小学奥数教程之-分数应用题(一) (含答案)

合集下载

分数应用题带答案

分数应用题带答案

分数应用题带答案1. 问题:小明有3个苹果,他把其中的一半分给了小红,然后又把剩下的一半分给了小刚。

最后小明还剩下多少个苹果?答案:小明最初有3个苹果,他分给小红一半,即3÷2=1.5个苹果。

然后他把剩下的一半分给小刚,即(3-1.5)÷2=0.75个苹果。

所以最后小明还剩下3-1.5-0.75=0.75个苹果。

2. 问题:一个班级有40名学生,其中3/5是男生,2/5是女生。

男生和女生各有多少人?答案:男生人数为40×3/5=24人,女生人数为40×2/5=16人。

3. 问题:一个长方形的长是10米,宽是长的3/4。

这个长方形的面积是多少?答案:长方形的宽为10×3/4=7.5米。

面积为长乘以宽,即10×7.5=75平方米。

4. 问题:一个水果店有苹果和橙子两种水果,其中苹果占总水果的2/3,橙子占总水果的1/3。

如果水果店总共有90个水果,那么苹果和橙子各有多少个?答案:苹果的数量为90×2/3=60个,橙子的数量为90×1/3=30个。

5. 问题:一个工厂生产了100个零件,其中90%是合格的,5%是次品,剩下的是废品。

请问合格的零件、次品和废品各有多少个?答案:合格的零件数量为100×90%=90个,次品的数量为100×5%=5个,废品的数量为100-90-5=5个。

6. 问题:小华有30元钱,他用其中的2/3买了一本故事书,剩下的钱用来买零食。

小华买零食花了多少钱?答案:小华买故事书花了30×2/3=20元,剩下的钱为30-20=10元,所以小华买零食花了10元。

7. 问题:一个班级有50名学生,其中2/5是女生,男生比女生多5人。

这个班级有多少名男生?答案:女生人数为50×2/5=20人,男生比女生多5人,所以男生人数为20+5=25人。

8. 问题:一个圆形花坛的周长是31.4米,这个花坛的半径是多少米?答案:圆的周长公式为C=2πr,其中C是周长,r是半径。

小学奥数6-2-1 分数应用题(一).专项练习及答案解析

小学奥数6-2-1 分数应用题(一).专项练习及答案解析

1. 分析题目确定单位“1”2. 准确找到量所对应的率,利用量÷对应率=单位“1”解题3. 抓住不变量,统一单位“1”一、知识点概述:分数应用题是研究数量之间份数关系的典型应用题,一方面它是在整数应用题上的延续和深化,另一方面,它有其自身的特点和解题规律.在解这类问题时,分析中数量之间的关系,准确找出“量”与“率”之间的对应是解题的关键.关键:分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,进行对比分析。

在几个量中,关键也是要找准单位“1”和对应的百分率,以及对应量三者的关系 例如:(1)a 是b 的几分之几,就把数b 看作单位“1”.(2)甲比乙多18,乙比甲少几分之几?方法一:可设乙为单位“1”,则甲为19188+=,因此乙比甲少191889÷=.方法二:可设乙为8份,则甲为9份,因此乙比甲少1199÷=.二、怎样找准分数应用题中单位“1” (一)、部分数和总数在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。

例如:我国人口约占世界人口的几分之几?——世界人口是总数,我国人口是部分数,世界人口就是单位“1”。

解答题关键:只要找准总数和部分数,确定单位“1”就很容易了。

(二)、两种数量比较分数应用题中,两种数量相比的关键句非常多。

有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。

在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。

例如:六(2)班男生比女生多——就是以女生人数为标准(单位“1”),解题关键:在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。

这个“占”,“相当于”,“是”后面的数量——谁就是单位“!”。

(三)、原数量与现数量有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。

最新版小学六年级奥数专项分数应用题(超详细)

最新版小学六年级奥数专项分数应用题(超详细)

例1新华书店运来一批图书,第一天卖出总数的8多16本,第二天卖出总数的2 少8本,还余下67本。

这批图书一共多少本?分析:解答此题的关键是要找出实际数量的对应分率。

从含有倍数关系的句子可以看出图书的总数为“单位 1 ”。

现在找出题中所给的数量与“单位1 ”之间的关系,见线段图:单位y(7本)_1例2 某工厂第一车间原有工人120名,现在调出8给第二车间后,这是第一6车间的人数比第二车间现有人数的7还多3名。

求第二车间原来有多少人?_1分析:通过读题可知“从第一车间调出8的工人给第二车间”,即调出2120X 8 =15名,这时第一车间还剩下105名工人。

这105名比第二车间现有人数的6 _67还多3名。

那么这102名工人就相当于第二车间的现有人数的7 了。

于是,第二车间现有人数与原来的人数就可以求了。

2 1 2 122从图中可以看出卖出总数的8和2后,余下的分率是1— 8— 2 = 8,与8相对应的数量是(67-8+16),从而可以求这批图书。

解答:(67—8 + 16)+1— 8 — 2 =200 (本)说明:我们还可以通过另一种方法找出量率对应。

根据题意,我们可以列出下面的等式:总数的8+16本+总数的2—8本+余下的67本=“单位1”将等式变形,量率分别放在等号的两边:16本一8本+余下的67本="单位1”一总数的8一总数的21 2刍从上面的式子中可以看出,(67—8+16)就是这批图书的1—8 — 2 = 8,因此列式为:1](67 -8 + 16)4-1- 8 - 2 =200 (本)这种方法比较简单直观,思维比较顺畅,只要把题目的叙述翻译成等式即可。

_1 解答:(1)第一车间剩下的人数:120X( 1— 8 ) =105 (名)6(2)第二车间现在的人数:(105—3) + 7 =119 (名)(3)第二车间原来的人数:119 —120X 8 =104 (名)例3 学校图书室内有一架故事书,借出总数的75%之后,有放上60本,这时架上的书是原来总数的3。

(完整word版)六年级奥数分数应用题经典例题加练习带答案

(完整word版)六年级奥数分数应用题经典例题加练习带答案

.知识的回顾11.工厂原有职工128人,男工人数占总数的 -,后来又调入男职工若干人,调入后男工人4数占总人数的2,这时工厂共有职工人.51【解析】在调入的前后,女职工人数保持不变.在调入前,女职工人数为128 (1 -)96人,42 33调入后女职工占总人数的 1 2 3,所以现在工厂共有职工96 - 160人.5 552.有甲、乙两桶油,甲桶油的质量是乙桶的-倍,从甲桶中倒出 5千克油给乙桶后,甲桶 2油的质量是乙桶的 4倍,乙桶中原有油千克.3-------------55【解析】原来甲桶油的质量是两桶油总质量的— 2,甲桶中倒出 5千克后剩下的油的 5 2744质量是两桶油总质量的—4,由于总质量不变,所以两桶油的总质量为 4 3 75 4 2 5 ( ) 35千克,乙桶中原有油 35 10千克.7 7 7(1)某工厂二月份比元月份增产 10 %,三月份比二月份减产 10% .问三月份比 元月份增产了还是减产了? (2)一件商品先涨价15%,然后再降价15%,问现在的价格和原价格比较升高、降低还是不变?(1)设二月份产量是1 ,所以元月份产量为:1 1+10%二10 ,三月份产量为:111 10%=0.9,因为10 > 0.9,所以三月份比元月份减产了11(2 )设商品的原价是1 ,涨价后为1+15%=115 ,降价15%为:1.15 1 15% =0.9775,现价和原价比较为:0.9775 v 1,所以价格比较后是价【例2】【解析】降低了。

