人教版物理高一下册 机械能守恒定律(提升篇)(Word版 含解析)
人教版高一下册物理 机械能守恒定律单元测试题(Word版 含解析)(1)
一、第八章 机械能守恒定律易错题培优(难)1.如图所示,竖直墙上固定有光滑的小滑轮D ,质量相等的物体A 和B 用轻弹簧连接,物体B 放在地面上,用一根不可伸长的轻绳一端与物体A 连接,另一端跨过定滑轮与小环C 连接,小环C 穿过竖直固定的光滑均匀细杆,小环C 位于位置R 时,绳与细杆的夹角为θ,此时物体B 与地面刚好无压力。
图中SD 水平,位置R 和Q 关于S 对称。
现让小环从R 处由静止释放,环下落过程中绳始终处于拉直状态,且环到达Q 时速度最大。
下列关于小环C 下落过程中的描述正确的是( )A .小环C 、物体A 和轻弹簧组成的系统机械能不守恒B .小环C 下落到位置S 时,小环C 的机械能一定最大C .小环C 从位置R 运动到位置Q 的过程中,弹簧的弹性势能一定先减小后增大D .小环C 到达Q 点时,物体A 与小环C 的动能之比为cos 2θ 【答案】BD【解析】【分析】【详解】A .在小环下滑过程中,只有重力势能与动能、弹性势能相互转换,所以小环C 、物体A 和轻弹簧组成的系统机械能守恒,选项A 错误;B .小环C 下落到位置S 过程中,绳的拉力一直对小环做正功,所以小环的机械能一直在增大,往下绳的拉力对小环做负功,机械能减小,所以在S 时,小环的机械能最大,选项B 正确;C .小环在R 、Q 处时弹簧均为拉伸状态,且弹力大小等于B 的重力,当环运动到S 处,物体A 的位置最低,但弹簧是否处于拉伸状态,不能确定,因此弹簧的弹性势能不一定先减小后增大,选项C 错误;D .在Q 位置,环受重力、支持力和拉力,此时速度最大,说明所受合力为零,则有 cos C T m g θ=对A 、B 整体,根据平衡条件有2A T m g =故2cos C A m m θ=在Q点将小环v速度分解可知cosAv vθ=根据动能212kE mv=可知,物体A与小环C的动能之比为221cos2122AAAkkQCm vEE m vθ==选项D正确。
人教版高一下册物理 机械能守恒定律专题练习(解析版)
一、第八章 机械能守恒定律易错题培优(难)1.如图所示,质量为1kg 的物块(可视为质点),由A 点以6m/s 的速度滑上正沿逆时针转动的水平传送带(不计两转轮半径的大小),传送带上A 、B 两点间的距离为8m ,已知传送带的速度大小为3m/s ,物块与传送带间的动摩擦因数为0.2,重力加速度为210m/s 。
下列说法正确的是( )A .物块在传送带上运动的时间为2sB .物块在传送带上运动的时间为4sC .整个运动过程中由于摩擦产生的热量为16JD .整个运动过程中由于摩擦产生的热量为28J【答案】BD【解析】【分析】【详解】AB .滑块先向右匀减速,根据牛顿第二定律有mg ma μ=解得22m/s a g μ==根据运动学公式有010v at =-解得13s t = 匀减速运动的位移01063m 9m 8m 22v x t L +==⨯==> 物体向左匀加速过程,加速度大小仍为22m/s a =,根据运动学公式得物体速度增大至2m/s v =时通过的位移2212m 1m 222v x a ===⨯ 用时22s 1s 2v t a === 向左运动时最后3m 做匀速直线运动,有233=s 1s 3x t v == 即滑块在传送带上运动的总时间为 1234s t t t t =++=物块滑离传送带时的速率为2m/s 。
选项A 错误,B 正确;C .向右减速过程和向左加速过程中,摩擦力为恒力,故摩擦力做功为110.211041J 6J f W f x x mg x x μ=--=--=-⨯⨯⨯-=-()()()选项C 错误;D .整个运动过程中由于摩擦产生的热量等于滑块与传送带之间的一对摩擦力做功的代数和,等于摩擦力与相对路程的乘积;物体向右减速过程,传送带向左移动的距离为114m l vt ==物体向左加速过程,传送带运动距离为222m l vt ==即121[]Q fS mg l x l x μ==++-()()代入数据解得28J Q =选项D 正确。
高一下册物理 机械能守恒定律(提升篇)(Word版 含解析)
一、第八章 机械能守恒定律易错题培优(难)1.如图所示,一根轻弹簧一端固定于O 点,另一端与可视为质点的小滑块连接,把滑块放在倾角为θ=30°的固定光滑斜面上的A 点,此时弹簧恰好水平。
将滑块从A 点由静止释放,经B 点到达位于O 点正下方的C 点。
当滑块运动到B 点时弹簧与斜面垂直,且此时弹簧恰好处于原长。
已知OB 的距离为L ,弹簧始终在弹性限度内,重力加速度为g ,则滑块由A 运动到C 的过程中( )A .滑块的加速度先减小后增大B .滑块的速度一直在增大C .滑块经过B gLD .滑块经过C 2gL 【答案】BC 【解析】 【分析】 【详解】AB .弹簧原长为L ,在A 点不离开斜面,则sin 3()sin c 3300os 0Lk mg L ︒≤-︒︒ 在C 点不离开斜面,则有()cos30cos30cos30Lk L mg -︒≤︒︒从A 点滑至C 点,设弹簧与斜面夹角为α(范围为30°≤α≤90°);从B 点滑至C 点,设弹簧与斜面的夹角为β,则2sin 30cos mg kx ma β︒-=可知下滑过程中加速度一直沿斜面向下且减小,选项A 错误,B 正确; C .从A 点滑到B 点,由机械能守恒可得21cos302p B mgL E mv ︒+=解得2cos30232p p B E E v gL g mg L L m︒+=+=>选项C 正确;D .从A 点滑到C 点,由机械能守恒可得21cos302P C L mgE mv '+=︒432222cos303p pCgLE ELv g gLm m'=+>+︒=选项D错误。
故选BC。
2.如图所示,质量为1kg的物块(可视为质点),由A点以6m/s的速度滑上正沿逆时针转动的水平传送带(不计两转轮半径的大小),传送带上A、B两点间的距离为8m,已知传送带的速度大小为3m/s,物块与传送带间的动摩擦因数为0.2,重力加速度为210m/s。
高中物理专题三机械能守恒定律(含解析)新人教版必修
专题三机械能守恒定律重点1:功和功率【要点解读】1.对功的理解(1)功是过程量:描述了力的作用效果在空间上的累积,它总与一个具体过程相联系。
功与具体的某一个力或某几个力对应,学习时要注意是哪一个力或哪几个力的功,以及所对应的过程。
(2)做的功的两个必要因素①物体受到力的作用;②物体在力的方向上有位移。
2.对公式W=Fl cosα的理解对公式W=Fl cosα可以有两种理解:一种是力F在位移l方向上的分力F cosα与位移l的乘积;另一种是力F与在力F方向上的位移l cosα的乘积。
3.对正功和负功的理解(1)功是标量,只有量值,没有方向。
功的正、负并不表示功的方向,而且也不是数量上的正与负。
我们既不能说“正功与负功的方向相反”,也不能说“正功大于负功”,它们仅仅表示相反的做功效果。
)比较做功多少时,只比较功的绝对值。
(2)判断力是否做功及做功正负的方法①看力F的方向与位移l的方向间的夹角α——常用于恒力做功的情形。
②看力F的方向与速度v的方向间的夹角α——常用于曲线运动的情形。
若α为锐角则做正功,若α为直角则不做功,若α为钝角则做负功。
4.对公式P =W t和P =Fv 的理解【考向1】功的概念。
【例题】(福州八县(市)一中2014~2015学年高一下学期联考)质量为m 的小物块在倾角为α的斜面上处于静止状态,如图所示。
若斜面体和小物块一起以速度v 沿水平方向向右做匀速直线运动,通过一段位移s 。
斜面体对物块的摩擦力和支持力的做功情况是( )A .摩擦力做正功,支持力做正功B .摩擦力做正功,支持力做负功C .摩擦力做负功,支持力做正功D .摩擦力做负功,支持力不做功 【答案】BW Ff =F f ·s cos θ>0W FN =F N ·s cos (90°+θ)<0所以选项B 正确。
【名师点睛】 (1)式中F 一定是恒力。
若是变力,中学阶段一般不用上式求功。
人教版高一下册物理 机械能守恒定律单元测试卷 (word版,含解析)
一、第八章 机械能守恒定律易错题培优(难)1.某实验研究小组为探究物体冲上粗糙斜面能达到的最大位移x 与斜面倾角θ的关系,使某一物体每次以不变的初速率v 0沿足够长的斜面向上运动,如图甲所示,调节斜面与水平面的夹角θ,实验测得x 与θ的关系如图乙所示,取g =10m/s 2。
则由图可知( )A .物体的初速率v 0=3m/sB .物体与斜面间的动摩擦因数µ=0.8C .图乙中x min =0.36mD .取初始位置所在水平面为重力势能参考平面,当θ=37°,物体上滑过程中动能与重力势能相等时,物体上滑的位移为0.1875m 【答案】AC 【解析】 【分析】 【详解】 A .当2πθ=时,物体做竖直上抛运动,不受摩擦力作用,根据202v gh =可得03m/s v =A 正确;B .当0θ=时,物体沿水平面做减速运动,根据动能定理2012mv mgx μ= 代入数据解得=0.75μB 错误;C .根据动能定理201cos sin 2mv mgx mgx μθθ=+ 整理得920(0.75cos sin )x θθ=+因此位移最小值min 20.36m 200.751x ==+C 正确;D .动能与重力势能相等的位置o 2o o 01sin 37(sin 37cos37)2mgx mv mgx mgx μ=-+ 整理得0.25m x =D 错误。
故选AC 。
2.如图所示,两质量都为m 的滑块a ,b (为质点)通过铰链用长度为L 的刚性轻杆相连接,a 套在竖直杆A 上,b 套在水平杆B 上两根足够长的细杆A 、B 两杆分离不接触,且两杆间的距离忽略不计。
将滑块a 从图示位置由静止释放(轻杆与B 杆夹角为30°),不计一切摩擦,已知重力加速度为g 。
