胆固醇代谢 生物化学思维导图

合集下载

脂代谢思维导图

脂代谢思维导图

脂代谢思维导图思维导图:思维导图充分运用左右脑的机能,利用记忆、阅读、思维的规律,协助人们在科学与艺术、逻辑与想象之间平衡发展,从而开启人类大脑的无限潜能。

脂代谢:脂代谢是指人体摄入的大部分脂肪经胆汁乳化成小颗粒,胰腺和小肠内分泌的脂肪酶将脂肪里的脂肪酸水解成游离脂肪酸和甘油单酯。

水解后的小分子,如甘油、短链和中链脂肪酸,被小肠吸收进入血液。

甘油单脂和长链脂肪酸被吸收后,先在小肠细胞中重新合成甘油三酯,并和磷脂、胆固醇和蛋白质形成乳糜微粒,由淋巴系统进入血液循环。

基本信息:脂肪:由甘油和脂肪酸合成,体内脂肪酸来源有二:一是机体自身合成,二是食物供给特别是某些不饱和脂肪酸,机体不能合成,称必需脂肪酸。

磷脂:由甘油与脂肪酸、磷酸及含氮化合物生成。

鞘脂:由鞘氨酸与脂肪酸结合的脂,含磷酸者称鞘磷脂,含糖者称为鞘糖脂。

胆固醇脂:胆固醇与脂肪酸结合生成。

甘油三酯代谢:甘油三酯代谢过程合成代谢1、合成部位及原料肝、脂肪组织、小肠是合成的重要场所,以肝的合成能力最强,注意:肝细胞能合成脂肪,但不能储存脂肪。

合成后要与载脂蛋白、胆固醇等结合成极低密度脂蛋白,入血运到肝外组织储存或加以利用。

若肝合成的甘油三酯不能及时转运,会形成脂肪肝。

脂肪细胞是机体合成及储存脂肪的仓库。

合成甘油三酯所需的甘油及脂肪酸主要由葡萄糖代谢提供。

2、合成基本过程①甘油一酯途径:这是小肠粘膜细胞合成脂肪的途径,由甘油一酯和脂肪酸合成甘油三酯。

②甘油二酯途径:肝细胞和脂肪细胞的合成途径。

脂肪细胞缺乏甘油激酶因而不能利用游离甘油,只能利用葡萄糖代谢提供的3-磷酸甘油。

分解代谢即为脂肪动员,在脂肪细胞内激素敏感性甘油三酯脂的酶作用下,将脂肪分解为脂肪酸及甘油并释放入血供其他组织氧化。

甘油甘油激酶——>3-磷酸甘油——>磷酸二羟丙酮——>糖酵解或有氧氧化供能,也可转变成糖脂肪酸与清蛋白结合转运入各组织经β-氧化供能。

脂肪酸的分解代谢—β-氧化在氧供充足条件下,脂肪酸可分解为乙酰CoA,彻底氧化成CO2和H2O并释放出大量能量,大多数组织均能氧化脂肪酸,但脑组织例外,因为脂肪酸不能通过血脑屏障。