1 1【巩固】把100个人分成四队,一队人数是二队人数的1-倍,一队人数是三队人数的13 4倍,那么四队有多少个人?1 3【解析】方法一:设一队的人数是“ 1 ”,那么二队人数是:1 11-,三队的人数是:3 41 4 3 4 51 511 1 ,1 ,因此,一、二、三队之和是:一队人数,因为4 5 4 5 20 20人数是整数,一队人数一定是20的整数倍,而三个队的人数之和是51 (某一整数),因为这是100以内的数,这个整数只能是1 •所以三个队共有51人,其中一、二、三队各有20 , 15, 16人•而四队有:100 51 49(人)•方法二:设二队有3份,则一队有4份;设三队有4份,则一队有5份•为统一一队所以设一队有[4,5] 20份,则二队有15份,三队有16份,所以三个队之和为15 16 20 51份,而四个队的份数之和必须是100的因数,因此四个队份数之和是100份,恰是一份一人,所以四队有100 51 49人(人).【例3】新光小学有音乐、美术和体育三个特长班,音乐班人数相当于另外两个班人数的-,美术班人数相当于另外两个班人数的3,体育班有58人,音乐班和美术班5 7各有多少人?2 2【解析】条件可以化为:音乐班的人数是所有班人数的,美术班的学生人数是所5 2 73 3 2 3 29有班人数的,所以体育班的人数是所有班人数的 1 ,所以所7 3 10 7 10 7029 2有班的人数为58 140人,其中音乐班有140 40人,美术班有1070 73140 42 人.10【巩固】 甲、乙、丙三人共同加工一批零件,甲比乙多加工20个,丙加工零件数是乙加工 45零件数的-,甲加工零件数是乙、丙加工零件总数的-,则甲、丙加工的零件数56 分别为 __________ 个、 ____________ 个.4 【解析】把乙加工的零件数看作1 ,则丙加工的零件数为-,甲加工的零件数为54 5 3 3 (1 -),由于甲比乙多加工 20个,所以乙加工了 20 (— 1) 40个,甲、56 2234丙加工的零件数分别为 4060个、4032个.25【例4】 王先生、李先生、赵先生、杨先生四个人比年龄,王先生的年龄是另外三人年龄11和的一,李先生的年龄是另外三人年龄和的-,赵先生的年龄是其他三人年龄2 31和的丄,杨先生26岁,你知道王先生多少岁吗 ?4【解析】方法一:要求王先生的年龄, 必须先要求出其他三人的年龄各是多少.而题目中出 现了三个“另外三人”所包含的对象并不同,即三个单位“ 1”是不同的,这就是所说的单位“T 不统一,因此,解答此题的关键便是抓不变量,统一单位“1”.题 中四个人的年龄总和是不变的, 如果以四个人的年龄总和为单位 “1”,则单位“1 就统一了•那么王先生的年龄就是四人年龄和的1 21 1人年龄和的,赵先生的年龄就是四人年龄和的1 3 4谓的转化单位“ 1 ”).则杨先生的年龄就是四人年龄和的设李先生年龄为1份,则四人年龄和为4份,设赵先生年龄为1份,则四人年龄和为5份,不管怎样四人年龄和应是相同的 ,但是现在四人年龄和分别是 3份、4份、5份, 它们的最小公倍数1,李先生的年龄就是四31 1(这些过程就是所 1 4 51 1 1 13 丄 1 .由3 4 5 60 26, 1 1 11 - 121314120(岁),王先生的年 龄为:120 140(岁).31份,则其他三人年龄和为2份,则四人年龄和为3份,同理此便可求出四人的年龄和:方法二:设王先生年龄是是60份,所以最后可以设四人年龄和为60份,则王先生的年龄就变为20份,李先生的年龄就变为15份,赵先生的年龄就变为12份,则杨先生的年龄为13份,恰好是26岁,所以1份是2岁,王先生年龄是20份所以就是40【巩固】 甲、乙、丙、丁四个筑路队共筑 1200米长的一段公路,甲队筑的路是其他三个队1 1 1的,乙队筑的路是其他三个队的 3,丙队筑的路是其他三个队的 4,丁队筑了 多少米?1 11【解析】甲队筑的路是其他三个队的 一,所以甲队筑的路占总公路长的2 1+23 1乙队筑的路是其他三个队的,所以乙队筑的路占总公路长的1 1 3 1+3 4 1丙队筑的路是其他三个队的,所以丙队筑的路占总公路长的1 1—4 1+45 111所以丁筑路为:12001 =260 (米)3 4 5【例5】 小刚给王奶奶运蜂窝煤,第一次运了全部的3,第二次运了 50块,这时已运来85的恰好是没运来的 5 •问还有多少块蜂窝煤没有运来?75【解析】方法一:运完第一次后,还剩下没运,再运来50块后,已运来的恰好是没运来的8575,也就是说没运来的占全部的—,所以,第二次运来的50块占全部的:7 125 711 ,全部蜂窝煤有:501200 (块),没运来的有:8 12 24241200 — 700(块)•125方法二:根据题意可以设全部为8份,因为已运来的恰好是没运来的,所以可7以设全部为12份,为了统一全部的蜂窝煤,所以设全部的蜂窝煤共有[8,12] 2450 14 700 (块)份,则已运来应是 24 10份,没运来的2414份,第一次运来9份,所以第二次运来是109 1份恰好是50块,因此没运来的蜂窝煤有【巩固】 五(一)班原计划抽1的人参加大扫除,临时又有2个同学主动参加,实际参加扫5除的人数是其余人数的 1•原计划抽多少个同学参加大扫除?3【解析】又有2个同学参加扫除后,实际参加扫除的人数与其余人数的比是1:3,实际参加1111 人数比原计划多—1丄•即全班共有2 —40 (人)•原计划抽1 3 5 2020140 - 8(人)参加大扫除.5小莉和小刚分别有一些玻璃球,如果小莉给小刚3 5 少3 ;如果小刚给小莉 24个,则小刚的玻璃球比小莉少 -,小莉和小刚原来共78有玻璃球多少个?【巩固】 某校学生参加大扫除的人数是未参加大扫除人数的1,后来又有204名同学参加大扫除,实际参加的人数是未参加人数的这个学校有多少人?【解析】20— — 400 (人).3 14 1【例6】24个,则小莉的玻璃球比小刚【解析】 小莉给小刚24个时,小莉是小刚的小莉24个时,小莉是两人球数和的34),即两人球数和的;小刚给7 118(=),因此24+24是两人球数和(=1118 8 58 4 4的一-一= .从而,和是(24+24)11 11 114=132(个).111【巩固】 某班一次集会,请假人数是出席人数的丄,中途又有一人请假离开,这样一来,93请假人数是出席人数的 —,那么,这个班共有多少人?221【解析】因为总人数未变,以总人数作为”1 ”.原来请假人数占总人数的 ——,现在请假1 93、31人数占总人数的,这个班共有:I *(-)=50(人).3 22 3 22 1 9小明是从昨天开始看这本书的,昨天读完以后,小明已经读完的页数是还没读的1页数丄,他今天比昨天多读了 14页,这时已经读完的页数是还没读的页数的9问题是,这本书共有多少页?”1Cd首先,可以直接运算得出,第一天小明读了全书的 —-,而前二天小明一共1 - 109【例7】【解析】书共14 20 280 (页)。

小学六年级上奥数教程:第六讲 分数应用题(一)--学生版

小学六年级上奥数教程:第六讲  分数应用题(一)--学生版

第6讲 分数应用题(一)【解题秘钥】把不同的数量当作单位“1”,得到的分率可以在一定的条件下转化。

如果甲是乙的a b ,乙是丙的c d ,则甲是丙的ac bd ;如果甲是乙的a b ,则乙是甲的b a;如果甲的a b 等于乙的c d ,则甲是乙的c d ÷a b =bc ad ,乙是甲的a b ÷a b =ad bc。

【经典例题】例题1:乙数是甲数的23 ,丙数是乙数的45,丙数是甲数的几分之几?练习11. 乙数是甲数的34 ,丙数是乙数的35,丙数是甲数的几分之几?2. 一根管子,第一次截去全长的14 ,第二次截去余下的12,两次共截去全长的几分之几?例题2:修一条8000米的水渠,第一周修了全长的14 ,第二周修的相当于第一周的45,第二周修了多少米?练习2用两种方法解答下面各题:1.一堆黄沙30吨,第一次用去总数的15,第二次用去的是第一次的114倍,第二次用去黄沙多少吨?2.大象可活80年,马的寿命是大象的12,长颈鹿的寿命是马的78,长颈鹿可活多少年?例题3:晶晶三天看完一本书,第一天看了全书的14,第二天看了余下的25,第二天比第一天多看了15页,这本书共有多少页?练习31.有一批货物,第一天运了这批货物的14,第二天运的是第一天的35,还剩90吨没有运。

