信号与系统实验综合设计课设
信号与系统课程设计(信号调制与解调)(采样定理)(LTI系统分析)
课题一信号调制与解调题目说明:从语音,图像的原始信息变过来的原始信号频谱分量频率较低,不适宜在信道中长距离传输。
因此,在通信系统的发送通端常需要有调制过程将其转换为适合传输的信号,在接收端则需要有调节过程,将信号还原成原来的信息,以便更准确的利用信息。
原理分析:调制就是按调制信号的变化规律去改变某些参数。
解调是调制的逆过程,即从已调制信号中恢复或提取调制信号的过程。
幅度调制是正弦型载波的幅度随调制信号变化的过程。
采用模拟调制利用正旋波载波的幅度调制,频率调制和相位调制的方式进行信号的处理。
同步解调端本振信号频率必须与发射端调制的载波信号的频率和相位相同才能实现同步解调。
脉冲调制信号只有在脉冲出现才需要存在,在其他时间内等于零,这样就有可能在这空余的时间间隔中去传输其他路德信号,发送端和接受端的转换开关按照同样的顺序和周期轮流接通各个通道,在信道中传送的是各个脉冲幅度调制信号的和,各个脉冲出现在不同的时间段。
而通过接收端的开关以后各路接受端接收到的相当于某一路信号脉冲幅度的结果,可以用低通滤波器进行解调。
实验内容:1.将一正旋信号x(n)=sin(2πn/256)分别以100000Hz的载波和1000000Hz的取样频率进行调制,写出MATLAB脚本实现抑制载波幅度调制,实现同步解调,滤波输出的波形。
2.分别作出cos(10t)cos(w c t)和[1+0.5sin(10t)]cos(w c t)的波形图和频谱图,并对上面调制信号进行解调,观察与源图的区别。
模块设计1:1.产生一个输入信号 2.产生一个载波信号3.构造用于解调的低通滤波器4.低通滤波解调5.画图MATLAB程序1:>> clear; %清除已存在变量n=0:0.0001:256; %自变量e=sin(2*pi*n/256); %调治信号s=cos(100000*n); % 载波信号a=e.*s; % 调制b=a.*s; % 解调[nb,na]=butter(4,100,'s'); % 低通滤波sys=tf(nb,na); % 构建sys对象c=lsim(sys,b,n); %低通滤波subplot(2,2,1) % 图形输出语句plot(n,e);title('调制信号'); %图形标题>> xlabel('n'),ylabel('e(n)'); %横纵坐标变量>> grid on %坐标网格>> subplot(2,2,2) % 图形输出语句>> plot(n,a);>> title('调幅信号'); %图形标题>> xlabel('n'),ylabel('a(n)'); %横纵坐标变量>> grid on %坐标网格>> subplot(2,2,3) % 图形输出语句>> plot(n,b);>>title('解调波形'); %图形标题>> xlabel('n'),ylabel('b(n)'); %横纵坐标变量>> grid on %坐标网格>> subplot(2,2,4) % 图形输出语句>> plot(n,c);>> title('滤波后的波形');%图形标题>>xlabel('n'),ylabel('e(n)'); %横纵坐标变量>> grid on %坐标网格模块设计2:1.产生两个输入信号 2.用克诺内科内积产生两个周期行序列脉冲3.调制并向加4.构造用于解调的低通滤波器5.低通滤波解调 6画图MATLAB程序2:>> clear; % 清除变量t=0:0.001:9.999; % 定义自变量取值范围和间隔e1=cos(10*t).*cos(600*t); % 输入信号e2=(1+0.5*sin(10*t)).*cos(600*t); %输入信号p0=ones(1,2500);p1=kron(p0,[1,0,0,0]); %第一个序列脉冲p2=kron(p0,[0,0,1,0]); % 第二个序列脉冲a=p1.*e1+p2.*e2; 调制并向加[nb,na]=butter(4,20,'s'); % 用于解调的低通滤波器sys=tf(nb,na); %构建sys对象b1=a.*p1; % 取得第一路信号的脉冲调制信号c1=lsim(sys,b1,t);%通过低通滤波解调输出b2=a.*p2; %取得第二路信号的脉冲调制信号c2=lsim(sys,b2,t); % 通过低通滤波解调输出subplot(4,2,1) % 图形输出语句plot(t,e1);title('第一路输出信号'),xlabel('t'),ylabel('e(t)');grid on%图形横纵坐标,标题,坐标网格subplot(4,2,2) % 图形输出语句plot(t,e2);title('第二路输出信号'),xlabel('t'),ylabel('e(t)');grid on%图形横纵坐标,标题,坐标网格subplot(4,2,3) % 图形输出语句plot(t,e1.*p1);title('第一路脉冲调制信号'),xlabel('t'),ylabel('e(t)');grid on %图形横纵坐标,标题,坐标网格subplot(4,2,4) % 图形输出语句plot(t,e2.*p2);title('第二路脉冲调制信号'),xlabel('t'),ylabel('e(t)');grid on %图形横纵坐标,标题,坐标网格subplot(4,2,5) % 图形输出语句plot(t,a);title('合成的传输信号'),xlabel('t'),ylabel('e(t)');grid on%图形横纵坐标,标题,坐标网格subplot(4,2,6) % 图形输出语句plot(t(5001:5250),a(5001:5250));title('局部放大后的合成信号'),xlabel('t'),ylabel('e(t)');grid on%图形横纵坐标,标题,坐标网格实验总结:通过对理论知识的学习,使自己对信号的调制与解调具有一定的认知水平,然后开始做实验,此时要理论结合实践,作出波形图后要考虑与理论波形进行比较,比较的方法是,首先判断所测波形是否正确,若不正确找出错误原因,若正确则分析实测波形与理论波形不完全相同的原因。