脂代谢思维导图

脂代谢思维导图

思维导图:思维导图,是表达发散性思维的有效图形思维工具,它简单却又很有效,是一种实用性的思维工具。

思维导图充分运用左右脑的机能,利用记忆、阅读、思维的规律,协助人们在科学与艺术、逻辑与想象之间平衡发展,从而开启人类大脑的无限潜能。

思维导图因此具有人类思维的强大功能。

脂代谢:脂代谢是指人体摄入的大部分脂肪经胆汁乳化成小颗粒,胰腺和小肠内分泌的脂肪酶将脂肪里的脂肪酸水解成游离脂肪酸和甘油单酯(偶尔也有完全水解成甘油和脂肪酸)。

水解后的小分子,如甘油、短链和中链脂肪酸,被小肠吸收进入血液。

基本信息:脂肪:由甘油和脂肪酸合成,体内脂肪酸来源有二:一是机体自身合成,二是食物供给特别是某些不饱和脂肪酸,机体不能合成,称必需脂肪酸,如亚油酸、α-亚麻酸。

磷脂:由甘油与脂肪酸、磷酸及含氮化合物生成。

鞘脂:由鞘氨酸与脂肪酸结合的脂,含磷酸者称鞘磷脂,含糖者称为鞘糖脂。

胆固醇脂:胆固醇与脂肪酸结合生成。

甘油三酯代谢:甘油三酯代谢过程合成代谢1、合成部位及原料肝、脂肪组织、小肠是合成的重要场所,以肝的合成能力最强,注意:肝细胞能合成脂肪,但不能储存脂肪。

合成后要与载脂蛋白、胆固醇等结合成极低密度脂蛋白,入血运到肝外组织储存或加以利用。

若肝合成的甘油三酯不能及时转运,会形成脂肪肝。

脂肪细胞是机体合成及储存脂肪的仓库。

合成甘油三酯所需的甘油及脂肪酸主要由葡萄糖代谢提供。

其中甘油由糖酵解生成的磷酸二羟丙酮转化而成,脂肪酸由糖氧化分解生成的乙酰CoA合成。

2、合成基本过程①甘油一酯途径:这是小肠粘膜细胞合成脂肪的途径,由甘油一酯和脂肪酸合成甘油三酯。

②甘油二酯途径:肝细胞和脂肪细胞的合成途径。

脂肪细胞缺乏甘油激酶因而不能利用游离甘油,只能利用葡萄糖代谢提供的3-磷酸甘油。

分解代谢即为脂肪动员,在脂肪细胞内激素敏感性甘油三酯脂的酶作用下,将脂肪分解为脂肪酸及甘油并释放入血供其他组织氧化。

甘油甘油激酶——>3-磷酸甘油——>磷酸二羟丙酮——>糖酵解或有氧氧化供能,也可转变成糖脂肪酸与清蛋白结合转运入各组织经β-氧化供能。

脂类代谢思维导图

脂类代谢思维导图

代谢:代谢是生物体内所发生的用于维持生命的一系列有序的化学反应的总称。

这些反应进程使得生物体能够生长和繁殖、保持它们的结构以及对外界环境做出反应。

基本概念:细胞内发生的各种化学反应的总称,主要有分解代谢和合成代谢两个过程组成。

新陈代谢的概念新陈代谢是生物体内全部有序化学变化的总称。

它包括物质代谢和能量代谢两个方面。

物质代谢:是指生物体与外界环境之间物质的交换和生物体内物质的转变过程。

能量代谢:是指生物体与外界环境之间能量的交换和生物体内能量的转变过程。

在新陈代谢过程中,既有同化作用,又有异化作用。

同化作用:又叫做合成代谢)是指生物体把从外界环境中获取的营养物质转变成自身的组成物质,并且储存能量的变化过程。

异化作用:(又叫做分解代谢)是指生物体能够把自身原有的一部分组成物质加以分解,释放出其中的能量,并且把分解的终产物排出体外的变化过程。

新陈代谢中的同化作用、异化作用、物质代谢和能量代谢之间的关系,可以用左面的表解来概括:新陈代谢的基本类型生物在长期的进化过程中,不断地与它所处的环境发生相互作用,逐渐在新陈代谢的方式上形成了不同的类型。

按照自然界中生物体同化作用和异化作用方式的不同,新陈代谢的基本类型可以分为以下几种。

同化作用的三种类型根据生物体在同化作用过程中能不能利用无机物制造有机物,新陈代谢可以分为自养型和异养型和兼性营养型三种。

自养型绿色植物直接从外界环境摄取无机物,通过光合作用,将无机物制造成复杂的有机物,并且储存能量,来维持自身生命活动的进行,这样的新陈代谢类型属于自养型。

少数种类的细菌,不能够进行光合作用,而能够利用体外环境中的某些无机物氧化时所释放出的能量来制造有机物,并且依靠这些有机物氧化分解时所释放出的能量来维持自身的生命活动,这种合成作用叫做化能合成作用。