在此后的运动过程中,下列说法中正确的是( )A .滑块a 和滑块b 所组成的系统机械能守恒B .滑块b 的速度为零时,滑块a 的加速度大小一定等于gC .滑块b 3gLD .滑块a 2gL【答案】AC 【解析】 【分析】 【详解】A .由于整个运动过程中没有摩擦阻力,因此机械能守恒,A 正确;B .初始位置时,滑块b 的速度为零时,而轻杆对滑块a 有斜向上的推力,因此滑块a 的加速度小于g ,B 错误;C .当滑块a 下降到最低点时,滑块a 的速度为零,滑块b 的速度最大,根据机械能守恒定律o 21(1sin 30)2b mgL mv +=解得3b v gL =C 正确;D .滑块a 最大速度的位置一定在两杆交叉点之下,设该位置杆与水平方向夹角为θ 根据机械能守恒定律o 2211(sin 30sin )22a b mgL mv mv θ+=+ 而两个物体沿杆方向速度相等cos sin b a v v θθ=两式联立,利用三角函数整理得212(sin )cos 2a v gL θθ=+利用特殊值,将o =30θ 代入上式可得.521a v gL gL =>因此最大值不是2gL ,D 错误。
高一物理知识讲解-机械能守恒定律--提高-专题含答案解析
机械能守恒定律【学习目标】1.明确机械能守恒定律的含义和适用条件.2.能准确判断具体的运动过程中机械能是否守恒. 3.熟练应用机械能守恒定律解题.4.知道验证机械能守恒定律实验的原理方法和过程.5.掌握验证机械能守恒定律实验对实验结果的讨论及误差分析. 【要点梳理】 #要点一、机械能 要点诠释:(1)物体的动能和势能之和称为物体的机械能.机械能包括动能、重力势能、弹性势能。
(2)重力势能是属于物体和地球组成的重力系统的,弹性势能是属于弹簧的弹力系统的,所以,机械能守恒定律的适用对象是系统.(3)机械能是标量,但有正、负(因重力势能有正、负).(4)机械能具有相对性,因为势能具有相对性(须确定零势能参考平面),同时,与动能相关的速度也具有相对性(应该相对于同一惯性参考系,一般是以地面为参考系),所以机械能也具有相对性. 只有在确定了参考系和零势能参考平面的情况下,机械能才有确定的物理意义.(5)重力势能是物体和地球共有的,重力势能的值与零势能面的选择有关,物体在零势能面之上的势能是正值,在其下的势能是负值.但是重力势能差值与零势能面的选择无关. ~(6)重力做功的特点:①重力做功与路径无关,只与物体的始、未位置高度筹有关. ②重力做功的大小:W =mgh .③重力做功与重力势能的关系:P G W E =-△.要点二、机械能守恒定律 要点诠释:(1)内容:在只有重力或弹力做功的物体系统内动能和势能可以相互转化,但机械能的总量保持不变,这个结论叫做机械能守恒定律. (2)守恒定律的多种表达方式.#当系统满足机械能守恒的条件以后,常见的守恒表达式有以下几种:①1122k P k P E E E E +=+,即初状态的动能与势能之和等于末状态的动能与势能之和. ②P k E E =-△△或P k E E =-△△,即动能(或势能)的增加量等于势能(或动能)的减少量. ③△E A =-△E B ,即A 物体机械能的增加量等于B 物体机械能的减少量.后两种表达式因无需选取重力势能零参考平面,往往能给列式、计算带来方便. (3)机械能守恒条件的理解.①从能量转化的角度看,只有系统内动能和势能相互转化,无其他形式能量之间(如内能)的转化②从系统做功的角度看,只有重力和系统内的弹力做功,具体表现在: ~a .只有重力做功的物体,如:所有做抛体运动的物体(不计空气阻力),机械能守恒.b .只有重力和系统内的弹力做功.如图(a)、(b)、右图所示.图(a)中小球在摆动过程中线的拉力不做功,如不计空气阻力,只有重力做功,小球的机械能守恒.图(b)中A、B间,B与地面间摩擦不计,A自B上自由下滑过程中,只有重力和A、B间的弹力做功,A、B 组成的系统机械能守恒.但对B来说,A对B的弹力做功,但这个力对B来说是外力,B的机械能不守恒.如下图,不计空气阻力,球在摆动过程中,只有重力和弹簧与球间的弹力做功,球与弹簧组成的系统机械能守恒,但对球来说,机械能不守恒.要点三、运用机械能守恒定律解题的步骤!要点诠释:(1)根据题意选取研究对象(物体或系统).(2)明确研究对象的运动过程,分析对象在过程中的受力情况,弄清各力做功的情况,判断机械能是否守恒.(3)恰当地选取零势能面,确定研究对象在过程中的始态和末态的机械能.(4)根据机械能守恒定律的不同表达式列方程,并求解结果.4.机械能守恒定律与动能定理的区别(1)机械能守恒定律和动能定理都是从做功和能量转化的角度来研究物体在力的作用下运动状态的改变,表达这两个规律的方程都是标量方程,这是它们的共同点.~(2)机械能守恒定律的研究对象是物体组成的系统,动能定理的研究对象是一个物体(质点).(3)机械能守恒定律是有条件的,就是只允许重力和弹力做功;而动能定理的成立没有条件的限制,它不但允许重力和弹力做功,还允许其他力做功.(4)机械能守恒定律着眼于系统初、末状态的机械能的表达式,动能定理着眼于过程中合外力做的功及初、末状态的动能的变化.要点四、如何判断机械能是否守恒要点诠释:(1)对某一物体,若只有重力做功,其他力不做功,则该物体的机械能守恒.(2)对某一系统,物体间只有动能和势能的转化,系统跟外界没有发生机械能的传递,也没有转化成其他形式的能(如内能),则系统的机械能守恒.对于某个物体系统包括外力和内力,只有重力或弹簧的弹力做功,其他力不做功或者其他力做的功的代数和等于零,则该系统的机械能守恒,也就是说重力做功或弹力做功不能引起机械能与其他形式的能的转化,只能使系统内的动能和势能相互转化、(3)机械能守恒的条件绝不是合外力做的功等于零,更不是合外力等于零,例如水平飞来的子弹打入静止在光滑水平面上的木块内的过程中,合外力的功及合外力都是零,但系统克服内部阻力做功,将部分机械能转化为内能,因而机械能的总量在减少.(4)一些绳子突然绷紧,物体间碰撞后合在一起等,除非题目特别说明,机械能一般不守恒. 要点五、实验:验证机械能守恒定律 要点诠释:1.实验原理通过实验,分别求做自由落体运动物体的重力势能的减少量和相应过程动能的增加量.若二者相等,说明机械能守恒,从而验证机械能守恒定律:△E P =△E k .2.实验器材打点计时器及电源、纸带、复写纸、重物、刻度尺、带有铁夹的铁架台、导线. 》3.实验步骤(1)如图所示装置,将纸带固定在重物上,让纸带穿过打点计时器.(2)用手握着纸带,让重物静止在靠近打点计时器的地方,然后接通电源,松开纸带,让重物自由落下,纸带上打下一系列小点.(3)从打出的几条纸带中挑选打的点呈一条直线且点迹清晰的纸带进行测量,记下第一个点的位置O ,并在纸带上从任意点开始依次选取几个计数点1、2、3、4、…,并量出各点到O 点的距离h 1、h 2、h 3、…,计算相应的重力势能减少量mgh n ,如图所示.(4)依步骤(3)所测的各计数点到O 点的距离h 1、h 2、h 3、…,根据公式1102n n h h v T+--=计算物体在打下点1、2、…时的即时速度v 1、v 2、….计算相应的动能212n mv . (5)比较212n mv 与n mgh 是否相等. 【4.实验结论在重力作用下,物体的重力势能和动能可以互相转化,但总的机械能守恒. 5.误差分析重物和纸带下落过程中要克服阻力,主要是纸带与计时器之间的摩擦力,计时器平面不在竖直方向,纸带平面与计时器平面不平行是阻力增大的原因,电磁打点计时器的阻力大于电火花计时器,交流电的频率f 不是50 Hz 也会带来误差,f <50Hz ,使动能E k <E P 的误差进一步加大f >50 Hz ,则可能出现E k >E P 的结果.本实验中的重力加速度g必须是当地的重力加速度,而不是纸带的加速度a.【典型例题】类型一、对守恒条件的理解【例1、下列说法中正确的是( )A.用绳子拉着物体匀速上升,只有重力和绳的拉力对物体做功,机械能守恒B.做竖直上抛运动的物体,只有重力对它做功,机械能守恒C.沿光滑斜面自由下滑的物体,只有重力对物体做功,机械能守恒D.用水平拉力使物体沿光滑水平面做匀加速直线运动,机械能守恒【思路点拨】本题考察机械能守恒的条件。
人教版高一下册物理 机械能守恒定律单元测试题(Word版 含解析)
一、第八章 机械能守恒定律易错题培优(难)1.如图所示,一根轻弹簧一端固定于O 点,另一端与可视为质点的小滑块连接,把滑块放在倾角为θ=30°的固定光滑斜面上的A 点,此时弹簧恰好水平。
将滑块从A 点由静止释放,经B 点到达位于O 点正下方的C 点。
当滑块运动到B 点时弹簧与斜面垂直,且此时弹簧恰好处于原长。
已知OB 的距离为L ,弹簧始终在弹性限度内,重力加速度为g ,则滑块由A 运动到C 的过程中( )A .滑块的加速度先减小后增大B .滑块的速度一直在增大C .滑块经过B gLD .滑块经过C 2gL 【答案】BC 【解析】 【分析】 【详解】AB .弹簧原长为L ,在A 点不离开斜面,则sin 3()sin c 3300os 0Lk mg L ︒≤-︒︒ 在C 点不离开斜面,则有()cos30cos30cos30Lk L mg -︒≤︒︒从A 点滑至C 点,设弹簧与斜面夹角为α(范围为30°≤α≤90°);从B 点滑至C 点,设弹簧与斜面的夹角为β,则2sin 30cos mg kx ma β︒-=可知下滑过程中加速度一直沿斜面向下且减小,选项A 错误,B 正确; C .从A 点滑到B 点,由机械能守恒可得21cos302p B mgL E mv ︒+=解得2cos30232p p B E E v gL g mg L L m︒+=+=>选项C 正确;D .从A 点滑到C 点,由机械能守恒可得21cos302P C L mgE mv '+=︒解得432222cos303p pCgLE ELv g gLm m'=+>+︒=选项D错误。
故选BC。
2.如图所示,两质量都为m的滑块a,b(为质点)通过铰链用长度为L的刚性轻杆相连接,a套在竖直杆A上,b套在水平杆B上两根足够长的细杆A、B两杆分离不接触,且两杆间的距离忽略不计。
将滑块a从图示位置由静止释放(轻杆与B杆夹角为30°),不计一切摩擦,已知重力加速度为g。
机械能守恒定律(含答案)剖析
