斐波那契数列通项公式的推导
用母函数法推导斐波那契数列的通项公式
李文捷:用母函数法推导斐波那契数列的通项公式用母函数法推导斐波那契数列的通项公式李文捷(安徽师范大学,安徽芜湖,241000)摘 要:递推数列的通项公式的求解近年来吸引了许多数学工作者的注意,目前已经出现了诸如数学归纳法、特征方程法、待定系数法等求解方法。
受齐次线性微分方程的母函数解法的启发,研究人员利用母函数,力图寻找出著名的斐波那契数列通项公式的一种新的求解方法.关键词:递推数列;母函数;通项公式。
中图分类号:O174; 文献标识码:A ; 文章编号:1009-1114(2012)01-0043-03Derivation of the Common Term Formula Fibonaci's Seguence by Generating FunctionLI Wen-jieAbstract: The solution of the common term formula of the recurrence sequence recently has attracted much attention from mathematics researchers, and some methods has been given successfully such as mathematical induction, speciality equation, undetermined coefficient method, and so on. Enlightened from the solution of the generating function for omogenous linear differential equations, researchers try to find a new solution for the general term formula of Fibonaci's seguence by application of the generating function., Keywords: recurrence sequence; generating function; common term formula.收稿日期:2011-12-27作者简介:李文捷,女,1979年9月出生,毕业于安徽芜湖安徽师范大学数学系。
菲波拉契数列公式
菲波拉契数列公式
这个数列是由13世纪意大利斐波那契提出的的,故叫斐波那契数列.该数列由下面的递推关系决定:F0=0,F1=1
F n+2=F n + F n+1(n>=0)
它的通项公式是Fn=1/根号5{[(1+根号5)/2]的n次方-[(1-根号5)/2]的n次方}(n属于正整数)
补充问题:
菲波那契数列指的是这样一个数列:
1,1,2,3,5,8,13,21……
这个数列从第三项开始,每一项都等于前两项之和
它的通项公式为:[(1+√5)/2]^n /√5 -[(1-√5)/2]^n /√5 【√5表示根号5】
很有趣的是:这样一个完全是自然数的数列,通项公式居然是用无理数来表达的.
该数列有很多奇妙的属性
比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.6180339887……
还有一项性质,从第二项开始,每个奇数项的平方都比前后两项之积多1,每个偶数项的平方都比前后两项之积少1
如果你看到有这样一个题目:某人把一个8*8的方格切成四块,拼成一个5*13的长方形,故作惊讶地问你:为什么64=65?其实就是利用了菲波那契数列的这个性质:5、8、13正是数列中相邻的三项,事实上前后两块的面积确实差1,只不过后面那个图中有一条细长的狭缝,一般人不容易注意到
如果任意挑两个数为起始,比如5、-2.4,然后两项两项地相加下去,形成5、-2.4、2.6、0.2、2.8、3、5.8、8.8、14.6……等,你将发现随着数列的发展,前后两项之比也越来越逼近黄金分割,且某一项的平方与前后两项之积的差值也交替相差某个值。
斐波那契数列的性质
斐波那契数列的性质一、通项公式:a n = √5〔1+√52〕n - √5〔1−√52〕n二、设p,q,u,v 为自然数且p = min{ p ,q , u , v} . 若p + q = u + v , 则对于斐波那契数列{ an} ,以下公式恒成立: a p a q - a u a v = (-1)p +1a u-p a q-u三、a n+1a n−1 - a n 2 = (−1)n (n >= 1, n 属于 N)四、a 2n+1 = a n+12 + a n 2 (n 属于N )五、a n+12 - a n−12 = a n 2 (n >= 1, n 属于N)六、a n+m = a n−1a m + a n a m+1 (n >= 1, n 和m 属于N)七、a 2n+2a 2n−1 - a 2n a 2n+1 = 1(n >= 1, n 属于N)八、a m+n 2 - a m−n 2 = a 2m * a 2n (m > n >= 1)九、a n−1∗a n+2 - a n ∗a n+1 = (−1)n (n >= 2)十、{f 2n f 2n+1} 有极限且等于黄金分割率√5 −12下面是一篇文章:第四项3是奇数,但它是偶数项,第五项5是奇数,它是奇数项,如果认为数字3和5都是奇数项,那就误解题意,怎么都说不通)如果你看到有这样一个题目:某人把一个8*8的方格切成四块,拼成一个5*13的长方形,故作惊讶地问你:为什么64=65?其实就是利用了斐波那契数列的这个性质:5、8、13正是数列中相邻的三项,事实上前后两块的面积确实差1,只不过后面那个图中有一条细长的狭缝,一般人不容易注意到。
