电力电子课设报告

合集下载

哈工大电力电子课程设计报告

哈工大电力电子课程设计报告

H a r b i n I n s t i t u t e o f T e c h n o l o g y课程设计说明书(论文)课程名称:电力电子技术设计题目:可逆直流PWM驱动电源的设计院系:电气工程系班级:设计者:学号:同组人:指导教师:设计时间:哈尔滨工业大学教务处哈尔滨工业大学课程设计任务书双极模式直流PWM 驱动电源的设计1.主电路设计1.1. 主电路设计要求直流PWM 驱动电源的主电路图如图1a 所示,图1b 为控制原理框图,它包括整流电路和H 桥可逆斩波电路的设计。

二极管整流桥把输入交流电变为直流电,H 桥逆变器则根据IGBT 驱动信号占空比的不同,得到不同的直流电压,并将其加在电动机上。

a 主电路图b 控制原理框图图1(1)整流部分采用四个二极管构成整流桥模块;(2)逆变器部分采用IPM (智能功率模块)PS21564构成。

该电路主要为三相逆变桥,此处采用其中的U 、V 两相;(3)根据负载要求,计算出交流侧输入电压和电流,作为设计整流变压器、选择整流桥和滤波电容的依据。

由于该电路整流输出电压较低,所以在计算变压器副边电压时应考虑在电流到达负载之前,整流桥和逆变桥中功率器件的通态压降。

整流电路设计整流部分采用4个二极管构成的整流桥模块。

电动机的额定电压为20V ,通过查阅该型号IPM 的数据手册得知,开关器件的通态压降为2V 左右,可知dc V 电压为24V ,由全桥整流电路可知:20.9dc V V整流桥中二极管的管压降为1V ,可知变压器副边电压及变压器的变比,滤波电容选择耐压40V 左右,容值450uF 左右。

型逆变桥设计该部分电路在IPM 模块内部集成,不需要设计。

它的主电路是三相逆变桥,此处采用其中的U 、V 两相。

2 .控制电路设计说明SG3525的13脚输出占空比可调,占空比调节范围为0~1的脉冲信号,经过移相后,输出两组相位相反,死区时间为5μS 左右的脉冲,分别驱动V1、V4和V2、V3的开通和关断。

电力电子课程设计报告陈晋杰赵栗杰

电力电子课程设计报告陈晋杰赵栗杰

电力电子课程设计报告------陈晋杰----赵栗杰电力电子课程设计报告设计题目:静电除尘器高频高压电源的设计学生姓名:陈晋杰专业:电气工程及其自动化班级:12电气一班指导教师:凌禹设计时间:目录一、设计题目 (2)二、报告正文 (3)摘要 (3)2.1 高频开关电源供电简介 (3)2.2 高频高压电源主要电路拓补的选择 (4)2.3 整流电路的设计 (7)2.4 波形分析 (10)三、设计总结 (11)四、参考文献................一、设计题目单相、三相可控桥式整流的工程应用————静电除尘高频高压电源的设计随着工业的发展,生产规模的日益扩大,环境污染如水污染、空气污染、废物污染、化学污染、噪音污染、热污染等有日趋严重之势。

粉尘是造成空气污染的主要污染物之一。

支撑我国工业基础的煤炭加工、采矿、电力、冶金、炼油、化工、造纸等工业都是粉尘的排放源。

工业粉尘的大量排放,不仅会危及人体健康和自然环境,在某些情况下还会造成大量贵重材料的流失。

在诸多除尘设备中,静电除尘器不仅具有除尘效率高,处理烟气量大,阻力损失小,能耗小及运行费用低等优点,还可以用来回收有用材料和能源。

因此静电除尘器在工业应用上的研究得到了越来越多的重视。

静电除尘器是当今世界公认的高效除尘设备,对于环境的保护具有及其重要的意义。

高压直流电源作为静电除尘器的核心部件,对于除尘的效率和效果有着决定性的影响。

人们在其基础上做了许多改进,比如研制输入为三相相控整流以提高功率因数;在工频整流供电基础上研制调幅式LC恒流供电电源、间歇电源和脉冲电源以提高除尘器对某些粉尘或除尘环境的除尘能力。

但基于晶闸管调压的低频工作方式的除尘电源,由于其低频工作的本质具有的许多缺点,已成为限制进一步提高除尘器除尘效果的瓶颈。

静电除尘电源高频化的发展也已成为国内外除尘行业的共识,这一方面国外走在了前列。

国内已有中小功率高频静电除尘电源的产品,但目前国内绝大多数主流静电除尘设备所配套的电源功率需要在60—100kW。

电力电子技术课程设计总结

电力电子技术课程设计总结

电力电子技术课程设计总结篇一:电力电子技术课程设计报告成都理工大学工程技术学院TheEngineering&TechnicalcollegeofchengduUniversityofTechnology力电子技术课程设计报告姓名学号年级专业系(院)指导教师电三相半波整流电路的设计1设计意义及要求1.1设计意义整流电路是出现最早的电力电子电路,将交流电变为直流电,电路形式多种多样。

当整流负载容量较大,或要求直流电压脉动较小时,应采用三相整流电路。

其交流侧由三相电源供电。

三相可控整流电路中,最基本的是三相半波可控整流电路,应用最为广泛的是三相桥式全控整流电路、以及双反星形可控整流电路、十二脉波可控整流电路等,均可在三相半波的基础上进行分析。

1.2初始条件设计一三相半波整流电路,直流电动机负载,电机技术数据如下:Unom?220V,inom=308a,nnom=1000r/min,ce=0.196Vmin/r,Ra?0.18。

1.3要求完成的主要任务1)方案设计2)完成主电路的原理分析3)触发电路、保护电路的设计4)利用maTLaB仿真软件建模并仿真,获取电压电流波形,对结果进行分析5)撰写设计说明书2方案设计分析本文主要完成三相半波整流电路的设计,通过maTLaB软件的SimULinK模块建模并仿真,进而得到仿真电压电流波形。

