《结构力学》习题解2009[1]
结构力学课后习题答案
习题7-1 试确定图示结构的位移法基本未知量数目,并绘出基本结构。
(a) (b) (c)1个角位移3个角位移,1个线位移4个角位移,3个线位移(d) (e) (f)3个角位移,1个线位移2个线位移3个角位移,2个线位移(g) (h)(i)7- 327- 33一个角位移,一个线位移 一个角位移,一个线位移 三个角位移,一个线位移7-2 试回答:位移法基本未知量选取的原则是什么?为何将这些基本未知位移称为关键位移?是否可以将静定部分的结点位移也选作位移法未知量?7-3 试说出位移法方程的物理意义,并说明位移法中是如何运用变形协调条件的。
7-4 试回答:若考虑刚架杆件的轴向变形,位移法基本未知量的数目有无变化?如何变化?7-5 试用位移法计算图示结构,并绘出其内力图。
(a)解:(1)确定基本未知量和基本结构有一个角位移未知量,基本结构见图。
lll7- 34Z 1M 图(2)位移法典型方程11110pr Z R +=(3)确定系数并解方程iql Z ql iZ ql R i r p 24031831,821212111==-∴-==(4)画M 图M 图(b)4m4m 4m7- 35解:(1)确定基本未知量1个角位移未知量,各弯矩图如下1Z =1M 图32EIp M 图(2)位移法典型方程11110pr Z R +=(3)确定系数并解方程 1115,352p r EI R ==- 153502EIZ -=114Z EI=(4)画M 图()KNm M ⋅图(c)6m6m9m7- 36解:(1)确定基本未知量一个线位移未知量,各种M 图如下1M 图243EI 243EI 1243EI p M 图F R(2)位移法典型方程11110pr Z R +=(3)确定系数并解方程 1114,243p pr EI R F ==- 140243p EIZ F -=12434Z EI=(4)画M 图7- 3794M 图(d)解:(1)确定基本未知量一个线位移未知量,各种M 图如下11Z1111r 252/25EA a 简化a2a a2aa F P7- 38图1pR pp M(2)位移法典型方程11110pr Z R +=(3)确定系数并解方程 11126/,55p pr EA a R F ==-126055p EA Z F a -=13a Z EA=(4)画M 图图M(e)l7- 39解:(1)确定基本未知量两个线位移未知量,各种M 图如下图1=11211 EA r l r ⎛⇒=⎝⎭1M221EA r l ⎛=⎝⎭图12 0p p p R F R ⇒=-=p M p(2)位移法典型方程1111221211222200p p r Z r Z R r Z r Z R ++=++=(3)确定系数并解方程7- 4011122122121,1,0p p p EA r r r l EA r l R F R ⎛=== ⎝⎭⎛=+ ⎝⎭=-=代入,解得12p p lZ F EAlZ F EA=⋅=⋅(4)画M 图图M p7-6 试用位移法计算图示结构,并绘出M 图。
结构力学课后习题答案
习题及参考答案【习题2】【习题3】【习题4】【习题5】【习题6】【习题8】【习题9】【习题10】【习题11】【习题12】【习题13】【习题14】【参考答案】习题22-1~2-14试对图示体系进行几何组成分析,如果是具有多余联系的几何不变体系,则应指出多余联系的数目。
题2-1图题2-2图题2-3图题2-4图题2-5图题2-6图题2-7图题2-8图题2-9图题2-10图题2-11图题2-12图 题2-13图 题2-14图习题33-1 试作图示多跨静定梁的M 及Q 图。
(b)(a)20kN40kN20kN/m40kN题3-1图3-2 试不计算反力而绘出梁的M 图。
(b)5kN/m40kN(a)题3-2图习题44-1 作图示刚架的M 、Q 、N 图。
(c)(b)(a)20kN /m2kN /m题4-1图4-2 作图示刚架的M 图。
P(e)(d)(a)(b)(c)20k N /m4kN题4-2图4-3 作图示三铰刚架的M 图。
(b)(a)题4-3图4-4 作图示刚架的M 图。
(a)题4-4图4-5 已知结构的M 图,试绘出荷载。
(b)(a)题4-5图4-6 检查下列刚架的M 图,并予以改正。
(e)(g)(h)P(d)(c)(a)(b)(f)题4-6图习题55-1 图示抛物线三铰拱轴线方程x x l lfy )(42-=,试求D 截面的内力。
题5-1图5-2 带拉杆拱,拱轴线方程x x l lfy )(42-=,求截面K 的弯矩。
C题5-2图 题5-3图5-3 试求图示带拉杆的半圆三铰拱截面K 的内力。
习题66-1 判定图示桁架中的零杆。
(c)(b)题6-1图6-2 用结点法计算图示桁架中各杆内力。
(b)题6-2 图6-3 用截面法计算图示桁架中指定各杆的内力。
(b)题6-3图6-4 试求图示组合结构中各链杆的轴力并作受弯杆件的M 、Q 图。
(a)题6-4图6-5 用适宜方法求桁架中指定杆内力。
(c)(b)(a)题6-6图习题88-1 试作图示悬臂梁的反力V B 、M B 及内力Q C 、M C 的影响线。
结构力学练习题及答案讲解
一.是非题(将判断结果填入括弧:以O 表示正确,X 表示错误)(本大题分4小题,共11分)1 . (本小题 3分)图示结构中DE 杆的轴力F NDE =F P /3。