斐波那契数列的第n项同时也代表了集合{1,2,...,n}中所有不包含相邻正整数的子集个数。
斐波那契数列(f(n),f(0)=0,f(1)=1,f(2)=1,f(3)=2……)的其他性质:1.f(0)+f(1)+f(2)+…+f(n)=f(n+2)-12.f(1)+f(3)+f(5)+…+f(2n-1)=f(2n)3.f(2)+f(4)+f(6)+…+f(2n) =f(2n+1)-14.[f(0)]^2+[f(1)]^2+…+[f(n)]^2=f(n)·f(n+1)5.f(0)-f(1)+f(2)-…+(-1)^n·f(n)=(-1)^n·[f(n+1)-f(n)]+16. f(m+n)=f(m-1)·f(n-1)+f(m)·f(n)利用这一点,可以用程序编出时间复杂度仅为O(log n)的程序。
高中数学数列的通项公式及证明
高中数学数列的通项公式及证明数列是高中数学中常见的概念之一,它是由一系列有序的数按照一定规律排列而成。
数列的通项公式是指能够通过数列中的项数n来表示第n项的公式,它是数列的核心内容之一。
在解题过程中,掌握数列的通项公式及其证明方法是非常重要的。
一、等差数列的通项公式及证明等差数列是指数列中相邻两项之间的差值恒定的数列。
常见的等差数列通项公式为an = a1 + (n-1)d,其中a1为首项,d为公差,n为项数。
例如,已知等差数列的首项为3,公差为2,求第10项的值。
根据等差数列的通项公式,可得an = 3 + (10-1)2 = 3 + 18 = 21。
等差数列的通项公式可以通过数学归纳法进行证明。
首先,假设当n=k时,等差数列的通项公式成立,即ak = a1 + (k-1)d。
然后,考虑当n=k+1时,即求第k+1项的值。
根据等差数列的定义,第k+1项可以表示为ak+1 = ak + d。
代入假设的通项公式,可得ak+1 = a1 + (k-1)d + d = a1 + kd。
因此,根据数学归纳法,等差数列的通项公式成立。
二、等比数列的通项公式及证明等比数列是指数列中相邻两项之间的比值恒定的数列。
常见的等比数列通项公式为an = a1 * r^(n-1),其中a1为首项,r为公比,n为项数。
例如,已知等比数列的首项为2,公比为3,求第5项的值。
根据等比数列的通项公式,可得an = 2 * 3^(5-1) = 2 * 3^4 = 162。
等比数列的通项公式可以通过数学归纳法进行证明。
首先,假设当n=k时,等比数列的通项公式成立,即ak = a1 * r^(k-1)。
然后,考虑当n=k+1时,即求第k+1项的值。
根据等比数列的定义,第k+1项可以表示为ak+1 = ak * r。
代入假设的通项公式,可得ak+1 = a1 * r^(k-1) * r = a1 * r^k。
因此,根据数学归纳法,等比数列的通项公式成立。
爬楼梯斐波那契数列通项
爬楼梯斐波那契数列通项
斐波那契数列在爬楼梯问题中应用的通项公式可以通过递归关系或矩阵快速幂等方法得到。
具体如下:
1.递归关系:在最简单的形式下,斐波那契数列由以下递推
关系定义:F(0) = 0, F(1) = 1, F(n) = F(n-1) + F(n-2),其中n
是台阶数。
这个递归关系意味着到达当前台阶的方法数等于到达前
两个台阶的方法数之和。
2.备忘录策略优化:由于递归算法会进行大量重复计算,我们可以使
用备忘录方法来存储已计算的值,避免重复计算,从而提高效率。
3.矩阵快速幂:对于较大的n值,还可以使用矩阵快速幂来计算斐波
那契数,这在时间复杂度上比直接递归要高效得多。
4.闭合公式:斐波那契数列也有所谓的“闭合”公式(也称为Binet公
式),即F(n) = (φ^n - (-φ)^-n) / √5,其中φ = (1 + √5) / 2
是黄金分割比。
不过这个公式在数值计算时可能会遇到浮点数精度
问题。
5.动态规划:动态规划是解决此类问题的另一种高效方式。
通过自底
向上的方式逐步构建出到达每个台阶的方法数。
6.数据范围考虑:在实际编程中,还需要考虑数据范围和整型溢出的
问题。
对于大数情况,可能需要使用更大范围的数据类型或者采用
其他避免溢出的策略。
综上所述,斐波那契数列在爬楼梯问题中的应用非常广泛,其核心思想是将复杂问题分解为简单的子问题,并利用子问题的解来构建原问题的解。
这种思想在计算机科学和数学中有着广泛的应用。
斐波那契数列 通项公式
斐波那契数列通项公式
fibonacci 数列由十九世纪意大利数学家莱昂内里·斐波那契首次提出,由数列1, 1, 2, 3, 5, 8, 13, 21, 34, …..构成的数列。