分析采用三相半波整流电路反电动势负载电路,如图1所示。

为了得到零线,变压器二次侧必须接成星形,而一次侧接成三角形,避免3次谐波流入电网。

三个晶闸管分别接入a、b、c三相电源,它们的阴极连接在一起,称为共阴极接法,这种接法触发电路有公共端,连线方便。

图1三相半波整流电路共阴极接法反电动势负载原理图直流电(:电力电子技术课程设计总结)动机负载除本身有电阻、电感外,还有一个反电动势E。

如果暂不考虑电动机的电枢电感时,则只有当晶闸管导通相的变压器二次电压瞬时值大于反电动势时才有电流输出。

电力电子技术课程设计报告

电力电子技术课程设计报告

电力电子技术课程设计报告一、引言电力电子技术是现代电力系统中不可或缺的一部分。

它涉及到将电能转换为不同形式以满足不同需求的技术。

本文将介绍一个基于电力电子技术的课程设计报告,旨在帮助读者了解该设计的步骤和思考过程。

二、设计目标我们的设计目标是实现一个具有高效能转换和可靠性的电力电子系统。

该系统能够将直流电能转换为交流电能,并能够在不同负载条件下提供稳定的电力输出。

三、系统设计1. 选取合适的电力电子器件为了实现电能的转换,我们需要选取合适的电力电子器件。

在这个设计中,我们选择使用开关管作为主要的电力电子器件。

开关管具有快速开关和可控的特性,适合用于电能转换。

2. 设计电力电子控制电路为了控制开关管的工作,我们需要设计一个电力电子控制电路。

这个电路主要由控制芯片、传感器和驱动电路组成。

控制芯片用于生成控制信号,传感器用于监测电流和电压等参数,驱动电路用于控制开关管的导通和关断。

3. 进行系统建模和仿真在进行实际电路设计之前,我们需要对系统进行建模和仿真。

这可以帮助我们验证设计的正确性,并且可以提前发现潜在的问题和改进的空间。

我们可以使用电路仿真软件来进行系统建模和仿真。

4. PCB设计和元器件选型在完成系统建模和仿真后,我们需要进行PCB设计和元器件选型。

PCB设计是将电路设计转化为实际电路板的过程。

在PCB设计中,我们需要考虑电路的布局和走线,以及选择适当的元器件。

5. 制作和调试电路板在完成PCB设计后,我们可以开始制作电路板。

制作电路板可以通过将电路设计转移到电路板上,并使用电路板制作设备进行制作。

制作完成后,我们需要进行电路板的调试,以确保电路的正常工作。

6. 测试和优化系统性能在完成电路板的制作和调试后,我们需要对系统进行测试和优化。

测试可以帮助我们评估系统的性能,并发现潜在的问题。

根据测试结果,我们可以进行优化,以提高系统的效率和可靠性。

四、总结本文介绍了一个基于电力电子技术的课程设计报告的步骤和思考过程。

模拟电力电子专业课程设计方案报告

模拟电力电子专业课程设计方案报告

模拟电力电子专业课程设计方案报告嘿,大家好!今天我来给大家分享一下关于电力电子专业课程设计的方案。

咱们这个方案可是结合了十年经验的心血结晶,废话不多说,咱们直接进入主题!一、课程设计背景电力电子技术在现代工业中有着广泛的应用,为了让学生更好地掌握这门技术,我们这个课程设计应运而生。