( ).2 . (本小题 4分)用力法解超静定结构时,只能采用多余约束力作为基本未知量。
( )3 . (本小题 2分)力矩分配中的传递系数等于传递弯矩与分配弯矩之比,它与外因无关。
( )4 . (本小题 2分)用位移法解超静定结构时,基本结构超静定次数一定比原结构高。
( )二.选择题(将选中答案的字母填入括弧内)(本大题分5小题,共21分) 1 (本小题6分)图示结构EI=常数,截面A 右侧的弯矩为:( )A .2/M ;B .M ;C .0; D. )2/(EI M 。
2. (本小题4分)图示桁架下弦承载,下面画出的杆件内力影响线,此杆件是:( ) A.ch; B.ci; C.dj;D.cj.23. (本小题 4分)图a 结构的最后弯矩图为:A. 图b;B. 图c;C. 图d;D.都不对。
( )( a) (b) (c) (d)4. (本小题 4分)用图乘法求位移的必要条件之一是: A.单位荷载下的弯矩图为一直线; B.结构可分为等截面直杆段; C.所有杆件EI 为常数且相同; D.结构必须是静定的。
( ) 5. (本小题3分)图示梁A 点的竖向位移为(向下为正):( ) A.F P l 3/(24EI); B. F P l 3/(!6EI); C. 5F P l 3/(96EI); D. 5F P l 3/(48EI).三(本大题 5分)对图示体系进行几何组成分析。
F P=1四(本大题 9分)图示结构B 支座下沉4 mm ,各杆EI=2.0×105 kN ·m 2,用力法计算并作M 图。
五(本大题 11分) 用力矩分配法计算图示结构,并作M 图。
EI=常数。
六(本大题14分)已知图示结构,422.110 kN m ,10 kN/m EI q =⨯⋅=求B 点的水平位移。
结构力学课后习题答案
结构⼒学课后习题答案附录B 部分习题答案2 平⾯体系的⼏何组成分析2-1 (1)× (2)× (3)√ (4)× (5)× (6)×。
2-2 (1)⽆多余约束⼏何不变体系;(2)⽆多余约束⼏何不变体系;(3)6个;(4)9个;(5)⼏何不变体系,0个;(6)⼏何不变体系,2个。
2-3 ⼏何不变,有1个多余约束。
2-4 ⼏何不变,⽆多余约束。
2-5 ⼏何可变。
2-6 ⼏何瞬变。
2-7 ⼏何可变。
2-8 ⼏何不变,⽆多余约束。
2-9⼏何瞬变。
2-10⼏何不变,⽆多余约束。
2-11⼏何不变,有2个多余约束。
2-12⼏何不变,⽆多余约束。
2-13⼏何不变,⽆多余约束。
2-14⼏何不变,⽆多余约束。
5-15⼏何不变,⽆多余约束。
2-16⼏何不变,⽆多余约束。
2-17⼏何不变,有1个多余约束。
2-18⼏何不变,⽆多余约束。
2-19⼏何瞬变。
2-20⼏何不变,⽆多余约束。
2-21⼏何不变,⽆多余约束。
2-22⼏何不变,有2个多余约束。
2-23⼏何不变,有12个多余约束。
2-24⼏何不变,有2个多余约束。
2-25⼏何不变,⽆多余约束。
2-26⼏何瞬变。
3 静定梁和静定刚架3-1 (1) √;(2) ×;(3) ×;(4) √;(5) ×;(6) √;(7) √;(8) √。
3-2 (1) 2,下;(2) CDE ,CDE ,CDEF ;(3) 15,上,45,上;(4) 53,-67,105,下; (5) 16,右,128,右;(6) 27,下,93,左。
3-3 (a) 298AC M ql =-,Q 32AC F ql =;(b) M C = 50kN·m ,F Q C = 25kN ,M D = 35kN·m ,F Q D = -35kN ;(c) M CA = 8kN·m ,M CB = 18kN·m ,M B = -4kN·m ,F Q BC = -20kN ,F Q BD = 13kN ; (d) M A = 2F P a ,M C = F P a ,M B = -F P a ,F Q A = -F P ,F Q B 左 = -2F P ,F Q C 左 = -F P 。
《结构力学》习题解-2009[1]
12 ←+24
-8→ -4
+0.8 ←+1.6
-0.533→ -0.267
+0.0534←+0.1068
-0.0267→-0.0134
+0.0054
+24+12
+1.6+0.8
+0.1068+0.0534
+0.0054 +0.0026
+12+6
+0.8+0.4
+0.0534+0.0267
+3.7→ +1.85
-0.93
-250
+41
-20.5
+1.85
-0.92
-125
-10.25
-0.46
M
0 -336.15 +85.7
250.45 71.35
71.35 +42.85
+264.29
第十四章 极限荷载
题
解析:
计算等分截面轴
题
解析:
解法(一)
静定梁出现一个塑性铰而丧失稳定,分析以下三种情况:
题
解析:通过去除多余连杆和二元体,得到的图(c)为几何不变体系,因此,原体系是有8个多余约束的几何不变体系。
题
解析:如图(a),原体系的自由度 ,因此至少需要添加4个约束,才能成为几何不变体系。如图(b)所示,在原体系上添加了4跟连杆后,把地基视为一个刚片,则由三刚片法则得知,变形后的体系为几何不变且无多余约束体系。
题
解析:去除二元体如图(b)所示,j=12,b=20所以, ,所以原体系为常变体系。
结构力学习题解-2009[1]
第二章 平面体系的机动分析题2-2.试对图示平面体系进行机动分析。
解析:如图2-2(a )所示,去掉二元体为(b ),根据两刚片法则,原体系为几何不变体系,且无多余约束。