例如,硝化细菌能够将土壤中的氨(NH3)转化成亚硝酸(HNO2)和硝酸(HNO3),并且利用这个氧化过程所释放出的能量来合成有机物。

代谢生物化学第三十章 胆固醇代谢

代谢生物化学第三十章 胆固醇代谢

脂肪 B-100,
运输内源的脂肪
C-I,II,III, E
脂肪, B-100, E 一部分被肝吸收,
胆固醇
一部分转变为LDL
胆固醇 B-100
蛋白质 A, CI,II,III, D, E
将胆固醇转运到外 周组织
胆固醇的逆向运输, 向CM和VLDL提 供脂蛋白
四种血浆脂蛋白的显微结构
脱辅基脂蛋白
¶ “apo” =无脂的蛋白质形式 ¶ 特殊的脂/胆固醇载体蛋白 ¶ 与特定的受体作用和/或调节特定的酶活性 ¶ 人类至少已发现9 种不同的脱辅基脂蛋白
胆固醇合成的第三个阶段的反应
其他异戊二烯类化合物的形成
第四阶段:鲨烯→胆固醇
« 当鲨烯合成以后,由于它不溶于水,需要细 胞质基质中的固醇载体蛋白将其运输到内质 网膜上开始最后一个阶段的反应。
« 共由22步反应组成: 鲨烯→2,3-环氧鲨烯→羊毛固醇→7-脱氢胆 固醇→胆固醇。
胆固醇合成的第四个阶段的反应
第三十章 胆固醇代谢
杨荣武 生物化 学原理 第二版
提纲
一、胆固醇的合成 二、胆固醇的运输 三、胆固醇的代谢转变 四、胆固醇代谢的调节
我们需要胆固醇的四大理由
¶ 膜的组分——控制膜的流动性 ¶ 胆汁酸/盐的前体 ¶ 固醇类激素的前体 ¶ 维生素D的前体
胆固醇的结构
胆固醇酯化的位点
胆固醇的生物合成
血浆脂蛋白
=脂 + 脱辅基脂蛋白
« 乳糜微粒-CM (小肠) « 极低密度脂蛋白-VLDL (肝) « 中间密度脂蛋白-IDL « 低密度脂蛋白-LDL « 高密度脂蛋白-HDL « VLDL IDL LDL
五种血浆脂蛋白的结构与功能
种类
密度 (kg/L)

2024版生物化学思维导图

2024版生物化学思维导图

糖类结构与功能
糖类的基本组成单位
单糖,如葡萄糖、果糖等。
糖类的分类
单糖、二糖、多糖等,其中多糖又可分为淀 粉、糖原、纤维素等。
糖类的结构
由碳、氢、氧三种元素组成,可通过糖苷键 连接形成多糖。
糖类的功能
提供能量;作为细胞结构的组成成分;参与 细胞识别和信号传导等。
03 生物小分子代谢 途径及调控机制
蛋白质结构与功能
蛋白质的一级结构
指多肽链中氨基酸的排列顺序, 决定了蛋白质的特异性。
蛋白质的二级结构
指多肽链中局部空间结构,如α螺旋、β-折叠等,影响蛋白质的 功能。
蛋白质的三级结构
指整条多肽链的三维空间结构, 包括疏水键、氢键、离子键等作 用力。
蛋白质的基本组成单位
氨基酸,通过肽键连接形成多肽 链。
未来发展趋势和挑战
发展趋势
生物化学技术将不断向更高通量、更高灵敏度、更精准化方向 发展,与其他学科交叉融合,推动生命科学领域快速发展。
挑战
随着生物化学技术的广泛应用,生物伦理、生物安全等问题日 益凸显,需要加强监管和规范。同时,技术创新和成果转化也 面临诸多挑战,需要加强产学研合作和人才培养。
THANKS
翻译后水平调控 包括蛋白质修饰、折叠、转运和降解 等过程,影响蛋白质的结构和功能。
基因表达异常与疾病发生关系
基因突变
基因序列的改变可能导致蛋白质结构或功能的异 常,进而引发疾病。
基因沉默
某些基因在正常情况下应该表达,但由于种种原 因被沉默,导致相关功能缺失和疾病发生。
ABCD
基因扩增
某些基因的过度扩增可能导致细胞增殖失控和肿 瘤的发生。


