【机械专业文献翻译】故障切除继电保护装置
继电保护装置的维护与故障处理
继电保护装置的维护与故障处理摘要:继电保护是电力系统中的基本设备,是为了保证电力系统的正常供电,因此要对其进行专业而有效的维护,对其故障也要进行及时处理。
以继电保护的概念为基础,同时提出了对继电保护装置进行维护、管理的措施以及对继电保护进行故障处理的方式,为继电保护的技术发展提供了一定的理论基础。
关键词:继电保护维护故障处理Abstract: the relay protection is the electric power system of basic equipment, is to ensure that the power system of normal power supply, so in its professional and effective maintenance, the fault but also handle in time. With the concept of relay protection for the foundation, at the same time puts forward to relay protection device for maintenance and management of the measures and the relay protection fault the means of processing, relay protection technology for development to provide some theoretical basis.Keywords: relay protection maintenance fault handling电力系统是用发电装置把自然界中的能源转化成为电能,然后通过输电、变电和配电的流程将电能提供给各个用电单位。
一般情况下,电力系统的线路都是处在正常的运转状态中,但是总会出现一些异常状况(如送电的减少或停止),如果出现异常状况而没有及时地进行纠正和更改,它就会逐步发展成为故障,导致出现电气设备损坏或人员伤亡的事故甚至整个电网的瘫痪,造成不可估量的损失。
继电保护装置讲解
继电保护装置讲解继电保护装置是一种用于保护电力系统设备的重要装置。
它的作用是在电力系统发生故障时,迅速断开故障电路,以保护电力设备的安全运行。
本文将从继电保护装置的基本原理、分类以及应用场景等方面进行讲解。
一、继电保护装置的基本原理继电保护装置基于电力系统中的电流、电压等物理量的变化来判断系统是否发生故障。
当电力系统中发生故障时,电流和电压等物理量会发生异常变化,继电保护装置会通过对这些异常变化进行监测和分析,判断故障的类型和位置,并通过控制开关来实现对故障电路的断开。
二、继电保护装置的分类根据不同的保护对象和保护功能,继电保护装置可以分为过电流保护、差动保护、距离保护、过压保护等多种类型。
其中,过电流保护是最常见的一种保护方式,它通过检测电流的大小来判断电力系统中是否存在过电流故障。
差动保护则是通过对电流差值进行监测,判断系统中是否存在线路接地或相间短路等故障。
距离保护则是根据电力系统中电流和电压之间的相对关系,来判断故障的位置。
过压保护则是用于检测电力系统中是否存在过电压故障。
三、继电保护装置的应用场景继电保护装置广泛应用于电力系统的发电、输配电等环节,以保护电力设备的安全运行。
在发电环节,继电保护装置可用于保护发电机、变压器等设备的安全运行。
在输电和配电环节,继电保护装置可用于保护线路、变电站等设备的安全运行。
此外,继电保护装置还可以应用于工业生产、铁路、矿山等领域,以确保电力设备的正常工作。
继电保护装置是一种重要的电力设备保护装置,它通过监测和分析电力系统中的物理量变化,判断系统是否发生故障,并通过控制开关来实现对故障电路的断开。
根据不同的保护对象和保护功能,继电保护装置可分为多种类型,并广泛应用于电力系统的各个环节。
它的作用在于保护电力设备的安全运行,确保电力系统的稳定运行。
电力专业英语10-故障+继电保护
解释说明 In terms of of concern far ~er than
根据,按照,在……方面 被关注,值得关注 远…于
参考译文
根据故障后果的严重性,短路远远比断路更值得关注,尽管某些断路 会给人员带来潜在危害。
Faults and their Damage
故障及其危害
重点关注
Faults may lead to explosions which may occur in equipment containing insulating oil during a short circuit aserious hazard to personnel and damage to other equipment.
解释说明 solid-state analog circuit logic gate
固态 模拟电路 逻辑门
Types of Relays
继电器的种类
The five relay classes often to be considered are:
Magnitude relays Directional relays Ratio relays Differential relays Pilot relays
inexpensive inflexible
不昂贵 不灵活
Types of Relays
继电器的种类
重点关注
These relays are robust, inexpensive, but their response time is somewhat slow, and also their design is somewhat inflexible in terms of burden capability, and tap settings . 解释说明
继电保护装置
继电保护装置当电力系统中的电力元件(如发电机、线路等)或电力系统本身发生了故障危及电力系统安全运行时,能够向运行值班人员及时发出警告信号,或者直接向所控制的断路器发出跳闸命令以终止这些事件发展的一种自动化措施和设备。
实现这种自动化措施的成套设备,一般通称为继电保护装置。
继电保护装置的任务①、监视电力系统的正常运行,当被保护的电力系统元件发生故障时,应该由该元件的继电保护装置迅速准确地给脱离故障元件最近的断路器发出跳闸命令,使故障元件及时从电力系统中断开,以最大限度地减少对电力系统元件本身的损坏,降低对电力系统安全供电的影响。
当系统和设备发生的故障足以损坏设备或危及电网安全时,继电保护装置能最大限度地减少对电力系统元件本身的损坏,降低对电力系统安全供电的影响。
(如:单相接地、变压器轻、重瓦斯信号、变压器温升过高等)。
②、反应电气设备的不正常工作情况,并根据不正常工作情况和设备运行维护条件的不同发出信号,提示值班员迅速采取措施,使之尽快恢复正常,或由装置自动地进行调整,或将那些继续运行会引起事故的电气设备予以切除。
反应不正常工作情况的继电保护装置允许带一定的延时动作。
③、实现电力系统的自动化和远程操作,以及工业生产的自动控制。
如:自动重合闸、备用电源自动投入、遥控、遥测等。
继电保护装置的基本要求继电保护装置应满足可靠性、选择性、灵敏性和速动性的要求:这四“性”之间紧密联系,既矛盾又统一。
A、动作选择性---指首先由故障设备或线路本身的保护切除故障,当故障设备或线路本身的保护或断路器拒动时,才允许由相邻设备保护、线路保护或断路器失灵保护来切除故障。
上、下级电网(包括同级)继电保护之间的整定,应遵循逐级配合的原则,以保证电网发生故障时有选择性地切除故障。
切断系统中的故障部分,而其它非故障部分仍然继续供电。
B、动作速动性---指保护装置应尽快切除短路故障,其目的是提高系统稳定性,减轻故障设备和线路的损坏程度,缩小故障波及范围,提高自动重合闸和备用设备自动投入的效果。
电力系统继电保护毕业论文中英文资料外文翻译文献
电力系统继电保护论文中英文资料Relay protection development present situation[Abstract ]reviewed our country electrical power system relay protection technological devil orpiment process,has outlined the microcomputer relay protection technology achievement, pro posed the future relay protection technological development tendency will be: Computerizes, n networked,protects, the control,the survey,the data communication integration and the artificial I intellectualization.[Key word ]relay protection present situation development,relay protections future development1 relay protection development present situationThe electrical power system rapid development to the relay protection proposed unceasingly t he new request,the electronic technology,computer technology and the communication rapid development unceasingly has poured into the new vigor for the relay protection technology de velopment,therefore,the relay protection technology is advantageous, has completed the deve lopment 4 historical stage in more than 40 years time。
继电保护外文翻译
外文资料APPLICATION OF THE THEORY OF PATTERN RECOGNITION IN DEVELOPING RELAY PROTECTION AND CONTROLV.E.GLazyrinNovosibirsk State Technical UniversityReliable and timely recognition of emergency states in electrical systems requires solutions that are adequate for the technical equipment being used. For more than ten years discrete computing devices have been widely implemented in relay protection and control. The appearance of microprocessors has given developers extremely powerful tools for using new principles and algorithms in designing relay systems. Despite this, the design strategy remains practically unchanged, though the new element base exceeds the capabilities of the conventional one to the degree that it is simply on a qualitatively higher level. In connection with this, the necessity has ripened for qualitatively new approaches to designing relay systems.Conventional design methods very much depend on the intuition and experience of the developer. The execution of the work is frequently unpredictable, since the developer must simultaneously represent the state of many (sometimes more than ten) parameters. At the same time, a person has a limited capacity to simultaneously keep in mind many objects. This causes not only complexity in developing new devices, but also causes the subjective phenomenon of a group of relay protection experts which have on an intuitive level mastered a combination a several groups of concepts.This reduces the number of objects which must be kept in mind simultaneously, but the formation of these combined groups has not been formalized, which hinders mutual understanding.During the development of new complex devices of relay systems, the quantity of parameters,with which the developer has to work simultaneously increases even more. This not only complicates the design, but also increases the probability of errors, whichsimultaneously hinders the control of the accuracy of the execution of activities for creating algorithms, designing devices, writing programs and conducting correction tests. In the conventional design approach, a successive analysis of signals is made and decisions are made as they are received. In so doing the evaluation of the current state of the examined object is carried out by the successive analysis of transitions of measuring from one condition to another. This approach to developing algorithms has also become a constraining factor in developing effective algorithms.As an example, we shall consider one of the complex relay system devices, detectors of asynchronous operation. The most developed are those detectors having remote units and units for direction of power. An asynchronous mode is recognized by analyzing the sequence of transitions of the measured resistance value which is defined by the relationship with the voltage and current inputted into the measuring units. During the operation of the object, the end of the vector Z, can move relative to the operating ranges of the units depending on the character of the operational mode.The standard device consists of three relay assembly of resistance, having various characteristics of switching, of maximum relay assembly of power and of counter of cycles of asynchronous operation. In addition, it contains a unit for determining the sign of the slip, circuits for registering the asynchronous mode in the first cycle, circuits for controlling the period of asynchronous operation, a unit for additional time. grading, unit for resetting the device, and also circuits for registering a fault in the device, the signaling system , and the output circuits. The device consists of three stages, each of which has output circuit .The first stage is intended for the fastest detection (in the first cycle) of an asynchronous mode in the controlled section and the sign of the slip. The second stage is intended for the detection of an asynchronous mode in the controlled section and the sign of the slip at the end of the second, third or fourth cycles. The third stage is intended for liquidation of the asynchronous mode after executing measures for resynchronization, if during the additional time lag a specific quantity of cycles of the asynchronous mode are registered. Besides that,in order to make sure the device does not operate during short-circuits a unit of reverse sequence for blocking thedevice in asymmetrical modes is advisable.Thus, it is clear, that the device contains a great number of units working jointly. It should also work in various ways depending not only on the combination of the states of its units, but also on the relationship between the times that input units are found in various states. That means that the behavior of the device should depend on a combination of the states of a large number of operational units, and the time relationships of appearance and disappearance of signals from various units also must be taken into consideration. The description of the logic of the operation of such a device constructed using a conventional element base is adduced in and takes more than 20 pages. The device itself is made in the form of a standard relay panel. Attempts to make a formal description of the logic of the device's operation, which would be convenient to use to create an effective program for a microprocessor, have turned out to be very labor-consuming and have not given a reliable outcome.To overcome this difficulty a special mathematical apparatus has been applied that has received the title "theory of a pattern recognition". It has broad application in other areas of science and engineering, such as radio-location, echo-location, processing the outcomes of air photography for agricultural needs, and also for technical diagnostics. Applying the method of pattern recognition assumes parallel information processing. The prototype for such processing is human perception, which takes the entire input data and practically instantly comes to the most valid solution which determines its response to changes in its external environment.For the design of a microprocessor detector of asynchronous modes the following characteristics of operation of measuring devices were adopted. For remote devices the characteristics of operation are adopted as anti-parallel programs, whose bases coincide and lateral legs are located in such a manner that the sensitive device envelops a larger area, than the rough one, and middle lines coincide. The power direction unit has the characteristic of a straight line running along the middle line and its extensions. The position of operational zones of remote devices in a complex plane of resistance is selected so that they envelop