题2-3.试对图示平面体系进行机动分析。
解析:图2-3(a )去除地基和二元体后,如图2-3(b )所示,刚片Ⅰ、Ⅱ用一实铰3o ;Ⅰ、Ⅲ用一无穷远虚铰1o 连接;Ⅱ、Ⅲ用一无穷远虚铰2o 连接;三铰不共线,根据三刚片法则,原体系为几何不变体系,且无多余约束。
题2-4.试对图示平面体系进行机动分析。
解析:刚片Ⅰ、Ⅱ、Ⅲ用一实铰1o 和两虚铰2o 、3o 连接,根据三刚片法则,体系为几何去二元体图2-2(a )(b )(b )去二元体(a)图2-3不变体系,且无多余约束。
题2-5.试对图示平面体系进行机动分析。
解析:刚片Ⅰ、Ⅱ、Ⅲ通过铰1o 、2o 、3o 连接,根据三刚片法则,体系为几何不变体系,且无多余约束。
题2-7.试对图示平面体系进行机动分析。
解析:刚片Ⅰ、Ⅱ用一无穷远虚铰1o 连接,刚片Ⅰ、Ⅲ用一无穷远虚铰2o 连接,刚片Ⅱ、Ⅲ通过一平行连杆和一竖向链杆形成的虚铰3o 连接,根据三刚片法则,体系为几何不变体系,且无多余约束。
去二元体(a )(b )图2-7图2-5图2-4解析:去除二元体如图(b )所示,j=12,b=20所以,232122031w j b =--=⨯--=,所以原体系为常变体系。
题2-9.试对图示平面体系进行机动分析解析:去除地基如图(b )所示,刚片Ⅰ、Ⅱ用实铰1o 连接,刚片Ⅰ、Ⅲ用虚铰2o 连接,刚片Ⅱ、Ⅲ用虚铰3o 连接,根据三刚片法则,体系为几何不变体系,且无多余约束。
题2-10.试对图示平面体系进行机动分析解析:AB,CD,EF 为三刚片两两用虚铰相连(平行链杆),且三铰都在无穷远处。
所以为瞬变体系(每对链杆各自等长,但由于每对链杆从异侧连接,故系统为瞬变,而非不变)。
图2-9(b )去地基(a )图2-8去二元体(a )(b )图2-10解析:先考虑如图(b)所示的体系,将地基看作一个无限大刚片Ⅲ,与刚片Ⅰ用实铰2o连接,与刚片Ⅱ用实铰3o连接,而刚片Ⅰ、Ⅱ用实铰1o连接,根据三刚片法则,图(b)体系为几何不变体系,且无多余约束。
《结构力学的》习地的题目解-2009[1]
第二章 平面体系的机动分析题2-2.试对图示平面体系进行机动分析。
解析:如图2-2(a )所示,去掉二元体为(b ),根据两刚片法则,原体系为几何不变体系,且无多余约束。
题2-3.试对图示平面体系进行机动分析。
解析:图2-3(a )去除地基和二元体后,如图2-3(b )所示,刚片Ⅰ、Ⅱ用一实铰3o ;Ⅰ、Ⅲ用一无穷远虚铰1o 连接;Ⅱ、Ⅲ用一无穷远虚铰2o 连接;三铰不共线,根据三刚片法则,原体系为几何不变体系,且无多余约束。
图2-2(a )(b )(b )(a)图2-3解析:刚片Ⅰ、Ⅱ、Ⅲ用一实铰1o 和两虚铰2o 、3o 连接,根据三刚片法则,体系为几何不变体系,且无多余约束。
题2-5.试对图示平面体系进行机动分析。
解析:刚片Ⅰ、Ⅱ、Ⅲ通过铰1o 、2o 、3o 连接,根据三刚片法则,体系为几何不变体系,且无多余约束。
题2-7.试对图示平面体系进行机动分析。
解析:刚片Ⅰ、Ⅱ用一无穷远虚铰1o 连接,刚片Ⅰ、Ⅲ用一无穷远虚铰2o 连接,刚片Ⅱ、Ⅲ通过一平行连杆和一竖向链杆形成的虚铰3o 连接,根据三刚片法则,体系为几何不变体系,且无多余约束。
(a )(b )图2-7图2-5图2-4解析:去除二元体如图(b )所示,j=12,b=20所以,232122031w j b =--=⨯--=,所以原体系为常变体系。
题2-9.试对图示平面体系进行机动分析解析:去除地基如图(b )所示,刚片Ⅰ、Ⅱ用实铰1o 连接,刚片Ⅰ、Ⅲ用虚铰2o 连接,刚片Ⅱ、Ⅲ用虚铰3o 连接,根据三刚片法则,体系为几何不变体系,且无多余约束。
题2-10.试对图示平面体系进行机动分析解析:AB,CD,EF 为三刚片两两用虚铰相连(平行链杆),且三铰都在无穷远处。
所以为瞬变体系(每对链杆各自等长,但由于每对链杆从异侧连接,故系统为瞬变,而非不变)。
图2-9(b )(a )图2-8(a )(b )图2-10解析:先考虑如图(b )所示的体系,将地基看作一个无限大刚片Ⅲ,与刚片Ⅰ用实铰2o连接,与刚片Ⅱ用实铰3o 连接,而刚片Ⅰ、Ⅱ用实铰1o 连接,根据三刚片法则,图(b )体系为几何不变体系,且无多余约束。
武汉理工大学结构力学(09年)参考答案
练习1(09年)参考答案一、 分析图1和图2结构的几何特性,如为几何不变体系,指出有几个多余约束。
图1. 几何不变体系,且有一个多余约束;分析过程略。
图2. 常变体系;分析过程略。
二、 定性画出图3~图6示结构弯矩图的大致形状。
图3 图4 图5 图6三、 定性画出图7~图8示结构变形图的大致形状。
图7 图8 四、 计算题(14分+15分×3+5分=64分)1. (1)F NBE 的影响线: F NBC 的影响线CBDAkNkNADBC12/3(2)10110NBE F kN =-⨯=- ()21101010333NBC F kN ⎛⎫⎛⎫=⨯-+-⨯-=- ⎪ ⎪⎝⎭⎝⎭(压力)2. 解:利用对称性可得图a 所示半边结构,选取力法基本体系,如图b 所示。
力法基本方程为:11110P X δ+∆=作荷载及单位基本未知量作用下基本结构的弯矩图,如图c 、d 所示。
11643EIδ=164P EI ∆=-()11113P X kN δ∆=-=← 11P M M X M =+(见下图)ECDB A4444M(kN·m)(2)B 点的转角利用基本体系计算超静定结构的位移。