氮代谢途径及调控机制

生物化学思维导图

生物化学思维导图

生物化学思维导图体会:生物大分子是生物信息的载体(携带、体现、传递、表达);有序性是信息载体的基础;链的长短、数组成:元素组成特点、构件分子组成特点(可修饰性)目、缠绕方式等是信息携带量的基础。

结构:一级结构、空间结构、作用力(共价与非共价)、静态生物化学糖类、脂类、蛋白质、核酸主干链的单调重复性、支链的多变性、异构与构象、结构的主次性。

(生物大分子结构与功能)(酶、维生素、激素)性质:物理、化学、生物学功能:生物学功能的主次性物质代谢:细胞定位、关键酶、代谢物、反应特点、调节。

体会:各代谢途径的意义、生理功能。

合成代谢:从头合成、半合成(补救合成)分解代谢:水解、磷酸解、硫解、焦磷酸解生动态生物化学糖代谢、脂类代谢、氨基酸物化(物质代谢与调节)代谢、核苷酸代谢学能量代谢(能量变化)放能反应、吸能反应(偶联)核酸、蛋白质生物合成的定义、体系(模板、体会:基因表达的内容、调控及意义。

酶、原料、辅助因子)、方向、方式、特点、过程(起始、延长。

终止)、加工修饰。

复制、转录、翻基础分子生物学基因表达的调控、操纵子模式(概念、结构、合成、蛋白质合成DN合成RN(基因的表达与调控)控方式)。

生物化学课程体系1 思维导图生物化学思维导图)、直链及环状结构的书写方式α、βL重要单糖结构:构型(D、、物理性质:旋光性(比旋光度)、变旋性单糖化学性质:还原性、氧化性、成脎、成苷、成酯、颜色反应、鉴定等衍生物:磷酸糖、氨基糖、糖醇、糖苷、脱氧糖等糖重要双糖结构:单糖种类、构型、序列、糖苷键寡糖类重要双糖性质:旋光性、氧化还原性、分析鉴定化学重要多糖组成特点:二糖单位、方向性、糖苷键、分支多糖糖胺聚糖:类型、组成、功能肽聚糖:组成、功能复合多糖糖蛋白:组成、功能蛋白聚糖:组成、功2 思维导糖类化学知识体系生物化学思维导图思维导图3 糖蛋白与蛋白聚糖生物化学思维导图中性脂结构、性质、生物学功能脂肪酸:结构特点、命名、性质,如碳链的长度、饱和度、空间结构、溶解度、熔点等中性脂油脂:结构特点、性质,如乳化现象、皂化作用、卤化作用、酸败等常见甘油磷脂及生物学功能脂磷脂组成单位、化学键、解离情况类化固醇组成特点、衍生物、功能学分类、组成特点、功能脂蛋白结构:由脂质双分子层、蛋白质镶嵌而成,脂质是骨架,决定膜的流动性、排列方式生物膜生物学功能:蛋白质决定生物膜的生物学功能。

完整版生物化学思维导图

完整版生物化学思维导图

体会:生物大分子是生物信息的载体(携带、体现、传递、表达);有序性是信息载体的基础;链的长短、数组成:元素组成特点、构件分子组成特点(可修饰性)目、缠绕方式等是信息携带量的基础。