a financial calculation center of hunting.In such an arrangement of operational characteristics, the entire complex plane of resistance is broken into 6 zones. If the resistance 2, falls into the operating range of any unit, then it corresponds to a "1" in the appropriate position of the unit state register. Otherwise "0" is installed in this position. Thus, for the full description of the state 2, relative to the operating ranges it is enough to have three positions, which are combined into "a code of the state of measuring devices" (CSMD). Since for the detection of an asynchronous mode it is not important in what zone is 2, at the given moment but in what order and with what speed it passes these zones, a 16-digit word is formed, in which current CSMD values are recorded in turn at the moment of transition of 2,from one zone to another (before recording CSMD in rightmost positions of the word there is a logical shift to the left by three positions). Thus, the information on the trajectory of motion of the end of vector 2, during the period it passes by four boundaries between zones is stored in one 16-digit word.Possible paths of motion of the end of vector 2, during asynchronous mode correspond to a rather limited dictionary of indicators, which allows, not only an asynchronous mode to be discovered but also allows the determination of the direction of relative motion of EMF, vectors in an asynchronous mode.Research of the behavior of the microprocessor detector, using' this method of analysis of the system state, has shown that detection of an asynchronous mode in the first cycle is impossible without taking into account the duration of time of the presence of the end of vector Z, in each zone. Therefore, for a more full characteristic of a transient image, a check of the duration of the presence of the end of vector 2in each zone is entered in the algorithm. If its duration in an appropriate zone turns out to be more than a given threshold, then the fact of its exceeding the limit is recorded in an additional register "code of a timer conditions" (CTC). Similarly to CSMD, values formed in CTC at the moment of transition from one zone to another, are recorded in a word of time states (whose formation is implemented by a logical shift of the previous value and an adding of the new value).The introduction of additional information has permitted expansion of the dictionary, by including in it combinations which take into account not only trajectory of motion, but also theduration of the end of vector Z, in each zone. To realize an operational algorithm of the asynchronous mode detector it is enough to register an excess of duration of the end of vector Z, in the given zone above the threshold value.The use of time thresholds allows to reliably determine, whether the preceding mode was a long normal mode of joint activity of power systems. Because of this, the "first stage" of an asynchronous mode detector is realized, since the first cycle of an asynchronous mode will always come after a long working mode. For detection of a long working mode it is enough to make sure that over a large enough time span the end of vector Z has been outside of the operating ranges of remote devices.The control of the duration of the end of vector Z in one of the zones is also necessary for detection of a distinctive feature of an asynchronous mode which is exhibited most clearly in the first cycle, substantial difference in the time between the entrance of the end of vector Z, in the operating range of the sensitive remote device and its entrance into the operating range of the rough one.The use of this indicator allows to reliably distinguish a short-circuit mode, in which the transition from the normal mode zone into the operating range of the rough remote device happens practically instantly.One more important factor that limits the efficiency of using conventional asynchronous mode detectors is the large switching time of analog measuring devices near a operational zone boundary. This is the reason for failures in operation when the slip is large. The application of digital algorithms in the construction of remote devices and power direction device enables this shortcoming to be overcome.In selecting device parameter settings for liquidation of an asynchronous mode a big difficulty is selecting operating zones of measuring devices because the selected thresholds should satisfy the whole set of operational modes of the considered section. Frequently selecting thresholds for one set of measuring devices turns out to be difficult. Using several detectors to detect an asynchronous mode in one section is not usually considered because of the cost of this solution. But, implementing microprocessors using the theory of patternrecognition can provide the necessary quantity of detectors, which have various zones of measuring device operation, without additional hardware costs. Hence, enough detectors can be realized in the microprocessor system, that the necessary properties can be achieved.It should be noted that the approach to detecting abnormal and emergency operation in relay systems using the theory of pattern recognition is not limited only to asynchronous mode detectors. It would be expedient to investigate the possibility of using this approach in the synthesis of algorithms and other kinds of complex devices of relay systems.中文翻译继电保护发展和控制中图样识别理论的应用V.E.GLazyrin俄罗斯新西伯利亚州工业大学电力系统紧急情况状态的可靠和实时性识别要求对使用的技术设备作出恰当的反应。
浅谈电力系统继电保护装置的故障与处理对策
浅谈电力系统继电保护装置的故障与处理对策电力系统继电保护装置是电力系统中非常重要的组成部分,它们在电力系统中起着保护和控制的作用。
在实际运行中,继电保护装置也会出现各种故障,给电力系统的安全稳定运行带来威胁。
对继电保护装置的故障进行有效的处理对策是非常重要的。
本文将从继电保护装置故障的类型、原因和处理对策等方面进行浅谈。
一、继电保护装置的故障类型1.硬件故障:继电保护装置的硬件故障包括元器件损坏、线路连接故障等,这些故障会直接影响继电保护装置的正常工作,导致保护的失效。
2.软件故障:软件故障包括程序错误、操作系统崩溃等,这些故障会影响继电保护装置的运行逻辑,导致保护的误动作或漏动作。
3.通信故障:继电保护装置之间需要进行通信才能协调保护动作,如果通信故障会导致保护的失效。
4.外部干扰:外部干扰包括雷电击打、电磁干扰等,这些干扰会引起继电保护装置误动作,导致保护的失效。
1.设计不合理:继电保护装置的设计不合理是导致故障的根本原因,包括元器件选择不当、结构不合理、系统集成不完善等。
2.制造质量问题:继电保护装置在制造过程中存在质量问题,例如材料缺陷、工艺不合格等。
3.运行环境影响:电力系统的运行环境对继电保护装置的影响也是故障的原因之一,例如温度、湿度、电磁场等。
4.人为操作失误:人为操作失误也可能导致继电保护装置的故障,例如误操作、维护不当等。
1.定期检测维护:对继电保护装置进行定期的检测维护是预防故障的重要手段,可以及时发现问题并进行处理。
2.严格质量控制:在继电保护装置的设计、制造过程中需要严格控制质量,确保每个环节的质量都符合要求。
3.强化操作培训:对操作人员进行强化操作培训,提高他们的技术水平和安全意识,减少人为操作失误。
4.改进设计优化结构:对继电保护装置的设计进行改进优化,提高其稳定性和可靠性,减少硬件故障的发生。
5.应对外部干扰:针对外部干扰可能引起的故障,需要采取相应的防护措施,例如增加雷电防护装置,减少电磁干扰。
电力系统继电保护中英文对照表
1 Directional protection 方向保护2 Distance protection 距离保护3 Over current protection 过流保护4 Pilot protection高频保护5 Differential protection 差动保护6 Rotor earth-fault protection 转子接地保护7 Stator earth-fault protection 定子接地保护8 Over fluxing protection 过励磁保护9 Back-up protection 后备保护11 Sequential tripping 顺序跳闸12 Start up/Pick up 起动13 Breaker断路器14 Disconnecting switch 隔离开关15 Current transformer 电流互感器16 Potential transformer 电压互感器17 Dead zone/Blind spot 死区18 Vibration/Oscillation 振荡19 Reliability可靠性20 Sensitivity灵敏性21 Speed速动性22 Selectivity选择性23 Step-type distance relay 分段距离继电器24 Time delay延时25 Escapement/interlock/blocking 闭锁26 Incorrect tripping误动27 Phase to phase fault 相间故障28 Earth fault接地故障29 Through- fault穿越故障30 Permanent fault 永久性故障31 Temporary fault瞬时性故障32 Overload 过负荷34 Contact multiplying relay 触点多路式继电器35 Timer relay 时间继电器40 Ground fault relay 接地故障继电器41 Recloser 重合闸42 Zero-sequence protection 零序保护43 Soft strap 软压板44 Hard strap 硬压板45 High resistance 高阻46 Second harmonic escapement 二次谐波制动47 CT line-break CT 断线48 PT line-breakPT 断线49 Secondary circuit 二次回路50 AC circuit breaker 交流开关电路51 AC directional over current relay 交流方向过流继电器52 Breaker point wrench 开关把手53 Breaker trip coil 断路器跳闸线圈54 Bus bar 母线; 导电条55 Bus bar current transformer 母线电流变压器56Bus bar disconnecting switch 分段母线隔离开关57Bus compartment 母线室; 汇流条隔离室58Bus duct 母线槽; 母线管道59 Bus hub 总线插座60 Bus line 汇流线61Bus insulator 母线绝缘器62Bus request cycle 总线请求周期Bus reactor 母线电抗器64Bus protection 母线保护65Bus rings 集电环66Bus rod 汇流母线67Bus section reactor 分段电抗器68Bus structure母线支架; 总线结构69Bus tie switch 母线联络开关70Bus-bar chamber 母线箱71Bus-bar fault 母线故障72Bus-bar insulator 母线绝缘子73Busbar sectionalizing switch 母线分段开关Current attenuation 电流衰减75Current actuated leakage protector 电流起动型漏电保护器76Current balance type current differential relay 电流平衡式差动电流继电器;差动平衡式电流继电器77Current changer 换流器78Current compensational ground distance relay 电流补偿式接地远距继电器79Current consumption 电流消耗80Coil adjuster 线圈调节器81Coil curl 线圈82Coil current 线圈电流83Coil end leakage reactance 线圈端漏电抗84Coil inductance 线圈电感Current transformer phase angle 电流互感器相角86Distance relay; impedance relay 阻抗继电器87Power rheostat电力变阻器88Electrically operated valve电动阀门89Electrical governing system 电力调速系统90Field application relay 励磁继电器; 激励继电器91High tension electrical porcelain insulator 高压电瓷绝缘子92Option board任选板; 选配电路板; 选择板93Oscillator coil振荡线圈94Over-V oltage relay过压继电器95Power factor relay功率因素继电器Protection against overpressure 超压防护97Protection against unsymmetrical load 不对称负载保护装置98 Protection device 保护设备; 防护设备99Protection reactor 保护电抗器100 Protection screen 保护屏101 Protection switch 保护开关102 Insulator cap 绝缘子帽; 绝缘子帽103 Insulator chain 绝缘子串; 绝缘子串104 Insulator arc-over 绝缘子闪络; 绝缘子闪络105Insulator arcing horn 绝缘子角形避雷器; 绝缘子角形避雷器106 Insulator bracket 绝缘子托架; 绝缘子托架Impedance compensator 阻抗补偿器108 Resistance grounded neutral system 中心点电阻接地方式109 Reactance bond电抗耦合; 接合扼流圈110 Reactance of armature reaction 电枢反应电抗111 Under-Voltage relay 欠压继电器112 Voltage differential relay 电压差动继电器114 Relay must-operate value 继电器保证启动值115 Relay act trip继电器操作跳闸116 Relay overrun继电器超限运行117 Longitudinal differential protection 纵联差动保护118 Phase-angle of voltage transformer 电压互感器的相角差119 Zero-sequence current/residual current 零序电流120 Residual current relay 零序电流继电器121 Bus bar protection/bus protection 母线保护122 Breaker contact point 断路器触点123 Cut-off push断路器按钮124 Gaseous shield瓦斯保护装置125 Neutral-poi nt earthi ng 中性点接地126 In ternal fault内部故障127 Auxiliary con tacts辅助触点128 Neutral auto-tra nsformer中性点接地自耦变压器129 Fuse box/fusible cutout 熔断器130 Pulse relay/surge relay 冲击继电器七戒旅长存*2005 七2007-10-26 11:14131 Auxiliary relay/intermediate relay中间继电器132 Common-m ode voltage 共模电压133 Impeda nee mismatch 阻抗失配134 Intermittent fillet weld间断角缝焊接135 Loss of synchronism protect ion 失步保护136 Closing coil 合闸线圈137 Electro polarized relay 极化继电器138 Power direction relay 功率方向继电器139 Direct-to-ground capacity 对地电容140 Shunt running潜动141 Trip/opening跳闸142 Trip switch跳闸开关143 Receiver machine收信机144 High-frequency direction finder 高频测向器145 Capacity charge电容充电146 time over-current 时限过电流148 Surge guard冲击防护149 Oscillatory surge振荡冲击150 Fail safe interlock五防装置151 Differential motion差动152 Capacitive current 电容电流154 Time delay延时156 Normal inverse 反时限157 Definite time定时限158 Multi-zone relay 分段限时继电器159 Fail-safe unit五防161 Unbalance current 不平衡电流162 Blocking autorecloser 闭锁重合闸163 Primary protection 主保护164 Tap分接头165 YC (telemetering) 遥测167 Fault clearing time 故障切除时间168 Critical clearing time 极限切除时间169 Switch station 开关站170 Traveling wave行波171 Protection feature 保护特性172 Fault phase selector 故障选线元件173 Fault type 故障类型174 Inrush 励磁涌流175 Ratio restrain 比率制动176 Laplace and Fourier transforms 拉氏和傅利叶变换177 Short circuit calculations 短路计算178 Load flow calculations 潮流计算179 Oscillatory reactivity perturbation 振荡反应性扰动180 