这批货物有多少吨?2. 修路队在一条公路上施工。

第一天修了这条公路的14 ,第二天修了余下的23,已知这两天共修路1200米,这条公路全长多少米?例题4、男生人数是女生人数的45,女生人数是男生人数的几分之几?练习41. 停车场里有小汽车的辆数是大汽车的34,大汽车的辆数是小汽车的几分之几?2. 如果山羊的只数是绵羊的67,那么绵羊的只数是山羊的几分之几?例题5、甲数的13 等于乙数的14,甲数是乙数的几分之几,乙数是甲数的几倍?练习51. 甲数的34 等于乙数的25,甲数是乙数的几分之几?乙数是甲数的几分之几?2. 甲数的123 倍等于乙数的56,甲数是乙数的几分之几?乙数是甲乙两数和的几分之几?【作业】1.一个旅客从甲城坐火车到乙城,火车行了全程的一半时旅客睡着了。

分数奥数应用题及答案

分数奥数应用题及答案

分数奥数应用题及答案分数奥数应用题及答案学好数学,挑战奥数,我们要各个击破,下面是分数奥数应用题及答案,欢迎练习。

例一:王叔叔买了一辆价值16000元的摩托车。

按规定,买摩托车要缴纳10%的车辆购置税。

王叔叔买这辆摩托车一共要花多少钱?分析与解答:王叔叔买这辆摩托车所需的钱应包含购买价和10%的车辆购置税两部分,而车辆购置税是占摩托车购买价的10%,可先算出要缴纳的车辆购置税。

也可以这样想:车辆购置税占购买价的10%,把购买价看作单位“1”,王叔叔买这辆摩托车所需的钱相当于购买价的(1 + 10%),即求16000元的110%是多少,也用乘法计算。

方法1:16000 ×10% + 16000 = 1600 + 16000 = 17600(元)方法2:16000 ×(1 + 10%)= 16000 ×1.1 = 17600(元)答:王叔叔买这辆摩托车一共要花17600元钱。

例二:益民五金公司去年的营业总额为400万元。

如果按营业额的3%缴纳营业税,去年应缴纳营业税多少万元?分析与解:如果按营业额的3%缴纳营业税,是把营业额看作单位“1”。

缴纳营业税占营业额的3%,即400万元的3%。

求一个数的百分之几是多少,也用乘法计算。

计算时可将百分数化成分数或小数来计算。

400×3% = 12(万元)或400×3%= 400×0.03 = 12(万元)答:去年应缴纳营业税12万元。

点评:在现实社会中,各种税率是不一样的。

应纳税额的计算从根本上讲是求一个数的百分之几是多少。

例三:扬州某风景区2017年“十一”黄金周接待游客9万人次,门票收入达270万元。

按门票的5%缴纳营业税计算,“十一”黄金周期间应缴纳营业税0.45万元。

分析与解:营业税是按门票的5%缴纳,是占门票收入的5%,而不是占游客人数的5%答:“十一”黄金周期间应缴纳营业税13.5万元。

分数与百分数的应用基本概念与性质:分数:把单位“1”平均分成几份,表示这样的一份或几份的数。

小学奥数分数问题50道详解(一)

小学奥数分数问题50道详解(一)

小学奥数分数问题50道详解(一)
1. 分数是什么?
分数是用来表示一个整体被平均分成若干等分的数。

分数由一
个分子和一个分母组成,分子表示被平均分出来的等分的数量,分
母表示整体被平均分成的等分的数量。

2. 分数的基本运算
2.1 分数的加法
分数的加法就是将两个分数的分子相加,然后保持分母不变。

2.2 分数的减法
分数的减法可以通过将两个分数的分子相减,然后保持分母不
变来实现。

2.3 分数的乘法
分数的乘法可以通过将两个分数的分子相乘,分母相乘来实现。

2.4 分数的除法
分数的除法可以通过将一个分数的分子乘以另一个分数的倒数来实现。

3. 分数的化简
化简分数就是将分子和分母的公约数约去的过程。

如果一个分数的分子和分母没有公约数,那么这个分数就是最简分数。

4. 分数的比较
比较两个分数的大小可以通过找到它们的公共分母,然后比较它们的分子大小来实现。

5. 分数的转换
5.1 将分数转换为小数
将分数转换为小数可以通过将分子除以分母来实现。

5.2 将小数转换为分数
将小数转换为分数可以通过将小数的数字部分作为分子,小数的位数作为分母来实现。

6. 分数的运算技巧
6.1 分数的乘法技巧
当两个分数相乘时,如果它们的分子和分母都可以化简,可以
先化简分子和分母,再进行乘法运算。

6.2 分数的除法技巧
当两个分数相除时,可以先将除数和被除数都乘以同一个数,
使得被除数的分母变为1,然后再进行乘法运算。

以上是关于小学奥数分数问题的50道详解。

希望对你有帮助!。

小学-六年级-数学奥数-分数运算-练习题-带答案

小学-六年级-数学奥数-分数运算-练习题-带答案

小学-六年级-数学(shùxué)奥数-分数运算-练习题-带答案1.凑整法与整数(zhěngshù)运算中的“凑整法”相同,在分数(fēnshù)运算中,充分利用四则运算法则和运算律(如交换律、结合律、分配律),使部分的和、差、积、商成为整数、整十数……从而(cóng ér)使运算得到简化.2.约分法3.裂项法数之和时,若能将每个分数都分解成两个分数之差,并且使中间(zhōngjiān)的分数相互抵消,则能大大简化运算.例7 在自然数1~100中找出10个不同(bù tónɡ)的数,使这10个数的倒数的和等于1.分析(fēnxī)与解;这道题看上去比较复杂,要求(yāoqiú)10个分子为1,而分母不来做,就非常简单了.题中所求,添上括号.此题要求(yāoqiú)的是10个数的倒数和为1,于是做成;所求的10个数是2,6,12,20,30,42,56,72,90,10.替换答案(dáàn)中的10和30,仍是符合题意的解.4.代数(dàishù)法分析(fēnxī)与解;通分计算(jì suàn)太麻烦,不可取.注意到每个括号中都有例2 计算(jì suàn);分析与解题中的每一项的分子都是1,分母不是连续相邻两个自然数之积,而是连续三个自然数的乘积,下面我们试着从前几项开始拆分,探讨解这类问题的一般方法,因为这里n是任意(rènyì)一个自然数,利用这一等式,采用(cǎiyòng)裂项法便能较快地求出例2的结果,例3 计算(jì suàn);分析(fēnxī)与解仿上面(shàng miɑn)例1、例2的解题思路,我们也先通过几个简单的特例试图找出其规律,再用裂项法求解,这几个分数的分子都是2,分母是两个(liǎnɡɡè)自然数的积,其中较小的那个自然数正好等于分母中自然数的个数,另一个自然数比这个自然数大3,把这个想法推广(tuīguǎng)到一般就得到下面的等式;连续使用(shǐyòng)上面两个等式,便可求出结果来,因为第一个小括号内所有分数的分子都是1,分母(fēnmǔ)依次为2,3,4,...,199,所以共有(ɡònɡ yǒu)198个分数,第二个小括号内所有(suǒyǒu)分数的分子也都是1,分母依次为5,6,7, (202)所以也一共(yīgòng)有198个分数,这样分母(fēnmǔ)分别为5,6,7,…,199的分数正好抵消,例4 求下列所有分数的和;分析与解这是分数求和题,如按异分母分数加法法则算,必须先求1,2,3,…,1991这1991个数的最小公倍数,单是这一点就已十分麻烦,为此我们只好另找其他的方法,先计算分母分别为1,2,3,4的所有分数和各等于多少,这四个结果说明,分母分别(fēnbié)为1,2,3,4的上述所有分数和分别为1,2,3,4,如果这一结论具有一般性,上面(shàng miɑn)所有分数的求和问题便能很快解决,下面我们来讨论(tǎolùn)一般的情况,假定(jiǎdìng)分数的分母是某一自然数k,那么分母为k的按题目要求的所有分这说明,此题中分母为k的所有分数的和为k,利用这一结论,便可得到(dé dào)下面的解答,例5 自然数m至n之间所有(suǒyǒu)分母为P的最简分数和是多少〔这里(zhèlǐ)m<n,P是奇质数〕?分析(fēnxī)与解先写出这些(zhèxiē)分数来,因为P是奇质数,所以与P互质且比P小的数有1,2,3,…,P-1,共〔P-1〕个,换句话说,每相邻的两个(liǎnɡɡè)自然数之间,以P为分母的最简分数都有〔P-1〕个,故下面来求这些分数的和;因为m至〔n-1〕之间自然数的个数为;〔n-1〕-m+1=n-m,所以上面结果故上面结果又可改写为;由以上例题可知,认真观察(guānchá),发现题目中的规律,然后利用规律去解题,是我们解题的一大法宝,内容总结(1)小学-六年级-数学奥数-分数运算-练习题-带答案1.凑整法与整数运算中的“凑整法”相同,在分数运算中,充分利用四则运算法则和运算律(如交换律、结合律、分配律),使部分的和、差、积、商成为整数、整十数(2)因为m至〔n-1〕之间自然数的个数为(3)〔n-1〕-m+1=n-m,所以上面结果故上面结果又可改写为。

