE+BE的最小值为( )
A.2
B.
C.
D.
【答案】C
【解析】
【分析】
作B关于AC的对称点B',连接B′D,易求∠ABB'=60°,则AB=AB',且△ABB'为等边三角形,BE+DE=DE+EB'为B'与直线AB之间的连接线段,其最小值为B'到AB的距离=AC= ,所以最小值为 .
①过同一平面内 点,最多可以确定10条直线,故错误;
②连接两点的线段的长度叫做两点的距离,故错误;
③若 ,则点 不一定是线段 的中点,故错误;
④三条直线两两相交,可以都交于同一点,故错误;
故选:D.
【点睛】
此题考查直线交点、两点间距离定义、线段中点定义,正确理解定义是解题的关键.
15.如图,直线 ,将一块含 角的直角三角尺( )按所示摆放.若 ,则 的大小是()
故选:D.
【点睛】
本题考查了正方体的展开图,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.
6.下列图形不是正方体展开图的是()
A. B. C. D.
【答案】D
【解析】
【分析】
根据正方体展开的11种形式对各选项分析判断即可
【详解】
A、B、C是正方体展开图,错误;
D折叠后,有2个正方形重合,不是展开图形,正确
16.如图,在平行四边形ABCD中,将 沿AC折叠后,点D恰好落在DC的延长线上的点E处.若 ,AB=3,则 的周长为()
A.12B.15C.18D.2
【答案】C
【解析】
【分析】
依据平行四边形的性质以及折叠的性质,即可得到BC=2AB=6,AD=6,再根据△ADE是等边三角形,即可得到△ADE的周长为6×3=18.
A. B. C. D.
【答案】D
【解析】
分析:三棱柱的侧面展开图是长方形,底面是三角形,据此进行判断即可.
详解:A选项中,展开图下方的直角三角形的斜边长为12,不合题意;
B选项中,展开图上下两个直角三角形中的直角边不能与其它棱完全重合,不合题意;
C选项中,展开图下方的直角三角形中的直角边不能与其它棱完全重合,不合题意;
【答案】A
【解析】
【分析】
根据三角板的性质得 ,再根据同角的余角相等可得 ,即可求出∠AOB的度数.
【详解】
∵这是一副三角板
∴
∵
∴
∴
故答案为:A.
【点睛】
本题考查了三角板的度数问题,掌握三角板的性质、同角的余角相等是解题的关键.
13.如图,在 中, , ,如图:(1)以 为圆心,任意长为半径画弧分别交 、 于点 和 ;(2)分别以 、 为圆心,大于 的长为半径画弧,两弧交于点 ;(3)连结 并延长交 于点 .根据以上作图过程,下列结论中错误的是()
11.如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为( )
A.北偏东30°B.北偏东80°C.北偏西30°D.北偏西50°
【答案】A
【解析】
【分析】根据平行线的性质,可得∠2,根据角的和差,可得答案.
【详解】如图,AP∥BC,
∴∠2=∠1=50°,
17.小张同学的座右铭是“态度决定一切”,他将这几个字写在一个正方体纸盒的每个面上,其平面展开图如图所示,那么在该正方体中,和“一”相对的字是( )
A.态 B.度 C.决 D.切
【答案】A
【解析】
【分析】
正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此可得和“一”相对的字.
【答案】D
【解析】
【分析】
根据三角形内角和定理可得 和 ,再根据平行线的性质可得 ,再根据 ,即可求出 的度数.
【详解】
∵∠C=90°,∠A=45°
∴
∵
∴
∵∠DFE=90°,∠E=60°
∴
∴
故答案为:D.
【点睛】
本题考查了三角板的角度问题,掌握三角形内角和定理、平行线的性质是解题的关键.