Quasi-steady state 准稳态181 Automatic quasi-synchronization 自动准同步182 Protective relaying equipment 继电保护装置183 AC directional overcurrent relay 交流方向过流继电器184 AC reclosing relay 交流重合闸继电器185 Annunciator relay 信号继电器188 Carrier or pilot-wire receiver relay 载波或导引线接受继电器189 Current-limiting relay 限流继电器190 Definite time relay 定时限继电器192 Lockout relay闭锁继电器;保持继电器;出口继电器193 Micro-processor based protective relay 微机继电保护194 Voltage -controlled overcurrent relay 电压控制过电流继电器196 Fault diagnosis故障诊断197 Back-up protection后备保护198 Overhead line架空线199 High voltage line高压线路200 Underground cable埋地电缆201 Circuit breaker断路器202 Brushless excitation无刷励磁203 Interlock 闭锁204 Trigger 触发器205 Winding-to-winding insulation 绕组间的绝缘206 Porcelain insulator瓷绝缘子207 Tie line联络线208 Leased line租用线路209 Private line专用线路211 Remote Terminal Unit 远程终端设备212 Economic dispatch system 经济调度系统213 State estimation状态估计214 Trip by local protection保护跳闸215 Close by local protection 保护合闸216 Operational (internal) overvoltage 操作(内部)过电压217 Sampling and holding采样保持218 Synchronized sampling 采样同步219 Manipulation操作220 Measuri ng/Meteri ng unit测量元件221 Locus of measured impeda nee测量阻抗轨迹222 Differen tial mode in terfere nee差模干扰223 Output (executive) orga n出口(执行)元件224 Overeurre nt relay with un dervoltage supervision低电压起动的过电流保护225 Low impeda nee busbar protect ion低阻抗母线保护回复2帖帖七戒旅长*膏2005六2007-10-26 11:15228 Half-cycle in tegral algorithm 半周积分算法230 Coordin ati on of relay sett ings保护的整定配合231 Reach (setti ng) of protect ion 保护范围(定值)232 Coordination time interval保护配合时间阶段233 Perce ntage differe ntial relay比率差动继电器234 Electromag netic relay电磁型继电器236 In sta ntan eous un dervoltage protect ion with curre ntsupervisi on 电流闭锁的电压速断保护237 Operating equation (criterion) 动作方程(判据)238 Operating characteristic 动作特性239Harmonic restraining 谐波制动241Segregated current differential protection 分相电流差动保护242Branch coefficient 分支系数243Power line carrier channel (PLC) 高频通道245High speed signal acquisition system 高速数字信号采集系统246Busbar protection with fixed circuit connection 固定联结式母线保护247Fault recorder 故障录波器248Fault phase selection 故障选相Compensating voltage 补偿电压252Polarized voltage 极化电压253Memory circuit 记忆回路254Unblocking signal 解除闭锁信号255Power system splitting and reclosing 解列重合闸256Connection with 90 degree90 度接线257Insulation supervision device 绝缘监视258Inrush exciting current of transformer 励磁涌流259Two star connection scheme 两相星形接线方式260Zero mode component of traveling wave 零模行波261Inverse phase sequence protection 逆相序保护Offset impedance relay 偏移特性阻抗继电器263Frequency response 频率响应264Activate the breaker trip coil 起动断路器跳闸266Permissive under reaching transfer trip scheme 欠范围允许跳闸式267Slight (severe) gas protection 轻(重)瓦斯保护268Man -machine interface 人机对话接口270Three phase one shot reclosure 三相一次重合闸271Out-of-step失步272Accelerating protection for switching onto fault 重合于故障线路加速保护动作275Abrupt signal analysis 突变信号分析276Out flowing current 外汲电流False tripping误动279Turn to turn fault ,inter turn faults 匝间短路280Relay based on incremental quantity 增量(突变量)继电器281Vacuum circuit breaker 真空开关282Power swing (out of step) blocking 振荡(失步)闭锁284Successive approximation type A/D 逐次逼进式A/D285Infeed current 助增电流286Self reset 自动复归287Adaptive segregated directional current differential protection 自适应分相方向纵差保护288Adaptive relay protection 自适应继电保护Angle of maximum sensitivity 最大灵敏角292Out of service 退出运行294Waveform 波形295Outlet 出口296Electromechanical 机电的297 Magnitude of current 电流幅值299Traveling wave signal 行波信号300Measurement signal 测量信号301Traveling wave relay 行波继电器302Transmission line malfunction 输电线路异常运行303 Subsystem 子系统Positive sequence impedance 正序阻抗305Negative sequence impedance 负序阻抗306Zero sequence impedance 零序阻抗307Digital signal processor 数字信号处理器308Frequency sensing 频率测量309Cable relay电缆继电器310Under power protection 低功率保护311Under voltage protection 低电压保护312Transient analysis暂态分析313Voltage sensor电压传感器314Zero-sequence protection 零序保护Zero sequence current transducer 零序电流互感器316Shunt 旁路,并联317Series 串联,级数318Parallel 并联319Saturation 饱和320 Free-standing 独立的,无需支撑物的321Troidal 环形的,曲面,螺旋管形322Bushing 套管323Magnetizing 磁化324Dropout current 回动电流325Reactor grounded neutral system 中性点电抗接地系统Grounding apparatus 接地装置327Dual bus 双总线328Thyristor 晶闸管329Spark gap 火花隙330Damping circuit 阻尼电路331Discharge 放电332Platform 平台333Grading 等级334Line trap 线路陷波器335Field test 实地试验337Off-position“断开”位置,“开路”位置Power-angle功角339Power-angle curve功角特性曲线340Torque-angle 转矩角341Symmetrical components 对称分量342Constant常量,恒定343Coupler耦合器345Concussion震动348Filter滤波器349Analogue模拟350Insulator绝缘子Rated burden\load 额定负载353Primary一次侧的354Remote-control apparatus 远距离控制设备355Capacitance 电容356Capacitor电容器357Reactance电抗358Inductor电感359Internal resistance内阻360Blow-out coil消弧线圈361Bundle-conductor spacer 分裂导线362Bundle factor 分裂系数Electromotive force电动势364伏安特性365Outgo ing line引出线366electrolyte电解质368Load characteristic负载特性369Self-i nductio n自感370Mutual-in ducti on互感371In duct ion coefficie nt感应系数372In ducta nee coup ing电感耦合373Time-i nvaria nt时不变的回复3帖4 帖七戒旅长* *2005 五2007-10-26 11:16374Terminal voltage端电压375非线性特性376External characteristics外特性378Harmonic curre nt正弦电流379Pole-pairs极对数380Quadrature正交381An gular velocity 角频率382Magn etic in duct ion磁感应强度385Armature电枢386Peak value(交变量的)最大值387A mutually in duced e.m.f互感电动势388The applied voltage 外施电压Zero-power-factor 零功率因数390The no-load power factor 空载功率因数391Sinusoidal variations 正弦变量392A lagging power factor 滞后的功率因数393Equivalent circuit 等值电路394Capacitance effect 电容效应395Direct axis 直轴396Quadrature axis 交轴398Concentrated coil 集中绕组399Magnetization curve 磁化曲线400Residual magnetism 剩磁401Rated armature current 额定电枢电流402Series excited 串励403Self excited 自励Shunt excited 并励405spottily excited 他励407Electromagnetic torque 电磁转矩408a retarding torque 制动转矩409Rectangular wave 矩形波410Synchronous speed 同步转速411Electromagnetic brake 电磁制动412synchronous reactance 同步电抗413synchronous condenser 同步调相机414Load shedding 甩负荷415Black-start 黑启动417Distribution feeder 配电馈线418Commissioning 投运419Reactive power compensation 无功补偿器Continuous rating 连续运行的额定值421AI (artificial intelligence) 人工智能422Network topology 网络拓补424Configuration control 组态控制425Topological information拓补信息426Black-out area停电区428Adaptive relaying 自适应继电保护429Adaptive features自适应特性430Phase comparison relays 相位比较继电器431Directional contact 方向触点432Protective gap保护间隙433Protective earthing保护接地434Protective earthing; outer insulation 保护绝缘435Protection switch保护开关436Protective cap 保护帽437Protective panel 保护屏柜439Protection device 保护设备440Protective casing 保护外壳441Catch net; protecting net 保护网442Protection system 保护系统443Protective link 保护线路444Protective ground 保护性接地445Protective cover; Protective housing 保护罩446Protection device; Protective gear 保护装置447Protective transformer 保护变压器448Alarm relay 报警信号继电器449Alarm signal ;alerting signal 报警信号450Admittance relays 导纳型继电保护装置451Low-voltage protection 低压保护452Under-voltage release 低电压跳闸453Under-voltage trip 低电压自动跳闸454Under-run低负荷运行455Under-power protection 低功率保护456Under-power relay 低功率继电器457Under-frequency protection 低频保护458Low-frequency high-voltage test 低频高压实验459Low-voltage relay 低压继电器460Low-voltage release relay 低压释放继电器461Under-frequency protection 低周波保护463Under-impedance relay 低阻抗继电器465Conductance relay 电导继电器466Motor-field failure relay 电动机磁场故障继电器467Dynamoelectric relay 电动式继电器468Electric reset relay 电复位继电器469Power-transformer relay 电力传输继电器471Power system oscillation 电力系统振荡472Electric interlock relay 连锁继电器473Current overload 电流过载474Self-polarizing relay 电流极化继电器475Current-balance relay 电流平衡式继电器476Circuit control relay 电路控制继电器479Capacitance relay 电容继电器480Capacity ground 电容接地Voltage balance relay 电压平衡继电器482Circuit control relay 电路控制继电器483Voltage responsive relay 电压响应继电器484Voltage selection relay 电压选择继电器485Power failure 电源故障486Power-transfer relay 电源切换继电器487vacuum-tube relay 电子管继电器488Ohm relay 电阻继电器489Timing relay; timed relay 定时继电器490Time pulse relay 定时脉冲继电器492Directional over-current relay 方向过流继电器493Directional over-current protection 方向过流保护494Directional distance relay 方向距离继电器495Directional pilot relaying 方向纵联继电保护Cut-off relay 断路继电器498Circuit breaker failure protection 断路器故障保护装置500Open-phase relay 断相继电器501Earth-leakage protection 对地漏电保护502Multiple-reclosing breaker 多次重合闸断路器503Multi-ended circuit protection 多端线路保护506Multiple earth 多重接地507Two-position relay 二位置继电器508Generator protection 发电机保护509Generator cutout relay 发电机断路继电器510Generator protection for negative sequence current 发电机负序电流保护511Transmitting relay 发送继电器512Back-spin timer 反转时间继电器513Auxiliary relay 辅助继电器514Negative phase relay负相位继电器515Negative-phase seque nee impe ndence负相序继电器516Un der-load relay负载不足继电器517Back-up over-speed gover nor附加超速保护装置518In ducti on cup relay感应杯式继电器520In ducti on type relay感应式继电器521In ducti on disc relay感应圆盘式继电器522High sen sitive relay高灵敏度继电器回复4帖5 帖七戒旅长**2005 四2007-10-26 11:16523High-speed impeda nee relay高速阻抗继电器524High-voltage relay高压继电器525Power relay 功率继电器527Transition impedance 过渡阻抗528Thermal protection 过热保护529Temperature limiting relay 过热继电器530Overload relay 过载继电器531Overload trip 过载跳闸532Thermostat relay 恒温继电器533Closing relay 合闸继电器534Transverse differential protection 横差保护535Transfer of auxiliary supply 后备电源切换536Back-up system 后备继电保护537Delay-action relay 缓动继电器538Slow-to release relay 缓放继电器539Converter relay 换流器继电器540Electromechanical relay 机电继电器541Biased differential relaying 极化差动继电保护系统542Discontinuous relay 鉴别继电器543Transistor relay 晶体管继电器544Crystal can relay 晶体密闭继电器545Static relay静电继电器546Fast-operate slow-release relay 快动缓释继电器547Fast-release relay 快释放继电器549Excitation-loss relay失磁继电器553Two-phase short circuit fault 两相短路故障554Two-phase grounding fault 两相接地短路故障556Sensitive polarized relay 灵敏极化继电器558Sensitive relay灵敏继电器560Abnormal overload异常过载561Abnormal overvoltage 事故过电压562Above earth potential 对地电势563Absolute potential绝对电势564AC circuit breaker 交流断路器565AC component交流分量566AC distribution system 交流配电系统567Air-blast circuit breaker 空气灭弧断路器568Air-blast switch 空气吹弧开关569Air brake switch 空气制动开关571Air breaker空气断路器572Air-space cable 空气绝缘电缆573Alive带电的574All-relay interlocking 全部继电连锁575All-relay selector 全继电式选择器578Arc extinguishing coil 灭弧线圈579Arc suppressing reactor 灭弧电抗器580Asymmetric load不对称负载581Asymmetric short circuit 不对称短路582Asynchronous reactance 异步电抗583Asynchronous resistance 异步电阻584Biased differential relaying 极化差动继电保护系统585Bi-directional relay 双向继电器586Blinker继电器吊牌587Blocking relay 连锁继电器589Blowout coil灭弧线圈590Bus hub总线插座591Bus protective relay 母线保护继电器592Bus section breaker 母线分段断路器593Bus terminal fault 母线终端故障594Bus separation 母线分离595Bus tie circuit breaker 母线联络继电器596Bypass旁路597Coil factor 线圈系数598Compound relay 复合电路599Continuous load 持续负载600Counting relay 计数继电器602Cut-off of supply 停止供电603Cut-out relay 短路继电器604Dash current 冲击电流605Data medium 数据载体606Data processing 数据处理607Data transmission 数据传输608Emergency service 事故运行609Emergency standby 事故备用611Extinction coil 消弧线圈612Extinguishing voltage 消弧线圈613Extra high voltage 超高压614Fault line故障线615Fault location 故障定位616Feedback反馈617Feeder馈电线618Interlock连锁619Intermittent fault 间歇故障620Interrupting time 断路时间621Negative direction 反方向622No-load release 无跳闸623Off-peak非峰值的624Operating load 运行负载625Orthogonal正交的626Rated primary voltage 一次额定电压627Rated secondary volage 二次额定电压628Remote controlled 遥控的629Reserve bus 备用母线630Rotor转子631Sectionalizer 分段断路器632Self-energizing自激的633Sequential tripping 顺序跳闸637Surge voltage 冲击电压638Sustained overload 持续过电压639Symmetrical对称的640Fault component 故障分量641Wavelet transform 小波变换642Object-oriented 面向对象643Faults recorder 故障录波644Setting calculation 整定计算645Topology analysis 拓扑分析646Expert system 专家系统647Security 安全性651Load schedule according to frequency change 按周波减载653Semiconductor, semiconductor diode, transistor 半导体、半导体二级管、三极管654Semi-orthogonal wavelet 半正交小波656Saturation, saturation detection, saturation curve 饱和,饱和检测,饱和曲线657Relay location保护安装处658Coordination of relay settings 保护的整定配合659Coordination time interval 保护配合时间阶段660Relay system configuration 保护配置661Redundancy of relaying system 保护配置的冗余度663Protection devices, protection equipment 保护装置664Starting current and returning current of protection device 保护装置的起动电流和返回电流665Alarm 报警666Approximation component 逼近分量668B sampling functionB 样条函数670Transformation matrix 变换矩阵。