选择基本结构如图f 所示。
单位荷载法计算。
()83B MM ds EI EIθ==∑⎰逆 3. (1)结构位移法的独立基本未知量:结点B 的转角位移B θ与水平位移∆(向右)(2)杆端弯矩表达式:AB :B 01.54.AB BA M M EI kN m θ==+BC :B1.50BC CB M EI M θ==图a 图b 图c 图d图f 图g 图hBD :B 2 1.5BD M EI EI θ=-∆ B 1.5DB M EI EI θ=-∆ (3)位移法的基本方程结点B 的合力矩平衡方程:0:0B BA BC BD M M M M =++=∑ 代入化简得:5 1.54.0B EI EI kN m θ-∆+=图示的截面平衡方程:0X =∑:0QBD F =B B 33 1.5 1.52QBDEI EI F EI EI θθ-∆=-=-+∆代入可得基本方程:B B 1.5 1.50EI EI θθ-+∆=⇒∆=4. (1)利用对称性,选择图a 所示半边结构。
结构力学课后习题答案[1]
)e( 移位线个 1�移位角个 3 移位角个 1
)d(
)c(
。构结本基出绘并�目数量知未本基法移位的构结示图定确试 1-7
)b(
) a(
题
习
33 -7
下如图矩弯各�量知未移位角个 1 m4 m4
量知未本基定确�1� �解 C IE
m4
D Nk01
IE
B
IE2 m/Nk5.2
A )b(
图M
42 lq 2 5
图矩弯终最画�4� 得解�入代
61.53
IE
3
0 � p 2 R , 0 3 � p 1R 6 � 2 2r IE � 1 2r � 2 1r , I E 2 � 1 1r
程方解并数系定确�3�
p2
11
1
0�
R � 2 Z 2 2r � 1 Z 1 2r R � 2 Z 2 1r � 1 Z 11r
N K 0 3 � � p 2 R , N K 0 3 � p 1R 4 � � 2 2r 0 � 1 2r � 2 1r , i1 1 � 1 1r
p2
得解�入代
i3
程方解并数系定确�3�
0�
R � 2 Z 2 2r � 1 Z 1 2r R � 2 Z 2 1r � 1 Z 11r
程方型典法移位�2�
程方型典法移位�2�
0�
p1
图p M
03 � p 1R � 0 � p 1R
03
04 -7
m2
m2 数常=IE F
B E
m2
m2
D
A
m2
Nk03
C )c(
90.92 55.43
图M
81.8 19.02 54.57 02
结构力学章节习题及参考答案
结构力学章节习题及参考答案第1章绪论(无习题)第2章平面体系的机动分析习题解答习题2.1 是非判断题(1) 若平面体系的实际自由度为零,则该体系一定为几何不变体系。
( )(2) 若平面体系的计算自由度W=0,则该体系一定为无多余约束的几何不变体系。
( )(3) 若平面体系的计算自由度W<0,则该体系为有多余约束的几何不变体系。
( )(4) 由三个铰两两相连的三刚片组成几何不变体系且无多余约束。
( )(5) 习题2.1(5) 图所示体系去掉二元体CEF后,剩余部分为简支刚架,所以原体系为无多余约束的几何不变体系。
( )习题2.1(5)图(6) 习题2.1(6)(a)图所示体系去掉二元体ABC后,成为习题2.1(6)(b)图,故原体系是几何可变体系。
( )(7) 习题2.1(6)(a)图所示体系去掉二元体EDF后,成为习题2.1(6)(c)图,故原体系是几何可变体系。
()(a)(b)(c)习题2.1(6)图习题2.2 填空(1) 习题2.2(1)图所示体系为_________体系。
习题2.2(1)图(2) 习题2.2(2)图所示体系为__________体系。
习题2-2(2)图(3) 习题2.2(3)图所示4个体系的多余约束数目分别为_______、________、__________、__________。
习题2.2(3)图(4) 习题2.2(4)图所示体系的多余约束个数为___________。
习题2.2(4)图(5) 习题2.2(5)图所示体系的多余约束个数为___________。
习题2.2(5)图(6) 习题2.2(6)图所示体系为_________体系,有_________个多余约束。
习题2.2(6)图(7) 习题2.2(7)图所示体系为_________体系,有_________个多余约束。
习题2.2(7)图习题2.3 对习题2.3图所示各体系进行几何组成分析。
(a)(b)(c)(d)(e)(f)习题2.3图(h)第3章(g)静定梁与静定刚架习题解答习题3.1 是非判断题(1) 在使用内力图特征绘制某受弯杆段的弯矩图时,必须先求出该杆段两端的端弯矩。
结构力学课后习题答案
结构力学课后习题答案结构力学是一门研究结构在外力作用下的内力、变形和稳定性的学科。
课后习题是帮助学生巩固理论知识和提高解题技巧的重要环节。
以下是一些结构力学课后习题的参考答案,供学习者参考:第一章:结构力学基础1. 静定结构与超静定结构的区别:静定结构是指在已知外力作用下,其内力和位移可以通过静力平衡方程和几何关系唯一确定的结构。
超静定结构则是指静力平衡方程和几何关系不足以唯一确定其内力和位移的结构。
2. 弯矩图的绘制方法:绘制弯矩图首先需要确定结构的支反力,然后通过截面平衡条件,逐步求出各截面的弯矩值,并将其绘制成图形。
第二章:静定梁的内力分析1. 简支梁的内力计算:对于简支梁,可以通过静力平衡条件和截面平衡条件来计算梁的内力,包括剪力和弯矩。