3.如图为一直棱柱,其底面是三边长为5、12、13的直角三角形.若下列选项中的图形均由三个矩形与两个直角三角形组合而成,且其中一个为如图的直棱柱的展开图,则根据图形中标示的边长与直角记号判断,此展开图为何?( )
【答案】B
【解析】
【分析】
根据折叠的性质和矩形的性质,结合余角的性质推导出结果即可.
【详解】
解:如图,设CD和BF交于点O,由于矩形折叠,
∴∠D=∠B=∠A=∠ECD=90°,∠ACE+∠BCO=90°,∠BCO+∠BOC=90°,
∵∠AEC=32°,
∴∠ACE=90°-32°=58°,
∴∠BCO=90°-∠ACE=32°,
【详解】
解:A、根据作图方法可得AD是∠BAC的平分线,正确;
B、∵∠C=90°,∠B=30°,
∴∠CAB=60°,
∵AD是∠BAC的平分线,
∴∠DAC=∠DAB=30°,
∴∠ADC=60°,正确;
C、∵∠B=30°,∠DAB=30°,
∴AD=DB,
∴点D在AB的中垂线上,正确;
D、∵∠CAD=30°,
【详解】
∵DE∥AF,∠CED=50°,
∴∠CAF=∠CED=50°,
∵∠BAC=60°,
∴∠BAF=60°﹣50°=10°,
故选Biblioteka BaiduA.
【点睛】
此题考查平行线的性质,几何图形中角的和差关系,掌握平行线的性质是解题的关键.
9.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?()
【详解】
解:作B关于AC的对称点B',连接B′D,
∵∠ACB=90°,∠BAC=30°,
∴∠ABC=60°,
∵AB=AB',
∴△ABB'为等边三角形,
∴BE+DE=DE+EB'为B'与直线AB之间的连接线段,
∴最小值为B'到AB的距离=AC= ,
故选C.
【点睛】
本题考查的是最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此题的关键.
14.下列说法中,正确的个数为( )
①过同一平面内 点,最多可以确定 条直线;
②连接两点的线段叫做两点的距离;
③若 ,则点 是线段 的中点;
④三条直线两两相交,一定有 个交点.
A. 个B. 个C. 个D. 个
【答案】D
【解析】
【分析】
根据直线交点、两点间距离、线段中点定义分别判断即可得到答案.
【详解】
设点E到 的两边距离位h,
则S△ACE= AC·h,S△BCE= BC·h,
∴S△ACE:S△BCE= AC·h: BC·h=AC:BC,
又∵S△ACE:S△BCE=AE:BE,
∴AE:BE=AC:BC,
∵在 中, , ,
∴AC:BC=3:4,
∴AE:BE=3:4
∴AE= AB,
∵ 为 边上的中线,
A. B.
C. D.
【答案】D
【解析】
【分析】
根据三视图可判断这个几何体的形状;再由平面图形的折叠及立体图形的表面展开图的特点解题.
【详解】
解:根据三视图可判断这个几何体是圆柱;D选项平面图一个长方形和两个圆折叠后,能围成的几何体是圆柱.A选项平面图折叠后是一个圆锥;B选项平面图折叠后是一个正方体;C选项平面图折叠后是一个三棱柱.
由折叠可得,∠ACD=∠ACE=90°,
∴∠BAC=90°,
又∵∠B=60°,
∴∠ACB=30°,
∴BC=2AB=6,
∴AD=6,
由折叠可得,∠E=∠D=∠B=60°,
∴∠DAE=60°,
∴△ADE是等边三角形,
∴△ADE的周长为6×3=18,
故选:C.
【点睛】
此题考查平行四边形的性质、轴对称图形性质以及等边三角形的判定.解题关键在于注意折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
【详解】
解:如图,延长CE交AB于点F,
∵AB∥CD,
∴∠AFE=∠C=60°,
在△AEF中,由三角形的外角性质得,∠AEC=∠A+∠AFE=45°+60°=105°.
故选:C.
【点睛】
本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记相关性质并作出正确的辅助线是解题的关键.