继电保护中英文对照
142 Communication channel 通讯通道
143 Communication interface 通讯接口
144 Compensation theorem(compensation principle) 补偿原理
145 Compensation voltage(compensating voltage) 补偿电压
43 Arc extinguishing coil 灭弧线圈
44 Arc suppressing coil 消弧线圈
45 Arc suppressing reactor 灭弧电抗器
46 Arcing fault 电弧接地故障
47 Armature 电枢
48 Asymmetric load 不对称负载
76 Breaker pount wrench 开关把手
77 Breaker trip coil 断路器跳闸线圈
78 Brushless excitation 无刷励磁
79 Buchholtz protecter 瓦斯保护
80 Bundle factor 分裂系数
81 Bundle-conductor spacer 分裂导线
54 Automatic reclosure 自动重合闸
55 auto-put-into device of reserve-source 备用电源自动投入装置
56 auto-recosing with self-synchronism 自同步重合闸
57 Auxiliary contacts 辅助触点
6 Abnormal overvoltage 事故过电压
电力常用英语-继电保护
longitudinal differential protection
比率差动保护装置
percentage differential protection
横差动保护
transversal differential protection
差动保护系统
differential protective system
低阻抗继电器
under-impedance relay
电导继电器
conductance relay
电动机磁场故障继电器
motor-field failure relay
电动式继电器
dynamoelectric relay
电复位继电器
electric reset relay
电力传输继电器
power-transformer relay
方向差动保护
directional differential protection
分相电流差动保护
segregated current differential protection
自适应继电保护
adaptive relay protection
自适应分相方向纵差保护
adaptive segregated directional current differential protection
overload
触点多路式继电器
contact multiplyiary contacts
辅助继电器
auxiliary relay
时间继电器
timer relay
中间继电器
auxiliary relay;intermediate relay
继电保护装置
1.继电保护装置,就是指装设于整个电力系统的各个元件上,能在指定区域快速准确的对电气元件发生的各种故障或不正常运行状态,并按规定时限内动作,使断路器跳闸或发出信号的一种反事故自动装置。
继电保护主要利用电力系统中元件发生短路或异常情况时的电气量(电流、电压、功率、频率等)的变化,构成继电保护动作的原理,也有其他的物理量,如变压器油箱内故障时伴随产生的大量瓦斯和油流速度的增大或油压强度的增高。
继电保护装置都包括测量部分(和定值调整部分)、逻辑部分、执行部分。
2.作用:把故障的影响限制在最小范围,预防故障的发生。
1针对不正常运行状态报警;2针对故障使断路器跳闸;3快速恢复供电。
要求:可行性、选择性、灵敏性和速动性。
3.电力系统运行中,电气元件发生短路、断线时的状态视为故障状态;电气元件超出正常允许工作范围,但没有发生故障运行,,即不正常工作状态;一般把反映被保护元件严重故障、快速动作与跳闸的保护装置称为主保护,在主保护系统失效时备用的保护称为后备保护。
4.电流保护接线方式:1电流保护完全星型(三相短路,Kc=√3);2电流保护不完全星型(AC 短路,Kc=2);3两相电流差(AB或BC短路,Kc=1)。
5.方向性电流保护:加装了方向元件的电流保护。
由于方向元件动作具有一定的方向性,可在反向故障时把保护闭锁。
接线方式:继电器与电流互感器和电压互感器之间的连接方式。
应满足:(1)必须保证功率方向继电器具有良好的方向性。
即正向发生任何类型的故障都能动作,而反向故障时则不动作。
(2)尽量使功率方向继电器在正向故障时具有较高的灵敏度,即尽可能使故障以后加入继电器的电流和电压的夹角接近于最大灵敏度角。
90。
接线方式是指在三相对称的情况下,当cosφ=1 时,加入继电器的电流和电压相位相差90。
方向元件:同一母线两侧,动作时限短且相等:装同一母线两侧,动作时限长者:不须装6.零序分量特点:1、零序电压:故障点的零序电压U0最高,离故障点越远U0越低,变压器接地点处U0=0。
继电保护外文翻译、中英对照
毕业设计(论文) 外文翻译外文题目: Protection Relay 中文题目:继电保护学院名称:电子与信息工程学院专业:电气工程及其自动化班级:电气082继电保护摘要:继电保护非常重要,因为大部分的用户,是从分布线和分配制度以来,比任何其他部分的系统更容易受到破坏。
回顾我国电力系统继保护技术发展的过程中,概述了微机继电保护技术的成就,提出了未来继电保护技术发展趋势将是:计算机化,电网络化,保护,控制,调查结果显示,数据通信一体化和人工智能化。
关键词:继电保护,继电保护现状发展,继电保护的未来发展一、继电保护原理及现状电力系统的迅速发展对继电保护不断提出新的要求,电子技术,计算机技术的快速发展不断为继电保护技术的发展注入新的活力,因此,继电保护技术是有利的,在40多年的时间里已完成发展了4个历史阶段。
建国后,我国继电保护学科、继电保护设计、继电器制造工业和继电保护技术队伍从无到有,在大约10年的时间里走过了先进国家半个世纪走过的道路。
50年代,我国工程技术人员创造性地吸收、消化、掌握了国外先进的继电保护设备性能和运行技术,建成了一支具有深厚继电保护理论造诣和丰富运行经验的继电保护技术队伍,对全国继电保护技术队伍的建立和成长起了指导作用。
阿城继电器厂引进消化了当时国外先进的继电器制造技术,建立了我国自己的继电器制造业。
因而在60年代中我国已建成了继电保护研究、设计、制造、运行和教学的完整体系。
这是机电式继电保护繁荣的时代,为我国继电保护技术的发展奠定了坚实基础。
自50年代末,晶体管继电保护已在开始研究。
60年代中到80年代中是晶体管继电保护蓬勃发展和广泛采用的时代。
其中天津大学与南京电力自动化设备厂合作研究的500kv晶体管方向高频保护和南京电力自动化研究院研制的晶体管高频闭锁距离保护,运行于葛洲坝50 0 kv线路上,结束了500kv线路保护完全依靠从国外进口的时代。
在此期间,从70年代中,基于集成运算放大器的集成电路保护已开始研究。
继电保护装置用中英文对照表
继电保护中英文对照表1- 58: A 296—311: G 386—417:M 588—667: S 59 - 107:B 312—327: H 418—432 :N 668—722: T 108- 184: C 328—363: I 433—468:O 723—737: U 185-229: D 364: J 469—542:P 738—754: V 230 - 258:E 365 : K 543—545 :Q 755—762: W 259 - 295:F 366—385: L 546—587;R 763—771: Z序号英文全称中文解释1 A lagging power-factor滞后的功率因数2 A mutualky induced e.m.f 互感电动势3 a retarding torque 制动转矩4 Abno rmal operati ng con diti on 不正常运行状态5 Abnormal overload 异常过载6 Ab normal overvoltage 事故过电压7 Abnormal state 非常态8 Above earth potential 对地电势9 Abrupt signal analysis 突变信号分析10 Absolute potential 绝对电势11 AC circuit breaker 交流断路器12 AC component 交流分量13 AC directio nal over curre nt relay 交流方向过流继电器14 AC distribution system 交流配电系统15 AC reclosing relay 交流重合闸继电器16 Accelerat ing protect ion forswitching onto fault重合于故障线路加速保护动作17 Accelerati on Trend Relay(ATR) 加速趋势继电器18 Accurate Working Current 精确工作电流19 Accurate Working voltage 精确工作电压20 Activate the breaker trip coil 起动断路器跳闸21 Adaptive features 自适应特性22 Adaptive relay protecti on 自适应继电保护23 Adaptive relayi ng自适应继电保护24 Adaptive segregated direct ionalcurre nt differe ntial protecti on 自适应分相方向纵差保护25 Admittanee relays导纳型继电保护装置26 AI(artificial in tellige nee) 人工智能27 Air brake switch 空气制动开关28 Air breaker空气断路器29 Air-blast circuit breaker 空气灭弧断路器30 Air-blast switch 空气吹弧开关31 Air-space cable空气绝缘电缆32 Alarm 报警33 Alarm relay 报警信号继电器34 Alarm sig nal;alerti ng sig nal 报警信号35 Alive带电的36 All-relay in terlocki ng 全部继电连锁37 All-relay selector全继电式选择器38 Amplitude Comparison 绝对值比较39 Analogue 模拟40 An gle of maximum sen sitivity 最大灵敏角41 Annunciator relay 信号继电器42 Approximati on comp onent 逼近分量43 Arc exti nguishi ng coil 灭弧线圈44 Arc suppressing coil 消弧线圈45 Arc suppressing reactor 灭弧电抗器46 Arci ng fault电弧接地故障47 Armature 电枢48 Asymmetric load 不对称负载49 Asymmetric short circuit 不对称短路50 Asynchronous resista nee 异步电阻51 Asynchronous tractanee 异步电抗52 Attacted armature relay衔铁(磁铁)吸合式继电器53 Automatic quasi-s yn chro ni zati on 自动准同步54 Automatic reclosure 自动重合闸55 auto-put-into device of reserve-source 备用电源自动投入装置56 auto-recos ing with self-s ynchronism 自同步重合闸57 Auxiliary con tacts 辅助触点58 Auxiliary relay/i ntermediate relay 辅助继电器/中间继电器59 B sampling function B 样条函数60 Back-spin timer反转时间继电器61 Back-up over-speed governor 附加超速保护装置62 Back-up protection 后备保护63 Back-up ssystem 后备继电保护64 Biased differe ntial relayi ng 极化差动继电保护系统65 Bi-directio nal relay 双向继电器66 Bi-stable 双稳态67 Black-out area 停电区68 Black-start 黑启动69 Blinker继电器吊牌70 Blochi ng protecti on 闭锁式保护71 Blocking relay连锁继电器72 Blocki ng sig nal 闭锁信号73 Blow-out coil 灭弧线圈74 Branch coefficient 分支系数75 Breaker con tact poi nt 断路器触点76 Breaker pount wrench 开关把手77 Breaker trip coil断路器跳闸线圈78 Brushless excitation 无刷励磁79 Buchholtz protecter 瓦斯保护80 Bundle factor 分裂系数81 Bundle-conductor spacer 分裂导线82 Bus bar母线;导电条83 Bus bar current transformer 母线电流变压器84 Bus bar disconnecting swich 分段母线隔离开关85 Bus compartment母线室;汇流条隔离室86 Bus coupler CB 母联断路器87 Bus duct母线槽;母线管道88 Bus hub总线插座89 Bus insulator母线绝缘器90 Bus line汇流线91 Bus protectio n(Bus-bar protectio n) 母线保护92 Bus protective relay 母线保护继电器93 Bus reactor母线电抗器94 Bus request cycle总线请求周期95 Bus rings 集电环96 Bus rod汇流母线97 Bus section reactor 分段电抗器98 Bus structure母线支架;总线结构99 Bus tie switch 母线联络开关100 Bus-bar chamber 母线箱101 Bus-bar fault 母线故障102 Bus-bar insulator 母线绝缘子103 bus-bar protecti on withfixed circuit xo nn ection 固定联结式母线保护104 Bus-bar sectio naliz ing switch 母线分段开关105 Bushing 套管106 bushing type xurrent transformer 套管式电流互感器107 Bypass 旁路108 Cable relay电缆继电器109 Capacitanee 电容110 Capacitanee effect 电容效应111 Capacitanee relay 电容继电器112 Capacitive current 电容电流113 Capacitor 电容器114 Capacitor of series compensation 串补电容115 Capacity charge 电容充电116 Capacity ground 电容接地117 Carrier channel 高频通道118 Carrier or pilot-wire receiver relay 载波或导引线接受继电器119 Carrier receiver 发讯机120 Carrier transmitter 收讯机Cascading outages 连锁故障 Catch net (protecting net) 保护网 Chatter 颤振 Circuit breaker 断路器 Circuit breaker failure protecti on 断路器失灵保护 Circuit control relay 电路控制继电器 Clip-on leads 夹式引线 Clock 时钟 Close by local protection 保护合闸 Close-up fault 近距离故障 Closing coil 合闸线圈 Closing relay 合闸继电器 Coil adjuster 线圈调节器 Coil curl 线圈 Coil current 线圈电流 Coil end leakage reactance 线圈端漏电抗 Coil factor 线圈系数 coil inductanee 线圈电感 Combined bus and transformer protection 母线和变压器共用保护 Commissioning 投运 Common-mode voltage 共模电压 Communication channel 通讯通道 Communi cati on in terface 通讯接口 Compen sati on theorem(compe nsatio n prin ciple) 补偿原理 Compensation voltage ( compensating voltage)补偿电压 Compound relay 复合继电器Concentrated coil 集中绕组Concussion 震动 Conductanee relay 电导继电器 Con figurati on con trol 组态控制 Conn ection with 90degree 9 0度接线 Con sta nt 常量 Con tact 触点Con tact bou nee 触点颤动 Con tact multiplyi ng relay 触点多路式继电器 Continuous load 持续负载 Contin uous rati ng 连续运行的额定值 Converter relay 换流器继电器Coordin ati on of relay sett ings 保护的整定配合 121122123124125126127128129130131132133134135136137138139140141142143144145146147148 149 150 151 152153154155156157158159160161162163164Coordin ation time in terval 保护配合时间阶段Core铁芯Counting relay计数继电器Coupler耦合器Critical clearing time 极限切除时间165 Cross-country faults 越野式"双相同时接地故障166 Crystal can relay 晶体密闭继电器167 CT lin e-break CT断线168 Current actuated leakage protector 电流起动型漏电保护器169 Current attenuation 电流衰减170 Current bala nee type curre ntdiffere ntial relay 电流平衡式差动电流继电器;差动平衡式电流继电器171 Current changer 换流器172 Current compensational ground distanee relay 电流补偿式接地远距继电器173 Current consumption 电流消耗174 Curre nt differe ntial criterio n 电流差动判据175 Current transformer 电流互感器176 Current transformer phase angle 电流互感器相角177 Curre nt tran sformer saturatio n 电流互感器的饱和问题178 Curre nt travel ing wave 电流行波179 Current-balanee relay 电流平衡式继电器180 Curre nt-limit ing relay 限流继电器181 Cut-off of supply 停止供电182 Cut-off push 断路器按钮183 Cut-off relay 断路继电器184 Cut-out relay 短路继电器185 Dampi ng circuit 阴尼电路186 Dash current 冲击电流187 Data medium 数据载体188 Data process ing 数据处理189 Data transmission 数据传输190 Dead zone(BIind spot)死区191 Definite time 定时限192 Defi nite time relay 定时限继电器193 Delay-action relay 缓动继电器194 Delta三角形195 Differen tial mode in terfere nee 差模干扰196 Differe ntial motion 差动197 Differe ntial protectio n 差动保护198 Differe ntial protectio n withpercentage restraining具有比率制动的差动继电器199 Differe ntial relay 差动继电器200 Differe ntial relay with fast saturatedcurre nt tran sformer 带有速饱和变流器的差动继电器201 Differe ntial relay with Restrai ntCharacteristic具有制动特性的差动继电器202 Digital protectio n 数字式保护Digital signal processor 数字信号处理器 Direct axis 直轴 Directional contact 方向触点 Directional distanee relay 方向距离继电器 Directional over-curre nt protect ion 方向过流保护 Directional over-curre nt relay 方向过流继电器 Directio nal pilot relayi ng 方向纵联继电保护 Directional protect ion 方向保护 Direct-to-ground capacity 对地电容 Discharge 放电 Disc onnecting switch 隔离开关Discontinuous relay 鉴别继电器 Discrim in at ing zone 判另 U 区 Dislocation 损失、故障引起的混乱Disruption 瓦解、系统解列Distanee protection 距离保护Distanee relay(impedanee relay) 阻抗继电器 Distributed capacita nee of long line 长线分布电容 Distribution feeder 配电馈线Diviation character 偏移特性Double bus bar protection 双母线保护 Double-ended clip-on leads 双头夹式引线 Dropout current 回动电流 Dry-type transformer 干式变压器 Dual bus 双总线 Dynamic attributes 动态特性 Dyn amoelectric relay 电动式继电器 Earth fault 接地故障 Earth-leakage protection 