这个数列也被称为“黄金分割率数列”,因为其中数字之间的比值恰好等于黄金分割率(约为0.618)。
斐波那契数列的通式为:f(n) = f(n-1) + f(n-2),其中f(0) = 0,f(1) = 1。
当n大于1时,斐波那契数列将以前两项之和作为每一项的值,每一项都等于它前面两项之和。
斐波那契数列在许多领域都有应用,其中最主要的应用是算法和数学方面。
它可以用于解决计算机程序中的递归问题,也可以用来解决许多数学问题。
斐波那契数列也可以用来求一些规律性的物理问题,如分段弦的变形、碰撞的合力和振动的波型。
斐波那契数列不仅仅是一个数学概念,它也可以用来分析金融市场和投资过程。
它可以帮助我们更好地理解金融市场的发展情况,有助于投资者制定更有效的投资策略。
此外,斐波那契数列也可以用来帮助生物和医学研究。
斐波那契数列可以用来描述一些生物进化过程,也可以用来描述病毒抗性的下降趋势。
总之,斐波那契数列是一个十分重要的数学概念,它在科学研究、投资和金融分析等领域都得到了广泛的应用。
掌握斐波那
契数列的基本原理和特性,将有助于我们更好地实现解决各类问题的目标。
斐波那契数列求通项公式
斐波那契数列求通项公式斐波那契数列,这可是数学世界里一个相当有趣的存在!咱先来说说啥是斐波那契数列。
它的特点就是从第三项开始,每一项都等于前两项之和。
比如说最开始的两项是 0 和 1 ,那接下来就是1 、2 、3 、 5 、 8 、 13 ...... 就这么一直往后延伸。
那咱们怎么求出它的通项公式呢?这可得好好琢磨琢磨。
我记得有一次给学生们讲这个知识点的时候,有个小家伙特别积极,一直眨巴着大眼睛,紧紧盯着黑板,那认真的模样简直太可爱了!我在黑板上写下数列的各项数字,然后开始引导他们思考其中的规律。
咱们设斐波那契数列的通项公式为 \(F(n)\) ,为了求出这个通项公式,咱们得用上一些数学方法。
一种常见的方法是利用特征方程。
假设 \(F(n)\) 满足线性递推关系\(F(n) = F(n - 1) + F(n - 2)\) ,对应的特征方程就是 \(x^2 = x + 1\) 。
解这个方程,能得到两个根 \(x_1\) 和 \(x_2\) 。
接下来,咱们可以设通项公式为 \(F(n) = A \times x_1^n + B \timesx_2^n\) ,其中 \(A\) 和 \(B\) 是需要确定的常数。
然后,咱们可以利用初始条件 \(F(0) = 0\) 和 \(F(1) = 1\) 来确定 \(A\) 和 \(B\) 的值。
把这些都搞清楚,经过一番计算,就能得出斐波那契数列的通项公式啦!其实啊,求出斐波那契数列的通项公式不仅仅是为了得到一个数学结果,更重要的是在这个过程中培养咱们的逻辑思维和解决问题的能力。
就像那次课堂上,孩子们一起思考、一起讨论,虽然过程中也会遇到困难,但是当最终得出答案的时候,他们脸上那兴奋和自豪的表情,让我觉得一切的努力都太值得了!数学的魅力就在于此,一个看似简单的数列,背后却隐藏着如此精妙的规律和方法。
所以啊,同学们,别害怕数学里的这些难题,只要咱们用心去探索,总能发现其中的乐趣和奥秘!相信大家在以后的学习中,遇到类似的问题,也能像求解斐波那契数列通项公式一样,勇往直前,找到答案!。
斐波那契数列通项公式求解
斐波那契数列通项公式求解
解:设a n-αa n-1=β(a n-1-αa n-2)。
得α+β=1。
αβ=-1。
构造方程x2-x-1=0,解得α=1-√5/2,β=(1+√5)/2或α=(1+√5)/2,β=(1-√5)/2。
所以
an-(1-√5)/2*a(n-1)=(1+√5)/2*(a(n-1)-(1-√5)/2*a(n-2))=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)
an-(1+√5)/2*a(n-1)=(1-√5)/2*(a(n-1)-(1+√5)/2*a(n-2))=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)
由式1,式2,可得。
an=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)
an=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)。
将式3*(1+√5)/2-式4*(1-√5)/2,化简得an=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}。
由此可得
感想:询问老师后知道斐波那契数列的通项公式还有很多解法。
由于所学知识有限,所以使用较为简单的初等代数方法,可以称之为待定系数法,也是数学学习中常用的一种思想方法。
值得注意的是待定系数法解斐波那契数列是构造等比数列而不是等差数列,这也需要通过自己的尝试来得出。
这个公式有一个特别之处,就是公式中带有√5和分数,但无论第一项第二项都是整数,所以想通过观察找规律来得出通项公式基本是不可能的,从中也能看出数学的无尽魅力。
数学-以斐波那契数列为背景的高中数学问题