信号与系统优秀课程设计
信号与系统优秀课程设计一、课程目标知识目标:1. 理解信号与系统的基本概念,掌握不同类型的信号及其特点;2. 学会分析线性时不变系统的特性,包括因果性、稳定性和记忆性;3. 掌握连续时间信号与离散时间信号的转换方法,理解傅里叶级数和傅里叶变换的物理意义及其在信号处理中的应用;4. 能够运用拉普拉斯变换和Z变换分析系统函数,并解决实际问题。
技能目标:1. 能够运用数学工具(如Matlab等)对信号进行处理和分析;2. 掌握系统响应的求解方法,包括经典解法和现代解法;3. 培养对信号与系统的实际应用能力,如滤波器设计、信号调制与解调等;4. 提高团队协作和问题解决能力,通过小组讨论和实践项目加深对知识的理解和应用。
情感态度价值观目标:1. 培养学生对信号与系统的学习兴趣,激发他们主动探索科学问题的热情;2. 培养学生的创新意识,使他们敢于尝试新方法,勇于面对挑战;3. 增强学生的社会责任感,让他们明白信号与系统在国防、通信等领域的广泛应用和重要价值;4. 培养学生的集体荣誉感,通过课堂讨论和团队协作,让他们学会尊重他人、倾听他人意见。
本课程针对高年级本科生,在学生已具备一定数学基础和专业知识的基础上,进一步深化信号与系统的理论学习和实践应用。
课程注重理论与实践相结合,以培养具有创新精神和实践能力的高级专门人才为目标。
通过本课程的学习,学生将能够系统地掌握信号与系统的基本理论和方法,为后续相关课程的学习和未来从事相关领域工作打下坚实基础。
二、教学内容1. 信号与系统的基本概念:信号分类(连续信号、离散信号)、系统的分类(线性时不变系统、非线性时变系统);教材章节:第1章 信号与系统的基本概念2. 连续时间信号与系统的时域分析:微分方程、卷积积分、单位冲激响应与阶跃响应;教材章节:第2章 连续时间信号与系统的时域分析3. 傅里叶级数与傅里叶变换:周期信号的傅里叶级数展开、非周期信号的傅里叶变换、傅里叶变换的性质与应用;教材章节:第3章 傅里叶级数与傅里叶变换4. 拉普拉斯变换与Z变换:拉普拉斯变换的定义与性质、逆变换、系统函数与稳定性分析;Z变换的定义与性质、逆变换、离散时间系统的频率响应;教材章节:第4章 拉普拉斯变换与Z变换5. 系统的频域分析:频率响应函数、幅度频谱与相位频谱、幅度调制与解调;教材章节:第5章 系统的频域分析6. 系统的复频域分析:系统函数、频率特性、稳定性判定;教材章节:第6章 系统的复频域分析7. 信号与系统的应用:滤波器设计、通信系统、控制系统的稳定性分析;教材章节:第7章 信号与系统的应用教学内容按照上述安排进行,确保学生能够循序渐进地掌握信号与系统的理论知识,并通过实例分析,将所学知识应用于实际问题的解决。
信号与系统课程设计报告傅里叶变换的对称性和时移特性
信号与系统课程设计报告--傅里叶变换的对称性和时移特性课程设计任务书2沈阳理工大学摘要本文研究的是傅里叶变换的对称性和时移特性,傅里叶变换的性质有:对称性、线性(叠加性)、奇偶虚实性、尺度变换特性、时移特性、频移特性、微分特性、积分特性、卷积特性(时域和频域);从信号与系统的角度出发,给出了激励信号的具体模型;应用Matlab软件进行仿真,将研究的信号转化成具体的函数形式,在Matlab得到最终变换结果。
使用傅里叶变换的方法、卷积的求解方法以及函数的微分等方法研究题目。
关键词: 傅里叶变换;对称性;时移特性;Matlab3沈阳理工大学目录1、Matlab介绍........................... 错误!未定义书签。
2.利用Matlab实现信号的频域分析—傅里叶变换的对称性与时移特性设计 (5)2.1.傅里叶变换的定义及其相关性质 (5)2.2.傅里叶变换的对称性验证编程设计及实现 (7)2.3.傅里叶变换的时移特性验证编程设计及实现 (11)3.总结 (13)4.参考文献 (13)4沈阳理工大学1、Matlab介绍MATLAB作为一种功能强大的工程软件,其重要功能包括数值处理、程序设计、可视化显示、图形用户界面和与外部软件的融合应用等方面。
MATLAB软件由美国Math Works公司于1984年推出,经过不断的发展和完善,如今己成为覆盖多个学科的国际公认的最优秀的数值计算仿真软件。
MATLAB具备强大的数值计算能力,许多复杂的计算问题只需短短几行代码就可在MATLAB中实现。
作为一个跨平台的软件,MATLAB已推出Unix、Windows、Linux和Mac等十多种操作系统下的版本,大大方便了在不同操作系统平台下的研究工作。
MATLAB软件具有很强的开放性和适应性。
在保持内核不变的情况下,MATLAB 可以针对不同的应用学科推出相应的工具箱(toolbox),目前己经推出了图象处理工具箱、信号处理工具箱、小波工具箱、神经网络工具箱以及通信工具箱等多个学科的专用工具箱,极大地方便了不同学科的研究工作。
信号与线性系统课程设计
信号与线性系统课程设计一、课程目标知识目标:1. 学生能够理解并掌握信号与线性系统的基本概念,包括信号的分类、线性时不变系统的定义及其性质;2. 学生能够运用数学工具描述信号的特性,分析线性时不变系统的响应,并解决实际问题;3. 学生能够掌握傅里叶级数、傅里叶变换和拉普拉斯变换的基本原理及其在信号处理中的应用。
技能目标:1. 学生能够运用所学知识对实际信号进行处理,如信号的采样、滤波和调制;2. 学生能够运用数学软件(如MATLAB)进行信号与系统的仿真实验,提高实际操作能力;3. 学生能够通过小组合作,共同分析并解决信号与线性系统领域的问题,提高团队协作能力。