2. 悬臂梁的内力计算:悬臂梁的内力计算需要考虑梁端的外力和力矩,通过静力平衡条件求解。
第三章:静定桁架的内力分析1. 节点法的应用:节点法是通过在桁架的节点上施加平衡条件来求解节点的反力,进而求得杆件的内力。
2. 截面法的应用:截面法是通过选取桁架的某一截面,对该截面进行平衡分析,求得截面两侧杆件的内力。
第四章:静定拱的内力分析1. 三铰拱的内力计算:三铰拱的内力计算通常需要利用静力平衡条件和几何关系,计算出拱的反力和弯矩。
2. 双铰拱和无铰拱的内力特点:双铰拱和无铰拱的内力计算更为复杂,需要考虑更多的平衡条件和几何关系。
第五章:超静定结构的内力分析1. 力法的应用:力法是通过建立力的平衡方程来求解超静定结构的内力,通常需要引入多余未知力。
2. 位移法的应用:位移法是通过建立位移的平衡方程来求解超静定结构的内力,通常需要引入位移未知数。
第六章:结构的稳定性分析1. 欧拉临界载荷的计算:欧拉临界载荷是指细长杆件在轴向压力作用下失稳的临界载荷,可以通过欧拉公式计算。
2. 非线性稳定性分析:对于非线性问题,稳定性分析需要考虑材料的非线性特性和几何非线性,通常需要采用数值方法求解。
《结构力学》习题解答(内含解答图)
习题2-9试对图示体系进行几何组成分析。
习题2-9图习题2-9解答图
解:由于与基础的约束多余三个,故基础作为刚片Ⅰ。铰结△ABE为刚片Ⅱ,铰结△BCD为刚片Ⅲ。刚片Ⅰ与刚片Ⅱ是由杆FE和支撑杆A相连,虚铰在两杆的延长线的交点处,刚片Ⅰ与刚片Ⅲ是由杆GD和支撑杆C相连,虚铰在两杆的延长线的交点处,而刚片Ⅱ与刚片Ⅲ是铰B相连。此时,三铰不共线,该体系为几何不变体,且无多余约束。
结点h的隔离体上无荷载作用且为三杆结点故由平衡条件结点e的隔离体上无荷载作用且可看作为三杆结点故由平衡条件由结点g的隔离体根据平衡条件可求得由结点f的隔离体根据平衡条件可求得提高题pl2llp1pllp1vpl2llp1pllp1vbhaacefda提高题51图vanafn1ndfhadvadpnadfdhadvadhafvafnacbc提高题5
《结构力学》习题解答
第2章平面体系的几何组成分析
2.3
2.3.1基本题
习题2-1试对图示体系进行几何组成分析。
习题2-1图习题2-1解答图
解:为了便于分析,对图中的链杆和刚片进行编号,分析过程见习题2-1解答图。地基为刚片I,它与刚片Ⅱ之间用不交于一点的链杆1、2、3相连,组成几何不变部分,看作一个新刚片。此刚片与刚片Ⅲ又由不交于一点的链杆4、5、6相连,又组成几何不变体。
习题2-8试对图示体系进行几何组成分析。
习题2-8图习题2-8解答图
解:为了便于分析,对图中的链杆和刚片进行编号,分析过程见图2-21(b)。首先去掉二元体NMI、JNI,然后分析剩余部分。杆AD由固定支撑与基础联结形成一体,构成几何不变体,在此基础上增加二元体DEB、EFC、EHF形成刚片Ⅰ(注意固定铰支座与铰相同);铰结△GIJ为刚片Ⅱ;刚片I与刚片Ⅱ之间用不交于一点的杆DI、杆GI、杆HJ相连,组成几何不变体。
《结构力学习题》(含答案解析)
《结构力学习题》(含答案解析)本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March20 第三章 静定结构的位移计算一、判断题:1、虚位移原理等价于变形谐调条件,可用于求体系的位移。
2、按虚力原理所建立的虚功方程等价于几何方程。
3、在非荷载因素(支座移动、温度变化、材料收缩等)作用下,静定结构不产生内力,但会有位移且位移只与杆件相对刚度有关。
4、求图示梁铰C 左侧截面的转角时,其虚拟状态应取:A.;; B.D.M C.=1=1=15、功的互等、位移互等、反力互等和位移反力互等的四个定理仅适用于线性变形体系。
6、已知M p 、M k 图,用图乘法求位移的结果为:()/()ωω1122y y EI +。
M kM p 21y 1y 2**ωω( a )M =17、图a 、b 两种状态中,粱的转角ϕ与竖向位移δ间的关系为:δ=ϕ 。
8、图示桁架各杆E A 相同,结点A 和结点B 的竖向位移均为零。
Aa a9、图示桁架各杆EA =常数,由于荷载P是反对称性质的,故结点B的竖向位移等于零。
2121二、计算题:10、求图示结构铰A 两侧截面的相对转角ϕA ,EI = 常数。
q l l l /211、求图示静定梁D 端的竖向位移 ∆DV 。
EI = 常数 ,a = 2m 。
a a a 10kN/m12、求图示结构E 点的竖向位移。
EI = 常数 。
l l l /3 2 /3/3q13、图示结构,EI=常数 ,M =⋅90kN m , P = 30kN 。
求D 点的竖向位移。
P 3m 3m 3m14、求图示刚架B 端的竖向位移。
q15、求图示刚架结点C 的转角和水平位移,EI = 常数 。
q16、求图示刚架中D点的竖向位移。
EI =常数。
l ll/217、求图示刚架横梁中D点的竖向位移。
EI=常数。
18、求图示刚架中D点的竖向位移。
结构力学第1章习题及参考答案
第1章1-1分析图示体系的几何组成。
解 原体系依次去掉二元体后,得到一个两铰拱(图(a-1))。
因此,原体系为几何不变体系,且有一个多余约束。
1-1 (b)解 原体系依次去掉二元体后,得到一个三角形。
因此,原体系为几何不变体系,且无多余约束。
(a )(a-1)(b )(b-1)(b-2)1-1 (c)(c-2) (c-3)解 原体系依次去掉二元体后,得到一个三角形。