课程设计旨在让学生了解电力电子设备的基本原理、设计方法和实际应用,培养他们的创新能力和实际操作能力。

二、课程设计目标1.理论与实践相结合,让学生掌握电力电子技术的基本原理和设计方法。

2.培养学生的动手能力,提高他们解决实际问题的能力。

3.培养学生的团队协作精神,提高他们的沟通与协作能力。

三、课程设计内容1.电力电子器件介绍这部分内容主要包括电力电子器件的分类、特性、工作原理和应用。

通过这部分学习,学生可以了解到各种电力电子器件的特点和适用场合。

2.电力电子电路设计这部分内容主要介绍电力电子电路的设计方法,包括AC/DC变换、DC/DC变换、DC/AC变换等。

学生需要掌握各种电路的原理和设计要3.电力电子系统仿真这部分内容主要教授学生如何使用仿真软件进行电力电子系统的设计和分析。

通过仿真实验,学生可以更好地理解电力电子系统的动态性能和稳定性。

4.电力电子设备应用这部分内容主要包括电力电子设备在工业、交通、能源等领域的应用。

学生需要了解各种应用场景下的电力电子设备设计要点和实际应用案例。

四、课程设计方法1.理论教学通过课堂讲授、案例分析等形式,让学生掌握电力电子技术的基本原理和设计方法。

2.实践操作安排实验室实践环节,让学生亲自动手搭建电力电子电路,进行仿真实验,提高他们的实际操作能力。

3.团队协作课程设计中,学生需要组成团队,共同完成设计任务。

通过团队协作,培养学生的沟通与协作能力。

4.评价体系课程设计结束后,对学生的设计方案进行评价。

评价内容包括设计原理的正确性、设计方法的合理性、实际操作能力、团队协作精神五、课程设计成果1.学生可以独立完成电力电子系统的设计与仿真。

电力电子课程设计报告

电力电子课程设计报告

电力电子课程设计报告采用双PWM控制的风力发电并网变流器时间:2011年6月目录摘要 (3)第0章绪论 (4)0.1.课程设计要求 (4)0.2.风力发电并网系统简介 (4)0.3.课程设计流程 (5)第1章主电路选型 (6)1.1整流电路选型 (7)1.2后级变换电路选型 (8)第2章主电路有源器件参数计算 (11)2.1主电路开关器件选择 (11)2.1.1智能功率模块 MIG50Q201H 简介 (11)第3章主电路无源器件参数计算 (14)3.1直流电压的确定 (14)3.2交流侧电感的选择 (14)3.3直流侧稳压电容选择 (15)第4章有源电路的驱动、保护原理设计 (16)4.1有源IPM驱动电路设计 (16)4.2IPM 驱动电路设计 (18)4.3保护电路设计 (19)第5章控制、检测电路原理设计 (21)5.1控制电路设计 (21)5.1.1基于TMS320F2812 控制电路的设计 (21)5.1.2TMS320F2812 的主要特点 (22)5.1.3基于TMS320F2812 的控制电路板的设计 (23)5.2信号检测电路设计 (25)5.2.1电网电压相位过零点检测电路 (25)5.2.2直流母线电压检测 (26)5.2.3电流检测电路 (28)第6章散热设计 (30)6.1散热基础设计 (30)6.2IGBT散热计算 (32)第7章仿真 (33)7.1设计技术参数及要求 (33)7.2系统仿真设计 (33)7.3仿真结果 (34)第8章参考文献 (37)摘要随着全球能源危机和环境污染的日益严重,风能和太阳能作为当前最理想的绿色能源越来越受到各国的重视。

但是由于风力发电的波动性和分散性,如果直接并入电网会对电网产生冲击,所以必须使风力发电的输出电压稳定在一定的电压和频率值之后才能并入电网,实现柔性并网。

解决这一问题的核心就是风力发电并网变流器。

在本次课程设计中,我们组设计了双PWM脉宽调制技术控制的并网变流器。

电力电子技术课程设计报告

电力电子技术课程设计报告

电力电子技术课程设计报告.doc本次课程设计的主题是电力电子技术,旨在通过实践操作及深入研究,掌握电力电子器件和系统的运行原理、设计与控制方法。

本报告将详细介绍本次课程设计的内容、目的及实施过程,并对结果进行总结与展望。

一、课程设计的内容及目的本次课程设计的主要内容为电力电子器件模块的设计及控制,具体包括以下内容:(1)电力电子器件模块的设计:本次课程设计的目标是实现一个电力电子器件模块,该模块采用的器件是MOSFET,要求能够实现输入电压与输出电压的变化控制,并具有良好的稳定性和可靠性。

(2)控制电力电子器件模块:本次课程设计还要求实现对电力电子器件模块的控制,包括输出电压的变化控制和保护性措施的设计等。

通过本次课程设计,学生可以了解电力电子器件的工作原理、性能特点和设计方法,掌握电力电子器件的调节和控制技术,提高学生的综合实践能力和创新能力。

二、课程设计的实施过程本次课程设计主要分为设计、制作及测试三个阶段。

1、设计阶段在设计阶段,学生需按照要求完成电力电子器件模块的设计,具体包括以下内容:(1)设计输入输出电压的大小和变化范围。

(2)选择合适的电力电子器件,确定电路拓扑结构。

(3)设计电力电路的关键参数,包括电流、电压、功率等。

(4)根据设计参数选择合适的控制电路,包括开关电路、反馈电路等。

(5)通过电路仿真软件进行仿真分析,调整电路参数,保证各项参数性能合理、稳定、可靠。

2、制作阶段在设计阶段完成电路模块的主要参数设定后,开始实际制作电路模块。

具体操作流程如下:(1)选购相关器件,如MOSFET、电容、电感等。

(2)通过电路图纸完成电路板原理图和PCB布局设计。

(3)利用PCB设计软件进行图纸制作,并进行打样检验。

(4)进行电路元器件焊接。

(5)检查焊接后电路元器件的连接情况是否正确。

(6)测试电路模块的基本性能,包括输入输出电压的测试、开关信号测试等。

3、测试阶段在电路模块制作完成后,需要进行测试,以检验电路的性能是否满足要求。

电力电子课设总结与体会

电力电子课设总结与体会

电力电子课设总结与体会在大学的学习生涯中,电力电子课设无疑是一次具有挑战性和实用性的重要实践环节。

通过这次课程设计,我不仅巩固了课堂上学到的理论知识,还在实际操作中提高了自己的动手能力和解决问题的能力。

课程设计的任务是设计一个具有特定功能的电力电子电路。

在接到任务之初,我感到既兴奋又紧张。

兴奋的是有机会将所学知识应用到实际项目中,紧张的是担心自己无法胜任这个任务。

然而,随着课程设计的逐步推进,我逐渐找到了方向。

在设计过程中,首先需要对任务进行详细的分析和规划。

我仔细研究了设计要求,确定了电路的类型和主要参数。

这一阶段需要运用到电力电子学中的各种知识,如整流电路、逆变电路、斩波电路等。

同时,还需要考虑电路的效率、稳定性、可靠性等因素。

接下来就是方案的选择和设计。

我查阅了大量的资料和文献,参考了许多类似的设计案例,并结合自己的任务要求,制定了几套可行的方案。

然后,对这些方案进行了详细的比较和分析,从成本、性能、实现难度等多个方面进行综合考量,最终确定了最优的设计方案。

在电路的具体设计中,元件的选择是至关重要的一步。

需要根据电路的参数要求,选择合适的二极管、三极管、电容、电感等元件。

这不仅需要对元件的性能和参数有深入的了解,还需要考虑市场上的供应情况和价格因素。

在选择元件的过程中,我也遇到了一些困难,比如某些元件的参数不符合要求,或者价格过高。

但是通过不断地查找和比较,最终还是找到了合适的元件。

完成电路设计后,就进入了仿真和调试阶段。

我使用了专业的仿真软件对设计的电路进行了模拟,观察电路的工作状态和输出结果。

在仿真过程中,发现了一些问题,比如输出电压不稳定、波形失真等。

针对这些问题,我仔细检查了电路的连接和参数设置,对电路进行了不断的优化和改进。

经过多次的仿真和调试,电路终于达到了预期的效果。

然而,这并不意味着课程设计的结束。

接下来,还需要制作实际的电路板,并进行实物测试。

在电路板的制作过程中,需要注意布线的合理性和焊接的质量,以确保电路的性能不受影响。

电力电子装置及系统课程设计报告

电力电子装置及系统课程设计报告

电力电子装置及系统课程设计报告1. 课程设计概述本课程设计的目的是通过对电力电子装置及系统的研究与实践,使学生掌握电力电子技术的基本原理、基本电路和基本器件,培养学生的动手能力、分析问题和解决问题的能力。