结构:一级结构、空间结构、作用力(共价与非共价)、静态生物化学糖类、脂类、蛋白质、核酸主干链的单调重复性、支链的多变性、异构与构象、结构的主次性。

(生物大分子结构与功能)(酶、维生素、激素)性质:物理、化学、生物学功能:生物学功能的主次性物质代谢:细胞定位、关键酶、代谢物、反应特点、调节。

体会:各代谢途径的意义、生理功能。

合成代谢:从头合成、半合成(补救合成)分解代谢:水解、磷酸解、硫解、焦磷酸解生动态生物化学糖代谢、脂类代谢、氨基酸物化(物质代谢与调节)代谢、核苷酸代谢学能量代谢(能量变化)放能反应、吸能反应(偶联)核酸、蛋白质生物合成的定义、体系(模板、体会:基因表达的内容、调控及意义。

酶、原料、辅助因子)、方向、方式、特点、程(起始、延长。

终止)、加工修饰复制、转录、翻基础分子生物学基因表达的调控、操纵子模式(概念、结构、调合成、蛋白质合成)DNA合成、RNA((基因的表达与调控)控方式)。

生物化学课程体系1 思维导图)、直链及环状结构的书写方式α、βL重要单糖结构:构型(D、、物理性质:旋光性(比旋光度)、变旋性单糖化学性质:还原性、氧化性、成脎、成苷、成酯、颜色反应、鉴定等衍生物:磷酸糖、氨基糖、糖醇、糖苷、脱氧糖等糖重要双糖结构:单糖种类、构型、序列、糖苷键寡糖类重要双糖性质:旋光性、氧化还原性、分析鉴定化学重要多糖组成特点:二糖单位、方向性、糖苷键、分支多糖糖胺聚糖:类型、组成、功能肽聚糖:组成、功能复合多糖糖蛋白:组成、功蛋白聚糖:组成、功2 思维导糖类化学知识体系思维导图3 糖蛋白与蛋白聚糖中性脂结构、性质、生物学功能脂肪酸:结构特点、命名、性质,如碳链的长度、饱和度、空间结构、溶解度、熔点等中性脂油脂:结构特点、性质,如乳化现象、皂化作用、卤化作用、酸败等常见甘油磷脂及生物学功能脂磷脂组成单位、化学键、解离情况类化固醇组成特点、衍生物、功能学分类、组成特点、功能脂蛋白结构:由脂质双分子层、蛋白质镶嵌而成,脂质是骨架,决定膜的流动性、排列方式生物膜生物学功能:蛋白质决定生物膜的生物学功能。

生物化学思维导图

生物化学思维导图

底物浓度、酶浓度、pH、温度、激活剂、抑制剂对反应速度的影响
酶的调节
别构调节、共价修饰调节、酶原激活、同工酶 思维导图 14 酶化学课程体系
思维导图 15 酶的催化作用
思维导图 16 酶的调节
思维导图 17 酶促反应动力学
维生素化学
维生素的概述
定义、分类、命名、生理功能、缺乏症
体会:比较结构特点,关注功能基团
维生素的结构
各种维生素的基团组成特点及链接方式
维生素的代谢作用
水溶性维生素,特别是 B 族作为辅酶/辅基与代谢的关系,活性形式
体会:维生素与代谢的关系,对生物机体的保护 作用,食物来源
脂溶性维生素对代谢的影响
思维导图 18 维生素化学
思维导图 19 辅酶与辅助因子
激素的概述
体会:生命体调节层次和关系,包括:整体 水平、细胞水平、分子水平。
概念、分类、化学本质、作用特点、主要生理功能
激素化学
激素的作用特点
激素的作用机制
体会:细胞信息传导通路的研究内容、 联系、意义。
组织特异性、高亲和力、可饱和性、可调节性、可逆性、级联放大效应 cAMP-蛋白激酶 A 途径 IP3、Ca-CaM 途径;DAG-蛋白激酶 C 途径 酪氨酸激酶途径 固醇类激素途径
体会:氨基酸结构特点与性质、分析分离方法的关系
理化性质:光学性质、酸碱性质、化学反应 化学/元素组成特点
蛋白质的结构
一级结构(共价结构)特点:肽键、方向、活性肽、序列分析 二级结构特点:肽单位、种类、特点、分子作用力
体会:分子作用力对结构的形成和稳定
三级、四级结构特点:分子作用力、球形蛋白、纤维蛋白
功能:生物学功能的主次性
体会:各代谢途径的意义、生理功能。