对地漏电保护 Economic dispatch system 经济调度系统 Electric capacity 电容 Electric in terlock relay 连锁继电器 Electric reset relay 电复位式继电器Electrical apparatus(equipments)电器设备 Electrical gover ning system 电力调速系统Electrical n etwork(power n etwork) 电网 Electrically operated valve 电动阀门 Electro polarized relay 极化继电器 electrolyte 电解质 Electromagnetic brake 电磁制动 Electromagnetic torque 电磁转矩 Electromagnetical relay 电磁式继电器 Electromechanic relay 机电的 Electromotive force 电动势203204205206207208209210211212 213 214 215 216217 218 219 220 221222223224225226227228229230231232233234 235 236 237238239240241242243244245246Emergency service 事故运行 Emergency standby 事故备用 Energy direction relay 能量方向继电器 Equivalent circuit 等值电路 Escapement/in terlock/block ing 闭锁 Excitation-loss relay 失磁继电器 Expert system 专家系统 Extermal characteristics 夕卜特性 Extin ctio n coil 消弧线圈 Extin guish ing voltage 灭弧电压 Extra high voltage 超高压 Extra-high-voltage tran smissi on line 超高压传输 Fail safe in terlock 五防装置 Fail-safe unit 五防 Failure rate 故障率 False tripping 误动 Fast ersponse 快速响应 Fast-operate slow-release relay 快动缓释继电器 Fast-release rela y 快释放继电器 Fault clearing time 故障切除时间 Fault component 故障分量 Fault detecting relay 故障检测继电器 Fault diag no sis 故障诊断 Fault line 故障线 Fault location 故障定位 Fault phase select ion 故障选相 Fault phase selector 故障选线元件 Fault recorder 故障录波器 Fault type 故障类型 Fault-component algorithms 故障分量算法 Faulted phase identification 故障相识别元件 Faults recorder 故障录波 Feedback 反馈 Feeder 馈电线 Fiber optical com muni cati on 光纤通信 Fiber-Optic Pilot 光纤纵联保护 Field applicati on relay 励磁继电器;激励继电器 Field failure protecti on of gen erator 发电机的失磁保护 Field test 实地试验 Filter 滤波器 Finger 触点的接点Fourier algorithm 傅立叶算法 247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290Free-stan di ng独立的;无需支撑物的Frequency component 频率分量291 Freque ncy respo nse 频率响应292 Freque ncy sensing 频率测量293 Frequency window 频窗294 Full-wave phase comparis on protect ion 全波相位比较保护295 Fuse box(Fusible cutout)熔断器296 Gaseous shield瓦斯保护装置297 Gas-Insulater switchgear GIS 气体绝缘组合电器298 Generator 发电机299 Generator cutout relay 发电机断路继电器300 Gen erator Negative Curre nt Protecti on 发电机负序电流保护301 Generator out of step protection 发电机失步保护302 Generator protection 发电机保护303 Gen erator protect ion for n egativeseque nee curre nt发电机负序电流保护304 Generator stator single phase earth fault发电机定子绕组单相接地保护305 Gen erator stator wi ndi ng short circuit faults 发电机定子绕组短路故障306 Generator-transformer set 发电机—变压器组307 Graded time settings阶梯型时间配置308 Grading 等级309 Ground fault relay 接地故障继电器310 Groun d-fault of un grou nded system 小电流接地系统311 Grounding apparatus 接地装置312 Half-cycle in tegral algorithm 半周积分算法313 Hard strap 硬压板314 Harm on ic curre nt 正弦电流315 Harmonic restraining 谐波制动316 Healthy phases 非故障相317 Heavy load 重负荷318 Hidden failures 隐形故障319 High impeda nee busbar differetial protecti on 高阻抗母线差动保护320 High resista nee 高阻321 High sensitive relay 高灵敏度继电器322 High speed impedanee relay 高速阻抗继电器323 High speed signal acquisition system 高速数字信号采集系统324 High tension electrical porcela in in sulator 高压电瓷绝缘子325 High voltage line 高压线路326 High-freque ncy directio n fin der 高频测向器327 High-voltage relay 高压继电器328 Immune to electromagnetic interferenee 不受电磁干扰329 Impedanee circle 阻抗圆330 Impedanee compensator 阻抗补偿器331 Impedanee converter 阻抗变换器332 Impedanee mismatch 阻抗失配333 Impulsing relay 冲击继电器334 Inadvertent energization 过激磁335 In correct tripp ing 误动336 Inductanee couping 电感耦合337 In ductio n coefficie nt 感应系数338 Induction cup relay 感应杯式继电器339 Induction disc relay 感应圆盘式继电器340 Induction type relay 感应式继电器341 In ductor 电感342 In feed curre nt 助增电流343 In rush excit ing curre nt of tran sformer 励磁涌流344 Instantaneous protection 瞬时保护345 In sta ntan eous un der voltageprotect ion with curre nt supervisi on 电流闭锁电压速断保护346 In sulatio n supervisi on device 绝缘监视347 Insulator 绝缘子348 Insulator arcing horn 绝缘子角形避雷器349 Insulator arc-over 绝缘子闪络350 Insulator bracket 绝缘子托架351 Insulator cap 绝缘子帽352 Insulator chain 绝缘子串353 Inter turn faults 匝间短路354 In terlock 连锁355 In termitte nt fault 间歇故障356 In termitte nt fillet weld 间接角缝焊接357 In ternal fault 内部故障358 Internal resista nee 内阻359 In terrupt ing time 断路时间360 In tertrippi ng un derreach protectio n 远方跳闸欠范围保护361 In verse phase seque nee protecti on 逆相序保护362 In verse power protectio n 逆功率保护363 Isolated neutral system 中性点绝缘系统364 Jumper conn ection 跳线365 Kalma n filter algorithm 卡尔曼滤波算法366 Laplace and Fourier transforms 拉氏和傅里叶变换367 Leased line 租用线路368 LED发光二极管369 Line trap线路陷波器370 Load characteristic 负载特性371 Load flow calculatio ns 潮流计算372 Load patterns 负荷形式373 Load schedule according to frequency change 按周波减载374 Load shedding 甩负荷375 Lockout relay 闭锁出口继电器376 Locus of measured impedanee 测量阻抗轨迹377 Lon gitud inal differe ntial protectio n 纵联差动保护378 Lon gitud inal differe ntial relay 纵联差动继电器379 Loss of synchronism protect ion 失步保护380 Low impedanee busbar protection 低阻抗母线保护381 Low-frequency component,subharmonic 低频分量,低次谐波382 Low-freque ncy high-voltage protect ion 低频高压试验383 Low-voltage protecti on 低压保护384 Low-voltage rekease relay 低压释放继电器385 Low-voltage relay 低压继电器386 Magnetic flux 磁通387 Mag netic in ductio n 磁感应强度388 Magnetization curve 磁化曲线389 Magnetizing 磁化390 Magn etiz ing in rush curre nt 劢磁涌流391 Mag ni tude of curre nt 电流幅值392 Main protection 主保护393 Manipulating organ 操作单元394 Manipulation 操作395 Man-machi ne in terface 人机对话接口396 Margin 裕度397 Measured impeda nee 测量阻抗398 Measureme nt 测量399 Measurement signal 测量信号400 Measuring unit 测量元件401 Mechanism latch 机械锁402 Memory circuit 记忆回路403 Metallic fault 金属性故障404 Micro-processor based protective relay 微机继电保护405 Microwave link protectio n 微波保护406 Mi nimum load impeda nee 最小负荷阻抗407 Motor-field failure relay 电动机磁场故障继电器408 Movi ng coil relay 动圈式继电器409 Muktiole-reclosi ng breaker 多次重合闸断路器410 Multi-e nded circuit protection 多端线路保护411 Multi-fi nger con tactor 多触点接触器412 Multi-phase compensated impedanee relay 多相补偿式阻抗继电器413 Multiple earth 多重接地414 Multi-zo ne rekay 分段限时继电器415 Mutual-i nductio n 互感416 Mutual-i nduction of zero seque nee 零序互感的影响417 Mutually coupled lines 有互感线路418 Negative direction 反方向419 Negative phase relay 负相位继电器420 Negative sequenee impedanee 负序阻抗Negative-phase seque nee impe ndence 负相序继电器 Network topology 网络拓朴 Neutral auto-transformer 中性点接地自耦变压器 Neutral displaceme nt protecti on 中性点过电压保护 Neutral-current transformer 零序电流互感器 Neutral-poi nt earth ing 中性点接地No-load release 无跳闸 Non-I in ear characteristics 非线性特性 Non-sinusoidal signal 非正弦信号 Normal in verse 反时限 Normally closed con tacts 常闭节点 Normally ope n con tacts 常开节点 Object-oriented 面向对向 Off-peak 非峰值的 Off-position 断开位置 Offset impedanee relay 偏移特性阻抗继电器 Ohm relay 电阻继电器 Oil-immersed type reactor 油浸式电抗器 Open-phase relay 断相继电器 Operating characteristic 动作特性 Operating eqution(criterion) 动作方程(判据) Operating load 运行负载 Operating time 动作时间 Operational(internal)over-voltage 操作(内部)过电压 Optical link protectio n 光纤保护 Option board 选择板 Optoelectronic coupler 光电耦合器件 Orthogonal 正交的 Oscillation 振荡 Oscillator coil 振荡线圈 Oscillatory reactivity perturbation 振荡反应性扰动 Oscillatory surge 振荡冲击 Out flowi ng current 外汲电流 Out going line 弓 I 出线 Out of service 退出运行Out of step 失步 Outlet 出口Output(executive) organ 出口(执行)元件Over curre nt protect ion 过电流保护 421422423424425426 427 428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464Over fluxi ng ptrtecti on 过励磁保护Over head line 架空线Over load过负荷Over reach blocking scheme 超范围闭锁式Over voltage protect ion 过电压保护465 Over voltage relay 过压继电器531466 Over-curre nt relay withunder-voltage supervision低电压起动的过电流保护467 Over-load relay 过载继电器468 Over-load trip 过载跳闸469 Parallel 并联470 Parallel port 并联出口471 Peak value (交变量的)最大值472 Perce ntage differe ntial protecti on 比率差动保护473 Percentage differential relay 比率差动继电器474 Perma nent fault 永久性故障475 Permissive un der reach ing tran sfertrip scheme欠范围允许跳闸式476 Permissive underreach protection 允许式欠范围保护477 Phase comparis on protect ion 相位比较保护478 Phase comparison relay 相位比较继电器479 Phase segregated protect ion 分相保护480 Phase to phase fault 相间故障481 Phase-angle of voltage transformer 电压互感器的相角差482 Phase-shifting algorithm 移相算法483 Pilot protection 高频保护;纵联保护484 Pilot protection using distanee relay 距离纵联保护485 Platform 平台486 Pneumatic 气动的487 Pockels effect波克尔斯效应488 Polar characteristics 极化特性489 Polarized voltage 极化电压490 Pole-pairs 极对数491 Porcelain insulator 瓷绝缘子492 Positive seque nee impeda nee 正序阻抗493 Potential transformer 电压互感器494 Power direction relay 功率方向继电器495 Power factlr relay 功率因数继电器496 Power failure 电源故障497 Power line carrier 电力线载波498 Power line carrier channel 高频通道499 Power line carrier protecti on 电力线载波保护500 Power relay功率继电器501 Power rheostat 电力变压器502 Power swi ng(out of step)blocki ng 振荡(失步)闭锁503 Power system analysis and computation 电力系统分析与计算504 Power system control 电力系统控制505 Power system oscillation 电力系统振荡506 Power system splitt ing and reclos ing 解列重合闸507 Power system transients 电力系统暂态508 Power-angle 功角509 Power-angle curve 功角特性曲线510 Power-transfer relay 电源切换继电器511 Power-transformer relay 电力传输继电器512 Primary 一次侧的513 Primary protection 主保护514 Private line 专用线路515 Proporti onal Brake Lon gitud inalDiffere ntial Protectio n 比例制动式纵差保护516 Protect ion aga inst overpressure 超压防护517 Protection against unsymmetrical load 不对称负载保护装置518 Protection criterion 保护判据519 Protection device 保护设备;防护设备520 Protection feature 保护特性521 Protection of generator-transformer set 发电机--变压器保护522 Protection reactor 保护电抗器523 Protection screen 保护屏524 Protection switch 保护开关525 Protective cap 保护帽526 Protective casing 保护外壳527 Protective cover(protective hous ing) 保护罩528 Protective device(protective gear) 保护装置529 Protective earthing 保护接地530 Protective earth ing outer in sulation 保护接地外绝缘531 Protective equipment 保护设备532 Protective gap 保护间隙533 Protective ground 保护性接地534 Protective link 保护线路535 Protective panel 保护屏柜536 Protective relaying equipment 继电保护装置537 Protective switch 保护开关538 Protective system 保护系统539 Protective transformer 保护变压器540 PT line-break PT 断线541 Pulse 脉冲542 Pulse relay(surge relay)冲击继电器543 Quadrature 正交544 Quadrature axis 交车由545 Quasi-steady state 准稳态546 Rated armature current 额定电枢电流547 Rated burden/Rated load 额定负载548 Rated primary voltage 一次额定电压549 Rated secondary voltage 二次额定电压Ratio restrain 比率制动 Reach (setting )of protection 保护范围(定值) Reactanee 电抗 Reacta nee bond 电抗耦合 Reactanee of armature reaction 电枢反应电抗 Reactive power cimpensation 无功补偿器 Reactor grounded neutral system 中性点电抗接地系统 Receiver machine 收信机 Reclaim time 复归时间 Recloser 重合闸 Rectangular wave 矩形波 Rectifier bridge 整流桥 Recursive least square algorihm 最小二乘算法 Redundancy of relaying system 保护配置的冗余度 Relay acceleration after auto-reclosing 重合闸后加速保护 Relay acceleration before auto-reclosing 重合闸前加速保护 Relay act trip 继电器操作跳闸 Relay based on in creme ntal qua ntity 增量(突变量)继电器 Relay based on transient component 暂态保护 Relay location 保护安装处 Relay must-operate value 继电器保证启动值 Relay overrun 继电器超限运行 Relay system configuration 保护配置 Remote backup protect ion 远后备保护 Remote con trolled 遥控的 Remote Termi nal Un it 远程终端设备 Remote-control apparatus 远程控制设备 Reserve bus 备用母线 Residual current 零序电流 Residual current relay 零序电流继电器 Residual magnetism 剩磁 Resista nee groun ded n eutral system 中性点接地方式 Resultant torque 合成转矩 Retur ning curre nt of protect ion device 保护装置返回 Reverse power flows 功率逆潮流 Rotor 转子 Rotor earth-fault protectio n 转子接地保护 Rwliability 可靠性 Sampling and