通过实际设计一个电力电子装置或系统,使学生了解电力电子装置在现代工业、交通运输、通信等领域的应用,为今后从事相关工作打下坚实的基础。

介绍电力电子技术的发展历程、基本概念、基本原理和发展趋势,使学生对电力电子技术有一个全面的了解。

介绍常用的电力电子装置及其基本电路,如半桥逆变器、全桥逆变器、谐振变换器等,使学生掌握这些电路的设计方法和工作原理。

介绍常用的电力电子器件,如晶闸管、MOSFET、IGBT等,使学生了解这些器件的结构、工作原理和性能参数。

根据课题要求,设计一个具有一定功能的电力电子装置或系统,并进行实际调试,使学生掌握电力电子装置及系统的设计方法和调试技巧。

指导学生撰写课程设计报告,并进行答辩准备,使学生养成良好的学术写作习惯和团队合作精神。

1.1 课程设计目的与任务本次电力电子装置及系统课程设计的目的是培养学生的工程设计能力和实践操作经验。

通过课程设计,使学生熟练掌握电力电子装置的基本原理、系统构成、运行控制和优化方法,从而能够独立完成电力电子装置的设计、安装、调试和运行维护工作。

课程设计还旨在提高学生的团队协作能力和创新意识,为将来的工程实践和技术创新打下坚实的基础。

电力电子装置的基本原理与设计:学生需掌握电力电子装置的基本原理、主要构成、电路设计及选型计算。

学生还需具备能够根据实际需求独立完成装置的初步设计能力。

系统的运行与控制:学生需理解并掌握电力电子系统的运行特性,包括稳定性、动态响应等。

学生还需掌握系统的控制策略,如PID控制、模糊控制等,并能够根据实际需求设计合适的控制系统。

优化与改进:学生需要根据实际需求和现场环境对电力电子装置进行优化和改进,以提高其性能和使用寿命。

这包括装置的节能优化、抗干扰设计以及可靠性提升等。

电力电子技术课程设计报告资料

电力电子技术课程设计报告资料

前言电力电子技术又称为功率电子技术,他是用于电能变换和功率控制的电子技术。

电力电子技术是弱电控制强电的方法和手段,是当代高新技术发展的重要内容,也是支持电力系统技术革命发展的重要基础,并节能降耗、增产节约提高生产效能的重要技术手段。

微电子技术、计算机技术以及大功率电力电子技术的快速发展,极大地推动了电工技术、电气工程和电力系统的技术发展和进步。

电力电子器件是电力电子技术发展的基础。

正是大功率晶闸管的发明,使得半导体变流技术从电子学中分离出来,发展成为电力电子技术这一专门的学科。

而二十世纪九十年代各种全控型大功率半导体器件的发明,进一步拓展了电力电子技术应用和覆盖的领域和范围。

电力电子技术的应用领域已经深入到国民经济的各个部门,包括钢铁、冶金、化工、电力、石油、汽车、运输以及人们的日常生活。

功率范围大到几千兆瓦的高压直流输电,小到一瓦的手机充电器,电力电子技术随处可见。

电力电子技术在电力系统中的应用中也有了长足的发展,电力电子装置与传统的机械式开关操作设备相比有动态响应快,控制方便,灵活的特点,能够显著地改善电力系统的特性,在提高系统稳定、降低运行风险、节约运行成本方面有很大潜力。

目录1.设计任务说明 (3)2.方案选择 (4)2.1器件的介绍 (4)2.2单相可控整流电路的比较 (6)3.辅助电路的设计 (12)3.1驱动电路的设计 (12)3.2保护电路的设计 (13)3.3过流保护 (14)3.4过压保护 (14)3.5 电流上升率、电压上升率的抑制保护 (14)4.主体电路的设计 (15)4.1主要电路原理及说明 (15)4.2主电路的设计 (16)4.3主要元器件的说明 (16)4.4元器件清单 (19)5.性能指标分析 (19)6. 设计心得 (21)7. 参考文献 (22)1、设计任务书一、课程设计的目的:1、培养学生文献检索的能力,特别是如何利用 Internet 检索需要的文献资料。