脂类代谢思维导图

脂类代谢思维导图

脂类代谢思维导图1,低温环境肯定会影响物质的跨膜运输。

温度会影响分子运动的速率,影响化学反应的速率,因此,组成细胞膜的分子的流动性也会相应降低,呼吸作用释放能量的过程也会因有关酶的活性降低而受到抑制。

这些都会影响物质跨膜运输的速率。

2,载体蛋白在细胞膜上形成特定的孔道,并且这种孔道的开与关是可调控的。

控制开关的机制之一是胞外的信号分子通过与通道蛋白的结合,改变这些蛋白的构象,使通道打开或关闭。

这种通道称为配体门通道。

另一种控制方式是细胞内或细胞外特定离子的浓度发生变化而导致膜电位变化,而膜电位的变化又导致通道蛋白构象变化,由此来控制通道的开关,此类通道称为电位门通道。

例如,当胞液中游离Ca2+的浓度增加时,一些K+的通道打开。

通道开放的时间是非常短的,常常只有几毫秒,被运输的物质顺浓度梯度迅速穿过通道。

不同通道常形成一个完整的系统,相互间协调,共同产生某一效应。

1什么是脂质?我们要学习脂质的代谢,首先要了解什么是脂质。

脂质,由脂肪酸和醇作用生成的酯及其衍生物统称为脂类,这是一类一般不溶于水而溶于脂溶性溶剂的化合物。

脂质包括脂肪、磷脂、胆固醇和鞘质。

甘油三酯合成代谢甘油三酯是机体储存能量及氧化供能的重要形式。

1.合成部位及原料肝、脂肪组织、小肠是合成的重要场所,以肝的合成能力最强,注意: 肝细胞能合成脂肪,但不能储存脂肪。

合成后要与载脂蛋白、胆固醇等结合成极低密度脂蛋白,入血运到肝外组织储存或加以利用。

若肝合成的甘油三酯不能及时转运,会形成脂肪肝。

脂肪细胞是机体合成及储存脂肪的仓库。

合成甘油三酯所需的甘油及脂肪酸主要由葡萄糖代谢提供。

其中甘油由糖酵解生成的磷酸二羟丙酮转化而成,脂肪酸由糖氧化分解生成的乙酰CoA合成。

2.合成基本过程①甘油一酯途径:这是小肠粘膜细胞合成脂肪的途径,由甘油一酯和脂肪酸合成甘油三酯。

②甘油二酯途径:肝细胞和脂肪细胞的合成途径。

脂肪细胞缺乏甘油激酶因而不能利用游离甘油,只能利用葡萄糖代谢提供的3-磷酸甘油。

《胆固醇代谢》课件

《胆固醇代谢》课件

4
参与免疫反应
胆固醇可以参与人体的免疫反应,帮助调节和增强免疫功能。
胆固醇的合成和代谢
合成
胆固醇的大部分都是由人体内部 通过生化途径合成的。
代谢
胆固醇经过肝脏的代谢来调节其 浓度,再通过胆汁淤积,和肠道 份泌等方式排出人体。
运输
胆固醇在人体内通过载脂蛋白来 运输,其中LDL-C 被认为是导致 心血管疾病的主要因素。
检测群体
成年人、肥胖症患者、高血压、糖尿病 患者、心血管疾病患者等。
检测指标
胆固醇浓度、低密度脂蛋白胆固醇浓度、 高密度脂蛋白胆固醇浓度等。
胆固醇降低方法和治疗方案
日常饮食
选择低胆固醇食品,如全谷类、 水果、蔬菜、低脂肪奶制品、鱼 类等。
药物治疗
身体锻炼
常用降低胆固醇药物包括他汀类、 树脂类、胆酸吸收抑制剂、胆固 醇清除剂等。
来源
胆固醇的主要来源是人体内部自身的合成,也可以通过食物摄入,如肝脏、脑、肾、蛋黄、 动物脂肪等。
胆固醇的生理作用
1
维持生命
胆固醇是合成人体内部物质,包括性激素、维生素 D 和胆汁酸等。
2
维持细胞结构
胆固醇可以调节细胞膜的透过性和稳定性,维持细胞生存所需的结构和功能。