holding 采样保持 Sampling in terrupti on service program 采样中断服务程序Satuation detectio n 饱和检测Saturation curve 饱和曲线550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593SCADA监控与数据采集Scalarproduct restra int differe ntrial relay 标积制动式差动继电器594 Sea n 扫描595 Sealed transformer密圭寸式变压器596 Second harm onic eseapeme nt 二次谐波制动597 Secondary circuit 二次回路598 Sectio n selectovity of protecti on 保护的区选择性599 Sectionalizer 分段断路器600 Security 安全性601 Segregated current differe ntial protectio n 分相电流差动保护602 Selectivity 选择性603 Self excited 自励604 Self reset自动复归605 Self-check 自检606 Self-e nergizi ng 自激的607 Self-i nductio n 自感608 Self-polarize mho自极化姆欧(导纳)继电器609 Self-polarizi ng 电流极化继电器610 Semiconductor diode 半导体二极管611 Semi-orthogo nal wavelet 半正交小波612 Sensitive polarized 灵敏极化继电器613 Sensitivity 灵敏性614 Seque nee of events recorder 事件顺序记录器615 Seque ntial trippi ng 顺序跳闸616 Serial port 串行接口617 Series 串联618 Series excited 串励619 Sesitive relay 灵敏继电器620 Setting calculation 整定计算621 Severe gas protection 重瓦斯保护622 Short circuit calculatio ns 短路计算623 Short-term load forecasting 短期负荷预测624 Shunt旁路;并联625 Shu nt excited 并励626 Shu nt running 潜动627 Shutter 挡板628 Sigle-phase transmission line 单相传输线629 Si ngle-chip microco ntroller 单片机630 Sinusoidal variations 正弦变量631 Slight gas protection 轻瓦斯保护632 Slow-to release relay 缓放继电器633 Soft strap 软压板634 Solenoid relay 螺管式继电器635 Spark gap火花间隙636 Speed速动性637 Splitphase tran sverse differe ntial protectio n 裂相横差保护638 Spottily excited 他励639 Star 星形640 Start up(Pick up)起动641 Starti ng curre nt of protection device 保护装置启动电流642 State estimation 状态估计643 Static distanee relay 静态距离继电器644 Static relay静电继电器645 Stator earth-fault protectio n 定子接地保护646 Stator ground protect ion based onzero seque nee curre nt 零序电流构成的定子接地保护647 Step-type distanee relay 分段距离继电器648 Strap 压板649 Subsystem 子系统650 Successive approximation typw A/D 逐次逼近型A/D651 Superimposed comp onent protect ion 叠加分量保护652 Surge guard 冲击防护653 Surge impeda nee 波阻抗654 Surge voltage 冲击电压655 Sustained faults 持续性故障656 Sustained overload 持续657 Switch cabinet 开关柜658 Switch station 开关站659 Switching surge 开关冲击660 Symmetrical 对称的661 Symmetrical comoinents 对称分量662 Synchronization check 同期检查663 Synchronized sampling 采样同步664 Synchronizing by reference parameter vector 参数矢量同步法665 Synchronous condenser 同步调相机666 Synchronous reactance 同步电抗667 Syn chro nous speed 同步转速668 Tap分接头669 Telemeter data 遥测数据670 Temperature limiting relay 过热继电器671 Temporary fault 瞬时性故障672 Terminal board 端子排673 Term in al voltage 端电压674 Test-block 试验端子675 Test-plug试验插头676 The applied voltage 外施电压677 The no-load power factor 空载功率因数678 Thermal protection 过热保护679 Thermostat relay 恒温继电器680 Three phase one shot reclosure 三相一次重合闸681 Three term in al li ne protectio n 三端线路保护682 Through-fault 穿越故障683 Thyristor 晶体管684 Tie line 联络线685 Time interval 时间间隔686 Time over-current 时限过电流687 Time pulse relay 定时脉冲继电器688 Time-current characteristic 时间-电流特性689 Time-delay relay 时间继电器690 Time-invariant 不变时的691 Timer relay延时继电器692 Timi ng relay(Timed relay) 定时继电器693 Topological in formatio n 拓朴信息694 Topology analysis 拓朴分析695 Torque-angle 转矩角696 Torsion al vibration 扭转振动697 Tower 杆塔698 Tran sfer of auxiliary supply 后备电源切换699 Tran sformation matrix 变换矩阵700 Transformer protection schemes 变压器保护配置原则701 Transient analysis 暂态分析702 Transistor(type)relay 晶体管(型)继电器703 Transition impedanee 过渡阻抗704 Tran smissio n line malfu nctio n 输电线路异常运行705 Transmitting relay 发送继电器706 Tran sverse differe ntial protect ion 横差保护707 Tran sverse differe ntial protect ionfor Gen erator turn-to-turn faults 发电机横差保护708 Traveling wave 行波709 Traveli ng wave protect ion 行波保护710 Traveling wave relay 行波继电器711 Traveling wave signal 行波信号712 Trigger 触发器713 Trip by lical protecti on 保护跳闸714 Trip relay 跳闸继电器715 Trip switch 跳闸开关716 Trippi ng battery跳闸用蓄电池717 Troidal环形的;曲面;螺旋管形718 Turn to turn gault 匝间短路719 Two star conn ection scheme 两相星形接线方式720 Two-phase grounding fault 两相接地短路故障721 Two-phase short circuit fault 两相短路故障722 Two-position relay 二位置继电器723 Ultra-high voltage tran smissio n 超高压输电724 Un availability 不可用率;失效率725 Unbalanee current 不平衡电流726 Un blocki ng sig nal 解除闭锁信号727 Under power protection 低功率保护728 Under power relay 低功率继电器729 Un der-freque ncy protectio n 低频保护730 Under-groind cable 地埋电缆731 Under-impedanee relay 低阻抗继电器732 Under-load relay负载不足继电器733 Un der-voltage protectio n 欠压保护734 Under-voltage relay 欠压继电器735 Un der-voltage release736 Under-voltage trip 低电压跳闸737 Un it protectio n 单元式保护738 Vacuum circuit breaker 真空开关739 Vacuum-tube relay 电子管继电器740 Variable bridge prin ciple protect ion 变电桥保护741 Vibratio n 振荡742 Voltage balanee relay 电压平衡继电器743 Voltage differe ntial relay 电压差动继电器744 Voltage dip 电压下降745 Voltage inception angle 电压初始角746 Voltage in stability 电压不稳747 Voltage regulation 电压调节748 Voltage responsive relay 电压响应继电器749 Voltage selection relay 电压选择继电器750 Voltage sensor 电压传感器751 Voltage traveling wave 电压行波752 Voltage waveform destortio n 电压波形畸变753 Voltage-co ntrolled over-curre nt relay 电压控制过电流继电器754 Volt-amphere characteristic 伏安特性755 Wave impeda nee 波阻抗756 Wave propagation velocity 波速757 Waveform 波形758 Waveform ide ntificatio n 波形识别法759 Wavelet transform 小波变换760 Weak power end protection 弱电源端保护761 Win di ng-to-wi ndi ng in sulation 绕组间的绝缘762 Win dow fun ction 窗函数763 Zero drift零点漂移764 Zero mode comp onent of traveli ng wave 零模行波765 Zero-power-factor 零功率因数766 Zero-seque nee curre nt 零序电流767 Zero-sequenee current compensation 零序电流补偿768 Zero-sequenee current relay 零序电流继电器769 Zero-sequenee current transducer 零序电流互感器770 Zero-seque nee impeda nee 零序阻抗771 Zero-seque nee protect ion 零序保护。
电力系统继电保护外文及翻译
Power System ProtectionsThe steady-state operation of a power system is frequently disturbed by various faults on electrical equipment. To maintain the proper operation of the power system, an effective, efficient and reliable protection scheme is required. Power system components are designed to operate under normal operating conditions.However, due to any reason, say a fault, there is an abnormality, it is necessary that there should be a device which senses these abnormal conditions and if so, the element or component where such an abnormality has taken place is removed, i.e. deleted from the rest of the system as soon as possible. This is necessary because the power system component can never be designed to withstand the worst possible conditions due to the fact that this will make the whole system highly uneconomical. And therefore, if such an abnormality takes place in any element or component of the power system network, it is desirable that the affected element/component is removed from the rest of the system reliably and quickly in order to restore power in the remaining system under the normal condition as soon as possible.The protection scheme includes both the protective relays and switching circuits, i.e. circuit breakers. The protective relay which functions as a brain is a very important component. The protective relay is a sensing device, which senses the fault, determines its location and then sends command to the proper circuit breaker by closing its trip coil. The circuit breaker after getting command from the protective relay disconnects only the faulted element. this is why the protective relay must be reliable, maintainable and fast in operation.In early days, there used to be electromechanical relay of induction disk-type.However, very soon the disk was replaced by inverted cup, i.e.hollow cylinder and the new relay obtained was known as an induction cup or induction cylinder relay. This relay, which is still in use, possesses several important features such as higher speed; higher torque for a given power input an more uniform torque.However, with the advent of electronic tubes, electronic relays having distinct features were developed during 1940s. With the discovery of solid state components during 1950s, static relays with numerous advantages were developed. The use of digital computers for protective relaying purposes has been engaging the attention of research and practicing engineers since layer 1960s and 1980s. Now, the microprocessor/mini computer-based relaying scheme, because of its numerous advantages such as self –checking feature and flexibility, has been widely used in power system all over the world.The overall system protection is divided into following sections: (i)Generator protection,(ii)Transformer protection,(iii)Bus protection,(iv)Feederprotection,(v)Transmission line protection.Basic Requirements to Protective RelaysAny protection scheme, which i.e. required to safeguard the power system components against abnormal conditions such as faults, consists basically of two elements(i)Protective relay and (ii) Circuit breaker .The protective relay which is primarily the brain behind the whole scheme plays a very important role. Therefore proper care should be taken in selecting an appropriate protective relay which is reliable, efficient and fast in operation. The protective relay must satisfy the following requirements:⑴ since faults on a well designed and healthy system are normally rare, therelays are called upon to operate only occasionally. This means that therelaying scheme is normally idle and must operate whenever fault occurs. Inother words, it must be reliable.⑵ Since the reliability partly depends upon the maintenance, the relay mustbe easily maintainable.⑶ The palpation of the relay can be in two ways. One is the failure to operatein case a fault occurs an second is the relay operation when there is no fault.As a matter of fact, relay must operate if there is a fault and must notoperate if there is no fault.⑷Relaying scheme must be sensitive enough to distinguish between normaland the faulty system.Protective RelaysThe function of the protective relay is to sense the fault and energize the tripcoil of the circuit breaker. The following types of the protective relays are usedfor the apparatus such as synchronous machines, bus bar, transformer and the other apparatus and transmission line protection.(1) Over current relays,(2) Under voltage relays,(3) Under frequency relays,(4) Directional relays,(5) Thermal relays,(6) Phase sequence relays such as(i)negative sequence relays and, (ii)zerosequence relays,(7) Differential relays and percentage differential relays,(8) Distance relays such as (I)plane impedance relays,(ii)angle impedance relay,i.e. Ohm or reactance relays,(iii)angle admittance relays,i.e. Mho relaysand ,(iv)offset and restricted relays,(9)Pilot relays such as (i) wire pilot relays,(ii)carrier channel pilotrelays,(iii)microwave pilot relays. There are different types of the relayingscheme based on construction. They are:(i)electromechanicaltype,(ii)thermal relays,(iii) transduction relays,(iv)rectifier bridgerelay,(v)electronic relays,(vi)digital relaying schemes.电力系统继电保护电力系统的稳态运行经常会因各种电力设备配故障原因而被扰乱。
继电保护中英文翻译