电力电子课程设计总结buck

电力电子课程设计总结buck

电力电子课程设计总结buck一、课程目标知识目标:1. 让学生掌握Buck电路的基本原理和结构,理解其工作过程和功能。

2. 使学生了解Buck电路在电力电子领域的应用,以及其在节能减排方面的意义。

3. 帮助学生掌握Buck电路的关键参数计算,培养学生分析和解决实际问题的能力。

技能目标:1. 培养学生运用所学知识对Buck电路进行设计和计算的能力。

2. 提高学生动手实践能力,能够搭建简单的Buck电路并进行调试。

3. 培养学生运用现代电子设计工具,如CAD软件进行电路设计和仿真。

情感态度价值观目标:1. 培养学生对电力电子技术的兴趣,激发学生探索精神和创新意识。

2. 培养学生团队协作意识,学会与他人共同解决问题。

3. 强化学生的环保意识,认识到电力电子技术在节能减排中的重要作用。

课程性质:本课程为电力电子技术领域的基础课程,旨在帮助学生掌握Buck 电路的基本原理和应用。

学生特点:学生具备一定的电子技术基础知识,对电力电子技术有一定了解,但缺乏实际操作经验。

教学要求:结合学生特点,注重理论与实践相结合,提高学生的实际操作能力和解决问题的能力。

在教学过程中,注重启发式教学,引导学生主动探索和思考。

同时,关注学生的情感态度价值观培养,使学生在掌握专业知识的同时,形成良好的职业素养。

通过分解课程目标为具体学习成果,为后续教学设计和评估提供依据。

二、教学内容1. Buck电路原理及结构分析:讲解Buck电路的基本原理、组成部分及其工作过程,结合教材第二章相关内容,阐述Buck电路的转换效率及特点。

2. Buck电路关键参数计算:根据教材第三章,教授Buck电路关键参数的计算方法,包括电感、电容、开关频率等,培养学生分析和解决实际问题的能力。

3. Buck电路应用案例:介绍Buck电路在电力电子领域的应用,如充电器、电源适配器等,结合教材第四章内容,强调其在节能减排方面的重要性。

4. Buck电路设计与实践:根据教材第五章,指导学生运用所学知识进行Buck 电路的设计和计算,培养学生动手实践能力。

电力电子设计报告

电力电子设计报告

.-2222234455667991010整流电路〔Rectifier〕是电力电子电路中浮现最早的一种,它的作用是将交流电能变为直流电能供应用电设备。

整流电路的应用十分广泛,例如直流电动机,电镀、店接电源,同步发机电励磁,通信系统电源等。

性质:电气工程及其自动化专业的必修实践性环节。

目的:1 、对 MATLAB 软件初步认识,学习 simulink的使用方法。

2 、培养学生综合运用知识解决问题的能力与实际动手能力。

3 、加深理解"电力电子技术"课程的根本理论。

4 、初步掌握电力电子电路的设计方法。

5 、培养独立思量、独立采集资料、独立设计的能力;6 、培养分析、总结及撰写技术报告的能力。

单相全控桥式晶闸管整流电路设计〔纯电阻负载〕:1.电源电压:交流 1000V/50Hz;2.输出功率: 500KW;3.移相范围:0 °-180°。

:〔1〕熟悉设计任务书,分析设计要求,借阅参考资料;〔2〕掌握 MATLAB的根本操作和用法;〔2〕在 simulink仿真中上设计硬件原理图;〔3〕修改原理图;〔4〕计算元件参数;〔5〕调试和仿真;〔6〕依元件参数选取厂家元件;〔7〕撰写设计报告,绘图等。

本次设计中要明确整流中半波可控与全波可控区别,明确整流电路工作原理,定性分析电路工作情况。

之后是实际上对单相全控桥式整流晶闸管电路的研究和设计,其中包括主电路和触发电路;随后仿照参考电路发展Matlab仿真,选取适宜的仿真元件,发展初步仿真,并对仿真结果发展分析与总结;理解电路定量分析计算的方法,并计算出主电路的各部件的参数,然后依照参数在各厂家的产品中选出适宜的工作器件。

整流电路可从各种角度发展分类,主要的分类方法有:按组成的器件可分为不可控、半控、全控三种;按电路构造可分为桥式电路和零式电路;按交流输入相数分为单相和多相电路;按变压器二次电流的方向是单相还是双向,又分为单拍电路和双拍电路。

电力电子设计报告 三相电压型交直交变频器设计与仿真

电力电子设计报告 三相电压型交直交变频器设计与仿真

电力电子课程设计报告设计题目三相电压型交直交变频器设计与仿真指导老师设计者专业班级学号摘要目前国际形势纷乱复杂、能源危机日益突出,能源瓶颈已经逐渐成为了制约国民经济持续发展的主要因素之一,迫切需要提高工农业生产中的能源利用率。

本课程设计正是基于目前我国交流电气传动系统的现状,设计了一台电压源型通用变频器。

随着电力电子技术、计算机技术、自动控制技术的迅速发展,交流变频调速技术得到了迅速发展,其显著的节能效益,高精确的调速精度,宽泛的调速范围,完善的保护功能,以及易于实现的自动通信功能,得到了广大用户的认可,在运行的安全可靠、安装使用、维修维护等方面,也给使用者带来了极大的便利。

因此,研究交—直—交变频调速系统的基本工作原理和作用特性意义十分重大。

本文研究了变频调速系统的基本组成部分,主回路主要有三部分组成:将工频电源变换为直流电源的“整流器”;吸收由整流器和逆变器回路产生的电压脉动的“滤波回路”,也是储能回路;将直流功率变换为交流功率的“逆变器”。

使用Matlab/Simulink搭建交—直—交变频调速系统的仿真模型,通过试验对该交—直—交变频器的基本工作原理、工作特性及作用有更深的认识,也对谐波对于交—直—交变频器的影响有了一定的了解。

关键词:交—直—交变频,整流,逆变,simulink仿真,谐波目录摘要 .................................................................................................................... I I 第1章绪论. (5)1.1课程设计的目的 (5)1.2课程设计的任务与要求 (5)1.3课程设计的内容 (5)1.4控制方式 (6)1.5M ATLAB的原理应用及S IMULINK仿真 (7)第2章三相电压型交直交变频器的组成及基本原理 (8)2.1三相电压型交直交变频器的基本构成 (8)2.2交直交变频器的工作原理 (10)2.3使用变频器要注意的问题 (11)2.4交直交变频的基本工作特性 (11)2.5PID控制器的参数整定 (11)第3章主电路设计及仿真 (12)3.1设计方案 (12)3.2主电路结构原理图 (13)3.3电路类型选择依据 (13)3.4整流器的工作原理及设计 (14)3.4.1 整流器的基本工作原理 (14)3.4.2 整流元件的选择 (16)3.4.3 电抗器参数计算 (16)3.4.4 整流器的设计与仿真 (16)3.5逆变器的工作原理及设计 (21)3.5.1 逆变器的基本工作原理 (21)3.5.2 逆变器的设计与仿真 (24)3.5.3 PI控制电路的设计与仿真 (28)3.5.4 PWM波的产生设计与仿真 (30)第4章驱动保护电路的设计 (33)4.1过电压保护: (33)4.2过电流保护 (34)4.3IGBT驱动电路 (34)4.4触发电路选择与设计 (35)第5章综合设计与仿真 (37)5.1.1 交直交变频器模型 (37)5.1.2 检验是否满足性能指标的要求。