A. B. C. D.
【答案】C
【解析】
【分析】
先根据 得到 ,再通过对顶角的性质得到 ,最后利用三角形的内角和即可求出答案.
【详解】
解:给图中各角标上序号,如图所示:
∵
∴ (两直线平行,同位角相等),
又∵ (对顶角相等),
∴ .
故C为答案.
【点睛】
本题主要考查了直线平行的性质(两直线平行,同位角相等)、对顶角的性质(对顶角相等),熟练掌握直线平行的性质是解题的关键.
∴∠BOC=90°-32°=58°=∠DOF,
∴∠BFD=90°-58°=32°.
故选B.
【点睛】
本题考查了折叠的性质和矩形的性质和余角的性质,解题的关键是掌握折叠是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应角相等.
5.下列各图经过折叠后不能围成一个正方体的是()
A. B. C. D.
A. 是 的平分线B.
C.点 在 的中垂线上D.
【答案】D
【解析】
【分析】
根据作图的过程可以判定AD是∠BAC的角平分线;利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC的度数;利用等角对等边可以证得△ADB的等腰三角形,由等腰三角形的“三线合一”的性质可以证明点D在AB的中垂线上;利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.
几何图形初步专项训练
一、选择题
1.如图,在 中, , , 为 边上的中线, 平分 ,则 的值()
A. B. C. D.
【答案】D
【解析】
【分析】
根据角平分线定理可得AE:BE=AC:BC=3:4,进而求得AE= AB,再由点D为AB中点得AD= AB,进而可求得 的值.
【详解】
解:∵ 平分 ,
∴点E到 的两边距离相等,
【答案】D
【解析】
【分析】
由平面图形的折叠及正方体的表面展开图的特点解题.只要有“田”“凹”“一线超过四个正方形”字格的展开图都不是正方体的表面展开图.
【详解】
解:A、是正方体的展开图,不符合题意;
B、是正方体的展开图,不符合题意;
C、是正方体的展开图,不符合题意;
D、不是正方体的展开图,缺少一个底面,符合题意.
∴AD= AB,
∴ ,
故选:D.
【点睛】
本题主要考查了角平分线定理的应用及三角函数的应用,通过面积比证得AE:BE=AC:BC是解决本题的关键.
2.一副直角三角板如图放置,其中∠C=∠DFE=90°,∠A=45°,∠E=60°,点F在CB的延长线上.若DE∥CF,则∠BDF等于()
A.30°B.25°C.18°D.15°
∵∠EBF=80°=∠2+∠3,
∴∠3=∠EBF﹣∠2=80°﹣50°=30°,
∴此时的航行方向为北偏东30°,
故选A.
【点睛】本题考查了方向角,利用平行线的性质得出∠2是解题关键.
12.如图,将一副三角板如图放置,∠COD=28°,则∠AOB的度数为( )
A.152°B.148°C.136°D.144°
∴CD= AD,
∵AD=DB,
∴CD= DB,
∴CD= CB,
S△ACD= CD•AC,S△ACB= CB•AC,
∴S△ACD:S△ACB=1:3,
∴S△DAC:S△ABD≠1:3,错误,
故选:D.
【点睛】
本题考查了角平分线的性质、线段垂直平分线的性质以及作图—基本作图.解题时,需要熟悉等腰三角形的判定与性质.
8.一把直尺和一块三角板ABC(含30°,60°角)的摆放位置如图,直尺一边与三角板的两直角边分别交于点D、点E,另一边与三角板的两直角边分别交于点F、点A,且∠CED=50°,那么∠BAF=( )
A.10°B.50°C.45°D.40°
【答案】A
【解析】
【分析】
先根据∠CED=50°,DE∥AF,即可得到∠CAF=50°,最后根据∠BAC=60°,即可得出∠BAF的大小.
D选项中,展开图能折叠成一个三棱柱,符合题意;
故选:D.
点睛:本题主要考查了几何体的展开图,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.