3
保护神经系统
胆固醇在神经系统中具有重要作用,且有抗氧化作用,有助于保护神经系统健康。
药物治疗
当饮食和运动管理不够有效时,可以选择药物 治疗来帮助降低胆固醇水平。
进行身体锻炼
运动可以增加身体的消耗量,有助于消耗多余 的脂肪和胆固醇。
生活方式改变
戒烟、限制饮酒、保持心情舒畅。
胆固醇检测监测
1
检测手段
2
血脂检测仪、生物芯片、超声波等。

脂类及其代谢—胆固醇的代谢(生物化学课件)

脂类及其代谢—胆固醇的代谢(生物化学课件)
胆固醇的合成
生物化学 B i o c h e m i s t r y
胆固醇
(一)胆固醇的结构
固醇共同结构: 环戊烷多氢菲
12 H 13 17
11 C
1
H 10
H
D 16
2 A
9 8 14 15
H
H
3
B 5
7
4
6
(二)胆固醇在体内含量及分布
• 广泛分布于全身各组织中 • 大约 ¼ 分布在脑、神经组织 • 肝、肾、肠等内脏、皮肤、脂
(三)合成基本过程
1. 乙酰CoA先合成甲羟戊酸
2CH3COCoA 硫解酶 HSCoA
CH3COCH2COCoA
HMG CoA合酶
CH3COCoA HSCoA
COOH
CH2
HMG CoA 还原酶
HO C CH3
CH2 2NADPH+2H+ 2NADP+ HSCoA
COCoA
羟甲基戊二酸单酰CoA
合成胆固醇的 限速酶
肪组织中也较多 • 肌肉组织含量较低 • 肾上腺、卵巢等合成类固醇激
素的腺体含量较高
含量 分布
约140克
游离胆固醇、
存在
形式
胆固醇酯
二、胆固醇的生物合成
(一)合成部位
组织 定位
除成年动物脑组织及成熟红 细胞外,几乎全身各组织均 可合成,以肝、小肠为主。
胞液、光面内质网
细胞 定位
(二)合成原料
乙酰CoA通过柠檬酸-丙酮酸循环出线粒体
COOH CH2 HO C CБайду номын сангаас3 CH2 CH2OH
甲羟戊酸(MVA, C6)
2. 甲羟戊酸经历15碳化合物 转变为30碳的鲨烯

生物化学第五节 胆固醇代谢

生物化学第五节 胆固醇代谢

第五节胆固醇代谢2015-07-07 71752 0一、体内胆固醇来自食物和内源性合成胆固醇有游离胆固醇( free cholesterol,FC),亦称非酯化胆固醇(unesterified cholesterol)和胆固醇酯( cholesterol ester)两种形式,广泛分布于各组织,约1/4分布在脑及神经组织,约占脑组织20%。

肾上腺、卵巢等类固醇激素分泌腺,胆固醇含量达1% ~5%。

肝、肾、肠等内脏及皮肤、脂肪组织,胆固醇含量约为每100g组织200~500mg,以肝最多。

肌组织含量约为每100g组织100~200mg。

(一)体内胆固醇合成的主要场所是肝除成年动物脑组织及成熟红细胞外,几乎全身各组织均可合成胆固醇,每天合成量为lg左右。

肝是主要合成器官,占自身合成胆固醇的70%~80%,其次是小肠,合成10%。

胆固醇合成酶系存在于胞质及光面内质网膜。

(二)乙酰CoA和NADPH是胆固醇合成基本原料14C及13C标记乙酸甲基碳及羧基碳,与肝切片孵育证明,乙酸分子中的2个碳原子均参与构成胆固醇,是合成胆固醇唯一碳源。