电力电子课程设计报告结论

电力电子课程设计报告结论

电力电子课程设计报告结论一、课程目标知识目标:1. 让学生掌握电力电子技术的基本原理,理解电力电子器件的工作特性和应用场合。

2. 使学生能够运用所学知识分析简单的电力电子电路,并解释电路的工作过程。

3. 引导学生了解电力电子技术在我国电力系统和工业控制中的应用及发展前景。

技能目标:1. 培养学生具备电力电子电路的设计和调试能力,能够使用相关软件工具进行电路仿真。

2. 提高学生运用电力电子器件和电路解决实际问题的能力,培养创新思维和动手实践能力。

情感态度价值观目标:1. 培养学生对电力电子技术产生浓厚的兴趣,激发学习积极性,形成自主学习习惯。

2. 增强学生的团队合作意识,培养在团队中积极沟通、协作解决问题的能力。

3. 引导学生认识到电力电子技术在节能减排、可持续发展等方面的重要作用,树立环保意识和责任感。

分析课程性质、学生特点和教学要求:本课程为电力电子技术相关课程设计,旨在让学生将理论知识与实际应用相结合。

考虑到学生所在年级的特点,课程目标以巩固基础知识、提升实践能力为主。

在教学过程中,注重启发式教学,引导学生主动探究,提高分析问题和解决问题的能力。

二、教学内容1. 电力电子器件原理及特性:包括晶闸管、IGBT、MOSFET等器件的工作原理、主要参数和选型依据。

- 教材章节:第二章“电力电子器件”2. 电力电子电路分析与设计:介绍单相整流电路、逆变电路、斩波电路等基本电路拓扑及其工作原理。

- 教材章节:第三章“电力电子电路分析与设计”3. 电力电子电路仿真:运用相关软件(如PSPICE、MATLAB等)进行电力电子电路的仿真分析。

- 教材章节:第四章“电力电子电路的计算机仿真”4. 电力电子技术应用实例:分析电力电子技术在电力系统、工业控制、新能源等领域的应用案例。

- 教材章节:第五章“电力电子技术的应用”5. 课程设计实践:分组进行课程设计,完成一个小型电力电子装置的设计、制作和调试。

- 教材章节:第六章“电力电子课程设计”教学进度安排:第一周:电力电子器件原理及特性第二周:电力电子电路分析与设计第三周:电力电子电路仿真第四周:电力电子技术应用实例第五周:课程设计实践(分组讨论、设计方案)第六周:课程设计实践(制作、调试)第七周:课程总结与评价教学内容确保科学性和系统性,结合课程目标,注重理论与实践相结合,提高学生的实际操作能力。

电工电子综合课程设计报告

电工电子综合课程设计报告

电工电子综合课程设计报告一、课程设计背景电工电子综合课程是电气工程类专业的重要课程之一,本着理论与实践相结合的原则,课程设计是一项必不可少的重要任务。

在课程设计的过程中,要注重理论知识的学习和实践能力的培养,加强学生对电力电子技术的认知,提高学生的创新能力和实践操作技能。

在实践中要充分考虑课程目标的实现,提高课程设计的现实意义和实用性,为学生的未来职业发展提供有力的帮助。

二、课程设计目标本次课程设计旨在提高学生的实践能力,培养学生的电子电路的设计能力和电力系统的操作技能。

本次课程设计的目标如下:1.使学生掌握电力电子技术的基本原理与电路设计方法;2.锻炼学生的实验能力和操作技能,让学生能够熟练进行电力系统设计和电子电路测试;3.提高学生的团队合作能力和创新意识,让学生能够团队合作设计出具有实用价值的电子电路;4.培养学生的实践操作体验,让学生在实验操作中不断探索、研究,提高学生的动手能力和表达能力。

三、课程设计具体内容1.电子元器件基础知识本次课程设计将深入讲解电子元器件的基础知识,如二极管、三极管、场效应管等,让学生从基础知识入手,深入了解电子元器件的特性和应用,为后续的课程设计做好铺垫。

2.电路设计与实现在学习了基础知识之后,接下来就是进行电路设计和实现。

本次课程设计将分为两个阶段进行,首先是单元电路的设计和实现,包括各种放大电路、滤波电路、比较电路等;然后是单元电路的组合,设计出整个系统的电路。

学生们需要团队合作,进行设计和实验,利用已学习的电路知识,自行完成电子电路的设计,体验电子设计的乐趣和成就感。

3.电力系统维护和调试在电子电路设计阶段结束后,接下来是电力系统的维护和调试。

学生将学习电力系统的基本原理,如电力系统的拓扑结构、逆变器原理、控制电路原理等,然后进行电力系统的调试和维护,实际操作学习电力系统的运行和维护,如何发现电力系统运行异常,如何进行维护调试等,为日后的电力工程实践奠定基础。

电力电子课程设计报告

电力电子课程设计报告

0.摘要和关键词:通过M ATLAB 仿真软件,对于电力电子所学的交流和支流的转换,对于相应的仿真模型有了一定的了解,对于MA TLA B的操作也有了一定的熟悉。