Fundamentals of protection practiceThe purpose of an electrical power system is to generate and supply electrical energy to consumers. The system should be designed and managed to deliver this energy to the utilization points with both reliability and economy. As these two requirements are largely opposed, it is instructive to look at the reliability of a system and its cost and value to the consumer.One hand ,The diagram mast make sure the reliability in system design,. On the other hand, high reliability should not be pursued as an end in itself, regardless of cost, but should rather be balanced against economy,taking.Security of supply can be bettered by improving plant design, increasing the spare capacity margin and arranging alternative circuits to supply loads. Sub-division of the system into zones. each controlled by switchgear in association with protective gear. provides flexibility during normal operation and ensures a minimum of dislocation following a breakdown.The greatest threat to the security of a supply system is the short circuit,which imposes a sudden and sometimes violent change on system operation. The large current which then flows, accompanied by the localized release of a considerable quantity of energy, can cause fire at the fault location, and mechanical damage throughout the system, particularly to machine and transformer windings. Rapid isolation of the fault by the nearest switchgear will minimize the damage and disruption caused to the system.A power system represents a very large capital investment. To maximize the return on this outlay. the system must be loaded as much as possible. For this reason it is necessary not only to provide a supply of energy which is attractive to prospective users by operating the system ,but also to keep the system in full operation as far as possible continuously, so that it may give the best service to the consumer, and earn the most revenue for the supply authority. Absolute freedom from failure of the plant and system network cannot be guaran- teed. The risk of a fault occurring, however slight for each item, is multiplied by the number of such items which are closely associated in an extensive system, as any fault produces repercussions throughout the network. When the system is large, the chance of a fault occurring and the disturbance that a fault would bring are both so great that withoutequipment to remove faults the system will become, in practical terms, inoperable. The object of the system will be defeated if adequate provision for fault clearance is not made. Nor is the installation of switchgear alone sufficient; discriminative protective gear, designed according to the characteristics and requirements of the power system. must be provided to control the switchgear. A system is not properly designed and managed if it is not adequately protected.Protective gearThis is a collective term which covers all the equipment used for detecting,locating and initiating the removal of a fault from the power system. Relays are extensively used for major protective functions, but the term also covers direct-acting a.c.trips and fuses.In addition to relays the term includes all accessories such as current and voltage transformers, shunts, d.c.and a.c. wiring and any other devices relating to the protective relays.In general, the main switchgear, although fundamentally protective in its function, is excluded from the term protective gear, as are also common services, such as the station battery and any other equipment required to secure opera- tion of the circuit breaker. ReliablityThe performance of the protection applied to large power systems is frequently assessed numerically. For this purpose each system fault is classed as an incident and those which are cleared by the tripping of the correct circuit breakers and only those, are classed as 'correct'. The percentage of correct clearances can then be determined.This principle of assessment gives an accurate evaluation of the protection of the system as a whole, but it is severe in its judgement of relay performance, in that many relays are called into operation for each system fault, and all must behave correctly for a correct clearance to be recorded. On this basis, a performance of 94% is obtainable by standard techniques.Complete reliability is unlikely ever to be achieved by further improvements in construction. A very big step, however, can be taken by providing duplication of equipment or 'redundancy'. Two complete sets of equipment are provided, and arranged so that either by itself can carry out the required function. If the risk of an equipment failing is x/unit. the resultant risk, allowing for redundancy, is x2. Where x is small the resultant risk (x2) maybe negligible.It has long been the practice to apply duplicate protective systems to busbars, both being required to operate to complete a tripping operation, that is, a 'two-out-of-two' arrangement. In other cases, important circuits have been provided with duplicate main protection schemes, either being able to trip independently, that is, a 'one-out-of- two' arrangement. The former arrangement guards against unwanted operation, the latter against failure to operate.These two features can be obtained together by adopting a 'two-out-of-three' arrangement in which three basic systems are used and are interconnected so that the operation of any two will complete the tripping function. Such schemes have already been used to a limited extent and application of the principle will undoubtedly increase. Probability theory suggests that if a power network were protected throughout on this basis, a protection performance of 99.98% should be attainable. This performance figure requires that the separate protection systems be completely independent; any common factors, such as common current transformers or tripping batteries, will reduce the overall performance. SELECTIVITYProtection is arranged in zones, which should cover the power system completely, leaving no part unprotected. When a fault occurs the protection is required to select and trip only the neareat circuit breakers. This property of selective tripping is also called 'discrimination' and is achieved by two general methods:a Time graded systemsProtective systems in successive zones are arranged to operate in times which are graded through the sequence of equipments so that upon the occurrence of a fault, although a number of protective equipments respond, only those relevant to the faulty zone complete the tripping functiopn. The others make incomplete operations and then reset.b Unit systemsIt is possible to design protective systems which respond only to fault conditions lying within a clearly defined zone. This 'unit protection' or 'restricted protection' can be applied throughout a power system and, since it does not involve time grading, can be relatively fast in operation.Unit protection is usually achieved by means of a comparison of quantities at theboundaries of the zone. Certain protective systems derive their 'restricted' property from the configuration of the power system and may also be classed as unit protection. Whichever method is used, it must be kept in mind that selectivity is not merely a matter of relay design. It also depends on the correct co-ordination of current transformers and relays with a suitable choice of relay settings, taking into account the possible range of such variables as fault currents. maximum load current, system impedances and other related factors, where appropriate.STABILITYThis term, applied to protection as distinct from power networks, refers to the ability of the system to remain inert to all load conditions and faults external to the relevant zone. It is essentially a term which is applicable to unit systems; the term 'discrimination' is the equivalent expression applicable to non-unit systems.SPEEDThe function of automatic protection is to isolate faults from the power system in a very much shorter time than could be achieved manually, even with a great deal of personal supervision. The object is to safeguard continuity of supply by removing each disturbance before it leads to widespread loss of synchronism, which would necessitate the shutting down of plant.Loading the system produces phase displacements between the voltages at different points and therefore increases the probability that synchronism will be lost when the system is disturbed by a fault. The shorter the time a fault is allowed to remain in the system, the greater can be the loading of the system. Figure 1.5 shows typical relations between system loading and fault clearance times for various types of fault. It will be noted that phase faults have a more marked effect on the stability of the system than does a simple earth fault and therefore require faster clearance.SENSITIVITYSensitivity is a term frequently used when referring to the minimum operating current of a complete protective system. A protective system is said to be sensitive if the primary operating current is low.When the term is applied to an individual relay, it does not reter to a current or voltage setting but to the volt-ampere consumption at the minimum operating current.A given type of relay element can usually be wound for a wide range of setting currents; the coil will have an impedance which is inversely proportional to the square of the setting current value, so that the volt-ampere product at any setting is constant. This is the true measure of the input requirements of the relay, and so also of the sensitivity. Relay power factor has some significance in the matter of transient performance .For d.c. relays the VA input also represents power consumption, and the burden is therefore frequently quoted in watts.PRIMARY AND BACK-UP PROTECTIONThe reliability of a power system has been discussed in earlier sections. Many factors may cause protection failure and there is always some possibility of a circuit breaker failure. For this reason, it is usual to supplement primary protection with other systems to 'back-up' the operation of the main system and to minimize the possibility of failure to clear a fault from the system.Back-up protection may be obtained automatically as an inherent feature of the main protection scheme, or separately by means of additional equipment. Time graded schemes such as overcurrent or distance protection schemes are examples of those providing inherent back-up protection; the faulty section is normally isolated discriminatively by the time grading, but if the appropriate relay fails or the circuit breaker fails to trip, the next relay in the grading sequence will complete its operation and trip the associated circuit breaker, thereby interrupting the fault circuit one section further back. In this way complete back- up cover is obtained; one more section is isolated than is desirable but this is inevitable in the event of the failure of circuit breaker. Where the system interconnection is more complex, the above operation will be repeated so that all parallel infeeds are tripped. If the power system is protected mainly by unit schemes, automatic back-up protection is not obtained, and it is then normal to supplement the main protection with time graded overcurrent protection, which will provide local back-up cover if the main protective relays have failed, and will trip further back in the