第3课时 机械能守恒定律一、基础知识(一)重力做功与重力势能1、重力做功的特点(1)重力做功与路径无关,只与初末位置的高度差有关.(2)重力做功不引起物体机械能的变化.2、重力势能(1)概念:物体由于被举高而具有的能.(2)表达式:E p =mgh .(3)矢标性:重力势能是标量,正负表示其大小.3、重力做功与重力势能变化的关系(1)定性关系:重力对物体做正功,重力势能就减少;重力对物体做负功,重力势能就增加.(2)定量关系:重力对物体做的功等于物体重力势能的减少量.即W G =-(E p2-E p1)= -ΔE p .(二)弹性势能1、概念:物体由于发生弹性形变而具有的能.2、大小:弹簧的弹性势能的大小与形变量及劲度系数有关,弹簧的形变量越大,劲度系数越大,弹簧的弹性势能越大.3、弹力做功与弹性势能变化的关系类似于重力做功与重力势能变化的关系,用公式表示:W =-ΔE p .方法提炼 应用机械能守恒定律解题的一般步骤1.选取研究对象⎩⎪⎨⎪⎧单个物体多个物体组成的系统 2.分析研究对象在运动过程中的受力情况,明确各力的做功情况,判断机械能是否守恒.3.选取零势能面,确定研究对象在初、末状态的机械能.4.根据机械能守恒定律列出方程.5.解方程求出结果,并对结果进行必要的讨论和说明.(三)机械能守恒的判断1、机械能守恒的条件只有重力或弹力做功,可以从以下四个方面进行理解:(1)物体只受重力或弹力作用.(2)存在其他力作用,但其他力不做功,只有重力或弹力做功.(3)其他力做功,但做功的代数和为零.(4)存在相互作用的物体组成的系统只有动能和势能的相互转化,无其他形式能量的转化.2、机械能守恒的判断方法(1)利用机械能的定义判断(直接判断):分析动能和势能的和是否变化.(2)用做功判断:若物体或系统只有重力(或弹簧的弹力)做功,或有其他力做功,但其他力做功的代数和为零,则机械能守恒.(3)用能量转化来判断:若物体系统中只有动能和势能的相互转化而无机械能与其他形式的能的转化,则物体系统机械能守恒.1.机械能守恒的条件绝不是合外力的功等于零,更不是合外力为零;只有重力做功不等于只受重力作用.2.对一些绳子突然绷紧、物体间碰撞等,除非题目特别说明,否则机械能必定不守恒.3.对于系统机械能是否守恒,可以根据能量的转化进行判断.(四)机械能守恒观点的理解1、守恒观点(1)表达式:E k1+E p1=E k2+E p2或E1=E2.(2)意义:系统初状态的机械能等于末状态的机械能.(3)注意问题:要先选取零势能参考平面,并且在整个过程中必须选取同一个零势能参考平面.2、转化观点(1)表达式:ΔE k=-ΔE p.(2)意义:系统(或物体)的机械能守恒时,系统增加(或减少)的动能等于系统减少(或增加)的势能.(3)注意问题:要明确势能的增加量或减少量,即势能的变化,可以不选取零势能参考平面.3、转移观点(1)表达式:ΔE A增=ΔE B减.(2)意义:若系统由A、B两部分组成,当系统的机械能守恒时,则A部分机械能的增加量等于B部分机械能的减少量.(3)注意问题:A部分机械能的增加量等于A部分末状态的机械能减初状态的机械能,而B部分机械能的减少量等于B部分初状态的机械能减末状态的机械能.二、练习1、关于重力势能,下列说法中正确的是()A.物体的位置一旦确定,它的重力势能的大小也随之确定B.物体与零势能面的距离越大,它的重力势能也越大C.一个物体的重力势能从-5 J变化到-3 J,重力势能减少了D.重力势能的减少量等于重力对物体做的功答案 D解析物体的重力势能与参考面有关,同一物体在同一位置相对不同的参考面的重力势能不同,A选项错.物体在零势能面以上,距零势能面的距离越大,重力势能越大;物体在零势能面以下,距零势面的距离越大,重力势能越小,B选项错.重力势能中的正、负号表示大小,-5 J的重力势能小于-3 J的重力势能,C选项错.重力做的功等于重力势能的变化,D选项对.2、置于水平地面上的一门大炮,斜向上发射一枚炮弹.假设空气阻力可以忽略,炮弹可以视为质点,则() A.炮弹在上升阶段,重力势能一直增大B.炮弹在空中运动的过程中,动能一直增大C.炮弹在空中运动的过程中,重力的功率一直增大D.炮弹在空中运动的过程中,机械能守恒答案AD解析炮弹在空中运动时,动能先减小后增大.重力的功率亦是先减小后增大,由于忽略空气阻力,所以炮弹的机械能守恒,选项A、D正确.3、关于机械能是否守恒,下列说法正确的是()A.做匀速直线运动的物体机械能一定守恒B.做圆周运动的物体机械能一定守恒C.做变速运动的物体机械能可能守恒D .合外力对物体做功不为零,机械能一定不守恒答案 C解析 做匀速直线运动的物体与做圆周运动的物体,如果是在竖直平面内则机械能不守恒,A 、B 错误;合外力做功不为零,机械能可能守恒,C 正确,D 错误.4、将质量为100 kg 的物体从地面提升到10 m 高处,在这个过程中,下列说法中正确的是(取g =10 m/s 2) ( )A .重力做正功,重力势能增加1.0×104 JB .重力做正功,重力势能减少1.0×104 JC .重力做负功,重力势能增加1.0×104 JD .重力做负功,重力势能减少1.0×104 J答案 C解析 W G =-mgh =-1.0×104 J ,ΔE p =-W G =1.0×104 J ,C 项正确.5、如图所示,在光滑水平面上有一物体,它的左端接连着一轻弹簧,弹簧的另一端固定在墙上,在力F 作用下物体处于静止状态,当撤去力F 后,物体将向右运动,在物体向右运动的过程中,下列说法正确的是( )A .弹簧的弹性势能逐渐减少B .物体的机械能不变C .弹簧的弹性势能先增加后减少D .弹簧的弹性势能先减少后增加答案 D解析 开始时弹簧处于压缩状态,撤去力F 后,物体先向右加速运动后向右减速运动,所以物体的机械能先增大后减小,所以B 错.弹簧先恢复原长后又逐渐伸长,所以弹簧的弹性势能先减少后增加,D 对,A 、C 错.6、下列物体中,机械能守恒的是( )A .做平抛运动的物体B .被匀速吊起的集装箱C .光滑曲面上自由运动的物体D .物体以45g 的加速度竖直向上做匀减速运动 答案 AC解析 物体做平抛运动或沿光滑曲面自由运动时,不受摩擦力,在曲面上弹力不做功,只有重力做功,机械能守恒;匀速吊起的集装箱,绳的拉力对它做功,不满足机械能守恒的条件,机械能不守恒;物体以45g 的加速度向上做匀减速运动时,由牛顿第二定律mg -F =m ×45g ,有F =15mg ,则物体受到竖直向上的大小为15mg 的外力作用,该力对物体做了正功,机械能不守恒.7、亚运会中的投掷链球、铅球、铁饼和标枪等体育比赛项目都是把物体斜向上抛出的运动,如图所示,这些物体从被抛出到落地的过程中 ( )A .物体的机械能先减小后增大B .物体的机械能先增大后减小C .物体的动能先增大后减小,重力势能先减小后增大D .物体的动能先减小后增大,重力势能先增大后减小答案 D8、如图所示,质量为m 的钩码在弹簧秤的作用下竖直向上运动.设弹簧秤的示数为F T ,不计空气阻力,重力加速度为g .则( )A .F T =mg 时,钩码的机械能不变B .F T <mg 时,钩码的机械能减小C .F T <mg 时,钩码的机械能增加D .F T >mg 时,钩码的机械能增加解析 无论F T 与mg 的关系如何,F T 与钩码位移的方向一致,F T 做正功,钩码的机械能增加,选项C 、D 正确.答案 CD9、(2011·课标全国·16)一蹦极运动员身系弹性蹦极绳从水面上方的高台下落,到最低点时距水面还有数米距离.假定空气阻力可忽略,运动员可视为质点,下列说法正确的是( )A .运动员到达最低点前重力势能始终减小B .蹦极绳张紧后的下落过程中,弹力做负功,弹性势能增加C .蹦极过程中,运动员、地球和蹦极绳所组成的系统机械能守恒D .蹦极过程中,重力势能的改变与重力势能零点的选取有关答案 ABC解析 运动员到达最低点前,重力一直做正功,重力势能减小,选项A 正确.蹦极绳张紧后的下落过程中,弹力一直做负功,弹性势能增加,选项B 正确.除重力、弹力外没有其他力做功,故系统机械能守恒,选项C 正确.重力势能的改变与重力势能零点的选取无关,故选项D 错误.10、如图所示,将一个内外侧均光滑的半圆形槽置于光滑的水平面上,槽的左侧有一固定的竖直墙壁.现让一小球自左端槽口A 点的正上方由静止开始下落,从A 点与半圆形槽相切进入槽内,则下列说法正确的是 ( )A .小球在半圆形槽内运动的全过程中,只有重力对它做功B .小球从A 点向半圆形槽的最低点运动的过程中,小球处于失重状态C .小球从A 点经最低点向右侧最高点运动的过程中,小球与槽组成的系统机械能守恒D .小球从下落到从右侧离开槽的过程中,机械能守恒答案 C解析 小球从A 点向半圆形槽的最低点运动的过程中,半圆形槽有向左运动的趋势,但是实际上没有动,整个系统只有重力做功,所以小球与槽组成的系统机械能守恒.而小球过了半圆形槽的最低点以后,半圆形槽向右运动,由于系统没有其他形式的能量产生,满足机械能守恒的条件,所以系统的机械能守恒.小球到达槽最低点前,小球先失重,后超重.当小球向右上方滑动时,半圆形槽向右移动,半圆形槽对小球做负功,小球的机械能不守恒.综合以上分析可知选项C 正确.11、如图所示,将物体从一定高度水平抛出(不计空气阻力),物体运动过程中离地面高度为h 时,物体水平位移为x 、物体的机械能为E 、物体的动能为E k 、物体运动的速度大小为v .以水平地面为零势能面.下列图象中,能正确反映各物理量与h 的关系的是 ( )答案 BC解析 设抛出点距离地面的高度为H ,由平抛运动规律x =v 0t ,H -h =12gt 2可知:x = v 0 2(H -h )g,图象为抛物线,故A 项错误;做平抛运动的物体机械能守恒,故B 项正确;平抛物体的动能E k =mgH -mgh +12m v 20,C 项正确,D 项错误.12、如图所示,小球以初速度v 0从光滑斜面底部向上滑,恰能到达最大高度为h 的斜面顶部.A 是内轨半径大于h 的光滑轨道、B 是内轨半径小于h 的光滑轨道、C 是内轨直径等于h 的光滑轨道、D 是长为12h 的轻棒,其下端固定一个可随棒绕O 点向上转动的小球.小球在底端时的初速度都为v 0,则小球在以上四种情况下能到达高度h 的有( )答案 AD13、山地滑雪是人们喜爱的一项体育运动.