小学奥数分数应用题常用

小学奥数分数应用题常用

小学奥数分数应用题常用20____小学奥数分数应用题小学奥数分数应用题导语:在小学奥数中有很多的比较难的应用题,我们要加强训练才可以提升实力,以下是我为大家整理的小学奥数分数应用题,与借鉴!小学奥数分数应用题(一)1、金放在水里称,重量减轻9,银放水里称,重量减轻0,一块金银合金重770克,放在水里称,减轻了50克,这块合金含金、银各多少克2、参与六一联欢活动的少先队员中,女队员占全体少先队员的4/7,男队员比女队员的2/3多40人,问女队员有多少人3、某工厂两个车间,甲车间每月产值比乙车间多5万元,甲车间产值的2/15等于乙车间的2/3,问两个车间产值各是多少万元4、商店以每双6.5元购进一批凉鞋,售价为每双8.7元,当卖剩下时,不仅收回了购进这批凉鞋所付出的款,而且获利20元。

这批凉鞋共有多少双5、新昌茶叶店运到一批一级茶和二级茶,其中二级茶的数量是一级茶的,一级茶的买进价是每千克24.8元,二级茶买进价是每千克16元。

现在照买进价加价12.5%出售,当二级茶全部售完,一级茶剩下时,共盈利460元,那么,运到的一级茶有多少千克6、瓶内装满一瓶水,倒出全部水的,然后再灌入同样多的酒精,又倒出全部溶液的,又用酒精灌满,然后再倒出全部溶液的,再用酒精灌满,那么这时的酒精占全部溶液的百分之几7、由奶糖和巧克力混合成的一堆糖中,假如增加10个奶糖后,巧克力占总数的60%,再增加30个巧克力后,巧克力占总数的75%,那么原混合糖中有奶糖多少个巧克力多少个8、有一个分数,若分母加上6,分子不变,约分后是;若分子加上4,原分母不变,约分后是,原分数是多少9、四年级音乐小组中,四(1)班学生占3/5,后来又有14名别班级的学生参与了音乐小组,这时四(1)班学生只占,那么再从四(1)班选入多少人参与音乐小组,四(1)班学生就占2/510、有两缸金鱼,假如从第一缸内取出15尾放入其次缸,这时第一缸内的金鱼正好是其次缸的5/7;假如从其次缸内取出17尾放入第一缸,这时其次缸内的金鱼也正好是第一缸的5/7.第一缸原有金鱼多少尾11、园林工人在街心公园栽牡丹、芍药、串红、月季四种花。

小学奥数(分数应用题)

小学奥数(分数应用题)

一、填空1、一辆汽车一共有66个座位,空车出发,第一站上一位乘客,第二站上两位乘客,第三站上三位乘客,以此类推,第()站后,车上坐满乘客。

2、李老师去买桌椅,他带的钱如果只卖桌子,恰好可以买40张,如果只买椅子,恰好可以买60把,那么李老师带的钱可以买()套桌椅。

3、甲数是已数3分之2的,已数是丙数的5分之4,甲,已,丙三个数的比是()4、一辆汽车从甲地开往已地,已行全长的5分子2,离中点还有8千米,甲、乙两地的距离()千米。

5、小明看一本书的7分子3,再看20页,已看页数与未看页数的比是4比3,这本书有()页。

6、一次数学竞赛,六(1)班选手中,男生的平均分是80分,女生的平均分是70分,全班选手的平均分是73分,该班选手中男、女生人数的比是()。

、、某商品打九折出售,可盈利215元,如果降价百分之20出售,要亏损125元,这件商品的进价是()元。

二、解答题1、一根铁丝长100米,第一次用去全长的5分子2,第二次用去余下的3分子1,第三次用去第一次的2分子1,还剩多少?2、加工一批零件,王师傅先加工了这批零件的7分子2,接着李师傅加工余下的5分子3,结果王师傅比李师傅少加工50个,这批零件共有多少个?3、果园有三种果树共280课,其中桃树棵树是苹果树的9分子7,苹果树是梨树的4分子3,三种果树各有多少棵?4、六年级三个班共有156人,其中六(1)班人数是六(2)班的7分子6,是六(3)班人数的13分子12,六年级三个班各有多少人?5、有两筐梨,乙筐的质量是甲筐5分子3,从甲筐中取出5千克放入乙筐后,乙筐的梨是甲筐的9分子7,甲、乙两筐梨共重多少千克?6、修一条路,已修是未修的3分子2,再修20米,已修的是未修的4分子3,这条路全长多少米?7、课外兴趣小组上学期男生占9分子5,这学期女生增加21人,男生就只占5分子2,这个小组现在有女生多少人?8、饲养场里有102只兔子,白兔只数的4分子3等于灰兔只数的3分子2,这个饲养场有白兔、灰兔各多少只?9、仓库里有大米和面粉共2000袋,大米运走5分子2,面粉运走10分子1后,仓库里剩下的大米和面粉正好相等,原来仓库里大米和面粉各有多少袋?10、甲桶油比乙桶油多3.6千克,如果从两桶中各取出1千克后,甲桶剩下的21分子2等于乙桶剩下的7分子1,甲桶里原有多少油?11、有甲、乙两桶油,葱甲桶中倒出3分子1给乙桶后,又从已桶中倒出5分子1给甲桶,这时两桶油各有24千克,原来两桶个有多少千克油?12、兄弟俩各有人民币若干元,哥哥拿出5分子1给弟弟后,弟弟又拿出4分子1给哥哥,这时他们各有90元,哥哥、弟弟原来各有多少元?13、六(1)班有54人,其中男生是全班的9分子5,本学期又转入几名男生,这时男生是全班的7分子4,本期转入几名男生?14、饲养场养兔280只,其中白兔占7分子5卖掉一些白兔后,白兔占5分子3,卖掉多少只白兔?15、光明小学六年级105人分成三个小组参加植树活动,已知第一小组和第二小组人数的比是2:3,第二小组人数是第三小组人数的5分子4,这三个小组各有多少人?16、甲、乙、丙三个数的平均数是165,其中甲是乙的6分子5,乙与丙的比是9:11,这三个数分别是多少?17、小明读一本故事书,已读页数和未读页数的比是1:5,如果再读30页,则已读页数和未读页数的比是3:5,这本书是多少页?18、甲乙两校原有图书本书的比是7:5,如果甲校给乙校650本,甲、乙两校图书本书的比是3:4,甲校原有图书多少本?19、箱子里有红、白两种玻璃球,红球与白球个数的比是3:2,每次从箱子里取出5个红球,6个白球,若干次后白球正好取完,红球还剩32个,箱子里原有两种球共多少个?20、书架上层与下层图书本书的比是4:5,若从上下两层各取走15本书,则上层书的本书与下层的比是7:10,原来两个书架各有多少本书?21一项工程,甲单独完成需要10天,乙单独完成需要12天,丙单独完成需要15天,现在三人共同完成这项工程,但甲中途提前撤出,结果用6天完成,甲只参与几天?22、一项工程,甲、乙合作5小时可完成,两队同时开工,中途甲停工2小时,因此经过6.5小时完工如果这项工程由甲单独做需要几小时?23、一项工程,甲单独做10天完成,乙单独做12天完成,这项工作先由甲做了几天,然后乙接着做,从开始到完工共用11小时,这项工作甲做了几天?24、一条公路,甲独修24天可以完成,乙独修30天可以完成,先由甲、乙两队合修4天,再由丙队参加一起修7天全部完成,如果甲、乙、丙三队同时开工一起修这条公路,几天可以完成?24、修一条公路,甲队独修要40天完成,乙队独修要24天完成,两队合修,同时从两端开工,结果在距中点750米处相遇,这段公路全长多少米?25、商店把货物按标价九折出售,还可以获利百分子20,若该商品的进价是210元,那么每件的标价应为多少元?26、王老板把一件衣服按八ude五折出售,还获利百分子27.5,已知这件衣服的进价是200元,这件衣服的标价是多少?27、某商品的进价是1509元,按商品的标价九折出售,利润率是百分子20,上坪的标价是多少?28、某商店同时出售两件服装,售价都是180元,其中一件盈利百字分子20,另一件亏损百分子20,就这两件服装而言,该商店时亏了还是赚了,亏或是赚多少?29、某商品按百分子20利润定价,然后按8.8折出售,共获利70元,这件商品的出售价是多少元?30、小明家养的鸡和鸭共有200只,如果将鸡卖掉20分子1,还比鸭多34只,小明家养的鸡和鸭各有多少只?31、商场里彩电和冰箱共350只,如果彩电卖出9分子1后,就比冰箱少10台,商场里彩电和冰箱各有多少台?32、学校有篮球和足球共21个,如果篮球再买来4分子3后,比足球多1个原来学校有篮球和足球各多少个?33、甲、乙、丙三人参加考试,共得260分,已知甲的分的3分子1,乙得分的4分子1与并得分的一半减去22分相等,那么丙的得分是多少?34、某校六年级原有两个班,将原一班的3分之1与原二班的4分子1组成新一班,将原一班的4分子1与原二班的3分子1组成新二班,余下的30人组成新三班,已知新一班人数比新二班的人数多百分之10,原一班有多少人。