情感态度价值观目标:1. 学生通过学习信号与线性系统,培养对通信工程和电子信息工程的兴趣和热情;2. 学生在学习过程中,养成严谨、求实的科学态度,培养独立思考和创新能力;3. 学生通过小组合作,学会尊重他人意见,提高沟通与交流能力,形成良好的团队合作精神。
本课程针对高中年级学生,结合学科特点和教学要求,注重理论与实践相结合,旨在培养学生具备信号与线性系统领域的基本知识和技能,同时提高学生的情感态度价值观。
课程目标具体、可衡量,为后续教学设计和评估提供明确依据。
二、教学内容1. 信号与系统基本概念:信号分类、连续与离散时间信号、线性时不变系统定义及性质。
教材章节:第一章 信号与系统基本概念2. 数学工具描述信号与系统:差分方程、微分方程、卷积积分。
教材章节:第二章 数学工具描述信号与系统3. 傅里叶级数与傅里叶变换:周期信号的傅里叶级数展开、非周期信号的傅里叶变换。
教材章节:第三章 傅里叶级数与傅里叶变换4. 拉普拉斯变换:拉普拉斯变换的定义、性质、逆变换及应用。
教材章节:第四章 拉普拉斯变换5. 信号处理应用:信号的采样、滤波、调制原理及其实现方法。
教材章节:第五章 信号处理应用6. 线性系统分析:稳定性分析、频率响应特性、零状态与零输入响应。
信号与系统课程设计
沈阳大学沈阳大学3.3系统与连续时间信号系统是连续事物或各个部分的一个复杂的整体,有形或无形事物的组成体。
系统可以分为即时系统与动态系统;连续系统与离散系统;线性系统与非线形系统;样时变系统和非时变系统等等。
在连续时间系统中,如一个连续时间系统接收,根据定义在连续时间(-∞<t<∞)有定义的信号称为连续时间信号,在范围内输入信号x(t),并产生输出信号y(t)。
连续时间信号是在连续时间范围内定义的信号值,信号的幅值可以是连续数值,也可以是离散数值。
当信号幅值连续是,则称之为模拟信号。
3.4采样定理取样定理论述了在一定条件下,一个连续时间信号完全可以用该信号在等时间间隔上的瞬时值(或称样本值)表示,这些样本值包含了连续时间信号的全部信息,利用这些样本值可以恢复原信号。
可以说取样定理在连续时间信号与离散时间信号中架起了一座桥梁。
其具体内容如下:取样定理:设为带限信号,带宽为0F ,则当取样频率02F F s ≥时,可从取样序列)()(s a nT x n x =中重构,否则将导致)(n x 的混叠现象。
带限信号的最低取样频率称为Nyquist (奈奎斯特)速率。
图1给出信号采样原理图图1 信号采样原理图由图1可见,)()()(t t f t f Ts s δ⋅=,其中,冲激采样信号)(t Ts δ的表达式为:∑∞-∞=-=n sT nT t t s)()(δδ (1)其傅立叶变换为∑∞-∞=-n s s n )(ωωδω,其中ss T πω2=。
设)(ωj F ,)(ωj F s 分别为)(t f ,)(t f s 的傅立叶变换,由傅立叶变换的频域卷积定理,可得:沈阳 大 学∑∑∞-∞=∞-∞=-=-=n ssn s s s n j F T n j F j F )]([1)(*)(21)(ωωωωδωωπω (2)若设)(t f 是带限信号,带宽为m ω如图(2),由式(2)可见,)(t f 经过采样后的频谱)(ωj F s 就是将)(ωj F 在频率轴上搬移至 ,,,,,02ns s s ωωω±±±处(幅度为原频谱的s T 1倍)。
信号与与系统课程设计
信号与与系统课程设计一、教学目标本节课的教学目标是让学生掌握信号与系统的基本概念、原理和分析方法。
具体包括:1.知识目标:–了解信号与系统的定义、特点和分类;–掌握信号的时域、频域分析方法;–理解系统的基本特性,如线性、时不变性等。
2.技能目标:–能够运用信号与系统的分析方法解决实际问题;–熟练使用相关软件工具进行信号处理和系统分析;–具备一定的科研能力和创新精神。
3.情感态度价值观目标:–培养对信号与系统学科的兴趣和热情;–树立正确的科学观,注重实践与理论相结合;–增强团队协作意识,提高沟通与表达能力。
二、教学内容本节课的教学内容主要包括以下几个部分:1.信号与系统的定义、特点和分类;2.信号的时域、频域分析方法;3.系统的基本特性,如线性、时不变性等;4.实际应用案例分析。
5.引言:介绍信号与系统课程的背景、意义和目标;6.信号与系统的定义、特点和分类:讲解信号与系统的概念,分析各种信号与系统的特点和分类;7.信号的时域、频域分析方法:讲解信号的时域、频域分析方法,并通过实例进行分析;8.系统的基本特性:讲解系统的基本特性,如线性、时不变性等,并通过实例进行分析;9.实际应用案例分析:分析信号与系统在实际应用中的案例,如通信系统、控制系统等。
三、教学方法为了提高教学效果,本节课将采用以下教学方法:1.讲授法:讲解信号与系统的基本概念、原理和分析方法;2.讨论法:学生进行课堂讨论,培养学生的思考能力和团队协作精神;3.案例分析法:分析实际应用案例,让学生更好地理解信号与系统的应用价值;4.实验法:安排课后实验,让学生动手实践,提高实际操作能力。
四、教学资源为了支持教学内容和教学方法的实施,本节课将准备以下教学资源:1.教材:选用权威、实用的教材,如《信号与系统》、《信号处理与系统分析》等;2.参考书:提供相关领域的参考书籍,如《线性系统理论》、《数字信号处理》等;3.多媒体资料:制作精美的PPT课件,提供动画、视频等多媒体资料;4.实验设备:准备相应的实验设备,如信号发生器、示波器、滤波器等,以便进行课后实验。
高校青教赛 信号与系统教学设计范例
高校青教赛信号与系统教学设计范例信号与系统课程设计教案一、matlab工作空间介绍。
二、信号处理部分:1)信号的产生,matlab工具箱,自己编程函数仿真,导入实际数据。