一滑雪坡由AB 和BC 组成,AB 是倾角为37°的斜坡,BC 是半径为R =5 m 的圆弧面,圆弧面和斜面相切于B 点,与水平面相切于C 点,如图3所示,AB 竖直高度差h =8.8 m ,运动员连同滑雪装备总质量为80 kg ,从A 点由静止滑下通过C 点后飞落(不计空气阻力和摩擦阻力,g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8).求:(1)运动员到达C 点时的速度大小;(2)运动员经过C 点时轨道受到的压力大小.答案 (1)14 m/s (2)3 936 N解析 (1)由A →C 过程,应用机械能守恒定律得:mg (h +Δh )=12m v 2C 又Δh =R (1-cos 37°)解得:v C =14 m/s(2)在C 点,由牛顿第二定律得:F C -mg =m v 2C R解得:F C =3 936 N.由牛顿第三定律知,运动员在C 点时对轨道的压力大小为3 936 N.14、如图所示,一质量m =0.4 kg 的滑块(可视为质点)静止于动摩擦因数μ=0.1的水平轨道上的A 点.现对滑块施加一水平外力,使其向右运动,外力的功率恒为P =10.0 W .经过一段时间后撤去外力,滑块继续滑行至B 点后水平飞出,恰好在C 点沿切线方向进入固定在竖直平面内的光滑圆弧形轨道,轨道的最低点D 处装有压力传感器,当滑块到达传感器上方时,传感器的示数为25.6 N .已知轨道AB 的长度L =2.0 m ,半径OC 和竖直方向的夹角α=37°,圆形轨道的半径R =0.5 m .(空气阻力可忽略,重力加速度g = 10 m/s 2,sin 37°=0.6,cos 37°=0.8),求:(1)滑块运动到C 点时速度v C 的大小;(2)B 、C 两点的高度差h 及水平距离x ;(3)水平外力作用在滑块上的时间t .解析 (1)滑块运动到D 点时,由牛顿第二定律得F N -mg =m v 2D R滑块由C 点运动到D 点的过程,由机械能守恒定律得mgR (1-cos α)+12m v 2C =12m v 2D 联立解得v C =5 m/s(2)滑块在C 点时,速度的竖直分量为v y =v C sin α=3 m/sB 、C 两点的高度差为h =v 2y 2g=0.45 m 滑块由B 运动到C 所用的时间为t y =v y g=0.3 s 滑块运动到B 点时的速度为v B =v C cos α=4 m/sB 、C 间的水平距离为x =v B t y =1.2 m(3)滑块由A 点运动到B 点的过程,由动能定理得Pt -μmgL =12m v 2B 解得t =0.4 s答案 (1)5 m/s (2)0.45 m 1.2 m (3)0.4 s15、如图所示的是某公园设计的一种惊险刺激的娱乐设施,轨道除CD 部分粗糙外,其余均光滑,一挑战者质量为m ,沿斜面轨道滑下,无能量损失地滑入第一个圆管形轨道.根据设计要求,在最低点与最高点各放一个压力传感器,测试挑战者对轨道的压力,并通过计算机显示出来.挑战者到达A 处时刚好对管壁无压力,又经过水平轨道CD 滑入第二个圆管形轨道.在最高点B 处挑战者对管的内侧壁压力为0.5mg ,然后从平台上飞入水池内.若第一个圆管轨道的半径为R ,第二个圆管轨道的半径为r ,水面离轨道的距离为h =2.25r ,g 取10 m/s 2,管的内径及人相对圆管轨道的半径可以忽略不计.则:(1)挑战者若能完成上述过程,则他至少应从离水平轨道多高的地方开始下滑?(2)挑战者从A 到B 的运动过程中克服轨道阻力所做的功为多少?(3)挑战者入水时的速度大小是多少?解析 (1)挑战者到达A 处时刚好对管壁无压力,可得出mg =m v 2A R设挑战者从离水平轨道H 高处的地方开始下滑,运动到A 点时正好对管壁无压力,在此过程中机械能守恒mgH =12m v 2A +mg ·2R ,解得H =5R 2(2)在B 处挑战者对管的内侧壁压力为0.5mg ,根据牛顿第二定律得:mg -F N =m v 2B r, 挑战者在从A 到B 的运动过程中,利用动能定理得:mg ·2(R -r )-W f =12m v 2B -12m v 2A 联立解得W f =52mgR -94mgr (3)设挑战者在第二个圆管轨道最低点D 处的速度为v ,则-mg ·2r =12m v 2B -12m v 2 解得v =322gr 挑战者离开第二个圆管轨道后在平面上做匀速直线运动,然后做平抛运动落入水中,在此过程中机械能守恒,设挑战者入水时的速度大小为v ′,则mgh +12m v 2=12m v ′2 解得:v ′=3gr答案 (1)5R 2 (2)52mgR -94mgr (3)3gr16、如图所示,ABC 和DEF 是在同一竖直平面内的两条光滑轨道,其中ABC 的末端水平,DEF 是半径为r =0.4 m的半圆形轨道,其直径DF 沿竖直方向,C 、D 可看做重合的点.现有一可视为质点的小球从轨道ABC 上距C 点高为H 的地方由静止释放.(g 取10 m/s 2)(1)若要使小球经C 处水平进入轨道DEF 且能沿轨道运动,H 至少多高?(2)若小球静止释放处离C 点的高度h 小于(1)中H 的最小值,小球可击中与圆心等高的E 点,求h .答案 (1)0.2 m (2)0.1 m解析 (1)小球沿ABC 轨道下滑,机械能守恒,设到达C 点时的速度大小为v ,则mgH =12m v 2 ①小球能在竖直平面内做圆周运动,在圆周最高点必须满足mg ≤m v 2r② ①②两式联立并代入数据得H ≥0.2 m. (2)若h <H ,小球过C 点后做平抛运动,设球经C 点时的速度大小为v x ,则击中E 点时,竖直方向上有r =12gt 2 ③水平方向上有r =v x t④ 又由机械能守恒定律有mgh =12m v 2x ⑤由③④⑤联立可解得h =r 4=0.1 m17、(2012·浙江理综·18)由光滑细管组成的轨道如图所示,其中AB 段和BC 段是半径为R 的四分之一圆弧,轨道固定在竖直平面内.一质量为m 的小球,从距离水平地面高为H 的管口D 处由静止释放,最后能够从A 端水平抛出落到地面上.下列说法正确的是( )A .小球落到地面时相对于A 点的水平位移值为2RH -2R 2B .小球落到地面时相对于A 点的水平位移值为22RH -4R 2C .小球能从细管A 端水平抛出的条件是H >2RD .小球能从细管A 端水平抛出的最小高度H min =52R答案 BC解析 要使小球从A 点水平抛出,则小球到达A 点时的速度v >0,根据机械能守恒定律,有mgH -mg ·2R =12m v 2,所以H >2R ,故选项C 正确,选项D 错误;小球从A 点水平抛出时的速度v =2gH -4gR ,小球离开A 点后做平抛运动,则有2R =12gt 2,水平位移x=v t ,联立以上各式可得水平位移x =22RH -4R 2,选项A 错误,选项B 正确.18、如图所示是全球最高的(高度为208米)北京朝阳公园摩天轮, 一质量为m 的乘客坐在摩天轮中以速率v 在竖直平面内做半径 为R 的匀速圆周运动,假设t =0时刻乘客在最低点且重力势能 为零,那么,下列说法正确的是( )A .乘客运动的过程中,重力势能随时间的变化关系为E p =mgR (1-cos vR t )B .乘客运动的过程中,在最高点受到座位的支持力为m v 2R -mgC .乘客运动的过程中,机械能守恒,且机械能为E =12m v 2D .乘客运动的过程中,机械能随时间的变化关系为E =12m v 2+mgR (1-cos v R t )答案 AD解析 在最高点,根据牛顿第二定律可得,mg -F N =m v 2R ,乘客受到座位的支持力为F N=mg -m v 2R ,B 项错误;由于乘客在竖直平面内做匀速圆周运动,其动能不变,重力势能发生变化,所以乘客在运动的过程中机械能不守恒,C 项错误;在时间t 内转过的弧度为v R t ,所以对应t 时刻的重力势能为E p =mgR (1-cos vR t ),总的机械能为E =E k +E p=12m v 2+mgR (1-cos v R t ),A 、D 项正确.19、光滑曲面轨道置于高度为H =1.8 m 的平台上,其末端切线 水平;另有一长木板两端分别搁在轨道末端点和水平地面间, 构成倾角为θ=37°的斜面,如图所示.一个可视做质点的质量为m =1 kg 的小球,从光滑曲面上由静止开始下滑 图14 (不计空气阻力,g 取10 m/s 2,sin 37°≈0.6,cos 37°≈0.8)(1)若小球从高h 0=0.2 m 处下滑,则小球离开平台时速度v 0的大小是多少? (2)若小球下滑后正好落在木板的末端,则释放小球的高度h 1为多大?(3)试推导小球下滑后第一次撞击木板时的动能与它下滑高度h 的关系表达式,并在图15中作出E k -h 图象.答案 (1)2 m/s (2)0.8 m (3)E k =32.5h 图象见解析图解析 (1)小球从曲面上滑下,只有重力做功,由机械能守恒定律知: mgh 0=12m v 20①得v 0=2gh 0=2×10×0.2 m /s =2 m/s(2)小球离开平台后做平抛运动,小球正好落在木板的末端,则 H =12gt 2② Htan θ=v 1t③联立②③两式得:v 1=4 m/s 又mgh 1=12m v 21 得h 1=v 212g=0.8 m(3)由机械能守恒定律可得:mgh =12m v 2小球离开平台后做平抛运动,可看做水平方向的匀速直线运动和竖直方向的自由落体运动,则: y =12gt 2④x =v t ⑤ tan 37°=yx⑥ v y =gt⑦ v 2合=v 2+v 2y ⑧ E k =12m v 2合⑨ mgh =12m v 2⑩由④⑤⑥⑦⑧⑨⑩式得:E k =32.5h考虑到当h >0.8 m 时小球不会落到斜面上,其图象如图所示.20、(2012·大纲全国·26)一探险队员在探险时遇到一山沟,山沟的 一侧竖直,另一侧的坡面呈抛物线形状.此队员从山沟的竖 直一侧,以速度v 0沿水平方向跳向另一侧坡面.如图所 示,以沟底的O 点为原点建立坐标系xOy .已知,山沟竖直 一侧的高度为2h ,坡面的抛物线方程为y =12h x 2;探险队员图12的质量为m .