小学奥数教程之-分数应用题(一) (含答案)

小学奥数教程之-分数应用题(一) (含答案)

1. 分析题目确定单位“1”2. 准确找到量所对应的率,利用量÷对应率=单位“1”解题3. 抓住不变量,统一单位“1”一、知识点概述:分数应用题是研究数量之间份数关系的典型应用题,一方面它是在整数应用题上的延续和深化,另一方面,它有其自身的特点和解题规律.在解这类问题时,分析中数量之间的关系,准确找出“量”与“率”之间的对应是解题的关键.关键:分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,进行对比分析。

在几个量中,关键也是要找准单位“1”和对应的百分率,以及对应量三者的关系 例如:(1)a 是b 的几分之几,就把数b 看作单位“1”.(2)甲比乙多18,乙比甲少几分之几?方法一:可设乙为单位“1”,则甲为19188+=,因此乙比甲少191889÷=.方法二:可设乙为8份,则甲为9份,因此乙比甲少1199÷=.二、怎样找准分数应用题中单位“1” (一)、部分数和总数在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。

例如:我国人口约占世界人口的几分之几?——世界人口是总数,我国人口是部分数,世界人口就是单位“1”。

解答题关键:只要找准总数和部分数,确定单位“1”就很容易了。

(二)、两种数量比较分数应用题中,两种数量相比的关键句非常多。

有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。

在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。

例如:六(2)班男生比女生多——就是以女生人数为标准(单位“1”),解题关键:在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。

这个“占”,“相当于”,“是”后面的数量——谁就是单位“!”。

(三)、原数量与现数量有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。

小学五年级奥数 第七讲 简单的分数应用题

小学五年级奥数 第七讲  简单的分数应用题

第七讲 简单的分数应用题(一)一、基础知识:1、分数应用题的一般关系式是:表示单位“1”的量(标准量)×分率=分率的对应量。

2、解题思路:①一道分数应用题中,先根据分率所在的哪个条件,找出并判断“1”。

分率是“谁的”几分之几,谁就是单位“1”(分率是一个不带单位的、不具体的分数,反映的是两个数之间的一种倍数关系。

)单位“1”的量的判断:根据分率来判断把哪个数量平均分成多少份,哪个数量就是单位“1”。

②表示单位“1”的量是已知的,则该题用“×”。

表示单位“1”的量是未知的,则该题用“÷”或方程。

③解题的关键是:寻找“与数量对应的分率”,“与分率对应的数量”。

二、例题解析:(一)基本方法例1、指出下面每组中单位“1”和对应分率。

①一只鸡的重量是鸭的。

把( )平均分为3份,把( )看作单位“1”,( )相当于这样的2份,2/3对应的数量是( )。

②甲的相当于乙。

把( )平均分为5份,把( )看作单位“1”,( )相当于这样的3份,3/5对应的数量是( )。

③现价是原价的。

把( )平均分为40份,把( )看作单位“1”,( )相当于这样的3份,3/40对应的数量是( )。

现价比原价少的部分对应的分率是( )。

④小红的书比小明少。

把( )平均分为8份,把( )看作单位“1”,( )相当于这样的7份,7/8对应的数量是( )。

小明的书对应的分率是( )。

例2、根据已知条件用“——”线标出单位“1”的量,再写出数量关系式。

(1)白兔只数的125是黑兔的只数。

(2)已经修了公路全长的2110。

(3)二班植树棵数相当于一班的2110。

(4)今年棉花产量比去年增加85。

(4)第三季度冰箱价格比第二季度便宜517。

(6)还剩这堆煤的157。

例3、小王买了一个本子和一支钢笔。

本子的价格是1 元,钢笔的价格比本子的价格多,钢笔的价格是多少元?例4、一条裤子比一件上衣便宜25元。

一条裤子是一件上衣价格的2/3,一件上衣多少元?例5、商店运来一批水果,运来苹果20筐,梨的筐数是苹果的3/4,梨的筐数同时又是桔子的3/5。

小学奥数分数试题及答案

小学奥数分数试题及答案

小学奥数分数试题及答案第一部分:选择题1. 下面哪个分数是四分之一?A. 1/3B. 1/4C. 1/5D. 1/62. 一个矩形长为5米,宽为3米,它的面积是多少平方米?A. 8平方米B. 12平方米C. 15平方米D. 20平方米3. 计算:5/8 + 1/4 = ?A. 3/4B. 5/8C. 7/8D. 9/84. 把0.45改写成分数形式是?A. 45/10B. 45/100C. 45/1000D. 45/100005. 一个数的一半是1/6,这个数是多少?A. 1/3B. 1/4C. 1/6D. 1/2第二部分:填空题1. 把10%写成分数是______。

2. 把3/5改写成百分数是______%。

3. 如果一个数的1/8是48,这个数是______。

4. 一个矩形的周长是24米,宽是2米,长是______米。

5. 把3/4写成小数是______。

第三部分:解答题1. 请用最简形式表示下面的分数:12/15。

2. 这是一道应用题,请解答:小明有一块长方形的土地,长是8米,宽是5米。

他准备把这块土地全部围上篱笆。

每面篱笆的长度相同。

问:小明需要多长的篱笆?3. 如果一台机器每分钟可以生产2台产品,那么在3小时内它可以生产多少台产品?4. 请将0.6写成一个最简分数。

答案:第一部分:1. B2. B3. C4. B5. D第二部分:1. 1/102. 60%3. 3844. 105. 0.75第三部分:1. 4/52. 26米3. 360台4. 3/5总结:本文提供了一些小学奥数分数试题及其答案。

这些题目包括选择题、填空题和解答题,涵盖了分数的基本概念、运算和应用。

通过解答这些题目,小学生可以巩固和提高他们在奥数方面的知识和技能。

希望本文对小学生的学习有所帮助。

小学奥数与应用题——分数应用题

小学奥数与应用题——分数应用题

小学奥数与应用题——分数应用题小学奥数与应用题——分数应用题分数应用题一般有三种类型:1.求一个数a的几分之几是多少,即a乘以n除以m等于b;2.求一个数a是另一个数的b几分之几,即a除以b等于n除以m;3.已知一个数的几分之几是多少,求这个数,即b除以n 等于a除以m。

这三种分数应用题之间有联系,解题时要搞清楚它们之间的关系。

在解答分数应用题时,关键要通过分析数量关系,把每一道题中的某个量看作单位“1”,找出解题的数量关系式,再根据分数与除法的关系或一个数乘以分数的意义列式解答。

分数应用题在工农业生产和实际生活中应用十分广泛。

虽然这类应用题的变化很多,但只要认真去探索、去思考,也不难发现其中的解题规律。

1.基本类型在解答基本的分数应用题时,要抓住题目中的关键句进行分析。

首先明确单位“1”,如果单位“1”已知,用乘法计算;如果单位“1”未知,要先求出单位“1”,用除法或列方程计算;其次在列式时要考虑具体数量和分率之间的对应关系。

例如,在求一个中剩余多少油的问题中,如果已知一桶油的容量是4升,第一次用去11分之3,第二次用去34分之11,那么我们要先求出这桶油一共多少升,再求出还剩下多少升。