因此,原体系为几何不变体系,且无多余约束。
1-1 (d)(d-1) (d-2) (d-3)解 原体系依次去掉二元体后,得到一个悬臂杆,如图(d-1)-(d-3)所示。
因此,原体系为几何不变体系,且无多余约束。
注意:这个题的二元体中有的是变了形的,分析要注意确认。
(d )(c-1)1-1 (e)解 原体系去掉最右边一个二元体后,得到(e-1)所示体系。
在该体系中,阴影所示的刚片与支链杆C 组成了一个以C 为顶点的二元体,也可以去掉,得到(e-2)所示体系。
在图(e-2)中阴影所示的刚片与地基只用两个链杆连接,很明显,这是一个几何可变体系,缺少一个必要约束。
因此,原体系为几何可变体系,缺少一个必要约束。
1-1 (f)解 原体系中阴影所示的刚片与体系的其它部分用一个链杆和一个定向支座相连,符合几何不变体系的组成规律。
因此,可以将该刚片和相应的约束去掉只分析其余部分。
很明显,余下的部分(图(f-1))是一个几何不变体系,且无多余约束。
因此,原体系为几何不变体系,且无多余约束。
1-1 (g)解 原体系中阴影所示的刚片与体系的其它部分用三个链杆相连,符合几何不变体系的组成规律。
因此,可以将该刚片和相应的约束去掉,只分析其余部分。
余下的部分(图(g-1))在去掉一个二元体后,只剩下一个悬臂杆(图(g-2))。
因此,原体系为几何不变体系,且无多余约束。
(e )(e-1)ABCAB (e-2)(f )(f-1) (g ) (g-1) (g-2)1-1 (h)解 原体系与基础用一个铰和一个支链杆相连,符合几何不变体系的组成规律。
《结构力学》课后习题答案__重庆大学出版社
第1章 绪论(无习题)第2章 平面体系的几何组成分析习题解答习题2.1 是非判断题(1) 若平面体系的实际自由度为零,则该体系一定为几何不变体系。
( )(2) 若平面体系的计算自由度W =0,则该体系一定为无多余约束的几何不变体系。
( ) (3) 若平面体系的计算自由度W <0,则该体系为有多余约束的几何不变体系。
( ) (4) 由三个铰两两相连的三刚片组成几何不变体系且无多余约束。
( )(5) 习题2.1(5) 图所示体系去掉二元体CEF 后,剩余部分为简支刚架,所以原体系为无多余约束的几何不变体系。
( )B DACEF习题 2.1(5)图(6) 习题2.1(6)(a)图所示体系去掉二元体ABC 后,成为习题2.1(6) (b)图,故原体系是几何可变体系。
( )(7) 习题2.1(6)(a)图所示体系去掉二元体EDF 后,成为习题2.1(6) (c)图,故原体系是几何可变体系。
()(a)(b)(c)AEBFCD习题 2.1(6)图【解】(1)正确。
(2)错误。
0W 是使体系成为几何不变的必要条件而非充分条件。
(3)错误。
(4)错误。
只有当三个铰不共线时,该题的结论才是正确的。
(5)错误。
CEF 不是二元体。
(6)错误。
ABC 不是二元体。
(7)错误。
EDF 不是二元体。
习题2.2 填空(1) 习题2.2(1)图所示体系为_________体系。
习题2.2(1)图(2) 习题2.2(2)图所示体系为__________体系。
习题2-2(2)图(3) 习题 2.2(3)图所示4个体系的多余约束数目分别为_______、________、__________、__________。
习题2.2(3)图(4) 习题2.2(4)图所示体系的多余约束个数为___________。
习题2.2(4)图(5) 习题2.2(5)图所示体系的多余约束个数为___________。
习题2.2(5)图(6) 习题2.2(6)图所示体系为_________体系,有_________个多余约束。
《结构力学》典型习题与解答
《结构力学》经典习题及详解一、判断题(将判断结果填入括弧内,以 √表示正确 ,以 × 表示错误。
)1.图示桁架结构中有3个杆件轴力为0 。
(×)2.图示悬臂梁截面A 的弯矩值是ql 2。
(×)ll3.静定多跨梁中基本部分、附属部分的划分与所承受的荷载无关。
(√ ) 4.一般来说静定多跨梁的计算是先计算基本部分后计算附属部分。
(× ) 5.用平衡条件能求出全部内力的结构是静定结构。
( √ )6.求桁架内力时截面法所截取的隔离体包含两个或两个以上的结点。
(√ ) 7.超静定结构的力法基本结构不是唯一的。
(√)8.在桁架结构中,杆件内力不是只有轴力。
(×)9.超静定结构由于支座位移可以产生内力。
(√ ) 10.超静定结构的内力与材料的性质无关。
(× )11.力法典型方程的等号右端项不一定为0。
(√ )12.计算超静定结构的位移时,虚设力状态可以在力法的基本结构上设。
(√)13.用力矩分配法计算结构时,汇交于每一结点各杆端分配系数总和为1,则表明分配系数的计算无错误。
(× )14.力矩分配法适用于所有超静定结构的计算。
(×)15.当AB 杆件刚度系数i S AB 3 时,杆件的B 端为定向支座。
(×)二、单项选择题(在每小题的四个备选答案中选出一个正确答案,并将其代号填在题干后面的括号内。
不选、错选或多选者,该题无分。
)1.图示简支梁中间截面的弯矩为( A )qlA.82qlB.42qlC.22qlD.2 ql2.超静定结构在荷载作用下产生的内力与刚度(B)A.无关 B.相对值有关C.绝对值有关 D.相对值绝对值都有关3.超静定结构的超静定次数等于结构中(B )A.约束的数目 B.多余约束的数目C.结点数 D.杆件数4.力法典型方程是根据以下哪个条件得到的(C)。