人视为质点,忽略空气阻力,重力加速度为g . (1)求此人落到坡面时的动能;(2)此人水平跳出的速度为多大时,他落在坡面时的动能最小?动能的最小值为多少? 答案 (1)12m (v 2+4g 2h 2v 20+gh) (2)gh 32mgh 解析 (1)设该队员在空中运动的时间为t ,在坡面上落点的横坐标为x ,纵坐标为y .由运动学公式和已知条件得 x =v 0t① 2h -y =12gt 2②根据题意有y =x 22h③根据机械能守恒,此人落到坡面时的动能为 12m v 2=12m v 20+mg (2h -y ) ④联立①②③④式得 12m v 2=12m (v 20+4g 2h 2v 20+gh ) ⑤(2)⑤式可以改写为v 2=(v 20+gh -2ghv 20+gh)2+3gh ⑥v 2取极小值的条件为⑥式中的平方项等于0,由此得 v 0=gh此时v 2=3gh ,则最小动能为(12m v 2)min =32mgh .21、如图所示是为了检验某种防护罩承受冲击力的装置,M 是半径为R =1.0 m 的固定在竖直平面内的14光滑圆弧轨道,轨道上端切线水平.N 为待检验的固定曲面,该曲面在竖直面内的截面为半 径r =0.69 m 的14圆弧,圆弧下端切线水平且圆心恰好位于M轨道的上端点.M 的下端相切处放置竖直向上的弹簧枪,可发射速度不同的质量为m =0.01 kg 的小钢珠.假设某次发射的钢珠沿轨道恰好能经过M 的上端点,水平飞出后落到曲面N 的某一点上,取g =10 m/s 2.问: (1)发射该钢珠前,弹簧的弹性势能E p 多大?(2)钢珠落到圆弧N 上时的动能E k 多大?(结果保留两位有效数字) 答案 (1)1.5×10-1 J (2)8.0×10-2 J解析 (1)设钢珠运动到轨道M 最高点的速度为v ,在M 的最低点的速度为v 0,则在最高点,由题意得mg =m v 2R从最低点到最高点,由机械能守恒定律得: 12m v 20=mgR +12m v 2解得:v 0=3gR 由机械能守恒定律得: E p =12m v 20=32mgR =1.5×10-1 J. (2)钢珠从最高点飞出后,做平抛运动,x =v t ,y =12gt 2由几何关系知x 2+y 2=r 2,联立解得t 2=350s 2所以,钢珠从最高点飞出后落到圆弧N 上下落的高度为y =0.3 m 由机械能守恒定律得,钢珠落到圆弧N 上时的动能E k 为 E k =12m v 2+mgy =8.0×10-2 J22、如图甲所示,圆形玻璃平板半径为r ,离水平地面的高度为h ,一质量为m 的小木块放置在玻璃板的边缘,随玻璃板一起绕圆心O 在水平面内做匀速圆周运动. (1)若匀速圆周运动的周期为T ,求木块的线速度和所受摩擦力的大小;(2)缓慢增大玻璃板的转速,最后木块沿玻璃板边缘的切线方向水平飞出,落地点与通过圆心O 的竖直线间的距离为s ,俯视图如图乙.不计空气阻力,重力加速度为g ,试求木块落地前瞬间的动能E k t .答案 (1)2πr T m (2πT )2r (2)mg (s 2-r 24h+h )解析 (1)根据匀速圆周运动的规律可得木块的线速度大小为:v =2πrT木块所受摩擦力提供木块做匀速圆周运动的向心力,有 F f =m (2πT)2r(2)木块脱离玻璃板后在竖直方向上做自由落体运动,有 h =12gt 2 在水平方向上做匀速直线运动,水平位移 x =v tx 与距离s 、半径r 的关系为s 2=r 2+x 2 木块从抛出到落地前机械能守恒,得E k t =12m v 2+mgh由以上各式解得木块落地前瞬间的动能 E k t =mg (s 2-r 24h+h )。
人教版高一下册物理 机械能守恒定律(培优篇)(Word版 含解析)
一、第八章机械能守恒定律易错题培优(难)1.如图所示,两个质量均为m的小滑块P、Q通过铰链用长为L的刚性轻杆连接,P套在固定的竖直光滑杆上,Q放在光滑水平地面上,轻杆与竖直方向夹角α=30°.原长为2L的轻弹簧水平放置,右端与Q相连,左端固定在竖直杆O点上。
P由静止释放,下降到最低点时α变为60°.整个运动过程中,P、Q始终在同一竖直平面内,弹簧在弹性限度内,忽略一切摩擦,重力加速度为g。
则P下降过程中()A.P、Q组成的系统机械能守恒B.P、Q的速度大小始终相等C31-mgLD.P达到最大动能时,Q受到地面的支持力大小为2mg【答案】CD【解析】【分析】【详解】A.根据能量守恒知,P、Q、弹簧组成的系统机械能守恒,而P、Q组成的系统机械能不守恒,选项A错误;B.在下滑过程中,根据速度的合成与分解可知cos sinP Qv vαα=解得tanPQvvα=由于α变化,故P、Q的速度大小不相同,选项B错误;C.根据系统机械能守恒可得(cos30cos60)PE mgL=︒-︒弹性势能的最大值为312PE mgL=选项C正确;D.P由静止释放,P开始向下做加速度逐渐减小的加速运动,当加速度为零时,P的速度达到最大,此时动能最大,对P、Q和弹簧组成的整体受力分析,在竖直方向,根据牛顿第二定律可得200N F mg m m -=⨯+⨯解得F N =2mg选项D 正确。
故选CD 。
2.质量是m 的物体(可视为质点),从高为h ,长为L 的斜面顶端,由静止开始匀加速下滑,滑到斜面底端时速度是v ,则( )A .到斜面底端时重力的瞬时功率为B .下滑过程中重力的平均功率为C .下滑过程中合力的平均功率为D .下滑过程中摩擦力的平均功率为 【答案】AB【解析】试题分析:A 、根据P=mgvcosα可知,滑到底端的重力的瞬时功率为为:P=mgvcosα=mgv .故A 正确.B 、物体运动的时间为:t==,则重力做功的平均功率为:P===.故B 正确.C 、物体做匀加速直线运动的加速度为:a=,则合力为:F 合=ma=,合力做功为:W 合=F 合L=,则合力的平均功率为:.故C 错误.D 、根据动能定理得:mgh ﹣W f =mv 2,解得克服摩擦力做功为:W f =mgh ﹣mv 2,则摩擦力做功的平均功率为:=﹣.故D 错误.考点:功率、平均功率和瞬时功率.3.如图所示,轻质弹簧一端固定在水平面上O 点的转轴上,另一端与一质量为m 、套在粗糙固定直杆A 处的小球(可视为质点)相连,直杆的倾角为30°,OA =OC ,B 为AC 的中点,OB 等于弹簧原长.小球从A 处由静止开始下滑,初始加速度大小为a A ,第一次经过B处的速度为v ,运动到C 处速度为0,后又以大小为a C 的初始加速度由静止开始向上滑行.设最大静摩擦力等于滑动摩擦力.下列说法正确的是A .小球可以返回到出发点A 处B .弹簧具有的最大弹性势能为22mv C .撤去弹簧,小球可以静止在直杆上任意位置D .a A -a C =g【答案】BD【解析】【分析】【详解】AB.设小球从A 运动到B 的过程克服摩擦力做功为f W ,AB 间的竖直高度为h ,小球的质量为m ,弹簧具有的最大弹性势能为p E .根据能量守恒定律,对于小球A 到B 的过程有: 212p f mgh E mv W +=+ A 到C 的过程有:22p f p mgh E W E +=+解得:212f p W mgh E mv ==, 小球从C 点向上运动时,假设能返回到A 点,由能量守恒定律得:22p f p E W mgh E =++ 该式违反了能量守恒定律,可知小球不能返回到出发点A 处.故A 错误,B 正确.C.设从A 运动到C 摩擦力的平均值为f ,AB =s ,由: f W mgh =得:sin 30f s mgs =解得:sin 30f mg =在B 点,摩擦力cos30f mg μ=,由于弹簧对小球有拉力(除B 点外),小球对杆的压力大于cos30mg μ,所以:cos30f mg μ>可得:sin 30cos30mg mg μ>因此撤去弹簧,小球不能在直杆上处于静止.故C 错误. D.根据牛顿第二定律得,在A 点有:cos30sin 30A F mg f ma +-=在C 点有:cos30sin 30C F f mg ma --=两式相减得:A C a a g -=故D 正确.4.如图甲所示,轻弹簧下端固定在倾角37°的粗糙斜面底端A 处,上端连接质量5kg 的滑块(视为质点),斜面固定在水平面上,弹簧与斜面平行。
人教版物理高一下册 机械能守恒定律(培优篇)(Word版 含解析)
一、第八章机械能守恒定律易错题培优(难)1.一足够长的水平传送带上放置质量为m=2kg小物块(物块与传送带之间动摩擦因数为0.2μ=),现让传送带从静止开始以恒定的加速度a=4m/s2开始运动,当其速度达到v=12m/s后,立即以相同大小的加速度做匀减速运动,经过一段时间后,传送带和小物块均静止不动。
下列说法正确的是()A.小物块0到4s内做匀加速直线运动,后做匀减速直线运动直至静止B.小物块0到3s内做匀加速直线运动,之后做匀减速直线运动直至静止C.物块在传送带上留下划痕长度为12mD.整个过程中小物块和传送带间因摩擦产生的热量为80J【答案】ACD【解析】【分析】【详解】物块和传送带的运动过程如图所示。
AB.由于物块的加速度a1=µg=2m/s2小于传送带的加速度a2=4 m/s2,所以前面阶段两者相对滑动,时间12vta==3s,此时物块的速度v1=6 m/s,传送带的速度v2=12 m/s物块的位移x1=12a1t12=9m传送带的位移x2=12a2t12=18m两者相对位移为121x x x∆=-=9m此后传送带减速,但物块仍加速,B错误;当物块与传送带共速时,由匀变速直线运动规律得12- a2t2=6+ a1t2解得t 2=1s因此物块匀加速所用的时间为t 1+ t 2=4s两者相对位移为2x ∆= 3m ,所以A 正确。
C .物块开始减速的速度为v 3=6+ a 1t 2=8 m/s物块减速至静止所用时间为331v t a ==4s 传送带减速至静止所用时间为342v t a ==2s 该过程物块的位移为x 3=12a 1t 32=16m 传送带的位移为x 2=12a 2t 42=8m 两者相对位移为3x ∆=8m回滑不会增加划痕长度,所以划痕长为12x x x ∆=∆+∆=9m+3m=12mC 正确;D .全程相对路程为L =123x x x ∆+∆+∆=9m+3m+8m=20mQ =µmgL =80JD 正确; 故选ACD 。