4.如图,将矩形纸片沿EF折叠,点C在落线段AB上,∠AEC=32°,则∠BFD等于()
A.28°B.32°C.34°D.36°
故选:D.
【点睛】
本题考查由三视图判断几何体及展开图折叠成几何体,熟记常见几何体的平面展开图的特征,是解决此类问题的关键.
10.如图,一副三角板按如图所示的位置摆放,其中 , , , ,则 的度数为()
A.75°B.90°C.105°D.120°
【答案】C
【解析】
【分析】
延长CE交AB于点F,根据两直线平行,内错角相等可得∠AFE=∠C,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.
故选:D
【点睛】
本题是空间想象力的考查,解题关键是在脑海中折叠图形,看是否满足条件
7.已知:在Rt△ABC中,∠C=90°,BC=1,AC= ,点D是斜边AB的中点,点E是边AC上一点,则DE+BE的最小值为( )
A.2
B.
C.
D.
【答案】C
【解析】
【分析】
作B关于AC的对称点B',连接B′D,易求∠ABB'=60°,则AB=AB',且△ABB'为等边三角形,BE+DE=DE+EB'为B'与直线AB之间的连接线段,其最小值为B'到AB的距离=AC= ,所以最小值为 .
①过同一平面内 点,最多可以确定10条直线,故错误;
②连接两点的线段的长度叫做两点的距离,故错误;
③若 ,则点 不一定是线段 的中点,故错误;
④三条直线两两相交,可以都交于同一点,故错误;
故选:D.
【点睛】
此题考查直线交点、两点间距离定义、线段中点定义,正确理解定义是解题的关键.
15.如图,直线 ,将一块含 角的直角三角尺( )按所示摆放.若 ,则 的大小是()
故选:D.
【点睛】
本题考查了正方体的展开图,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.
6.下列图形不是正方体展开图的是()
A. B. C. D.
【答案】D
【解析】
【分析】
根据正方体展开的11种形式对各选项分析判断即可
【详解】
A、B、C是正方体展开图,错误;
D折叠后,有2个正方形重合,不是展开图形,正确
16.如图,在平行四边形ABCD中,将 沿AC折叠后,点D恰好落在DC的延长线上的点E处.若 ,AB=3,则 的周长为()
A.12B.15C.18D.2
【答案】C
【解析】
【分析】
依据平行四边形的性质以及折叠的性质,即可得到BC=2AB=6,AD=6,再根据△ADE是等边三角形,即可得到△ADE的周长为6×3=18.
A. B. C. D.
【答案】D
【解析】
分析:三棱柱的侧面展开图是长方形,底面是三角形,据此进行判断即可.
详解:A选项中,展开图下方的直角三角形的斜边长为12,不合题意;
B选项中,展开图上下两个直角三角形中的直角边不能与其它棱完全重合,不合题意;
C选项中,展开图下方的直角三角形中的直角边不能与其它棱完全重合,不合题意;
【答案】A
【解析】
【分析】
根据三角板的性质得 ,再根据同角的余角相等可得 ,即可求出∠AOB的度数.
【详解】
∵这是一副三角板
∴
∵
∴
∴
故答案为:A.
【点睛】
本题考查了三角板的度数问题,掌握三角板的性质、同角的余角相等是解题的关键.
13.如图,在 中, , ,如图:(1)以 为圆心,任意长为半径画弧分别交 、 于点 和 ;(2)分别以 、 为圆心,大于 的长为半径画弧,两弧交于点 ;(3)连结 并延长交 于点 .根据以上作图过程,下列结论中错误的是()
11.如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为( )
A.北偏东30°B.北偏东80°C.北偏西30°D.北偏西50°
【答案】A
【解析】
【分析】根据平行线的性质,可得∠2,根据角的和差,可得答案.