A.结构的平衡条件B.结构的物理条件C.多余约束处的位移协调条件D.同时满足A、B两个条件5.图示对称结构作用反对称荷载,杆件EI为常量,利用对称性简化后的一半结构为(A )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章平面体系的机动分析题2-2.试对图示平面体系进行机动分析。
解析:如图2-2(a)所示,去掉二元体为(b),根据两刚片法则,原体系为几何不变体系,且无多余约束。
题2-3.试对图示平面体系进行机动分析。
解析:图2-3(a)去除地基和二元体后,如图2-3(b)所示,刚片Ⅰ、Ⅱ用一实铰3o;Ⅰ、Ⅲ用一无穷远虚铰1o连接;Ⅱ、Ⅲ用一无穷远虚铰2o连接;三铰不共线,根据三刚片法则,原体系为几何不变体系,且无多余约束。
题2-4.试对图示平面体系进行机动分析。
解析:刚片Ⅰ、Ⅱ、Ⅲ用一实铰1o和两虚铰2o、3o连接,根据三刚片法则,体系为几何不变体系,且无多余约束。
题2-5.试对图示平面体系进行机动分析。
解析:刚片Ⅰ、Ⅱ、Ⅲ通过铰1o、2o、3o连接,根据三刚片法则,体系为几何不变体系,且无多余约束。
题2-7.试对图示平面体系进行机动分析。
去二元体图2-2(a)(b)图2-5图2-4(b)去二元体(a)图2-3解析:刚片Ⅰ、Ⅱ用一无穷远虚铰1o 连接,刚片Ⅰ、Ⅲ用一无穷远虚铰2o 连接, 刚片Ⅱ、Ⅲ通过一平行连杆和一竖向链杆形成的虚铰3o 连接,根据三刚片法则,体系为几何不变体系,且无多余约束。
题2-8.试对图示平面体系进行机动分析解析:去除二元体如图(b )所示,j=12,b=20所以,232122031w j b =--=⨯--=,所以原体系为常变体系。
题2-9.试对图示平面体系进行机动分析解析:去除地基如图(b )所示,刚片Ⅰ、Ⅱ用实铰1o 连接,刚片Ⅰ、Ⅲ用虚铰2o 连接,刚片Ⅱ、Ⅲ用虚铰3o 连接,根据三刚片法则,体系为几何不变体系,且无多余约束。
题2-10.试对图示平面体系进行机动分析解析:AB,CD,EF 为三刚片两两用虚铰相连(平行链杆),且三铰都在无穷远处。
所以为瞬变体系(每对链杆各自等长,但由于每对链杆从异侧连接,故系统为瞬变,而非不变)。
题2-11.试对图示平面体系进行机动分析图2-9(b )去地基(a )图2-8 去二元体(a )(b )图2-10解析:先考虑如图(b )所示的体系,将地基看作一个无限大刚片Ⅲ,与刚片Ⅰ用实铰2o 连接,与刚片Ⅱ用实铰3o 连接,而刚片Ⅰ、Ⅱ用实铰1o 连接,根据三刚片法则,图(b )体系为几何不变体系,且无多余约束。
然后在图(b )体系上添加5个二元体恢复成原体系图(a )。
因此,原体系为几何不变体系,且无多余约束。
题2-12.试对图示平面体系进行机动分析解析:如图(b )所示,将地基看作刚片Ⅲ,与刚片Ⅰ用虚铰2o 连接,与刚片Ⅱ用虚铰3o 连接,而刚片Ⅰ、Ⅱ用实铰1o 连接,根据三刚片法则,原体系为几何不变体系,且无多余约束。
题2-13.试对图示平面体系进行机动分析解析:将原体系(图(a ))中的二元体去除,新体系如图(b )所示,其中刚片Ⅰ、Ⅱ分别与基础之间用一个铰和一个链杆连接,根据两刚片法则,原体系为几何不变体系2-14.试对图示平面体系进行机动分析解析:刚片Ⅰ、Ⅱ用实铰连接,而刚片Ⅰ和Ⅲ、Ⅱ和Ⅲ分别通过两平行连杆在无穷远处形成的虚铰相连接,且四根连杆相互平行,因此三铰共线,原体系为瞬变体系。
去二元体(a )(b )图2-13(b )去二元体(a )图2-12(a )(b )题2-15.试对图示平面体系进行机动分析解析:去除原体系中的地基,如图(b )所示,三个刚片分别通过长度相等的平行连杆在无穷远处形成的虚铰相连,故为常变体系。
题2-16.试对图示平面体系进行机动分析解析:将支座和大地看成一个整体,因此可以先不考虑支座,仅考虑结构体,从一边,譬如从右边开始向左依次应用二元体法则分析结构体,最后多余一根,因此原体系是有一个多余约束的几何不变体系。
题2-17.试对图示平面体系进行机动分析。
解析:通过去除多余连杆和二元体,得到的图(c )为几何不变体系,因此,原体系是有8个多余约束的几何不变体系。
题2-18.添加最少数目的链杆和支承链杆,使体系成为几何不变,且无多余联系。
解析:如图(a ),原体系的自由度32342324w m b r =--=⨯-⨯-=,因此至少需要添加4个约束,才能成为几何不变体系。
如图(b )所示,在原体系上添加了4跟连杆后,把地基视为一个刚片,则由三刚片法则得知,变形后的体系为几何不变且无多余约束体系。
图2-15去除地(a )(b )图2-16去掉中间8根连杆(a )(b )去二元体(c )(a ) (b )图2-18图2-17题2-19.添加最少数目的链杆和支承链杆,使体系成为几何不变,且无多余联系。
解析:如图(a ),原体系的自由度2()26(81)3w j b r =-+=⨯-+=,因此需要添加3个约束,才能成为几何不变且无多余约束体系,如图(b )所示。
第三章静定梁与静定刚架题3-2.试作图示单跨梁的M 图和Q 图解析:2018044020108067.50101020052.552.546033040A B B A B A D D M V V KN V V V V KNM KN m M KN m=∴⨯-⨯--⨯+=∴==∴⨯+--=∴=⨯⨯+∑∑Q Q g g 左右=-=30==70题3-4.试作图示单跨梁的M 图 解析: 20302323302438B B A B A A V V ql V qlM V l ql l M M ql =∴-=∴==∴--=∴=∑∑Q Q g题3-8.试做多跨静定梁的M 、Q 图。