物理高一下册 机械能守恒定律(篇)(Word版 含解析)
一、第八章 机械能守恒定律易错题培优(难)1.如图甲所示,质量为4kg 的物块A 以初速度v 0=6m/s 从左端滑上静止在粗糙水平地面上的木板B 。
已知物块A 与木板B 之间的动摩擦因数为μ1,木板B 与地面之间的动摩擦因数为μ2,A 、B 运动过程的v -t 图像如图乙所示,A 始终未滑离B 。
则( )A .μ1=0.4,μ2=0.2B .物块B 的质量为4kgC .木板的长度至少为3mD .A 、B 间因摩擦而产生的热量为72J【答案】BC 【解析】 【分析】 【详解】A .以物块为研究对象有11ma mg μ=由图看出214m/s a =,可得10.4μ=将物块和木板看成一个整体,在两者速度一致共同减速时,有22M m a M m g μ+=+()()由图看出221m/s a =,可得20.1μ=选项A 错误;B .木板和物块达到共同速度之前的加速度,对木板有123()mg M m g Ma μμ-+=由图看出232m/s a =,解得4kg M =选项B 正确;C .由v -t 图看出物块和木板在1s 内的位移差为3m ,物块始终未滑离木板,故木板长度至少为3m ,选项C 正确;D .A 、B 的相对位移为s =3m ,因此摩擦产热为148J Q mgs μ==选项D 错误。
故选BC 。
2.一辆小汽车在水平路面上由静止启动,在前5s 内做匀加速直线运动,5s 末达到额定功率,之后保持以额定功率运动,其v t -图象如图所示.已知汽车的质量为3110kg m =⨯,汽车受到地面的阻力为车重的0.1倍,则以下说法正确的是( )A .汽车在前5s 内的牵引力为3510N ⨯B .汽车速度为25m /s 时的加速度为25m /sC .汽车的额定功率为100kWD .汽车的最大速度为80m /s【答案】AC 【解析】 【分析】 【详解】A .由速度时间图线知,匀加速运动的加速度大小2220m/s 4m/s 5a == 根据牛顿第二定律得F f ma -=解得牵引力1000N 4000N 5000N F f ma =+=+=选项A 正确; BC .汽车的额定功率500020W 100000W 100kW P Fv ==⨯==汽车在25m/s 时的牵引力100000'N 4000N 25P F v ===根据牛顿第二定律得加速度22'40001000'm/s 3m/s 1000F f a m --===选项B 错误,C 正确;D .当牵引力等于阻力时,速度最大,则最大速度100000m/s 100m/s 1000m P v f ===选项D 错误。
人教版高一下册物理 机械能守恒定律达标检测(Word版 含解析)(1)
一、第八章机械能守恒定律易错题培优(难)1.一足够长的水平传送带上放置质量为m=2kg小物块(物块与传送带之间动摩擦因数为0.2μ=),现让传送带从静止开始以恒定的加速度a=4m/s2开始运动,当其速度达到v=12m/s后,立即以相同大小的加速度做匀减速运动,经过一段时间后,传送带和小物块均静止不动。
下列说法正确的是()A.小物块0到4s内做匀加速直线运动,后做匀减速直线运动直至静止B.小物块0到3s内做匀加速直线运动,之后做匀减速直线运动直至静止C.物块在传送带上留下划痕长度为12mD.整个过程中小物块和传送带间因摩擦产生的热量为80J【答案】ACD【解析】【分析】【详解】物块和传送带的运动过程如图所示。
AB.由于物块的加速度a1=µg=2m/s2小于传送带的加速度a2=4 m/s2,所以前面阶段两者相对滑动,时间12vta==3s,此时物块的速度v1=6 m/s,传送带的速度v2=12 m/s物块的位移x1=12a1t12=9m传送带的位移x2=12a2t12=18m两者相对位移为121x x x∆=-=9m此后传送带减速,但物块仍加速,B错误;当物块与传送带共速时,由匀变速直线运动规律得12- a2t2=6+ a1t2解得t 2=1s因此物块匀加速所用的时间为t 1+ t 2=4s两者相对位移为2x ∆= 3m ,所以A 正确。
C .物块开始减速的速度为v 3=6+ a 1t 2=8 m/s物块减速至静止所用时间为331v t a ==4s 传送带减速至静止所用时间为342v t a ==2s 该过程物块的位移为x 3=12a 1t 32=16m 传送带的位移为x 2=12a 2t 42=8m 两者相对位移为3x ∆=8m回滑不会增加划痕长度,所以划痕长为12x x x ∆=∆+∆=9m+3m=12mC 正确;D .全程相对路程为L =123x x x ∆+∆+∆=9m+3m+8m=20mQ =µmgL =80JD 正确; 故选ACD 。
人教版高一物理下册 机械能守恒定律(培优篇)(Word版 含解析)
一、第八章机械能守恒定律易错题培优(难)1.如图所示,两个质量均为m的小滑块P、Q通过铰链用长为L的刚性轻杆连接,P套在固定的竖直光滑杆上,Q放在光滑水平地面上,轻杆与竖直方向夹角α=30°.原长为2L的轻弹簧水平放置,右端与Q相连,左端固定在竖直杆O点上。
P由静止释放,下降到最低点时α变为60°.整个运动过程中,P、Q始终在同一竖直平面内,弹簧在弹性限度内,忽略一切摩擦,重力加速度为g。
则P下降过程中()A.P、Q组成的系统机械能守恒B.P、Q的速度大小始终相等C31-mgLD.P达到最大动能时,Q受到地面的支持力大小为2mg【答案】CD【解析】【分析】【详解】A.根据能量守恒知,P、Q、弹簧组成的系统机械能守恒,而P、Q组成的系统机械能不守恒,选项A错误;B.在下滑过程中,根据速度的合成与分解可知cos sinP Qv vαα=解得tanPQvvα=由于α变化,故P、Q的速度大小不相同,选项B错误;C.根据系统机械能守恒可得(cos30cos60)PE mgL=︒-︒弹性势能的最大值为312PE mgL=选项C正确;D.P由静止释放,P开始向下做加速度逐渐减小的加速运动,当加速度为零时,P的速度达到最大,此时动能最大,对P、Q和弹簧组成的整体受力分析,在竖直方向,根据牛顿第二定律可得200N F mg m m -=⨯+⨯解得F N =2mg选项D 正确。
故选CD 。
2.如图所示,两质量都为m 的滑块a ,b (为质点)通过铰链用长度为L 的刚性轻杆相连接,a 套在竖直杆A 上,b 套在水平杆B 上两根足够长的细杆A 、B 两杆分离不接触,且两杆间的距离忽略不计。
将滑块a 从图示位置由静止释放(轻杆与B 杆夹角为30°),不计一切摩擦,已知重力加速度为g 。
在此后的运动过程中,下列说法中正确的是( )A .滑块a 和滑块b 所组成的系统机械能守恒B .滑块b 的速度为零时,滑块a 的加速度大小一定等于gC .滑块b 3gLD .滑块a 2gL【答案】AC 【解析】 【分析】 【详解】A .由于整个运动过程中没有摩擦阻力,因此机械能守恒,A 正确;B .初始位置时,滑块b 的速度为零时,而轻杆对滑块a 有斜向上的推力,因此滑块a 的加速度小于g ,B 错误;C .当滑块a 下降到最低点时,滑块a 的速度为零,滑块b 的速度最大,根据机械能守恒定律o 21(1sin 30)2b mgL mv +=解得3b v gL =C 正确;D .滑块a 最大速度的位置一定在两杆交叉点之下,设该位置杆与水平方向夹角为θ 根据机械能守恒定律o 2211(sin 30sin )22a b mgL mv mv θ+=+ 而两个物体沿杆方向速度相等cos sin b a v v θθ=两式联立,利用三角函数整理得212(sin )cos 2a v gL θθ=+利用特殊值,将o =30θ 代入上式可得.521a v gL gL =>因此最大值不是2gL ,D 错误。
高一物理人教版必修2(第21课时 机械能守恒定律) Word版含解析
绝密★启用前第七章 机械能守恒定律 8. 机械能守恒定律第Ⅰ部分 选择题一、选择题:本题共8小题。
将正确答案填写在题干后面的括号里。
1.以下说法正确的是( )A .物体做匀速运动,它的机械能一定守恒B .物体所受合力的功为零,它的机械能一定守恒C .物体所受的合力不等于零,它的机械能可能守恒D .物体所受的合力等于零,它的机械能一定守恒2.在下列几个实例中,机械能守恒的是()A .在平衡力作用下运动的物体B .在光滑水平面上被细线拴住做匀速圆周运动的小球C .如图甲所示物体沿固定光滑14圆弧面下滑 D .如图乙所示,在光滑水平面上压缩弹簧过程中的小球3.如图所示,弹簧固定在地面上,一小球从它的正上方A 处自由下落,到达B 处开始与弹簧接触,到达C 处速度为0,不计空气阻力,则在小球从B 到C 的过程中()A .弹簧的弹性势能不断增大B .弹簧的弹性势能不断减小C .系统机械能不断减小D .系统机械能保持不变4.如图所示,细绳跨过定滑轮悬挂两物体M 和m ,且M >m ,不计摩擦,系统由静止开始运动的过程中()A .M 、m 各自的机械能分别守恒B .M 减少的机械能等于m 增加的机械能C .M 减少的重力势能等于m 增加的重力势能D .M 和m 组成的系统机械能守恒5.把质量为3kg 的石块从20m 高的山崖上以沿水平方向成30°角斜向上的方向抛出(如图所示),抛出的初速度v 0=5m/s ,石块落地时的速度大小与下面哪些量无关(g 取10 m/s 2,不计空气阻力)()A .石块的质量B .石块初速度的大小C .石块初速度的仰角D .石块抛出时的高度6.以相同大小的初速度v 0将物体从同一水平面分别竖直上抛、斜上抛、沿光滑斜面(足够长)上滑,如图所示,三种情况达到的最大高度分别为h 1、h 2和h 3,不计空气阻力(斜上抛物体在最高点的速度方向水平),则()A .h 1=h 2>h 3B .h 1=h 2<h 3C .h 1=h 3<h 2D .h 1=h 3>h 27.如图是滑道压力测试的示意图,光滑圆弧轨道与光滑斜面相切,滑道底部B 处安装一个压力传感器,其示数N 表示该处所受压力的大小.某滑块从斜面上不同高度h 处由静止下滑,通过B 时,下列表述正确的有()A .N 小于滑块重力B .N 大于滑块重力C .N 越大表明h 越大D .N 越大表明h 越小8.有一竖直放置的“T”形架,表面光滑,滑块A 、B 分别套在水平杆与竖直杆上,A 、B 用一不可伸长的轻细绳相连,A 、B 质量相等,且可看做质点,如图所示,开始时细绳水平伸直,A 、B 静止.由静止释放B 后,已知当细绳与竖直方向的夹角为60°时,滑块B 沿着竖直杆下滑的速度为v ,则连接A 、B 的绳长为()A.24v gB.23v gC.223v gD.243v g第Ⅱ部分 非选择题二、非选择题:本题4个小题。