根据题意可以知道,一桶油的容量是4升,可以求出这桶油的总数是:4÷3/11=14(升)然后,我们可以先求出还剩这桶油的几分之几,即:1-11/34-5/12=5(升)答案是还剩下5升。

再例如,某工厂计划生产一批零件,第一次完成计划的1/4,第二次完成计划的13/27,第三次完成计划的超过计划的1/9,那么我们要求出计划生产零件的总数。

将“计划生产的零件个数”当作“1”,根据题意,我们首先要求出450个零件占计划任务的几分之内。

实际上“450个零件”可以分为两部分:一是完成剩下的任务1-13/27,二是超过部分“1/9”。

那么450个零件的对应分率就是:1-13/27+1/9=28/274计划生产零件的总数x可以用列方程的方法来解答:x/1=28/274x=1400答案是计划生产零件1400个。

奥数分数应用题及答案

奥数分数应用题及答案

奥数分数应用题及答案题目1:小明有一些糖果,他给了小华1/3,然后又给了小刚1/4。

如果小明最后剩下10颗糖果,那么小明最初有多少颗糖果?答案:设小明最初有x颗糖果。

根据题意,小明给了小华1/3x颗糖果,又给了小刚1/4x颗糖果,剩下的是x - 1/3x - 1/4x = 10。

将分数合并,我们得到5/12x = 10。

解这个方程,我们得到x = 10 * 12/5 = 24。

所以,小明最初有24颗糖果。

题目2:一个班级有60名学生,其中1/3是男生,1/4是女生,剩下的是其他学生。

如果班级中女生人数是其他学生人数的2倍,那么这个班级有多少名女生?答案:设班级中有x名女生。

根据题意,男生人数为60 * 1/3 = 20,女生人数为60 * 1/4 = 15。

剩下的学生人数为60 - 20 - 15 = 25。

因为女生人数是其他学生人数的2倍,我们有x = 2 * 25。

解这个方程,我们得到x = 50。

但这个结果与题意不符,因为班级总人数只有60名。

所以,我们需要重新计算女生人数。

正确的计算应该是女生人数加上其他学生人数等于班级总人数减去男生人数,即x + 25 = 60 - 20,解得x = 15。

所以,这个班级有15名女生。

题目3:一个水池,如果用小水管注水需要4小时注满,用大水管注水需要3小时注满。

如果两个水管同时注水,需要多少时间才能注满水池?答案:设水池的容量为C。

小水管每小时注水量为C/4,大水管每小时注水量为C/3。

当两个水管同时注水时,每小时的注水量为C/4 + C/3。

将两个分数合并,我们得到7C/12。

因此,注满水池需要的时间为C /(7C/12) = 12/7小时,即1小时48分钟。

题目4:一个水果店有苹果和橙子,苹果的重量是橙子的2/3。

如果苹果的重量增加了50千克,那么苹果的重量就会是橙子的3/4。

求原来苹果和橙子各有多少千克?答案:设橙子的重量为x千克,那么苹果的重量为2/3x千克。

六年级上册:分数应用题奥数基础(带答案)

六年级上册:分数应用题奥数基础(带答案)
400 300
奥数基础篇之分数应用题
1、晶晶三天看完一本书,第一天看了全书的 ,第二天看了余下的 ,第二天比第一天多看了15页。这本书共有多少页?
300
变形1:
晶晶三天看完一本书,第一天看了全书的 ,第二天看了第一天的 ,还剩下130页。这本书共有多少页?
200
变形2:
晶晶三天看完一本书,第一天看了全书的 ,第二天看了第一天的 ,两天一共看了70页。这本书共有多少页?
66.67%
3、男生比女生少 ,女生比男生多几分之几?
2/5
4、水结成冰体积增加 ,冰化成水体积减少几分之几?
1/12
5、甲数是乙数的 ,乙数是丙数的 ,甲、乙、丙的和是216.甲、乙、丙各是多少?
48、72、96
6、甲数是乙数的 ,乙数是丙数的 ,甲、乙、丙三数的和是152.甲、乙、丙三数各是多少?
300
变形2:
有一批货物,第一天运来这批货物的 ,第二天运了余下的 ,两天共运了90吨。这批货物有多少吨?
900/7
变形3:
有一批货物,第一天运来这批货物的 ,第二天运的是第一天的 ,两天共运了90吨。这批货物有多少吨?
225
3、一修路队,第一天修了这条公路的 ,第二天修了余下的 ,已知这两天共修了1200米。这条公路全长多少米?
560
2、某小学五年级三个班植树,一班植树的棵数占三班总棵数的 ,二班与三班植树的棵数的比3:5,二班比三班少植树40棵。这三个班各植树多少棵?
40 60 100
3、图书角有故事书、科技书、文艺书这三种书,故事书的本数占总人数的 ,科技书的本数是文艺书的 ,文艺书比故事书少20本。图书角共有书多少本?
24 27
2、图书馆买来科技书和文艺书共340本,文艺书本数的 等于科技书本数的 。两种书各买来多少本?

六年级分数奥数题及答案

六年级分数奥数题及答案

六年级分数奥数题及答案分数在数学中是一个非常重要的概念,对于六年级的学生来说,掌握分数的运算和应用是提高数学能力的关键。

以下是一些分数的奥数题目以及相应的答案,供学生练习和参考。

题目1:如果一个班级有40名学生,其中3/5是男生,那么这个班级有多少名女生?答案:班级中男生的数量是40 * 3/5 = 24名。

因此,女生的数量是40 - 24 = 16名。

题目2:一个分数的分子和分母之和是21,如果分子增加2,这个分数就变成了1。

求原来的分数。

答案:设原来的分数为x/y,根据题意,x + y = 21,且 (x + 2) / y = 1。

解这个方程组,我们得到x = 19,y = 2,所以原来的分数是19/2。

题目3:小明有3/4升的果汁,他喝了1/5升。

他喝了多少升果汁?答案:小明喝的果汁量是3/4 * 1/5 = 3/20升。

题目4:一个分数,当它的分子减少1后,这个分数等于1/3;当它的分母减少1后,这个分数等于1/2。

求这个分数。

答案:设这个分数为x/y,根据题意,(x - 1) / y = 1/3,x / (y - 1) = 1/2。

解这个方程组,我们得到x = 5,y = 12,所以这个分数是5/12。

题目5:一个分数的分子是分母的3/5,如果分子增加10,分母增加20,新的分数等于1/2。

求原来的分数。

答案:设原来的分数为x/y,根据题意,x = 3/5 * y,(x + 10) / (y+ 20) = 1/2。

解这个方程组,我们得到x = 15,y = 25,所以原来的分数是15/25,简化后为3/5。

这些题目覆盖了分数的基本运算、分数与整数的转换以及分数的比较等知识点,对于提高学生的分数理解和应用能力非常有帮助。

希望这些题目能够激发学生对数学的兴趣,并帮助他们在奥数竞赛中取得好成绩。

分数应用题(带答案)

分数应用题(带答案)

分数应用题(带答案)分数应用题(带答案)1. 问题:小明有一本书,他第一天看了这本书的1/4,第二天看了剩下的1/3,第三天看了剩下的1/2。

请问小明三天一共看了这本书的几分之几?答案:首先,小明第一天看了这本书的1/4,那么剩下的部分就是1 - 1/4 = 3/4。

第二天,小明看了剩下部分的1/3,即3/4 * 1/3 = 1/4。

第三天,小明看了剩下部分的1/2,即(3/4 - 1/4) * 1/2 = 1/4。

所以,小明三天一共看了这本书的1/4 + 1/4 + 1/4 = 3/4。

2. 问题:一个班级有60名学生,其中2/3是男生,1/4是女生,剩下的是教师子女。

请问教师子女占班级总人数的几分之几?答案:首先,计算男生人数:60 * 2/3 = 40人。

接着,计算女生人数:60 * 1/4 = 15人。

教师子女人数为总人数减去男生和女生人数:60 - 40 - 15 = 5人。

因此,教师子女占班级总人数的比例为5/60,化简后为1/12。

3. 问题:一个工厂生产一批零件,第一天生产了总数的1/5,第二天生产了总数的2/5,第三天生产了总数的1/10。

这批零件是否已经全部完成?答案:首先,计算三天生产的零件总数:1/5 + 2/5 + 1/10 = 4/10 + 2/10 + 1/10 = 7/10。

因为7/10小于1,所以这批零件还没有全部完成。

4. 问题:一个果园有苹果树和梨树两种果树,苹果树占总数的3/5,梨树占总数的2/5。

如果果园有100棵树,那么苹果树和梨树各有多少棵?答案:首先,计算苹果树的数量:100 * 3/5 = 60棵。

接着,计算梨树的数量:100 * 2/5 = 40棵。

所以,果园里有60棵苹果树和40棵梨树。

5. 问题:一个水池,甲水管注水需要3小时,乙水管注水需要5小时。

如果甲乙两水管同时注水,需要多少时间才能注满水池?答案:首先,计算甲水管注水的效率:1/3。

六年级奥数题分数应用题(A)