2)信号的卷积,奇偶分解,各种性质的验证。
3)信号分解的基本原理。
4)信号分解的算法实现,自己编程验证。
5)结合实验给出实验分析和结论。
三、离散信号处理部分:1)信号分解算法的离散化。
2)信号分解的基本原理。
3)信号分解的算法实现,自己编程验证。
4)结合实验给出实验分析和结论。
四、信号滤波处理部分:1)将信号进行傅里叶分解。
2)在频率域进行理想滤波。
3)将信号变换到时间域。
4)结合实验结果给出实验分析和结论。
五、连续系统分析部分:1)电路系统建模或者已有微分系统方程。
2)根据输入求解系统的响应。
3)求解系统的单位冲激响应。
4)编程实现,验证系统的因果性,稳定性。
六、离散系统分析部分:1)电路系统建模或者已有差分系统方程。
2)根据输入求解系统的响应。
3)求解系统的单位脉冲响应。
4)编程实现,验证系统的因果性,稳定性。
实验报告组成:1、实验基本原理2、理论分析求解3、实验编程验证4、实验结果分析。
一、基本函数:1、函数变量的定义。
syms是定义符号变量sym是将字符或者数字转换为字符比如syms x y %就是定了符号变量x y以后x y就可以直接使用sys('a+b')%就是将a+b转化为符号表达式。
2、单位阶跃信号。
Heaviside()。
syms t;f=heaviside(t-4);或者f=@(t)heaviside(t-4); ezplot(f,[0 5])3、单位冲激信号f=@(x)dirac(x-2);二、示例演示分析示例1:1设f(t) e 2tu(t),画出该信号的及其幅频图。
21、概述:掌握信号傅立叶变换的计算方法。
2、设计任务,即要设计的主要内容和要求等掌握信号傅立叶变换的计算方法以及程序求解方法。
“信号与系统”Matlab实验仿真教学系统设计
“信号与系统”Matlab实验仿真教学系统设计作者:张尤赛,马国军,黄炜嘉,周稳兰来源:《现代电子技术》2010年第18期摘要:针对“信号与系统”课程硬件实验教学不够深入和灵活的缺点,在分析理论教学和工程实际需求的基础上,利用Matlab和Simulink,建立了“信号与系统”实验仿真教学系统,并从系统设计、内容设计、界面设计、开发工具、二次开发等五个方面对该系统进行了阐述。
实验教学表明,该系统可以克服硬件实验系统的局限性,加深和拓宽了实验内容和实验层次,增强了实验的灵活性,有利于培养学生的实验动手能力和创新能力。
关键词:信号与系统; Matlab; 实验仿真教学; Simulink中图分类号:TN911.7-34; G642.4文献标识码:A文章编号:1004-373X(2010)18-0057-03Design of Mtalab Experimental Simulation Teaching System in Signals and SystemsZHANG You-sai, MA Guo-jun, HUANG Wei-jia, ZHOU Wen-lan(School of Electronics and Information, Jiangsu University of Science and Technology, Zhenjiang 212003, China)Abstract: Aiming at the disadvantages of hardware experimental teaching in Signals and Systems, the experimental simulation teaching system of Signals and Systems based on Matlab and Simulink is established by emphasizing experimental teaching requirements of theoretical teaching and actual engineering. Thus, the system design, content design, interface design, development tools and repeatedly development are studied respectively. The effects of experimental teaching show that it overcomes the limitation of hardware experiment, expands experimental contents and level, improves students hands-on ability and comprehensive quality.Keywords: signals and systems; Matlab; experimental simulation teaching; Simulink0 引言信号与系统的基本概念、基本理论与分析方法在不同学科、专业之间有着广泛应用和交叉渗透[1]。
信号与系统课程实验报告
合肥工业大学宣城校区《信号与系统》课程实验报告专业班级学生姓名《信号与系统》课程实验报告一实验名称一阶系统的阶跃响应姓名系院专业班级学号实验日期指导教师成绩一、实验目的1.熟悉一阶系统的无源和有源电路;2.研究一阶系统时间常数T的变化对系统性能的影响;3.研究一阶系统的零点对系统响应的影响。
二、实验原理1.无零点的一阶系统无零点一阶系统的有源和无源电路图如图2-1的(a)和(b)所示。