乙酰CoA是葡萄糖、氨基酸及脂肪酸在线粒体的分解产物,不能通过线粒体内膜,需在线粒体内与草酰乙酸缩合生成柠檬酸,通过线粒体内膜载体进入胞质,裂解成乙酰CoA,作为胆固醇合成原料。

每转运1分子乙酰CoA,由柠檬酸裂解成乙酰CoA时消耗1分子ATP。

胆固醇合成还需NADPH供氢、ATP供能。

合成1分子胆固醇需18分子乙酰CoA、36分子AIP及16分子NADPH。

(三)胆固醇合成由以HMG-CoA还原酶为关键酶的一系列酶促反应完成胆固醇合成过程复杂,有近30步酶促反应,大致可划分为三个阶段(图7_9)。

1.由乙酰CoA合成甲羟戊酸2分子乙酰CoA在乙酰乙酰CoA硫解酶作用下,缩合成乙酰乙酰CoA;再在HMG-CoA合酶作用下,与1分子乙酰CoA缩合成HMG-CoA。

在线粒体中,HMG-CoA被裂解生成酮体;而胞质生成的HMG-CoA,则在内质网HMG-CoA还原酶(HMG-CoA reductase)作用下,由NADPH供氧,还原生成甲羟戊酸(mevalonic acid,MVA)。

第三十章 胆固醇代谢

第三十章 胆固醇代谢

胆固醇合成的第三个阶段的反应
其他异戊二烯类化合物的形成
第四阶段:鲨烯→胆固醇
当鲨烯合成以后,由于它不溶于水,需要细 胞质基质中的固醇载体蛋白将其运输到内质 网膜上开始最后一个阶段的反应。 共由22步反应组成: 鲨烯→2,3-环氧鲨烯→羊毛固醇→7-脱氢胆 固醇→胆固醇。
胆固醇合成的第四个阶段的反应
种类 CM VLD L IDL
B-100, 运输内源的脂肪 C-I,II,III, E 一部分被肝吸收, 一部分转变为LDL 将胆固醇转运到外 周组织 胆固醇的逆向运输, 向CM和VLDL提 供脂蛋白
脂肪, B-100, E 胆固醇 胆固醇 B-100 蛋白质 A, CI,II,III, D, E
LDL HDL
胆固醇的运输
机体内存在三条运输胆固醇的路线分别负责 将食物中获取的胆固醇运输到肝细胞、将肝 细胞中的胆固醇运输到肝外细胞和将肝外细 胞多余的胆固醇运回肝细胞,其中最后一条 路线被称为胆固醇的逆向运输。然而,胆固 醇与其它脂一样,其溶解性质不允许它直接 在水溶性环境中进行运输,只能和其它脂一 起与脱辅基脂蛋白组装成脂蛋白以后才能进 行转运。
LDL的结构模型
受体介导的LDL内吞
:)
HDL
合成与肝细胞和小肠
含有卵磷脂-胆固醇脂酰基转移酶(LCAT)
的激活剂 参与胆固醇的逆向运输 (好胆固醇) 通过受体介导的内吞被肝细胞吸收
胆固醇代谢的调节
胆固醇合成的限速酶是HMG-CoA还原酶 调节的方式包括 (1)“蛋白质的可逆磷酸化” (2)酶的降解 (3)酶基因的表达调控
共有3步反应,其中前2步反应与发生在肝 细胞线粒体内合成酮体的前2步反应相同, 只是反应的场所不一样。而最后一步反应 由HMG-CoA还原酶催化,反应发生在细胞 质基质,NADPH为电子供体,主要产物为 甲羟戊酸。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档