六年级奥数题分数应用题(A)

小学奥数-分数应用题(1)一、填空题1.有一个分数,它的分母比分子多4.如果把分子、分母都加上9,得到的分数约分后是97,这个分数是. 2.甲、乙两数是自然数,如果甲数的65恰好是乙数的41.那么甲、乙两数之和的最小值是.3.商店的书包降价41后,又提价51,最后的价格是8元1角一个,那么最初是 元钱一个.4.小萍今年的年龄是妈妈的31,二年前母子年龄相差24岁,四年后小萍的年龄是.5.甲、乙、丙三人共同加工一批零件.甲比乙多加工零件20个,丙加工零件是乙加工零件的54,甲加工零件是乙丙两人加工零件总数的65.甲、乙、丙各加工零件个.6.六一班男生的一半和女生的41共16人,女生的一半和男生的41共14人,这个班男、女生各人.7.在4点多钟时,时钟的时针和分针在一直线上且方向相反,这时是4点 分.8.甲、乙两人各有钱若干元,已知甲的钱数是乙的4倍,当甲花去31后,又花去余下的31,如果这时甲给乙7元钱,甲、乙两人的钱数正好相等.甲原来有_____元钱.9.A 、B 、C 三根木棒插在水池中,(如图)三根捧长度和是360厘米,A 棒有43露出水面外,B 棒有4露出水面外.C 棒有2露出水面外.水池有厘米深.10.一只猴子摘了一堆桃子:第一天吃了这堆桃子的七分之一;第二天它吃了余下桃子的六分之一;第三天它吃了余下桃子的五分之一;第四天它吃了余下桃子的四分之一;第五天它吃了余下桃子的三分之一;第六天它吃了余下桃子的二分之一.这时还剩下12只桃子,那么第一天和第二天猴子所吃桃子的总数是 只.二、解答题11.小辉乘飞机参加世界少年奥林匹克数学金杯赛.机窗外是一片如画的蔚蓝大海.她看到云海占整个画面的21,并遮住一个海岛的41,露出的海岛占整个画面的41.求:被遮住的海面占应看见整个海面的几分之几?12.学校早晨6:00开校门,晚上6:40关校门.下午有一同学问老师现在的时间.老师说“从开校门到现在时间的31,加上现在到关校门时间的41,就是现在的时间”.那么现在的时间是几点几分?13.有一根1米长的木条,第一次去掉它的51;第二次去掉余下木条的61;第三次去掉第二次余下木条的71,等等;这样一直下去,最后一次去掉上次余下木条的101,问:这根木条最后还剩下多长?14.甲从A 地到B 地需要5小时,乙从B 地到A 地,速度是甲的85.现在甲、乙二人分别从A 、B 两地同时出发,相向而行.在途中相遇后继续前进.甲到B 地后立即返回,乙到A 地后也立即返回,他们在途中又一次相遇.如果两次相遇点相距72千米,A 、B 两地相距多少千米?小学奥数-分数应用题(1)-参考答案1. 后来的分母为189714=⎪⎭⎫ ⎝⎛-÷,故原来分母为18-9=9,原来分子为9-4=5,原分数为95.2. 甲数是乙数的1036541=÷,甲乙两数之和是乙数的10131031=+,要使甲乙两数之和最小,乙只能是10,从而甲数是3,和为13.3. 941151181=⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛+÷(元). 4. =-+⎪⎭⎫ ⎝⎛-÷2443112416(岁).5. 乙加工的零件数4016554120=⎥⎦⎤⎢⎣⎡-⨯⎪⎭⎫ ⎝⎛+÷(个); 丙加工的零件数为325440=⨯(个); 甲加工的零件数为()60653240=⨯+(个).6. 这个班男女人数之和为()4021411416=⎪⎭⎫ ⎝⎛+÷+(人), 其中男生有()242114240=÷⨯-(人),女生有40-24=16(人). 7. 116541211)3020(=⎪⎭⎫ ⎝⎛-÷+(分).8. ()7241311311477=⨯⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯÷+(元).9. 将池深看作单位1, A 棒有⎪⎭⎫ ⎝⎛-÷4311=4(份); B 棒有3127411=⎪⎭⎫ ⎝⎛-÷(份); C 棒有3215211=⎪⎭⎫ ⎝⎛-÷(份).故池453213123124360=⎪⎭⎫ ⎝⎛+++÷(厘米).10. 8421131141151161171112=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-÷(个). 11. 853241411411=÷⎭⎬⎫⎩⎨⎧-⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-÷-.12. 设现在时间是下午x 点钟,则有()x x x =⎪⎭⎫ ⎝⎛-++6040641631 解得x =4. 即现在时间是下午4点正.13. 5210119118117116115111=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯(米).14. 将A 、B 两地的距离看作单位“1”,则甲每小时行51,乙每小时行818551=⨯, 第一次相遇时间是134081511=⎪⎭⎫ ⎝⎛+÷(小时).此时甲行了全程的138134051=⨯, 乙行了全程的1351381=-. 从第一次相遇到第二次相遇,两人合走了两个全程,甲走了全程的13162138=⨯,这个地方离甲的出发点是全程的13213161382=--,故两次相遇点之间距离是全程的136132138=-,全程的距离是15613672=÷(千米).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 分析题目确定单位“1”2. 准确找到量所对应的率,利用量÷对应率=单位“1”解题3. 抓住不变量,统一单位“1”一、知识点概述:分数应用题是研究数量之间份数关系的典型应用题,一方面它是在整数应用题上的延续和深化,另一方面,它有其自身的特点和解题规律.在解这类问题时,分析中数量之间的关系,准确找出“量”与“率”之间的对应是解题的关键.关键:分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,进行对比分析。

在几个量中,关键也是要找准单位“1”和对应的百分率,以及对应量三者的关系 例如:(1)a 是b 的几分之几,就把数b 看作单位“1”.(2)甲比乙多18,乙比甲少几分之几?方法一:可设乙为单位“1”,则甲为19188+=,因此乙比甲少191889÷=.方法二:可设乙为8份,则甲为9份,因此乙比甲少1199÷=.二、怎样找准分数应用题中单位“1” (一)、部分数和总数在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。

例如:我国人口约占世界人口的几分之几?——世界人口是总数,我国人口是部分数,世界人口就是单位“1”。

解答题关键:只要找准总数和部分数,确定单位“1”就很容易了。

(二)、两种数量比较分数应用题中,两种数量相比的关键句非常多。

有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。

在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。

例如:六(2)班男生比女生多——就是以女生人数为标准(单位“1”),解题关键:在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。

这个“占”,“相当于”,“是”后面的数量——谁就是单位“!”。

(三)、原数量与现数量有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。

这类分数应用题的单位“1”比较难找。

需要将题目文字完善成我们熟悉的类似带“比”的文字,然后在分析。

例如:水结成冰后体积增加了,冰融化成水后,体积减少了。

完善后:水结成冰后体积增加了→ “水结成冰后体积比原来增加了” →原来的水是单位“1”冰融化成水后,体积减少了→ “冰融化成水后,体积比原来减少了” →原来的冰是单位“1”知识点拨教学目标分数应用题(一)解题关键:要结合语文知识将题目简化的文字丰富后在分析模块一、单位“1”不变抓住量率对应进行计算【例 1】村里种了新瓜,男女老少品尝它.小伙每人吃一个,姑娘两人分一瓜;老人一瓜三人吃,四个小孩吃一瓜.男女老少四个组,一共吃了五十瓜,各组人数都相等,每组多少人品尝瓜?【考点】分数应用题【难度】2星【题型】解答【解析】把各组人数都视为“1”,那么有:50÷(1+12+13+14)=24(人).【答案】24【例 2】五年级男生有50人,女生有40人.⑴女生人数是男生人数的几分之几?⑵男生人数比女生人数多几分之几?⑶女生人数比男生人数少几分之几?⑷女生比男生少的人数是全班人数的几分之几?【考点】分数应用题【难度】1星【题型】解答【解析】此题四个问题都是求一个数是另一个数的几分之几,解答的关键是找准单位“1”.⑴男生人数为单位“1”,44050=5÷;⑵女生人数为单位“1”,1504040=4-÷();⑶男生人数为单位“1”,1504050=5-÷();⑷全班人数为单位“1”,1(5040)(5040)9-÷+=.【答案】⑴45⑵14⑶15⑷19【巩固】一个单位精简机构后有工作人员120人,比原来工作人员少40人,精简了几分之几?【考点】分数应用题【难度】1星【题型】解答【解析】“精简了百分之几”是在说“现在比原来少的人数是原来工作人员的几分之几”,单位“1”就是“原来工作人员人数”,140(12040)4÷+=.【答案】14【例 3】将一个分数作如下图所示的变化后,得到的新分数比原分数减少的百分率等于 %。