它们的传递函数均为:10.2s1G(s)=+(a) 有源(b) 无源图2-1 无零点一阶系统有源、无源电路图2.有零点的一阶系统(|Z|<|P|)图2-2的(a)和(b)分别为有零点一阶系统的有源和无源电路图,它们的传递函数为:10.2s1)0.2(sG(s)++=,⎪⎪⎪⎪⎭⎫⎝⎛++=S611S161G(s)(a) 有源(b) 无源图2-2 有零点(|Z|<|P|)一阶系统有源、无源电路图3.有零点的一阶系统(|Z|>|P|)图2-3的(a)和(b)分别为有零点一阶系统的有源和无源电路图,它们的传递函数为:1s10.1sG(s)=++(a) 有源(b) 无源图2-3 有零点(|Z|>|P|)一阶系统有源、无源电路图三、实验步骤1.打开THKSS-A/B/C/D/E型信号与系统实验箱,将实验模块SS02插入实验箱的固定孔中,利用该模块上的单元组成图2-1(a)(或(b))所示的一阶系统模拟电路。
2.实验线路检查无误后,打开实验箱右侧总电源开关。
3.将“阶跃信号发生器”的输出拨到“正输出”,按下“阶跃按键”按钮,调节电位器RP1,使之输出电压幅值为1V,并将“阶跃信号发生器”的“输出”端与电路的输入端“Ui”相连,电路的输出端“Uo”接到双踪示波器的输入端,然后用示波器观测系统的阶跃响应,并由曲线实测一阶系统的时间常数T。
4.再依次利用实验模块上相关的单元分别组成图2-2(a)(或(b))、2-3(a)(或(b))所示的一阶系统模拟电路,重复实验步骤3,观察并记录实验曲线。
《信号与系统及实验》课程教学大纲
《信号与系统及实验》课程教学大纲一、课程概述1. 课程名称:《信号与系统及实验》2. 课程性质:必修课3. 学时安排:64学时(理论课32学时,实验课32学时)4. 授课对象:电子信息类相关专业本科生二、课程目标1. 理论掌握:通过本课程的学习,学生将掌握信号与系统的基本理论知识,包括信号的表示与处理、系统的特性与分析等方面的内容。
2. 实验能力:学生将具备进行相关实验的基本能力,能够独立完成信号与系统相关的实验设计、实施和数据分析。
3. 应用水平:学生将具备将所学知识应用于实际工程问题的能力,为日后的专业发展打下扎实的基础。
三、教学内容与教学安排1. 信号的基本概念与表示(4学时)2. 信号的操作与运算(4学时)3. 常用信号的分类与性质(4学时)4. 离散时间信号与系统(8学时)5. 连续时间信号与系统(8学时)6. 系统特性与分析方法(8学时)7. 信号与系统的转换(4学时)8. 信号处理器件与应用(4学时)9. 信号与系统实验(32学时)四、教材与参考书1. 主教材:《信号与系统》,作者:Alan V. Oppenheim,Alan S. Willsky,S. Hamid Nawab,出版社:Prentice Hall2. 参考书:- 《信号与系统分析》,作者:张三,出版社:清华大学出版社- 《信号与系统实验》,作者:李四,出版社:电子工业出版社五、考核方式与成绩评定1. 平时成绩(20):包括课堂讨论、作业等2. 实验成绩(30):包括实验报告、实验操作等3. 期中考试(20)4. 期末考试(30)六、教学保障1. 课程实验室:学校配备专门的信号与系统实验室,满足学生的实验需求。
2. 实验设备:提供符合课程要求的实验设备和器材,保证实验教学的质量和安全。
3. 教师队伍:授课教师均具备相关领域的丰富教学与工程实践经验,保证教学质量。
七、教学展望《信号与系统及实验》课程作为电子信息类专业的重要基础课程,旨在培养学生的工程实践能力和创新思维,为学生的专业发展打下扎实的基础。
“信号与系统”综合设计性实验教学的探索与实践
综合 设计 性实 验 。 所谓 综合 设 计 性 实 验 , 指 教 师 给 出 与 本 课 是 程相 关 的综合 设 计 性 题 目供 学 生 自主选 择 , 生 学 根据 给定 的实验 指 导书 , 阅相 关 的文 献 资料 , 查 自 行设 计 实验 方案 , 立进 行 实验 操作 , 独 最后 总结 实
性实验项 目的教学实践 , 激发 了学生 的创新 意识 , 提高 了学生解决 问题 的能力 。 关键词 : 合性设计性实验 ; 综 创新意识 ; al m t b软件平台 a
中 图分 类 号 :6 2 0 G 4 . 文献标志码 : A
Ex o a i n n Pr c ie o m p e e i e a pl r to a d a tc n Co r h nsv nd
文 章 编 号 :0 9—35 2 1 )5—0 1 0 10 1X(0 1 0 5 6— 4
“ 号 与 系 统 "综 合 设 计 性 实验 教 学 的 信 探 索 与 实 践
姜 明新 , 李 敏
( 大连 民族 学院 信 息 与通信 工 程 学院 , 宁 大连 160 ) 辽 165
摘 要: 结合实验教学的实际情况 , 设计 了基于 m t b软件平 台的综合设 计性实 验项 目。通过综合 设计 al a
1 信号与 系统综合设计性 实验
目前信 号 与观察 与 测量 、 号 的分解 与 合成 、 号 的采 样 与 信 信
收稿 日期 :0 1 0 2 1 — 5—1 ; 后 修 回 日期 :0 1 0 2 3最 2 1 — 6— 7
D i a oa tsU ie i , a a i nn 16 5 hn ) l n i ie a a N t nli nvr t D l nLa i 160 ,C ia sy i o g
《信号与系统》课程设计-AM调制、解调
《信号与系统》课程设计——AM 调制、解调【设计题目】AM 调制、解调【设计要求】(1) 了解AM 调制、解调原理。
(2) 设计AM 调制系统。
(3) 设计AM 解调系统。
【设计工具】MATLAB【设计原理】在离散时间中,用正弦载波的幅度调制是)cos(][][n w n x n y c =式中假设消息信号的带宽小于c w 。
已调信号有一个DTFT ,它是分别已c w w ±=为中心的)(jw e X 的重复。
如果人们总想让在一条通信信道上同时传送最大的用户数,这个重复的部分是不希望的。
一种天真的解决办法是用复指数载波n jw c e 来替代正弦载波。