event of circuit breaker failure.Such back-up protection is inherently slower than the main protection and, depending on the power system con- figuration, may be less discriminative. For the most important circuits the performance may not be good enouugh, even as a back-up protection, or, in some cases, not even possible, owing to the effect of multiple infeeds. In these casesduplicate high speed protective systems may be installed. These provide excellent mutual back-up cover against failure of the protective equipment, but either no remote back-up protection against circuit breaker failure or, at best, time delayed cover.Breaker fail protection can be obtained by checkina that fault current ceases within a brief time interval from the operation of the main protection. If this does not occur, all other connections to the busbar section are interrupted, the condition being necessarily treated as a busdar fault. This provides the required back-up protection with the minimum of time delay, and confines the tripping operation to the one station, as compared with the alternative of tripping the remote ends of all the relevant circults.The extent and type of back-up protection which is applied will naturally be related to the failure risks and relative economic importance of the system. For distribution systems where fault clearance times are not critical, time delayed remote back-up protection is adequate but for EHV systems, where system stability is at risk unless a fault is cleared quickly, local back-up, as described above, should be chosen.Ideal back-up protection would be completely indepen_ dent of the main protection. Current transformers, voltage transformers, auxiliary tripping relays, trip coils and d.c. supplies would be duplicated. This ideal is rarely attained in practice. The following compromises are typical:a. Separate current transformers (cores and secondary windings only) are used for each protective system, as this involves little extra cost or accommodation compared with the use of common current transformers which would have to be larger because of the combined burden.b. Common voltage transformers are used because duplication would involve a considerable increase in cost, because of the voltage transformers themselves, and also because of the increased accommodation which would have to be provided. Since security of the VT output is vital, it is desirable that the supply to each protection should be separately fused and also continuously supervised by a relay which wil1 give an alarm on failure of the supply and, where appropriate, prevent an unwanted operation of the protection.c. Trip supplies to the two protections should be separately fused. Duplication of tripping batteries and of tripplng coils on circuit breakers is sometimes provided. Trip circuitsshould be continuously supervised.d. It is desirable that the main and back-up protections (or duplicate main protections) should operate on different princlples, so that unusual events that may cause failure of the one will be less likely to affect the other./viewforum.php?f=20继电保护原理发电并将电力供应给用户这就是电力系统的作用。
继电保护装置
继电保护装置
1.继电保护的重要性
继电保护:电气元件发生故障或不正常运行状态时,能快速切断故障元件的供电或向工作人员发出信号进行处理的继电装置,改装置可以减少事故发生的几率。
继电保护装置在电力系统中的作用:
①自动、快速、有选择性地将故障元件从电力系统中切除,使故障元件免于继续遭到破坏,使非故障元件能继续正常运行。
②对电气元件的不正常运行状态能根据运行维护的条件发出信号、减负荷或跳闸。
2.电力系统对继电保护的基本要求
继电保护在电力系统中必须满足选择性、速动性、灵敏性和可靠性。
(1)选择性
继电保护动作时,能选择故障元件从电力系统中切除,并保证非故障元件能继续安全运行,使故障停电范围最小。
(2)速动性
继电保护装置动作时间应尽量短。
以减小故障元件的损坏程度,缩短用户在低压下的工作时间,提高系统并列运行的稳定性。
(3)灵敏性
继电保护装置对规定保护范围内的故障应不管短路点位置远近、短路类型均能正常反应。
(4)可靠性
继电保护装置在应该动作时,不拒动;不应动作时,不误动。
继电保护装置的作用
继电保护装置的作用
当被爱护元件发生故障时,自动、快速、有选择地将故障从电力系统切除,以保证其余部分恢复正常运行,并使故障元件免于连续受损害。
当被爱护元件发生特别运行状态时,经肯定延时动作于信号,以使值班人员实行措施。
电力系统在生产过程中,有可能发生各类故障和各种不正常状况。
其中故障一般可分为两类:横向不对称故障和纵向不对称故障。
横向不对称故障包括两相短路、单相接地短路、两相接地短路三种,纵向对称故障包括单相断相和两相断相,又称非全相运行。
电网在发生故障后会造成很严峻的后果:
(1)电力系统电压大幅度下降,广阔用户负荷的正常工作遭到破坏。
(2)故障处有很大的短路电流,产生的电弧会烧坏电气设备。
(3)破坏发电机的并列运行的稳定性,引起电力系统震荡甚至使整个系统失去稳定而解列瓦解。
(4)电气设备中流过强大的电流产生的发热和电动力,使设备的寿命削减,甚至遭到破坏。
不正常状况有过负荷、过电压、电力系统振荡等.电气设备的过负荷会发生发热现象,会使绝缘材料加速老化,影响寿命,简单引起短路故障。
继电爱护被称为是电力系统的卫士,它的基本任务有:
(1)当电力系统发生故障时,自动、快速、有选择地将故障设备从
电力系统中切除,保证系统其余部分快速恢复正常运行,防止故障进一步扩大。
(2)当发生不正常工作状况时,能自动、准时地选择信号上传给运行人员进行处理,或者切除那些连续运行会引起故障的电气设备。
可见继电爱护是任何电力系统必不行少的组成部分,对保证系统平安运行、保证电能质量、防止故障的扩大和事故的发生,都有极其重要的作用。
继电保护装置及故障诊断
继电保护装置及故障诊断摘要:伴随着国家经济及科学技术的不断发展和进步,电力系统在国民经济生活中发挥了越来越重要的作用。
继电保护装置实现对电力系统的保护和故障检测方法以及装置自身的故障诊断属于专业性比较强的工作,这其中涉及到的事项较为复杂,故障诊断与检测方法是最为复杂的环节,全世界都投入了大量的研究成本,以期能够有效地降低设备的故障发生率,延长设备的使用年限,提高电力系统的可靠性和稳定性,提高电力企业的经济效益。
关键词:继电保护;装置;故障诊断1电力系统继电保护装置分析电力系统运行中电力继电保护装置发挥着重要作用,当电力系统出现问题时,继电保护装置可以及时判断故障原因并采取具体措施,并将命令及时下达给故障所在位置附近的断路器,将故障位置与系统隔离出来,最大程度降低问题影响,确保其余部分正常运行。
同时继电保护装置可以实时监控电力系统运行,保证系统处于正常运行,避免故障影响整个系统,并及时采取解决措施。
系统监控过程中分心电力系统运行,并将问题及时反馈给管理人员,保证管理人员全面掌握电力系统情况,出现问题后最快速度解决。
2电力继电保护装置的功能2.1保证电力系统运行安全当电力系统在运行中有异常状况发生时,电力继电保护装置可以快速精确地发出切断指令,隔离故障部位,同时发布警报,保证其余设备的正常运转。
该装置还可以对电力系统的运行状况进行监测与控制,保障电力系统的安全平稳运转。
2.2自动分析电力系统异常状况并发布指令当电力系统在运行中有异常状况发生时,电力继电保护装置会自动检测并且分析发生异常的原因,快速准确地判定故障出现的部位及故障原因。
电力继电保护装置一旦发现异常,即发布警报信号,提示工作人员进行故障设备检修和相关处理。
若无人值班,继电保护装置会自动发布指令进行调整,选择性摘除异常的故障设备或者元件,保证电力系统安全平稳地运转。
如果没有这套装置,一个小故障可能会产生大损失,严重者导致整个电网生产传输系统瘫痪。
继电保护文献翻译 中英
小波包神经网络在电力系统继电保护中的应用武汉大学电气工程学院中国武汉430072摘要,本文提出解决继电保护测试仪波形畸变问题的小波包神经网络(WPNN )方法。
凭借其良好的时频局部化的逼近能力,WPNN 是用来建立一个对继电保护测试仪非线性放大器的识别模型。
有待放进工具的错误数据是用来被识别模型的调节功能补偿的,使整个使用仪器系统显示表现得线性,以便使产生的波形失真大大地被限制。
模拟结果表明,提出方法具有可行性和有效性,原型已进入实际运行。
1 介绍现代电力网络的规模和复杂性不断扩大,它要求配置较高可靠性的电力系统继电保护,错误数据在进入继电保护测试仪运算之前被放大器放大是改善他们性能的有效方式[1][2]。
传统的继电保护测试仪器能够实现这样的测试功能,但他们曾经采用模拟放大器,这是一个典型的非线性系统,实现功率放大。
因此,输出波形的非线性失真不可避免地成为继电器保护测试的严重问题。
在本文中,WPNN 方法提出了解决这一问题的方法。
WPNN 是小波包理论和神经网络,它不仅具有小波包的良好的局部化性质和特征提取能力,但也继承神经网络的许多优点,如自学,适应性和最高容错性等[3][4]。
它选择小波基为神经元的激活函数,并规范设计程序和稳固学术基础,所以WPNN 已广泛应用在许多技术领域[5][6][7]。
在这项研究中,WPNN 是采用了建立继电保护测试仪的非线性放大器的识别模型,并通过比较识别模型与理论输出,自适应调整功能是在错误数据被送进仪器之前,这使得整个仪器系统将显示变得线性,使输出波形的失真限制很大。
用故障仿真数据进行记录,其结果证明了可行性和WPNN 应用对电力系统继电保护测试的有效性,以及所提出的方法样机已投入实际运行。
2 建设WPNNWPNN 是小波神经网络的升级(WNN )。
WNN 小波神经网络可以被看作是使用的()R L 2的正交小波变换多分辨率分析(MRA )的基础上重建的组合空间的小波[8][9][10]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
翻译文献(英译中)原文:Fault—clearing Protective Relays(1)Overcurrent relaying.Slow—speed relays.The most obvious effect of a fault is t o change the current in the faulted conductor from a normal value to an abnormall y large one.Therefore it is not surprising that the earliest methods of clearing fault s were based on the utilization of that effect(overcurrent).Early methods included f uses,circuit breakers withseries trip coils,and slow—speed overcurrent relays.Slow—speed overcurrent relays are mostly of the induction type.To obtain selec tivity without unnecessarily long delay,such relays usually have a delay which vari es inversely with the current.Both time and current settings are adjustable.Since t he fault current decreases,on account of the increased impedance of the line betw een the fault and the source.as the fault is mo,ved farther from the source of power,it follows that the relay o perating time increases as the distance to the fault increases.The time—distance curves change with such conditions as connected generating capacity and the connection or disconnection of other transmission lines,and ther efore,to ensure selectivity,curves should be checked for several conditions to asc ertain that.under the worst condition,an adequate interval exists between the oper ating times of relays 1 and 3,and, similarly,between each pair of relays on adjoi ning line sections.Coordination may be accomplished by judicious choice of both ti me settings and current settings.If the relay current changes but little with fault location,the curve of relay time versus fault position becomes more like curve a than ike curve b.Such a conditionis likely to exist if the impedance of the protected section is small compared with the impedance between the generators and the protected section,as may well be t rue if the section is short and is fedsolely or principally from one end.Moreover curve a may hold even though the rel ay current does change with fault location,if,as is usually true,the relays are op erating on the minimum-time part of their time—current characteristic.Curve a repr esents an undesirable condition when several protected line sections are in cascad e,because the relay time of the linesnear the source of power becomes increasingly long.If a line section is long or has power sources at each end,the relay current wi ll vary considerably with fault location.But,even if the current varies enough to gi ve a curve like b,the operating time of a relay near the generator is usually some what longer than that of a relay farther from the generator,though not so much lo nger as in curve a.By the use of graded time settings,overcurrent relays can always be made to work selectively on a radial transmission or distribution system.With graded setting s,and with the addition of directional relays,overcurrent relays can be made to w ork selectively on a loop system fed from one point.But on a loop fed sometimes from one point and sometimes from another,or on a network more complex than a loop,it is difficuh,if not impossible,to choose settings for overcurrent relays so t hat the relays will work selectively for all fault locations and for all operating conditi ons.译文:故障切除继电保护装置(1)现在来谈谈过电流继电保护装置,特别是延时过电流继电保护装置。
故障出现时,最明显的变化是故障导体中的电流由正常的电流值变为非正常的大电流。
因此,故障切除所采用的早期方法就是以电流的变化为依据。
早期所使用的手段包括熔丝、串联跳闸线圈断路器和延时过电流继电器。
延时过电流继电器大都是感应型,为了满足选择性和速动性,这种继电保护器通常具有反时限特性。
时间和电流整定都具有可调性,由于故障电流较小,当故障离电源较远时,考虑到故障与电源之间线路的阻抗较大,继电器的动作时间会随着故障距离的增加而延长。
时间与距离曲线是依据连接的发电容量与以其它线路连接或中断的状态而变化的。
因此,为确保选择性应校验曲线,保证在严重的状态下,继电器#1和#3动作时间之间有适当的时间间隔。
在相邻的线路上每一对继电器之间也同样要有时间间隔,这种配合通过恰当选择时间与电流的整定值来完成。
假如继电器中的电流由于故障而改变,但变化不大,那么故障点对应的时间的曲线变化与a曲线更相像。
假如被保护线路的阻抗与发电机和保护线路之间的阻抗相比较小时,就能呈现与a曲线相似的这样一种状态。
如线路较短,又是单电源供电或主要从一端供电,情况也是如此。
此外,即使继电器中的电流随故障点变动而改变,a曲线仍可能保持不变。
如果继电器进行瞬时动作,通常情况也是如此。
当几条被保护线路进行串联时,a曲呈现着不理想的状态,因为靠近电源的线路继电器动作时间相应变长。
如果一条线路较长或每一端都有电源,继电器的电流就会随故障点的不同将作相应的改变。
但即使电流的改变足以像b曲线,靠近发电机的继电器动作时间也比距发电机较远的继电器动作时间长,但不如a曲线的时间长。
通过采用阶段时间配置,过电流继电保护装置能在输电系统或配电系统中有选择性地工作,使用阶段配置并利用方向性继电器,过电流继电器从单电源供电系统中有选择性地工作,但在单回线从一端或从另一端供电的线路中,或在一个比一条线路更复杂的网络中,要想使这种继电装置对一切故障和动作状态进行选择性工作,对过电流继电装置的整定值的确定,将不是一件容易的事原文:Fault—clearing Protective Relays(2)High—speed relays.It has already been noted that the relay current during a fa ult usual.1y decreases as the distance to the fault location increases.When this location is exactlv atthe far end of the protected section,the relay current has fl certain value,and,pr ovided thatother conditions are constant,fl relay current exceeding this value is fl certain indi cation of afault in the protected section——a condition for which the circuit breaker should be tripped.Tripping may be accomplished under these conditions by the use of fl high—speed overcurrentrelay having a pick-up current equal to the current produced by fl fault at the dista nt end ofthe section.In practice,the balance point of the relay·(that is,the fault location th at willjust make the relay pick up)must be somewhat closer than the distant end,for rea sons a1一ready discussed.The contacts of the high—speed relay are connected in parallel w ith the con—tacts of a slow-speed overcurrent relay so that。