这就产生了斐波那契数列:1,1,2,3,5,8,13,21,34…其规律是从第三项起,每一项都是前两项的和.用递推公式表达表达就是:12211n n na aa a a++==⎧⎨=+⎩斐波那契数列通项公式为n nna⎡⎤⎥=−⎥⎝⎭⎝⎭1.斐波那契数列因意大利数学家斐波那契以兔子繁殖为例引入,故又称为“兔子数列”,即1,1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233 …实标生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数,斐波那契数列在现代物理及化学等领域也有着广泛的应用.斐波那契数列{}n a 满足:12211, ()n n n a a a a a n N *++===+∈,则357920211a a a a a ++++++是斐波那契数列{}n a 中的第__________项.答案:2022解析:由题意得357920212357920214579202167920212020202120221.a a a a a a a a a a a a a a a a a a a a a a a ++++++=++++++=+++++=++++==+=2.“斐波那契数列”是数学史上一个著名数列, 在斐波那契数列{}n a 中, 12211, ()n n n a a a a a n N *++===+∈ .用n S 表示他的前n 项和,若已知2020S m = ,那么2022________.a =答案:m +1解析:()12211,1n n n a a a a a n N *++===+∈123234345,,a a a a a a a a a ∴+=+=+=201920202021202020212022,a a a a a a +=+=以上累加得:1234202020212222a a a a a a ++++⋯⋯++3420212022a a a a =++⋯⋯++12320202022220221a a a a a a m a m ∴+++⋯⋯+=−=∴=+3.“斐波那契数列”由13世纪意大利数学家斐波那契发现,因为斐波那契以兔子繁殖为例子而引入,故又称该数列为“兔子数列”,斐波那契数列{}n a 满足: 12121,(3)n n n a a a a a n −−===+≥,记其前n 项和为n S ,则6543( )S S S S +−−=A.8 B.13 C.21 D.34答案:C解析:【分析】由数列的递推式和斐波那契数列{}n a 的定义,计算可得所求值.【详解】()12121,1,3,n n n a a a a a n n *−−===+≥∈N 1n a −+++1n a −+++)21n a a −++++1n a a −+++2=1n a +−21n a −++=2n a a ++=31242323a a a a a a =+==+=,5346455,8a a a a a a =+==+= 65436453S S S S S S S S ∴+−−=−+−6554855321a a a a =+++=+++=故选C.4.若数列{}n F 满足,则称{}n F 为斐波那契数列.记数列{}n F 的前n 项和为n S ,则( ) A.26571F F F =+ B.681S F =−C.135910F F F F F +++= D.2222123678F F F F F F +++=答案:BC解析:()1212,A.11,3,n n n F F F F F n n N *−−===+>∈3214325436547658769871098226576576868132, 3,5, 8,13, 2134, 55,64,166, 1 ,A B.1123520, 120, B ;C.F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F S F S F F F F ∴=+==+==+==+==+==+==+==+=∴=+=≠+=++++=−=++故错误;=-1故正确591022221236222278123678125133455;D.114925641041321273,, .C F F F F F F F F F F F F F FD ++=++++==+++=+++++==⨯=∴++++≠.故确故错误正5.斐波那契数列,又称黄分割数列,它在很多方面与大自然神奇地契合,小到地球上的动植物,如向日葵、松果、海螺的成长过程,大到海浪、飓风、宇宙星系演变,都遵循着这个规律,人们亲切地称斐波那契数列为自然界的数学之美,在数学上斐波那契数列{}n a 一般以递推的方式被定义:12211, ()n n n a a a a a n N *++===+∈,则( )A.1055a = B .2211n n n a a a ++−=C. 1n n a +⎧⎫⎪⎪+⎨⎬⎪⎪⎩⎭是等比数列 D.