然而所得到的已调信号n jw ce n x ][有一个虚部分量,而这个是无法在一个真实的信道上传送。
单边带(SSB )是一种合适的解决办法,它等效于在传输之前用截至频率为c w 的理想低通滤波器对y [n ]滤波,这个滤波后的信号占有和x [n ]相同的频带宽度,而且x [n ]能完全从已发送的信号中恢复出来。
可以利用希尔伯特变换构成(SSB )信号。
一个理想的希尔伯特变换的频率响应是⎩⎨⎧<≤-<≤-=0,0,)(w j w j e H jw ππ由相位关系,希尔伯特也称作90°相移器。
在接收机端,通过一种称为同步AM 解调的技术可以将消息信号x [n ]恢复,这可经由])2cos[1]([][cos ][2]cos[][2][2n w n x n w n x n w n y n w c c c +===为了恢复x [n ],可以将w [n ]通过低通滤波消除以c w 2为中心的频谱分量。
这里一个关键的问题,也是一个潜在的困难是接收机必须要有一个与发射机同步的本地振荡器。
首先设计一个信号x [n ]的SSB 的调制系统。
假设载波频率2/π=c w ,⎪⎩⎪⎨⎧≤≤--=n n n n n x 其余,....0640,. (4)/)32()4/)32(sin(][ππ 求已调信号y [n ]。
信号与系统课程设计
信号与系统课程设计一、概念解释零输入响应:如果系统的激励为零,仅由初始状态引起的响应就被称之为该系统的“零输入响应”当系统是线性的,它的特性可以用线性微分方程表示时,零输入响应的形式是若干个指数函数之和。
指数函数的个数等于微分方程的阶数,也就是系统内部所含“独立”储能元件的个数。
假定系统的内部不含有电源,那么这种系统就被称为“无源系统”。
实际存在的无源系统的零输入响应随着时间的推移而逐渐地衰减为零。
零状态响应:如果系统的初始状态为零,仅由激励源引起的响应就被称之为该系统的“零状态响应”。
当系统是线性的,它的特性可以用线性微分方程表示时,零状态响应的形式是若干个指数函数之和再加上与激励源形式相同的项。
前者是对应的齐次微分方程的解,其中指数函数的个数等于微分方程的阶数,也就是系统内部所含“独立”储能元件的个数。
后者是非齐次方程的特解。
自由响应:系统的零状态响应一般分为两部分,它的变化形式分别由系统本身的特性和激励源所决定。
对于实际存在的无源系统而言,零状态响应中的第一部分将随着时间的推移而逐渐地衰减为零,因此往往又把这一部分称之为响应的“自由分量”。
强制响应:零状态响应中的另一部分与激励源形式相同的部分则被称之为“稳态分量”或“强制分量”。
二、例题简析对下面RLC电路进行分析:为方便起见,我们初设Ω=1R ,H L 1=,F C 1=设输入量为端电压a u ,输出量为电容电压c u ,我们可列微分方程如下:a c cc u u dtdu dt u d =++2 对于CT 系统,我们可以对上述微分方程进行拉氏变换:)()()0()()0(')0()(2S U S U u S SU u Su S U S a c c c c c c =+-+-- 在此采用MATLAB 对RLC 系统进行仿真,系统图如下:对于零输入相应,可设0V 1V,0==a c u u )(,可得11)(2+++=S S S S U c 逆变换可得t c e t t t u 5.023cos 23sin 31)(-⎪⎪⎭⎫ ⎝⎛+=,可见系统输出将会震荡衰减至0。
电路信号与系统课程设计
电路信号与系统课程设计一、课程目标知识目标:1. 学生能理解并掌握电路信号的分类、特点及其在电路中的应用。
2. 学生能掌握系统的基础概念,包括线性时不变系统的特性,以及系统对信号的处理过程。
3. 学生能运用数学工具分析电路系统的频率响应和冲激响应。
技能目标:1. 学生具备设计简单电路系统的能力,能够根据需求选择合适的电路元件搭建电路。
2. 学生能够运用仿真软件对电路系统进行模拟,分析输出信号的变化,优化电路设计。
3. 学生能够通过实验验证理论知识,提高实际操作和动手能力。
情感态度价值观目标:1. 学生通过学习电路信号与系统,培养对电子技术的兴趣,激发创新意识。
2. 学生在学习过程中,注重团队协作,培养沟通、交流的能力,增强集体荣誉感。
3. 学生能够认识到电路信号与系统在现实生活中的广泛应用,提高社会责任感和使命感。
本课程针对高年级学生,以电路信号与系统的基本理论为核心,结合实际应用,提高学生的理论水平和实践能力。
课程注重培养学生的动手操作能力、团队协作能力和创新精神,使学生在掌握专业知识的同时,形成积极的学习态度和价值观。
通过具体的学习成果分解,为教学设计和评估提供明确的方向。
二、教学内容本课程依据课程目标,结合教材,科学系统地组织以下教学内容:1. 电路信号的分类及特性:包括连续信号、离散信号、周期信号和非周期信号的特点及应用。
- 教材章节:第二章 信号与系统基本概念2. 系统的基本概念及性质:线性时不变系统的定义,系统的稳定性、因果性及记忆性。
- 教材章节:第三章 系统的性质3. 电路系统的数学模型:介绍拉普拉斯变换、傅里叶变换在电路系统中的应用。
- 教材章节:第四章 电路系统的数学模型4. 频率响应与冲激响应:分析电路系统的频率特性,理解冲激响应与频率响应的关系。
- 教材章节:第五章 频率响应与冲激响应5. 电路系统设计与应用:结合实际案例,教授如何设计简单的电路系统,并进行仿真与实验。
- 教材章节:第六章 电路系统设计与应用教学内容按照以上大纲安排,注重理论与实践相结合,让学生在掌握基本概念和性质的基础上,通过案例分析和实验操作,提高解决实际问题的能力。
《信号与系统》实验报告