【考点】分数应用题【难度】2星【题型】解答【关键词】希望杯,六年级,一试【解析】设原来的分数为ab,(0)b≠,则新分数为(110%)(150%)ab-+,新分数比原分数减少例题精讲(110%)110%140%(150%)150%a a a b b b ⎡⎤---÷=-=⎢⎥++⎣⎦(还可以用设数法,找一个最简单的分数按题目要求进行计算答案应该是一样的)【答案】40%【例 4】 根据图中的信息回答,剩下的糖果是原来糖果重量的 。

【考点】分数应用题 【难度】1星 【题型】解答【关键词】希望杯,六年级,一试【解析】 设原来糖果和瓶的总重量为10份,则原来有糖果9份。

瓶重1份。

则剩下的糖果为(61)5-=份,所以剩下的糖果是原来糖果的5599÷=【答案】59【巩固】 一筐萝卜连筐共重20千克,卖了四分之一的萝卜后,连筐重15.6千克,则这个筐重________千克。

【考点】分数应用题 【难度】1星 【题型】解答 【关键词】希望杯六年级二试 【解析】 可知卖出了20-15.6=4.4千克,筐重量为20-4×4.4=2.4千克。

【答案】2.4千克【例 5】 下图中的扇形图分别表示小羽在寒假的前两周阅读《漫话数学》一书的页数占全书总页数的比例。

由图可知,这本书共有 页。

【考点】分数应用题 【难度】1星 【题型】解答 【关键词】希望杯,六年级,一试【解析】 115(30%)3004÷-=(页)【答案】59【例 6】 某商品价格为1200元,降价15%后,又降价20%,由于销售额猛增,商店决定再提价25%,提价后这种商品的价格为 元。

【考点】分数应用题 【难度】1星 【题型】解答 【关键词】学而思杯,6年级 【解析】 降价15%后,又降价20%,再提价25%,此时的价格为:1200(115%)(120%)(125%)1200(115%)1020⨯-⨯-⨯+=⨯-=(元)。

【答案】1020【例 7】将某商品涨价25%,如果涨价后的销售金额与涨价前的销售金额相同,则销售量减少了________%。

【考点】分数应用题【难度】1星【题型】解答【关键词】希望杯,六年级,一试【解析】因为销售总额相等,故商品单价与销售量成反比,单价之比为1:1.25,即4:5,那么销售量之比为5:4,减少了(54)5100%20%-÷⨯=。

【答案】20%【例 8】小红和小明帮刘老师修补一批破损图书。

根据图中信息计算,小红和小明一共修补图书______本。

【考点】分数应用题【难度】2星【题型】解答【关键词】希望杯,六年级,一试【解析】小红和小明一共补了21135420+=还多3-2=1本.而刘老师补了720少一本,一共有数()72016020+÷=本.则小红和小明共修补了60-20=40本。

【例 9】小静的书架上有三种不同种类的书,其中漫画书比故事书多2本,小说书比故事书少2本,已知故事书比小说书多25%,那么漫画书比故事书多百分之几?【考点】分数应用题【难度】2星【题型】解答【解析】小说书有225%8÷=本,所以故事书有8210+=本,漫画书有10212+=本,漫画书比故事书多210100%20%÷⨯=.【答案】20%【巩固】一个水箱中的水是装满时的56,用去200立升以后,剩余的水是装满时的34,这个水箱的容积是多少立升?【考点】分数应用题【难度】2星【题型】解答【解析】200÷(56-34)=2400(立升)。

【答案】2400立升【巩固】水果店卖出库存水果的五分之一后,又运进水果66000斤,这时库存水果比原来库存量多六分之一,原来库存水果多少万斤?【考点】分数应用题【难度】2星【题型】解答【解析】根据量率对应为:116600018000056⎛⎫÷+=⎪⎝⎭(斤)=18(万斤)【答案】18万斤【巩固】迎春农机厂计划生产一批插秧机,现已完成计划的56%,如果再生产5040台,总产量就超过计划产量的16%.那么,原计划生产插秧机台.【考点】分数应用题【难度】2星【题型】解答【解析】5400÷(1+16%一56%)=9000(台).【答案】9000台【例 10】 已知小明家2007年总支出是24300元,各项支出情况如图所示,其中教育支出是______元.【考点】分数应用题 【难度】2星 【题型】解答 【关键词】希望杯,六年级,一试 【解析】 教育支出24300×(1-10%-24%-12%-36%)=4374. 【答案】4374【巩固】 某项目的成本包括:人力成本、差旅费、活动费、会议费、办公费、招待费以及其他营运费用,它们所占比例如图所示,其中的活动费是10320元,则该项目的成本是 元。

【考点】分数应用题 【难度】2星 【题型】解答 【关键词】希望杯,六年级,一试 【解析】 成本()10320115%30%12%8%9%14%86000=÷------=元 【答案】86000元【例 11】 小强看一本书,每天看15页,4天后加快进度,又看了全书的25,还剩下30页,这本故事书有多少页?【考点】分数应用题 【难度】2星 【题型】解答【解析】 由题意,4天看了15460⨯=(页),最后还剩下30页,所以603090+=页占全书的:23155-=,所以这本故事书有:3901505÷=(页).【答案】150页【巩固】 一个水箱中的水是装满时的56,用去200立升以后,剩余的水是装满时的34,这个水箱的容积是多少立升?【考点】分数应用题 【难度】2星 【题型】解答 【关键词】祖冲之杯【解析】 由题意,水箱装满时的水量是单位1,用去的200立升水是装满水时的5364-,所以水箱的容积是:53200()240064÷-=(立升).【答案】2400立升【巩固】小强看一本故事书,每天看20页,5天后还剩下全书的15没看,这本故事书有多少页?【考点】分数应用题【难度】2星【题型】解答【解析】5天看了205100⨯=(页),占全书的14155-=,所以这本故事书一共有:1(205)(1)1255⨯÷-=(页).【答案】125页【巩固】点点暑假练习写字,每天写3页,5天后加快速度又写了全部的15,还剩下25页,点点共练习多少页?【考点】分数应用题【难度】2星【题型】解答【解析】1(2535)(1)505+⨯÷-=(页).【答案】50页【例 12】用一批纸装订一种练习本.如果已装订120本,剩下的纸是这批纸的40%;如果装订了185本,则还剩下1350张纸.这批纸一共有多少张?【考点】分数应用题【难度】2星【题型】解答【解析】方法一:120本对应(1-40%=)60%的总量,那么总量为120÷60%=200本.当装订了185本时,还剩下200-185:15本未装订,对应为1350张,所以每本需纸张:1350÷15=90张,那么200本需200×90=18000张.即这批纸共有18000张.方法二:装订120本,剩下40%的纸,即用了60%的纸.那么装订185本,需用185×(60%÷120)=92.5%的纸,即剩下1-92.5%=7.5%的纸,为1350张.所以这批纸共有1350÷7.5%=18000张.【答案】18000【例 13】有男女同学325人,新学年男生增加25人,女生减少120,总人数增加16人,那么现有男同学多少人?【考点】分数应用题【难度】2星【题型】解答【解析】男生增加25人,总人数只增加16人,说明女生减少9人,而女生减小120,故9人对应的为120,女生原有人数为1918020÷=(人),现有男生人数为32518025170-+=(人)或()()325161809170+--=(人)。

相关文档
最新文档