人教版物理高一下册 机械能守恒定律(培优篇)(Word版 含解析)
一、第八章 机械能守恒定律易错题培优(难)1.如图所示,竖直墙上固定有光滑的小滑轮D ,质量相等的物体A 和B 用轻弹簧连接,物体B 放在地面上,用一根不可伸长的轻绳一端与物体A 连接,另一端跨过定滑轮与小环C 连接,小环C 穿过竖直固定的光滑均匀细杆,小环C 位于位置R 时,绳与细杆的夹角为θ,此时物体B 与地面刚好无压力。
图中SD 水平,位置R 和Q 关于S 对称。
现让小环从R 处由静止释放,环下落过程中绳始终处于拉直状态,且环到达Q 时速度最大。
下列关于小环C 下落过程中的描述正确的是( )A .小环C 、物体A 和轻弹簧组成的系统机械能不守恒B .小环C 下落到位置S 时,小环C 的机械能一定最大C .小环C 从位置R 运动到位置Q 的过程中,弹簧的弹性势能一定先减小后增大D .小环C 到达Q 点时,物体A 与小环C 的动能之比为cos 2θ【答案】BD 【解析】 【分析】 【详解】A .在小环下滑过程中,只有重力势能与动能、弹性势能相互转换,所以小环C 、物体A 和轻弹簧组成的系统机械能守恒,选项A 错误;B .小环C 下落到位置S 过程中,绳的拉力一直对小环做正功,所以小环的机械能一直在增大,往下绳的拉力对小环做负功,机械能减小,所以在S 时,小环的机械能最大,选项B 正确;C .小环在R 、Q 处时弹簧均为拉伸状态,且弹力大小等于B 的重力,当环运动到S 处,物体A 的位置最低,但弹簧是否处于拉伸状态,不能确定,因此弹簧的弹性势能不一定先减小后增大,选项C 错误;D .在Q 位置,环受重力、支持力和拉力,此时速度最大,说明所受合力为零,则有cos C T m g θ=对A 、B 整体,根据平衡条件有2A T m g =故2cos C A m m θ=在Q 点将小环v速度分解可知cos A v v θ=根据动能212k E mv =可知,物体A 与小环C 的动能之比为 221cos 2122A A Ak kQC m v E E m v θ== 选项D 正确。
新人教版高一物理同步精品课堂专题7.8 机械能守恒定律(课件)(提升版)(必修2)
C. m1和m2的总机械能减少
D. m1和m2组成的系统机械能守恒
考点二 机械能守恒定律的三种表达形式及应用 1.守恒观点 (1)表达式:Ek1+Ep1=Ek2+Ep2或E1=E2. (2)意义:系统初状态的机械能等于末状态的机械能. (3)注意问题:要先选取零势能参考平面,并且在整个过程中必须选取同一个零 势能参考平面. 2.转化观点:(1)表达式:ΔEk=-ΔEp. (2)意义:系统的机械能守恒时,系统增加(或减少)的动能等于系统减少(或增加) 的势能. 3.转移观点:(1)表达式:ΔEA增=ΔEB减. (2)意义:若系统由A、B两部分组成,当系统的机械能守恒时,则A部分机械能 的增加量等于B部分机械能的减少量.
• 14、Thank you very much for taking me with you on that splendid outing to London. It was the first time that I had seen the Tower or any of the other famous sights. If I'd gone alone, I couldn't have seen nearly as much, because I wouldn't have known my way about.
【典型例题】【北京海淀区高一年级第二学期期末】在下列所描述的运动过 程中,若物体所受的空气阻力均可忽略不计,则机械能守恒的是 ( D ) A.小孩沿滑梯匀速滑下 B.电梯中的货物随电梯一起匀速下降 C.发射过程中的火箭加速上升 D.被投掷出的铅球在空中运动
【针对训练】【北京市东城区(南片)2012-2013学年下学期高一期末】 如图所示,游乐场中一位小朋友沿滑梯加速下滑,在此过程中他的机械 能不守恒,其原因是( D)
人教版物理高一下册 机械能守恒定律(篇)(Word版 含解析)
一、第八章 机械能守恒定律易错题培优(难)1.如图甲所示,质量为4kg 的物块A 以初速度v 0=6m/s 从左端滑上静止在粗糙水平地面上的木板B 。
已知物块A 与木板B 之间的动摩擦因数为μ1,木板B 与地面之间的动摩擦因数为μ2,A 、B 运动过程的v -t 图像如图乙所示,A 始终未滑离B 。
则( )A .μ1=0.4,μ2=0.2B .物块B 的质量为4kgC .木板的长度至少为3mD .A 、B 间因摩擦而产生的热量为72J【答案】BC 【解析】 【分析】 【详解】A .以物块为研究对象有11ma mg μ=由图看出214m/s a =,可得10.4μ=将物块和木板看成一个整体,在两者速度一致共同减速时,有22M m a M m g μ+=+()()由图看出221m/s a =,可得20.1μ=选项A 错误;B .木板和物块达到共同速度之前的加速度,对木板有123()mg M m g Ma μμ-+=由图看出232m/s a =,解得4kg M =选项B 正确;C .由v -t 图看出物块和木板在1s 内的位移差为3m ,物块始终未滑离木板,故木板长度至少为3m ,选项C 正确;D .A 、B 的相对位移为s =3m ,因此摩擦产热为148J Q mgs μ==选项D 错误。
故选BC 。
2.如图所示,一个半径和质量不计的定滑轮O 固定在天花板上,物块B 和A 通过轻弹簧栓接在一起,竖直放置在水平地面上保持静止后,再用不可伸长的轻绳绕过滑轮连接物块A 和C ,物块C 穿在竖直固定的细杆上,OA 竖直,OC 间距l =3m 且水平,此时A 、C 间轻绳刚好拉直而无作用力。
已知物块A 、B 、C 质量均力2 kg 。
不计一切阻力和摩擦,g 取10m/s 2。
现将物块C 由静止释放,下滑h =4m 时物块B 刚好被提起,下列说法正确的是A .弹簧的劲度系数为20 N/mB .此过程中绳子对物块A 做的功为60JC .此时物块A 速度的大小为10m/s 41D .绳子对物块C 做功的大小等于物块A 动能的增加量 【答案】AC 【解析】 【详解】A .初始时弹簧处于压缩状态,弹力等于A 的重力。
高一物理下册 机械能守恒定律(提升篇)(Word版 含解析)
一、第八章 机械能守恒定律易错题培优(难)1.如图所示,两质量都为m 的滑块a ,b (为质点)通过铰链用长度为L 的刚性轻杆相连接,a 套在竖直杆A 上,b 套在水平杆B 上两根足够长的细杆A 、B 两杆分离不接触,且两杆间的距离忽略不计。
将滑块a 从图示位置由静止释放(轻杆与B 杆夹角为30°),不计一切摩擦,已知重力加速度为g 。
在此后的运动过程中,下列说法中正确的是( )A .滑块a 和滑块b 所组成的系统机械能守恒B .滑块b 的速度为零时,滑块a 的加速度大小一定等于gC .滑块b 3gLD .滑块a 2gL【答案】AC 【解析】 【分析】 【详解】A .由于整个运动过程中没有摩擦阻力,因此机械能守恒,A 正确;B .初始位置时,滑块b 的速度为零时,而轻杆对滑块a 有斜向上的推力,因此滑块a 的加速度小于g ,B 错误;C .当滑块a 下降到最低点时,滑块a 的速度为零,滑块b 的速度最大,根据机械能守恒定律o 21(1sin 30)2b mgL mv +=解得3b v gL =C 正确;D .滑块a 最大速度的位置一定在两杆交叉点之下,设该位置杆与水平方向夹角为θ 根据机械能守恒定律o 2211(sin 30sin )22a b mgL mv mv θ+=+ 而两个物体沿杆方向速度相等cos sin b a v v θθ=两式联立,利用三角函数整理得212(sin )cos 2a v gL θθ=+利用特殊值,将o =30θ 代入上式可得.521a v gL gL =>因此最大值不是2gL ,D 错误。
故选AC 。
2.如图所示,一根轻质弹簧放在光滑斜面上,其下端与斜面底端的固定挡板相连,弹簧处于自然伸长状态。
第一次让甲物块从斜面上的A 点由静止释放,第二次让乙物块从斜面上的B 点由静止释放,两物块压缩弹簧使弹簧获得的最大弹性势能相同,两物块均可看作质点,则下列说法正确的是( )A .甲物块的质量比乙物块的质量大B .甲物块与弹簧刚接触时的动能大于乙物块与弹簧刚接触时的动能C .乙物块动能最大的位置在甲物块动能最大的位置下方D .将两物块释放的位置上移,两物块向下运动的过程中,动能最大的位置会下移 【答案】BC 【解析】 【分析】 【详解】A .由于两物块使弹簧获得的最大弹性势能相同,即两物块向下运动最低点的位置相同,根据机械能守恒可知,两物块减少的最大重力势能相同,由此可以判断甲物块的质量比乙物块的质量小,选项A 错误;B .从两物块与弹簧相接触到弹簧被压缩到最短的过程中,乙物块的质量大,则乙物块减小的重力势能大,所以其动能减小的少,选项B 正确;C .动能最大的位置是合外力为零的时候,由力的平衡可知,乙物块动能最大的位置在甲物块动能最大位置的下方,选项C 正确;D .由力的平衡可知,改变两物块释放的位置,两物块向下运动的过程中,动能最大的位置不会变,选项D 错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、第八章机械能守恒定律易错题培优(难)1.一足够长的水平传送带上放置质量为m=2kg小物块(物块与传送带之间动摩擦因数为0.2μ=),现让传送带从静止开始以恒定的加速度a=4m/s2开始运动,当其速度达到v=12m/s后,立即以相同大小的加速度做匀减速运动,经过一段时间后,传送带和小物块均静止不动。