《信号与系统》实验报告目录一、实验概述 (2)1. 实验目的 (2)2. 实验原理 (3)3. 实验设备与工具 (4)二、实验内容与步骤 (5)1. 实验一 (6)1.1 实验目的 (7)1.2 实验原理 (7)1.3 实验内容与步骤 (8)1.4 实验结果与分析 (9)2. 实验二 (10)2.1 实验目的 (12)2.2 实验原理 (12)2.3 实验内容与步骤 (13)2.4 实验结果与分析 (14)3. 实验三 (15)3.1 实验目的 (16)3.2 实验原理 (16)3.3 实验内容与步骤 (17)3.4 实验结果与分析 (19)4. 实验四 (20)4.1 实验目的 (20)4.2 实验原理 (21)4.3 实验内容与步骤 (22)4.4 实验结果与分析 (22)三、实验总结与体会 (24)1. 实验成果总结 (25)2. 实验中的问题与解决方法 (26)3. 对信号与系统课程的理解与认识 (27)4. 对未来学习与研究的展望 (28)一、实验概述本实验主要围绕信号与系统的相关知识展开,旨在帮助学生更好地理解信号与系统的基本概念、性质和应用。
通过本实验,学生将能够掌握信号与系统的基本操作,如傅里叶变换、拉普拉斯变换等,并能够运用这些方法分析和处理实际问题。
本实验还将培养学生的动手能力和团队协作能力,使学生能够在实际工程中灵活运用所学知识。
本实验共分为五个子实验,分别是:信号的基本属性测量、信号的频谱分析、信号的时域分析、信号的频域分析以及信号的采样与重构。
每个子实验都有明确的目标和要求,学生需要根据实验要求完成相应的实验内容,并撰写实验报告。
在实验过程中,学生将通过理论学习和实际操作相结合的方式,逐步深入了解信号与系统的知识体系,提高自己的综合素质。
1. 实验目的本次实验旨在通过实践操作,使学生深入理解信号与系统的基本原理和概念。
通过具体的实验操作和数据分析,掌握信号与系统分析的基本方法,提高解决实际问题的能力。
《信号与系统》课程设计
《信号与系统》课程设计一、课程目标知识目标:1. 理解并掌握信号与系统的基本概念,包括连续信号与离散信号、线性时不变系统等;2. 学会运用数学工具描述和分析信号与系统的性质,如傅里叶变换、拉普拉斯变换和z变换等;3. 掌握信号与系统中的典型应用,如信号的采样与恢复、通信系统中的调制与解调等。
技能目标:1. 能够运用所学的理论知识分析实际信号与系统的性能,并解决相关问题;2. 熟练运用数学软件(如MATLAB)进行信号与系统的仿真实验,提高实际操作能力;3. 培养学生的团队协作和沟通能力,通过小组讨论、报告等形式,提高学生的学术交流能力。
情感态度价值观目标:1. 培养学生对信号与系统领域的兴趣,激发学生的学习热情和求知欲;2. 增强学生的社会责任感,使学生认识到信号与系统在通信、电子等领域的广泛应用,为国家和社会发展做出贡献;3. 培养学生严谨、务实的学术态度,提高学生的自主学习能力和终身学习能力。
本课程针对高年级本科生,具有较强的理论性和实践性。
在课程设计中,将充分考虑学生的特点和教学要求,结合信号与系统领域的最新发展,注重理论与实践相结合,培养学生的创新能力和实践能力。
通过本课程的学习,使学生具备扎实的信号与系统理论基础,为后续相关课程和未来职业生涯打下坚实基础。
二、教学内容1. 信号与系统基本概念:连续信号与离散信号、线性时不变系统等;- 教材章节:第1章 信号与系统概述2. 数学工具描述与分析:- 傅里叶变换、拉普拉斯变换、z变换;- 教材章节:第2章 信号的傅里叶分析,第3章 系统的s域分析,第4章 离散时间信号与系统分析3. 信号与系统的典型应用:- 信号的采样与恢复;- 通信系统中的调制与解调;- 教材章节:第5章 信号的采样与恢复,第6章 通信系统4. 信号与系统仿真实验:- 使用MATLAB进行信号与系统仿真实验;- 教材章节:第7章 信号与系统仿真5. 团队协作与学术交流:- 小组讨论、报告等形式,进行案例分析和学术交流。
信号与系统课程实验系统设计
Ke o d y w r s: sg a n y tm s vru x erme ts se ; t e r tc e c i in la d s se ; it a e p i n y tm l h o eia ta hng; p a tc e c ig l r cia t a hn l
Ab ta t B cu etee u eo in la d sse hsmu he ne t n btatd c n e t t sdfc l frsu e t t n esa d sr c : e a s h o r fs a n ytm a c o tn d a srce o c p ,i i iiuto td ns ou d rtn s g a
t e c r n x e i n a h n o d t n o in n y t m n h a s o e vr a x e me t lt r , i o i ain w t h u r te p r e me t e c i g c n i o fs a a d s se a d te f w ft i u e p r na p a o m t i gl l h tl i l f n c mbn t i o h t e p a t a x e me t t a hn o tn , t ev r a x e i n a s s m f i a n y t m a e eo d h r cil e p r ns e c i g c ne t h i u l p rme t y t o g l d s se W d v lp .T i y t m ls s te c i t e l e sn a s e h ss se co e h
信号与系统实验教学大纲
信号与系统实验教学大纲一、实验目的本实验旨在帮助学生深入了解信号与系统的基本概念和原理,并通过实际操作加深对信号与系统的理解和应用能力。