设1n n na b a +=,则112n n n n b b b b +++−<−答案:ABC解析:12213A.1,,n n n a a a a a a ++===+开始各项依次为:则从102, 3 ,5 ,8 ,13 ,21 ,34 ,55 ,,55,;a ⋯⋯=因此正确()222211111B.n n n n n n n n n n a a a a a a a a a a ++++−+−=+−=−由222111n n n n n n a a a a a a ++−+−=−=⋯⋯可得:22132121 1.;a a a =−=⨯−=因此正确211111C.22n n n n n a a a a a ++++−+=++11111,222n n n n a a a a ++⎛⎫+=+=+ ⎪ ⎪⎝⎭21a +2111,,;22n n a a ++⎧⎫⎪⎪∴+⎨⎬⎪⎪⎩⎭数列是等比数列因此正确11211D.,n n n n n n n n n a a a b b b a a a +++++=−=−由则212111n n n n n n n a a a a a a a ++++−==12121,n n n n b b a a ++++−=同理可得:20,n n a a +>>由斐波那契数列的单调性可得:11211,.ABC.n n n n a a a a +++>因此因此不正确故选6.(多选)斐波那契螺旋线,也称“黄金螺旋”,是根据斐波那契数列画出来的螺旋曲线,自然界中存在许多斐波那契螺旋线的图案,是自然界最完美的经典黄金比例.作图规则是在以斐波那契数为边的正方形拼成的长方形,然后在正方形里面画一个 90度的扇形,连起来的弧线就是斐波那契螺旋线.它来源于斐波那契数列,又称为黄金分割数列现将斐波那契数列记为{}n a ,12121,(3)n n n a a a a a n −−===+≥, 边长为斐波那契数a n 的正方形所对应扇形面积记为b n , (n ∈N *),则( )A.223 (3)n n n a a a n −+=+≥B. 123201920211a a a a a ++++=+C.()20202019201820214b b a a π−=⋅ D. 123202*********4b b b b a a π++++=⋅答案:AD解析:123,n n n a a a n −−=+≥由(递推公式)可得211212 n n n n n n n n a a a a a a a a ++−−−=+=+=−()221123A 3n n n n n n n a a a a a a n a +−−−+=++−=≥正确所以.故选项12313421,,,a a a a a a a ==−=−类似的有:11122(2),,1,n n n n n n a a a n a a a a +−++=−≥+−=−迭加可得123201920211B ;a a a a a +++⋯+=+故错误,故选项错误2112,,44n n n n n n b a b b a a ππ−+−=−=由题意可知,扇形面积为故()2020201920182021C ;4b b a a π−⋅=则错,故选项错误误121212223221(3),,,n n n a a a n a a a a a a a a −−=+≥==−由可得222211121,,n n n n n n n n a a a a a a a a a a +−+=−+++=迭加可得2123202020202021n n b a b b b b a a ππ=+++⋯+=⋅所以又.D AD.错误,故选故选项7.意大利著名数学家斐波那契在研究兔子的繁殖问题时,发现有这样的一列数:1,1,2,3,5,8…,这列数的特点是:前两个数均为1,从第三个数起,一个数都等于它前面两个数的和.人们把这样的一列数组成的数列{}n f 称为斐波那契数列,并将数列{}n f 中的各项除以4所得余数按原顺序构成的数列记为{}n g ,则下列说法正确的是( ) A.20211g = B.12320212696g g g g ++++=C.22221232020201920212f f f f f f ++++= D. 222123222022210f f f f f f −+−=答案:ABD解析:123451,1,2,3,1,g g g g g =====由已知得67891011120,1,1,2,3,1,0,,g g g g g g g ======={}6.n g 所以数列是以为周期的周期函数2021A ,202163365,1,A g =⨯+=对;故于选项因为所以选项正确1232021B ,g g g g ++++对于选项336(112310)(11231)2696,B ;=⨯++++++++++=故选项正确1221C ,,n n n f f f f f ++==+,对于选项()2211222312321,,f f f f f f f f f f f ∴==−=−()233423432,,f f f f f f f f =−=−()2112121,n n n n n n n n f f f f f f f f ++++++=−=−22221232020f f f f ++++所以()()()()122312343220192020201920182020202120202019f f f f f f f f f f f f f f f f f f =+−+−++−+−20202021,C ;f f =故错误()22222232122232221D ,,f f f f f f f f =−=−对于选项因为()22121222021222120,f f f f f f f f =−=−22212322202221212322232221202221222120f f f f f f f f f f f f f f f f f f −+−=++−+所以()20212221232223202321232223f f f f f f f f f f f f f =+−+−=+222322230,D .ABD.f f f f =−=故正确故选8.