【详解】如图,AP∥BC,
∴∠2=∠1=50°,
17.小张同学的座右铭是“态度决定一切”,他将这几个字写在一个正方体纸盒的每个面上,其平面展开图如图所示,那么在该正方体中,和“一”相对的字是( )
A.态 B.度 C.决 D.切
【答案】A
【解析】
【分析】
正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此可得和“一”相对的字.
【答案】D
【解析】
【分析】
根据三角形内角和定理可得 和 ,再根据平行线的性质可得 ,再根据 ,即可求出 的度数.
【详解】
∵∠C=90°,∠A=45°
∴
∵
∴
∵∠DFE=90°,∠E=60°
∴
∴
故答案为:D.
【点睛】
本题考查了三角板的角度问题,掌握三角形内角和定理、平行线的性质是解题的关键.
3.如图为一直棱柱,其底面是三边长为5、12、13的直角三角形.若下列选项中的图形均由三个矩形与两个直角三角形组合而成,且其中一个为如图的直棱柱的展开图,则根据图形中标示的边长与直角记号判断,此展开图为何?( )
【答案】B
【解析】
【分析】
根据折叠的性质和矩形的性质,结合余角的性质推导出结果即可.
【详解】
解:如图,设CD和BF交于点O,由于矩形折叠,
∴∠D=∠B=∠A=∠ECD=90°,∠ACE+∠BCO=90°,∠BCO+∠BOC=90°,
∵∠AEC=32°,
∴∠ACE=90°-32°=58°,
∴∠BCO=90°-∠ACE=32°,
【详解】
解:A、根据作图方法可得AD是∠BAC的平分线,正确;
B、∵∠C=90°,∠B=30°,
∴∠CAB=60°,
∵AD是∠BAC的平分线,
∴∠DAC=∠DAB=30°,
∴∠ADC=60°,正确;
C、∵∠B=30°,∠DAB=30°,
∴AD=DB,
∴点D在AB的中垂线上,正确;
D、∵∠CAD=30°,
【详解】
∵DE∥AF,∠CED=50°,
∴∠CAF=∠CED=50°,
∵∠BAC=60°,
∴∠BAF=60°﹣50°=10°,
故选Biblioteka BaiduA.
【点睛】
此题考查平行线的性质,几何图形中角的和差关系,掌握平行线的性质是解题的关键.
9.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?()
【详解】
解:作B关于AC的对称点B',连接B′D,
∵∠ACB=90°,∠BAC=30°,
∴∠ABC=60°,
∵AB=AB',
∴△ABB'为等边三角形,
∴BE+DE=DE+EB'为B'与直线AB之间的连接线段,
∴最小值为B'到AB的距离=AC= ,
故选C.
【点睛】
本题考查的是最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此题的关键.
14.下列说法中,正确的个数为( )
①过同一平面内 点,最多可以确定 条直线;
②连接两点的线段叫做两点的距离;
③若 ,则点 是线段 的中点;
④三条直线两两相交,一定有 个交点.
A. 个B. 个C. 个D. 个
【答案】D
【解析】
【分析】
根据直线交点、两点间距离、线段中点定义分别判断即可得到答案.
【详解】
设点E到 的两边距离位h,
则S△ACE= AC·h,S△BCE= BC·h,
∴S△ACE:S△BCE= AC·h: BC·h=AC:BC,
又∵S△ACE:S△BCE=AE:BE,
∴AE:BE=AC:BC,
∵在 中, , ,
∴AC:BC=3:4,
∴AE:BE=3:4
∴AE= AB,
∵ 为 边上的中线,
A. B.
C. D.
【答案】D
【解析】
【分析】
根据三视图可判断这个几何体的形状;再由平面图形的折叠及立体图形的表面展开图的特点解题.
【详解】
解:根据三视图可判断这个几何体是圆柱;D选项平面图一个长方形和两个圆折叠后,能围成的几何体是圆柱.A选项平面图折叠后是一个圆锥;B选项平面图折叠后是一个正方体;C选项平面图折叠后是一个三棱柱.