解析:(b )(a )图 2-19263.750663.752154018.750618.75830430205555303018.75023.75DD GF D AC C A A V KN M V V KN MV V KNV V KN l∴==∴+⨯-⨯=∴==∴-⨯-⨯-⨯=∴=+---=∴=∑∑QQQ题3-10.试不计算反力而绘出梁的弯矩图。
题3-11.试不计算反力而绘出梁的弯矩图。
题3-14.试做出图示刚架的M 、Q 、N 图。
题3-16.试做出图示刚架的M 图。
解析: 0150202402010001042001060G A A A B C B C M H H KN H V H H V H KN V KN=∴⨯++⨯-⨯=∴=-==∴+=⨯+-=∴==∑∑∑Q Q题3-18.试做出图示刚架的M 图。
解析:6.5 6.50.8 6.50.5 6.5140221.96001.960A B B A B A CM V V KN V V V V KN M=∴⨯⨯+⨯⨯-=∴==∴+=∴==∑∑Q Q Q0222002344BA AB A B CB B B A A B MV lqlV l V V ql qlV V MH lV H l ql H H ql qlH H ==∴-=-=∴====∴-=--=∴==∑∑∑∑QQ 解析取右半部分作为研究对象题3-24.试做出图示刚架的M 图。
解析:a 041042020b 042042040081220410201042204062.5GE E HF F A B F B M V V KN MV V KNM V V V KN=-⨯⨯=∴==-⨯⨯=∴==∴+-⨯⨯--⨯⨯-⨯=∴=∑∑∑QQQ 取左半部分为研究对象,如图()所示取右半部分为研究对象,如图()所示以整体为研究对象0042.540A A V H V KN H KN ==∴=∴=∑∑Q3-26.已知结构的弯矩图,试绘出其荷载。
(b )第五章静定平面桁架 题5-7.试用较简便的方法求图示桁架中指定杆件的内力。
解析:111222330,07()2I I a 7246024(ЦЦb 0o '7222022()07222022()4A B A B N N N N N N N N M M V V F dF F d dF F F M F d dF dF Fd F F V F F F F F F ====↑-+•-=∴=--=∑∴•++-=∴==∑∴--+=∴=-∑∑Q Q Q 1)以整体为研究对象由得2)取截面的左半部分为研究对象,如图()所示压)3)取截面的左半部分为研究对象,如图()所示拉压)以结423c 022()N N N V C F F F F =∑∴--=∴=-Q 点C 为研究对象,如图()所示压 题5-12.试用较简便的方法求图示桁架中指定杆件的内力。
解析: o 05(ЦЦc 010630,20(ІІNd Nb Nb V F KN B M F F ==∑-=∴⨯-=∴=-∑Q 由得拉)3)取截面的左半部分为研究对象,如图()所示拉)4)取截面的下半部分为o c c d 0215353330215221.2()Nd N N M F F F KN KN =∴⨯+⨯--⨯=∴==∑Q 研究对象,如图()所示拉5-18.试求图示组合结构中各链杆的轴力并做受弯杆件的内力图。
解析: 11o 3365a 00112565030027.327.3c 0327.33256503072.7032530250227.30252B C C B C B G N N N CCN N M X X X X X KN X KNM F KN M F F KN XYF F ==∴-⨯-⨯=-=∴===∴+⨯-⨯-⨯==∴+⨯=∴=-==∴++=+∑∑∑∑∑∑Q Q Q Q取结构的右半部分进行分析,如图()所示如图()所示,取结构的右上部分为研究对象(拉)(压)5564512642202252 2.3220025752N N N N N N N N N N F F KN F KN F F F F F F KN F KN =∴=-=-+=+-=∴==-Q (压)(压)又(拉)(压)第六章影响线及其应用题6-4.试作图示结构中下列量值的影响线:BC S 、D M 、D Q 、D N .1P =在AE 部分移动。
解析:题6-9.作主梁B R 、D M 、D Q 、C Q 左、C Q 右的影响线。
题6-10.试做图示结构中指定量值的影响线。
题6-22.试求图示简支梁在所给移动荷载作用下截面C 的最大弯矩。
解析: a 40 2.2560 1.7520 1.25300.75242.5400.7560 2.2520 1.7530 1.25237.5C C C M M KN m M KN m =⨯+⨯+⨯+⨯=•=⨯+⨯+⨯+⨯=•如图()所示为的影响线,可知当外荷载作用在截面C ,且其它荷载均在梁上时才有可能产生最大弯矩。
考虑荷载P=40KN 和P=60KN 分别作用在C 截面两种情况。
1)P=40KN 作用在C 截面2)P=60KN 作用在C 截面由此可知,242.5C M KN m •当P=40KN 作用在C 截面时,产生最大。