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 2na a ++=2211223n n n na a a +++=22223233n na a a a a a +++=+++224na a ++1n n a a +=称为“斐波那契数列”,记n S 为数列{}n a 的前n 项和,则下列结论确的是() A.68a = B.954S =C.135********a a a a a ++++= D.22212201920202019a a a a a +++=答案:ACD解析:{}A ,61,1,2,3,5,8,A ;n a 对于选项数列的前项为故正确()81234256420192020201813520192020135201921221212231232B ,112358132154,B ;C ,,,,,:2020D ,,n n n S a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a ++=+++++++===−=−⋯⋯=−++++=++++=+==−=−对于选项故错误对于选项由项;可得故是斐波那契数波列对于选项,斐的那契数列总有中第则()()21334234232220182018201920172018201920172018201920192020201920182222123201920192020,,,,D ;:A ,CD.,a a a a a a a a a a a a a a a a a a a a a a a a a a a a =−=−⋯⋯=−=−=−++++=故正确故选312n a ++=是奇数时等于第n+12, 当 n1.半径为1的两个圆12,O O外切,l是它们的一条外公切线,作312O O O l和、、均相切,作234,O O O l和、、均相切……,作11n n nO O O l+−和、、均相切,求8O的半径.解析:111,,,n n n n nO R l O S l O l O R O S P Q−+−⊥⊥作作过的平行线、于、111,n n n n nO M O R M O M PQ O P O Q−++⊥==+作于,则1nO Q+==因为1,n nO P O M+==同理==可得1112(2),1,n n n na a a a n a a+−==+≥==令则且3124235346452,3,5,8a a a a a a a a a a a a =+==+==+==+=75686713,21a a a a a a =+==+=,8228111.21441r a ===所以2.(2012上海)已知1()1f x x=+,各项均为正数的数列{}n a 满足()121,n n a a f a +==.若20102012a a =, 则2011a a +=__________.解析:2010201020121,,,1a t a a t t t ===+设由得解得则:()201020082200811,,.12k a t a t a k N a *====∈+则同理123579111123581,,,,,,,1235813n n a a a a a a a a +=======+又则2011813a a +故。
几种推导斐波那契数列通项公式的方法
几种推导斐波那契数列通项公式的方法斐波那契数列是一个非常经典的数列,它的每个元素都是前两个元素之和,即F(n) = F(n-1) + F(n-2),其中F(0) = 0,F(1) = 1。
在这篇文章中,我将介绍几种推导斐波那契数列通项公式的方法。
方法一:递推法递推法是最直接的方法,通过不断迭代计算,得到斐波那契数列的通项公式。
具体步骤如下:1. 定义初始条件F(0) = 0,F(1) = 1;2. 通过迭代计算,求解F(n) = F(n-1) + F(n-2),直到计算到所需的第n个数;3. 得到通项公式F(n)。
方法二:矩阵法矩阵法是一种基于矩阵运算的方法,通过求解矩阵的幂次方,可以得到斐波那契数列的通项公式。
具体步骤如下:1. 定义初始条件F(0) = 0,F(1) = 1;2. 构造矩阵A = [1 1; 1 0];3. 求解A的幂次方A^n,其中n为所需的第n个数;4. 得到通项公式F(n) = (A^n)_(1,2)。
方法三:特征根法特征根法是一种利用矩阵的特征值和特征向量来求解斐波那契数列通项公式的方法。
具体步骤如下:1. 定义初始条件F(0) = 0,F(1) = 1;2. 构造矩阵A = [1 1; 1 0];3. 求解矩阵A的特征值λ1和λ2,以及对应的特征向量v1和v2;4. 根据特征值和特征向量的性质,可以得到通项公式F(n) = λ1^n*v1 + λ2^n*v2。