具体目的包括:1. 掌握信号与系统的基本概念和定义;2. 理解常见信号的分类和特性;3. 熟悉信号与系统的数学表示方法;4. 学习使用仪器和工具进行信号与系统的实际测量与分析;5. 培养学生的实验设计和解决问题的能力。
二、实验内容1. 基本信号的生成与分析实验1.1 正弦信号的产生和观测1.2 方波信号的产生和观测1.3 单位阶跃信号和单位冲激信号的产生和观测2. 信号与系统的线性特性实验2.1 线性系统的特性分析2.2 线性时不变(LTI)系统的特性分析2.3 线性时变系统的特性分析3. 时域和频域分析实验3.1 时域分析方法的学习与应用3.2 傅里叶变换及其性质的学习与应用3.3 频谱分析实验4. 常用滤波器的设计与应用实验4.1 低通滤波器的设计与应用4.2 高通滤波器的设计与应用4.3 带通滤波器的设计与应用4.4 带阻滤波器的设计与应用5. 采样和量化实验5.1 采样定理及抽样方式的实验验证5.2 量化误差的分析与实验验证三、实验要求1. 掌握实验的基本原理和方法,理解实验的实际应用场景;2. 完成实验报告的撰写和实验数据的分析;3. 在实验过程中严格遵守实验守则,注意实验安全;4. 鼓励学生进行探索和创新,提出自己的实验设计方案。
四、实验器材和软件1. 示波器2. 函数发生器3. 信号源4. 滤波器5. 计算机及相关软件(如MATLAB等)五、实验评分实验报告和实验操作将共同作为评分的主要依据,其中实验报告占60%的权重,实验操作占40%的权重。
实验报告的评分标准包括实验目的的明确性、实验内容的完整性、实验数据的准确性以及实验结论的合理性。
实验操作的评分标准包括实验装置的正确搭建、实验数据的准确采集和实验操作的规范性。
六、参考资料1. 《信号与系统实验教程》2. 《信号与系统实验导论》3. 《信号与系统实验教程及案例》4. 《MATLAB在信号与系统实验中的应用》5. 《信号与系统实验方法与技巧》本大纲根据信号与系统实验教学的实际需求和课程目标制定,重点培养学生的实际动手能力和问题解决能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信号与系统实验综合设计
《二阶电路系统的设计与测试分析》年级:
班级:
姓名:
学号:
日期:
二阶电路系统的设计与测试分析一、实验原理
二阶电路图如下所示
描述这种电路的微分方程为
y’’ (t) + 2αy’ (t) +ω²y (t) =ω²f (t) ,式中ω²= 1/LC ,α= R/2L。
其特征根为
事实上,针对该电路,可列出以下方程:
I (t) = C*Uc’(t) ①
R*I (t) + L*I’(t) + Uc(t) = Us(t) ②
将①式代入②式:CR*Uc’(t) + LC*Uc’’(t) + Uc(t) = Us(t)
可化为:Uc’’(t) + (R/L)*Uc’(t) + (1/LC)Uc(t) = (1/LC)*Us(t)
将各元件值代入:Uc’’(t) + 15000 *Uc’(t) + 10^5 *Uc(t) = 10^5 *Us(t)
ω²= 10^5 ,α= 7500
可以看出,α>ω,这属于过阻尼情况。
选取过阻尼情况是考虑到实测电路时电路输出在示波器上的波形观察起来可以更加明显。
接下来,利用软件SystemView对该电路进行时域、频域、S域分析。
二、Systemview仿真
由电路实际方程Uc’’(t) + 15000 *Uc’(t) + 10^5 *Uc(t) = 10^5 *Us(t) 移项可得;
Uc’’(t) = -15000 *Uc’(t) - 10^5 *Uc(t) + 10^5 *Us(t)
据此画出系统框图
其系统函数H(jω)为1/(LCs ²+ RCs + 1)
1、阶跃响应
①时域仿真波形
③S域分析
2、冲激响应
①时域仿真波形
③S域分析
3、正弦信号的零状态响应
①时域仿真波形
③S域分析
三、Multisim仿真
在对硬件电路进行实测之前,先利用更加接近实验室环境的Multisim软件对电路进行仿真,以确保实验的准确性。
实验室中利用信号发生器产生周期足够长即频率足够小的方波的上升沿模拟阶跃信号,利用周期足够长即频率足够小且占空比为1%的脉冲模拟冲激信号。
仿真电路图如下
1、时域分析
①阶跃响应
②冲激响应
③正弦函数的零状态响应
(上为输入,下为输出)④三角波的零状态响应
2、频域分析
幅频曲线及相频曲线(系统函数)
四、硬件电路实测
1、实验材料及设备
洞洞板、排针、150Ω电阻、10mH电感、1mF电容、信号发生器、示波器等
2、测试内容
Ι时域:由于频率太低的信号在示波器上无法显示出完整的波形及相关参数,故选取10Hz作为信号频率,幅度为5V,依次输入占空比为50%的方波、占空比为1%的方波、正弦波、三角波,分别测出对应的波形,波形实测图如下:
①阶跃响应:
②冲激响应:
③正弦信号的零状态响应:
④三角波的零状态响应:
⑤输入正弦信号时输出信号的傅里叶变换
II 频域:记录不同频率下的输出幅度(输入为正弦信号)
绘出幅频曲线如下
五、结论分析
比较实验结果和仿真结果可以得出,实验中产生的时域四种情况的响应波形,因为示波器显示及测量等关系只可以取显示波形的一个周期中的前半部分来佐证理论和仿真,也较为准确地验证出理论解和SystemView仿真、Multisim仿真的正确性。
此外,实验中傅里叶变换观察不明显,这可能与实际电路中输出的响应不是非周期信号有关。
六、心得体会
此次综设我选取了简单的二阶电路,但也研究尽可能多的时域、频域响应情况,包括软件仿真以及实际测试。
通过这次综设初步掌握综合运用理论知识、软件仿真以及硬件测试进行简单系统的设计与分析的基本方法,加深了我对“信号与系统”理论知识的理解,虽然是简单电路,但通过对它的实测以及分析发现了自己对傅里叶变化、系统函数(频率响应函数)的理解还不够,往后还需加强学习,同时也要多动手实践。