下列说法正确的是()A.小物块0到4s内做匀加速直线运动,后做匀减速直线运动直至静止B.小物块0到3s内做匀加速直线运动,之后做匀减速直线运动直至静止C.物块在传送带上留下划痕长度为12mD.整个过程中小物块和传送带间因摩擦产生的热量为80J【答案】ACD【解析】【分析】【详解】物块和传送带的运动过程如图所示。
AB.由于物块的加速度a1=µg=2m/s2小于传送带的加速度a2=4 m/s2,所以前面阶段两者相对滑动,时间12vta==3s,此时物块的速度v1=6 m/s,传送带的速度v2=12 m/s物块的位移x1=12a1t12=9m传送带的位移x2=12a2t12=18m两者相对位移为121x x x∆=-=9m此后传送带减速,但物块仍加速,B错误;当物块与传送带共速时,由匀变速直线运动规律得12- a2t2=6+ a1t2解得t 2=1s因此物块匀加速所用的时间为t 1+ t 2=4s两者相对位移为2x ∆= 3m ,所以A 正确。
C .物块开始减速的速度为v 3=6+ a 1t 2=8 m/s物块减速至静止所用时间为331v t a ==4s 传送带减速至静止所用时间为342v t a ==2s 该过程物块的位移为x 3=12a 1t 32=16m 传送带的位移为x 2=12a 2t 42=8m 两者相对位移为3x ∆=8m回滑不会增加划痕长度,所以划痕长为12x x x ∆=∆+∆=9m+3m=12mC 正确;D .全程相对路程为L =123x x x ∆+∆+∆=9m+3m+8m=20mQ =µmgL =80JD 正确; 故选ACD 。
2.如图所示,竖直墙上固定有光滑的小滑轮D ,质量相等的物体A 和B 用轻弹簧连接,物体B 放在地面上,用一根不可伸长的轻绳一端与物体A 连接,另一端跨过定滑轮与小环C 连接,小环C 穿过竖直固定的光滑均匀细杆,小环C 位于位置R 时,绳与细杆的夹角为θ,此时物体B 与地面刚好无压力。
图中SD 水平,位置R 和Q 关于S 对称。
现让小环从R 处由静止释放,环下落过程中绳始终处于拉直状态,且环到达Q 时速度最大。
下列关于小环C 下落过程中的描述正确的是( )A .小环C 、物体A 和轻弹簧组成的系统机械能不守恒B .小环C 下落到位置S 时,小环C 的机械能一定最大C .小环C 从位置R 运动到位置Q 的过程中,弹簧的弹性势能一定先减小后增大D .小环C 到达Q 点时,物体A 与小环C 的动能之比为cos 2θ【答案】BD 【解析】 【分析】 【详解】A .在小环下滑过程中,只有重力势能与动能、弹性势能相互转换,所以小环C 、物体A 和轻弹簧组成的系统机械能守恒,选项A 错误;B .小环C 下落到位置S 过程中,绳的拉力一直对小环做正功,所以小环的机械能一直在增大,往下绳的拉力对小环做负功,机械能减小,所以在S 时,小环的机械能最大,选项B 正确;C .小环在R 、Q 处时弹簧均为拉伸状态,且弹力大小等于B 的重力,当环运动到S 处,物体A 的位置最低,但弹簧是否处于拉伸状态,不能确定,因此弹簧的弹性势能不一定先减小后增大,选项C 错误;D .在Q 位置,环受重力、支持力和拉力,此时速度最大,说明所受合力为零,则有cos C T m g θ=对A 、B 整体,根据平衡条件有2A T m g =故2cos C A m m θ=在Q 点将小环v 速度分解可知cos Av v θ=根据动能212k E mv =可知,物体A 与小环C 的动能之比为 221cos 2122A A Ak kQC m v E E m v θ== 选项D 正确。
故选BD 。
3.如图所示,两个质量均为m 的小滑块P 、Q 通过铰链用长为L 的刚性轻杆连接,P 套在固定的竖直光滑杆上,Q 放在光滑水平地面上,轻杆与竖直方向夹角α=30°.原长为2L 的轻弹簧水平放置,右端与Q 相连,左端固定在竖直杆O 点上。
P 由静止释放,下降到最低点时α变为60°.整个运动过程中,P 、Q 始终在同一竖直平面内,弹簧在弹性限度内,忽略一切摩擦,重力加速度为g 。
则P 下降过程中( )A .P 、Q 组成的系统机械能守恒B .P 、Q 的速度大小始终相等C 31-mgL D .P 达到最大动能时,Q 受到地面的支持力大小为2mg 【答案】CD 【解析】 【分析】 【详解】A .根据能量守恒知,P 、Q 、弹簧组成的系统机械能守恒,而P 、Q 组成的系统机械能不守恒,选项A 错误;B .在下滑过程中,根据速度的合成与分解可知cos sin P Q v v αα=解得tan PQv v α= 由于α变化,故P 、Q 的速度大小不相同,选项B 错误;C .根据系统机械能守恒可得(cos30cos 60)P E mgL =︒-︒弹性势能的最大值为31P E mgL -=选项C 正确;D .P 由静止释放,P 开始向下做加速度逐渐减小的加速运动,当加速度为零时,P 的速度达到最大,此时动能最大,对P 、Q 和弹簧组成的整体受力分析,在竖直方向,根据牛顿第二定律可得200N F mg m m -=⨯+⨯解得F N =2mg选项D 正确。
故选CD 。
4.如图所示,一个半径和质量不计的定滑轮O 固定在天花板上,物块B 和A 通过轻弹簧栓接在一起,竖直放置在水平地面上保持静止后,再用不可伸长的轻绳绕过滑轮连接物块A 和C ,物块C 穿在竖直固定的细杆上,OA 竖直,OC 间距l =3m 且水平,此时A 、C 间轻绳刚好拉直而无作用力。
已知物块A 、B 、C 质量均力2 kg 。
不计一切阻力和摩擦,g 取10m/s 2。
现将物块C 由静止释放,下滑h =4m 时物块B 刚好被提起,下列说法正确的是A .弹簧的劲度系数为20 N/mB .此过程中绳子对物块A 做的功为60JC .此时物块A 速度的大小为10m/s 41D .绳子对物块C 做功的大小等于物块A 动能的增加量 【答案】AC 【解析】 【详解】A .初始时弹簧处于压缩状态,弹力等于A 的重力。
B 刚好被提起时,弹簧处于伸长状态,弹簧的弹力等于B 的重力。
由几何关系得,弹簧共伸长了2m 。
物块B 刚好被提起时弹簧的的形变量为:25m 3m x =-kx mg =解得弹簧的劲度系数为:20N/m k =故A 正确。
BC .物块C 沿杆下滑的速度分解在沿绳子的方向和垂直的方向,当物块B 刚好被提起时:cos37A o C v v =B 的速度为零,弹簧由压缩变为伸长,形变量不变,储存的弹性势能始末两个状态相等,由整个系统动能定理得:2211222A C mgh mg x mv mv -=+ 解得:A v = 所以C 正确。
对于A 物体,由动能定理得:2122A W mg x mv -=解得:640(40)41W J =+故B 错误。
D .对C 由动能定理得:212T C mgh W mv -=解得绳子对C 做的功为:2110002280(80)24141T C W mgh mv J J =-=-=物块A 动能的增加量:21640241KA A E mv J ∆== 所以绳子对物块C 做功的大小不等于物块A 动能的增加量。
故D 错误。
5.如图所示,劲度数为k 的轻弹簧的一端固定在墙上,另一端与置于水平面上质量为m 的物体接触(未连接),弹簧水平且无形变.用水平力F 缓慢推动物体,在弹性限度内弹簧长度被压缩了0x ,此时物体静止.撤去F 后,物体开始向左运动,运动的最大距离为40x .物体与水平面间的动摩擦因数为μ,重力加速度为g .则( )A .撤去F 后,物体先做匀加速运动,再做匀减速运动B .撤去F 后,物体刚运动时的加速度大小为0kx g mμ- C .物体做匀减速运动的时间为02x gμD .物体开始向左运动到速度最大的过程中克服摩擦力做的功为0()mgmg x kμμ-【答案】BD 【解析】 【分析】 【详解】A .撤去F 后,物体水平方向上受到弹簧的弹力和滑动摩擦力,滑动摩擦力不变,而弹簧的弹力随着压缩量的减小而减小,弹力先大于滑动摩擦力,后小于滑动摩擦力,则物体向左先做加速运动后做减速运动,随着弹力的减小,合外力先减小后增大,则加速度先减小后增大,故物体先做变加速运动,再做变减速运动,最后物体离开弹簧后做匀减速运动,A 错误;B .刚开始时,由牛顿第二定律有:0kx mg ma μ-=解得:0kx a g mμ=- B 正确;C .由题意知,物体离开弹簧后通过的最大距离为3x 0,由牛顿第二定律得:1a g μ=将此运动看成向右的初速度为零的匀加速运动,则:201123x a t =联立解得:06x t gμ=C 错误;D .当弹簧的弹力与滑动摩擦力大小相等、方向相反时,速度速度最大时合力为零,则有F mg kx μ==解得mgx kμ=,所以物体开始向左运动到速度最大的过程中克服摩擦力做的功为:()f 00(mg W mg x x mg x k μμμ=⎛⎫=- ⎪⎝⎭-D正确。
故选BD。
6.蹦床比赛中运动员从最高点下落过程可简化为下物理模型:如图,运动员从O点自由下落,其正下方放置一下端固定的轻质弹簧,弹簧处于自然长度。
运动员下落到轻质弹簧上端a位置开始与弹簧接触并开始向下压缩弹簧。
运动员运动到b处时,质弹簧对运动员的弹力与运动员的重力平衡。
运动员运动到c处时,到达最低点。
若不计空气阻力,下列说法正确的是()A.由O向a运动的过程中运动员处于完全失重状态,其机械能减少B.由a向b运动的过程中运动员处于失重状态,其机械能减少C.由a向b运动的过程中运动员处于超重状态,其动能增加D.由b向c运动的过程中运动员处于超重状态,其机械能减少【答案】BD【解析】【分析】【详解】A.运动员由O向a运动的过程中,做自由落体运动,加速度等于竖直向下的重力加速度g,处于完全失重状态,此过程中只有重力做功,运动员的机械能守恒,A错误;BC.运动员由a向b运动的过程中,重力大于弹簧的弹力,加速度向下,运动员处于失重状态,运动员和弹簧组成的系统机械能守恒,弹簧的弹性势能增加,运动员的机械能减少,由于运动员向下加速运动,运动员的动能还是增大的,B正确,C错误;D.运动员由b向c运动的过程中,弹簧的弹力大于小球的重力,加速度方向向上,处于超重状态,弹簧继续被压缩,弹性势能继续增大,运动员的机械能继续减小,D正确。