方法四:通项公式法通项公式法是一种直接求解斐波那契数列通项公式的方法,通过对数列进行观察和推理,可以得到通项公式。
具体步骤如下:1. 观察斐波那契数列的前几个数,例如0、1、1、2、3、5、8...;2. 推理数列的规律,发现每个数都是前两个数之和;3. 假设斐波那契数列的通项公式为F(n) = a^n,其中a为常数;4. 代入初始条件F(0) = 0,F(1) = 1,解得a = (1 + √5) / 2;5. 得到通项公式F(n) = ((1 + √5) / 2)^n。
斐波那契数列通项公式推导讲解
斐波那契数列通项公式推导讲解斐波那契数列是一个非常有趣且广泛应用的数列。
它的定义非常简单,第一个和第二个数都是1,从第三个数开始,每个数都是前两个数的和。
也就是说,斐波那契数列的前几个数分别是1,1,2,3,5,8,13,21,34,55,以此类推。
我们知道,斐波那契数列的递推关系为Fn=Fn-1+Fn-2,其中Fn代表第n个斐波那契数。
那么,如何推导出斐波那契数列的通项公式呢?下面,我将详细讲解。
假设斐波那契数列的通项公式为Fn=a^n,其中a是一个实数。
将通项公式带入递推关系式中,得到:a^n=(a^n-1)+(a^n-2)。
接下来,我们将两边都除以a^n-2,得到方程:a^2=a+1这是一个二次方程,我们可以将其转化为标准形式,得到:a^2-a-1=0。
接下来,我们需要求解这个二次方程的解。
通过求根公式,得到:a=(1±√(1+4))/2简化后a1=(1+√5)/2≈1.618a2=(1-√5)/2≈-0.618因此,斐波那契数列的通项公式可以写为:Fn=(1+√5)/2^n-(1-√5)/2^n值得注意的是,由于二次方程存在两个根,因此斐波那契数列的通项公式将会有两个部分。
但在实际应用中,虽然有两个部分,但是通常只考虑第一个部分,因为这个部分是一个递增的函数,与斐波那契数列的增长趋势相一致。
以上就是斐波那契数列通项公式的推导过程。
通过这个通项公式,我们可以直接计算任意位置的斐波那契数,而不需要进行逐步迭代计算。
这大大简化了计算的复杂度,使得斐波那契数列的计算更加高效。
同时,斐波那契数列的通项公式也在很多领域有着广泛的应用。
数列的递推关系与通项公式
数列的递推关系与通项公式在数学中,数列是由数字按照一定顺序排列而成的序列。
不同的数列可以有不同的递推关系和通项公式来描述它们。
本文将详细介绍数列的递推关系和通项公式的概念、应用和计算方法。
一、递推关系递推关系是指通过前面几项的数值来计算出数列后面一项的数值的关系式。
递推关系可以用于求解以后面的数值为目标的数列问题,通常采用迭代或递归的方式进行计算。
举个例子,斐波那契数列的递推关系为:$F_{n}=F_{n-1}+F_{n-2}$,其中$F_1=1,F_2=1$。
也就是说,斐波那契数列中每一项的值都等于前两项的值之和。
通过递推关系,可以计算出斐波那契数列的任意一项,例如$F_3=2,F_4=3$等。
二、通项公式通项公式是指数列的任意一项能通过公式直接计算出来。
通项公式是数列的一种显式表达式,它不需要通过前面的项数计算后面的项数。
通项公式的求解是数列学习的重点之一。
对于某些数列,其通项公式可能很容易求解,而对于某些数列,其通项公式可能非常难以求解。
一般来说,数列的通项公式可以通过数学归纳法、递推关系和差分方程等方式求解。
举个例子,对于等差数列$a_{n}=a_{1}+(n-1)d$,其中$a_{1}$为首项,$d$为公差,$n$为项数。
通过推导,我们可以得到等差数列的通项公式为$a_{n}=a_{1}+(n-1)d$。
通过这个通项公式,我们可以方便地计算出等差数列中任意一项的值。
三、数列的应用数列是数学中非常重要的一部分,具有广泛的应用价值。
在实际生活和工作中,数列有着很多重要的应用,比如在经济学、物理学、计算机科学等学科中,数列都有着不可或缺的作用。
1. 经济学中的应用经济学中常用的一些数列,如等比数列和收益率数列,可以用于计算商品价格、资产价值和财务报表等。
数列可以帮助经济学家计算和预测未来的经济情况,找出经济规律和趋势,从而为政策制定和决策提供依据。
2. 物理学中的应用在物理学中,数列可用于描述诸如声波、光波等周期性变化的现象。
斐波那契数列通项公式
斐波那契数列通项公式
定义
斐波那契数列指的是每⼀项都等于前两项之和的数列,定义为F[1]=1,F[2]=1, F[n]=F[n-1]+F[n-2](n>=3)。
通项公式
我们先来研究形如F[n]=c1F[n-1]+c2F[n-2]的数列。
对于这样的数列,F[n]-xF[n-1]与F[n-1]-xF[n-2]的⽐值⼀定是⼀个定值,即:
将其进⾏移项运算,得:
对应得:
回到斐波那契数列的问题中来,把c1=c2=1代⼊特征⽅程组得:
解得:
两组解分别记为x1、y1、x2、y2。
再看:
此式是⼀个公⽐为y的等⽐数列,第⼀项为F[1]-xF[0],第⼆项为F[2]-xF[1],以此类推,第n项为F[n]-xF[n-1],根据等⽐数列公式F[n]=F[1]q n-1得:将两组x、y的解代⼊得⽅程组:
将x1=y2;x2=y1代⼊后,解得:
因为F[0],F[1],x1,x2均为已知,可记为常项,得到斐波那契数列的通项公式:
⼜因为F[1]=F[2]=1,所以得到⽅程组:
解得:
因此,斐波那契数列的通项公式为:。
斐波那契数列
斐波那契数列斐波那契数列,又称黄金分割数列,指的是这样一个数列:0、1、1、2、3、5、8、13、21、……在数学上,斐波纳契数列以如下被以递归的方法定义:F0=0,F1=1,Fn=F(n-1)+F(n-2)(n>=2,n∈N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1960年代起出版了《斐波纳契数列》季刊,专门刊载这方面的研究成果。
中文名:斐波那契数列外文名:Fibonacci Sequence别名:黄金分割数列所属学科:数论目录1定义2通项公式▪递推公式▪通项公式▪通项公式的推导3与黄金分割▪关系▪证明4特性▪平方与前后项▪与集合子集▪求和▪奇数项求和▪偶数项求和▪平方求和▪加减求和▪和项数公式▪奇数项与某两项的平方▪偶数项与某两项的平方▪隔项关系▪两倍项关系5应用▪生活中斐波那契▪黄金分割▪杨辉三角▪质数数量▪尾数循环▪自然界中巧合▪数字谜题6推广▪斐波那契—卢卡斯数列▪广义斐波那契数列7相关数学▪排列组合▪兔子繁殖问题▪数列与矩阵8前若干项9斐波那契弧线10社会文明▪艾略特波浪理论▪人类文明的斐波那契演进11用C语言输出菲波那契数列第a项1定义编辑斐波那契数列指的是这样一个数列0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...特别指出:0是第0项,不是第1项。
这个数列从第二项开始,每一项都等于前两项之和。
斐波那契数列的发明者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci),自然中的斐波那契数列生于公元1170年,卒于1240年,籍贯是比萨。
他被人称作―比萨的列昂纳多‖。
1202年,他撰写了《珠算原理》(Liber Abacci)一书。
他是第一个研究了印度和阿拉伯数学理论的欧洲人。
他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。
成人学游泳最简单方法
成人学游泳最简单方法斐波那契数列,这可是数学里一个相当有趣的存在!咱今天就来好好聊聊它通项公式的推导。
先来说说啥是斐波那契数列。
这个数列的特点就是从第三项开始,每一项都等于前两项之和。
比如最开始的两项是 0 和 1 ,那接下来就是 1 、 2 、 3 、 5 、 8 、 13 ......是不是感觉挺神奇的?还记得我之前给学生们讲斐波那契数列的时候,有个小家伙瞪着大眼睛,一脸困惑地问我:“老师,这数列有啥用啊?”我笑着告诉他:“别着急,等你慢慢了解就知道它的妙处啦。
”那咱们就正式开始推导通项公式。
咱们设斐波那契数列的第 n 项为F(n) ,那么就有 F(n) = F(n - 1) + F(n - 2) ,这是它的核心性质。
为了推导通项公式,咱们可以试试用特征方程的方法。
假设这个数列的通项公式是 F(n) = x^n ,把它代入到递推关系 F(n) = F(n - 1) + F(n - 2) 中,就得到 x^n = x^(n - 1) + x^(n - 2) 。
两边同时除以 x^(n - 2) ,就得到 x^2 = x + 1 。
解这个方程,能得到两个根,咱分别叫它们α和β。
经过一番计算,α = (1 + √5) / 2 ,β = (1 - √5) / 2 。
这时候,通项公式就可以写成F(n) = Aα^n + Bβ^n ,其中 A 和 B 是待定系数。
那怎么确定 A 和 B 呢?这就得用到数列的初始条件啦,也就是 F(0) = 0 , F(1) = 1 。
把这两个条件代入通项公式,就能算出 A 和 B 的值。
算出来之后,就得到了斐波那契数列完整的通项公式。
说到这,我又想起那次课堂上,同学们努力计算的样子,有的咬着笔头,有的皱着眉头,那认真的劲儿,真让人觉得可爱。
斐波那契数列在生活中的应用也不少呢。
比如植物的生长,很多花朵的花瓣数量就符合斐波那契数列。
还有一些艺术作品的构图,也会用到斐波那契数列的比例,让作品看起来更加美观和谐。
叠罗汉,越高墙——斐波那契数列通项公式的合理导出
叠罗汉,越高墙——斐波那契数列通项公式的合理导出
何志奇
【期刊名称】《新高考(高一数学)》
【年(卷),期】2014(000)004
【摘要】斐波那契数列由意大利数学家斐波那契于1202年发现,它由简单的递推式:F(n+2)=(n+1)+F(n)以及初始两项F(1)=F(2)=1定义.因其与封闭起来的兔子养殖场自然增长的兔子数有关,让人觉得它非常有趣.再加上黄金分割数与它有着千丝万缕的关系,使得它更蒙上了某种神秘的色彩.
【总页数】2页(P40-41)
【作者】何志奇
【作者单位】江苏省天一中学
【正文语种】中文
【相关文献】
1.斐波那契数列通项公式的探究教学启示
2.斐波那契数列通项公式的另类求法
3.斐波那契数列通项公式的求法
4.斐波那契数列通项公式的几种求法
5.斐波那契数列通项公式的几种新求法
因版权原因,仅展示原文概要,查看原文内容请购买。