1.课程设计的任务:一)建立单相半波可控整流电路仿真模型:1、对教材P43图2-1、P44图2-2和P46图2-4进行验证(假设交流电压有效值为220伏)。

2、改变直流侧负载电阻与电感值,观察各波形的变化。

3、改变晶闸管触发角,观察各波形的变化。

(二)建立单相全控桥式整流电路仿真模型:1、对教材P47图2-5、P 48图2-6进行验证(假设三相交流线电压有效值为380伏)。

2、改变直流侧负载电阻与电感值,观察各波形的变化。

3、改变晶闸管触发角,观察各波形的变化。

(三)建立P54图2.17所示的三相全控桥式整流电路仿真模型,假设三相交流线电压有效值为380伏,直流侧负载电阻为1欧姆,电感为20m H。

改变交流侧电感(0.001~0.1mH )、晶闸管触发角,观察交流电压、直流电压与交流电流的波形。

(四)建立P 106图3.4所示的升降压斩波电路仿真模型,假设15V E =,0.05mH L =,开关频率20kHz s f =。

改变占空比,观察电感上电压、电流波形的变化情况。

(五)在P153图6.7所示的三相桥式SPW M逆变电路中,假设500V d U =,三相负载电阻2R =Ω,负载电感10mH L =,开关频率1kHz s f =。

并假设三相负载中含有电源,U相电源电压50V U e =(50V 为峰值,频率为50Hz ,相位为0,三相互差120)。

若每相电流有效值为35A,请确定幅值调制率a m 的取值(a m 定义为正弦波调制信号峰值与三角波载波信号峰值的比值,逆变电路输出相电压有效值0.612a d U m U =相。

若a m 取为0.8,每相电流有效值为35A ,则直流侧电压应取何值?画出UN u 、U e 与U i 的波形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

H a r b i n I n s t i t u t e o f T e c h n o l o g y课程设计说明书(论文)课程名称:电力电子技术设计题目:可逆直流PWM驱动电源的设计院系:电气工程系班级:0706111设计者:王勃学号:1070610602指导教师:李久胜设计时间:2010年11月哈尔滨工业大学教务处哈尔滨工业大学课程设计任务书H型单极性同频可逆直流PWM驱动电源的设计技术指标:被控直流永磁电动机参数:额定电压20V,额定电流1A,额定转速2000rpm。

驱动系统的调速范围:大于1:100。

驱动系统应具有软启动功能,软启动时间约为2s。

详细设计要求见附录2.1.整体方案设计本文设计的H型单极性同频可逆直流PWM驱动电源由四部分组成:主电路,H 型单极模式同频可逆PWM控制电路,IPM接口电路及稳压电源。

同时具有软启动功能,软启动时间为2s左右。

控制原理如图1所示:功率转换电路图1 直流PWM驱动电源的控制原理框图脉宽调制电路以SG3525为核心,产生频率为5KHz的方波控制信号,占空比可调。

经用门电路实现的脉冲分配电路,转换成两列对称互补的驱动信号,同时具有5us的死区时间,该信号驱动H型功率转换电路中的开关器件,控制直流永磁电动机。

稳压电源采用LM2575-ADJ系列开关稳压集成电路,通过调整电位器,使其稳定输出15V直流电源。

2.主电路设计2.1主电路设计要求直流PWM驱动电源的主电路图如图2所示。

此部分电路的设计包括整流电路和H桥可逆斩波电路。

二极管整流桥把输入的交流电变为直流电。

四只功率器件构成H 桥,根据脉冲占空比的不同,在直流电机上可得到不同的直流电压。

主电路部分的设计要求如下:1)整流部分采用4 个二极管集成在一起的整流桥模块。

2)斩波部分H 桥不采用分立元件,而是选用IPM(智能功率模块)PS21564来实现。

该模块的主电路为三相逆变桥,在本设计中只采用其中U、V 两相即可。

图2 主电路图3)在主电路设计中,应根据负载的要求,计算出整流部分的交流侧输入电压和电流,作为设计整流变压器、选择整流桥和滤波电容的依据。

该电路的整流输出电压较低,所以在计算变压器副边电压时应考虑在电流到达负载之前,整流桥和逆变桥中功率器件的通态压降。

2.2 整流电路设计整流部分采用4个二极管集成在一起的整流桥模块。

电动机的额定电压为20V ,通过查阅该型号IPM 的数据手册可知开关器件的通态导通压降为2V 左右,故可知dc V 电压为24V ,由全桥整流电路可知,20.9dc V V考虑整流桥中二极管压降为1V ,故可知变压器副边电压,从而可知变压器的变比。

滤波电容选择耐压40V 左右,容值450uF 左右即可。

2.3 H 型逆变桥设计IPM 内部集成该部分电路,参数可参考手册。

该模块为三相逆变桥,只使用其中的U 、V 两相即可。

3. 控制电路设计3.1 H 型单极模式同频可逆直流PWM 控制原理所谓单极性,即在控制指令的作用下,在一个开关周期之内,电动机电枢两端的调制脉冲电压是单一极性的。

同频,是指PWM 功率转换电路输出的调制脉冲电压频率与频率发生器给定的基准频率相同。

如图3所示,同一侧的1V 、3V 工作在交替的开关状态,另一侧两个晶体管中,2V 基极施加截止关断电压,4V 基极施加饱和驱动电压,当电机反向时,将两侧晶体管的驱动信号互换即可。

图3 单极性同频PWM控制3.2脉冲调制电路以SG3525为核心,采用该集成芯片的DIP封装形式。

SG3525的13脚输出占空比可调(通过改变2 脚电压)的脉冲波形(占空比调节范围不小于0.1~0.9),同时频率可通过充放电时间的不同而改变,通过调节6脚的变阻器,将脉冲频率设定为5KHz。

由于SG3525 输出的两路脉冲是互补形式,在本设计中其输出应并联使用(即11,14 管脚短接,从13 管脚通过外部上拉电阻输出驱动脉冲),以达到0~1.0 的占空比调整范围。

SG3525 的8 管脚接电容,以实现软启动功能。

SG3525的外围电路设计如图4所示。

(1)6脚电阻RT选择指定5脚的外接震荡电容为0.02uF,通过查阅芯片手册可知,当输出频率设定为5KHz时,6脚所接电阻约为15K,实际电路中采用20K的变阻器,便于调试。

(2)8脚电容选择通过查阅芯片手册可知,8脚电容值与软启动时间的关系为:60ms/μF,设计要求软启动时间为2s,则8脚电容值为33uF。

图4 SG3525原理图3.3脉冲分配电路规定电机正转时驱动信号波形如图5(a)所示,则电机反转时驱动信号如图(b)所示。

图5(a) 电机正转时驱动信号图5(b) 电机反转时驱动信号利用DIP开关设定方向控制信号,以决定电机的方向,利用门电路实现驱动信号的转换。

为防止同一桥臂上下两管在驱动信号翻转时出现瞬时直通现象,应设计两路驱动信号的开通延时电路。

即利用RC移相后,为每路驱动信号产生5us的开通延时。

这部分电路中的门电路采用6反相器74LS04和74LS00,移相电路中C的取值为0.01uF,分析电路,利用三要素公式可计算电阻R的取值,实际电路中采用变阻器,以便于调试。

电路原理图如图6所示。

图6 脉冲分配电路3.4自举电路设计为了简化设计,上桥臂两个器件,即V1 和V3 的驱动电源采用单电源的自举式供电,详细设计可参考IPM 的设计手册。

这样整个模块的控制部分只采用1 个15V 电源供电即可,而不必采用3 路独立的电源,简化了设计。

本设计中,自举电路中的二极管建议选用IN5819,电容值为10uF,电阻值为5欧左右。

电路图如图7所示。

图7 自举电路3.5 稳压电源设计设计一个DC 15V 的控制电源,为SG3525及IPM 模块的驱动电路供电。

为了减小损耗,采用LM2575T -ADJ 系列开关稳压集成电路,将主电路的直流母线电压33V 作为输入,通过电位器的调节,经稳压后获得15V 的直流电源。

LM2575T 的封装形式为5脚TO-220形式。

另外TTL 电路的5V 工作电源可直接取自SG3525的内部参考电源管脚。

滤波电路中的二极管建议选用IN5819。

电路图如图8所示。

图8 15V 稳压电源电路通过查阅芯片手册知:211OUT REF R V V R ⎛⎫=+ ⎪⎝⎭ 本设计中,115, 1.23,1OUT REF V V V V R K ===,计算得:211.3R K =&。

实际电路中,采用变阻器代替1R ,2R ,便于调试。

4. 调试过程及结果分析4.1 调试过程(1) 调试15V 稳压电源电路只将控制板的J3接口与主电路板相连,J6和J7都不连接。

再将LM2575插在电路板的对应插座上。

模拟盒上断开S2开关,闭合S1开关。

调节电位器,直至稳压电路输出为所需的15V 为止。

(2) 调试脉宽调制信号发生电路接好电路,首先调节SG3525的6脚变阻器,使13脚输出脉冲的频率为5KHz ,之后调节2脚变阻器,确定输出脉冲的占空比可在0~1之间可调。

(3) 调试两路驱动信号的开通延时电路用示波器同时观察两路输出脉冲,分别调节两个RC移相电路中的变阻器,使死区时间为5us。

同时,观察最终的输出驱动信号,确定其逻辑满足设计要求。

图9死区时间(4)调试自举电路接好电路,测试自举电压为14V左右,自举电路工作正常。

(5)整体调试将驱动脉冲信号的占空比调到50%左右,将电机接入电路,电机开始运转,调节占空比,可调节电机的速度,切换开关,可改变电机的运行方向。

4.2调试结果及分析(1)电机负载1)调节占空比,电机能够正常运转且速度变化;切换开关,可改变电机的运行方向,满足设计要求。

2)电机电枢上电压和电流的波形。

(ch1为电流,ch2为电压):如图10所示。

由波形可看出,当电机两端为正电压时,流过电枢的电流上升,电感储能;当外接电压断开时,电感释放能量,电流下降。

观察电压波形,发现电枢电压并不是标准的矩形波,在高电平时电压呈下降的趋势,这是由于电枢电感的储能作用,产生的反电动式引起的。

图10 电枢电压电流波形3)直流母线电压电流波形。

(ch1为电流,ch2为电压):如图11所示:图11 母线电压电流波形4)H桥中各个IGBT驱动控制信号的波形,如图12所示。

驱动信号互补,且有明显的死区时间,满足设计要求。

图12 V1和V3 、V2和V4波形(2)电阻负载1)调节占空比,观察电阻电压,随着占空比的改变,电阻上的电压也相应改变。

2)电阻上电压和电流的波形。

(ch1为电流,ch2为电压):如图13所示:图13 电阻上电压波形3)直流母线电压电流波形。

(ch1为电流,ch2为电压):如图14所示:图14 母线电压波形4)H桥中各个IGBT驱动控制信号的波形,如图15所示。

且有明显的死区时间,满足设计要求。

图15 V1和V3 、V2和V4波形 5. 收获和体会通过本次课程设计,我们组两个人共同完成设计直流电动机的脉宽调制(直流PWM )驱动电源,采用单极性同频可逆直流PWM 控制方式,经过我们的设计,焊制电路板,调试的全部流程,我们对于protel 的应用,电路板的焊接,调试电路时对于分析错误出现的原因都有了进一步的掌握。

在设计自举电路时,我们对于参数的设计不清楚,通过两人讨论、查资料、向同学和老师请教,得以解决;在调试电路时我们也出现了一些问题,通过具体分析也得到了解决。

总之,通过本次课程设计,我们对于电力电子装置的设计有了一定的掌握,提过了动手实践的能力,对于我们以后的工作和学习有很大帮助。

附录主电路图和控制电路原理图。

主电路控制电路15V稳压电源自举电路。

相关文档
最新文档