《信号与系统》期末试卷A卷与答案

合集下载

《信号与系统》试卷

《信号与系统》试卷

2012–2013学年第一学期期终考试试卷(A 卷)开课学院: 物理与电子信息学院 课程名称: 信号与系统 (评分标准及参考答案) 考试形式:闭卷,所需时间120分钟2、学生答题前将密封线外的内容填写清楚,答题不得超出密封线;3、答题请用蓝、黑钢笔或圆珠笔。

一、选择题(共20分,每题2分)1. 系统r (t )=e (t )u (t )的性质是( C )。

A 线性、时不变B 非线性、时不变C 线性、时变D 非线性、时变2. 若y (n)=x 1(n )*x 2(n ),其中x 1(n )=u (n +2)-u (n -2),x 2(n )=n [u (n -2)-u (n -5)],则y (1)=( D )。

A 0B 1C 3D 53. 已知某LTI 系统的单位冲激响应h (t )如图1所示,若输入信号为u (t ),则y(3/2)=( C )。

A 0B 1C 11/4D 2 4. 理想不失真传输系统的传输函数H(jω)是( B )。

A 0j t Ke ω-B 0t j Ke ω-C 00j t Keω-D []0()()j t c c Keu u ωωωωω-+--(其中00,,,c t k ωω为常数)5. 如图2所示周期信号的傅里叶级数的特点是( A )。

A 只有奇次谐波的正弦分量 B 只有偶次谐波的正弦分量 C 只有奇次谐波的余弦分量 D 只有偶次谐波的余弦分量6. 系统的幅频特性和相频特性如图3所示,当激励为e (t )=2sin6πt +sin8πt 时,系统响应r (t )的失真情况为( A )。

A 无失真B 仅有幅度失真C 仅有相位失真D 幅度和相位均有失真 7. 某LTI 系统H(s)具有三个极点(p 1=-2, p 2=-1, p 3=1)和一个零点(z 1=2),则该系统可能的收敛域数量为( D )。

A 1B 2C 3D 4 8. 信号()()tf t h t d λλλ=-⎰的拉氏变换为( C )。

信号与系统期末考试题库及答案

信号与系统期末考试题库及答案

信号与系统期末考试题库及答案1.下列信号的分类方法不正确的是( A ):A、数字信号和离散信号B、确定信号和随机信号C、周期信号和非周期信号D、因果信号与反因果信号2.下列说法正确的是( D ):A、两个周期信号x(t),y(t)的和x(t)+y(t)一定是周期信号。

B、两个周期信号x(t),y(t)的周期分别为2和2,则其和信号x(t)+y(t) 是周期信号。

C、两个周期信号x(t),y(t)的周期分别为2和 ,其和信号x(t)+y(t)是周期信号。

D、两个周期信号x(t),y(t)的周期分别为2和3,其和信号x(t)+y(t)是周期信号。

3.下列说法不正确的是( D )。

A、一般周期信号为功率信号。

B、时限信号(仅在有限时间区间不为零的非周期信号)为能量信号。

C、ε(t)是功率信号;D、e t为能量信号;4.将信号f(t)变换为( A )称为对信号f(t)的平移或移位。

A、f(t–t0)B、f(k–k0)C、f(at)D、f(-t)5.将信号f (t )变换为( A )称为对信号f (t )的尺度变换。

A 、f (at ) B 、f (t –k 0)C 、f (t –t 0)D 、f (-t )6.下列关于冲激函数性质的表达式不正确的是( B )。

A 、)()0()()(t f t t f δδ=B 、()t aat δδ1)(=C 、)(d )(t tεττδ=⎰∞- D 、)()-(t t δδ=7.下列关于冲激函数性质的表达式不正确的是( D )。

A 、⎰∞∞-='0d )(t t δ B 、)0(d )()(f t t t f =⎰+∞∞-δC 、)(d )(t tεττδ=⎰∞- D 、⎰∞∞-=')(d )(t t t δδ8.下列关于冲激函数性质的表达式不正确的是( B )。

A 、)()1()()1(t f t t f δδ=+B 、)0(d )()(f t t t f '='⎰∞∞-δC 、)(d )(t tεττδ=⎰∞- D 、)0(d )()(f t t t f =⎰+∞∞-δ9.下列基本单元属于数乘器的是( A ) 。

《信号与系统》期末测验试题及答案

《信号与系统》期末测验试题及答案

5.下列信号中为周期信号的是 D

f1 (t) sin 3t sin 5t
f 2 (t) cos 2t cost
f3
(k)

sin
6
k

sin
2
k
f
4
(k
)


1 2
k

(k
)
A f1 (t) 和 f2 (t)
c f1 (t), f 2 (t) 和 f3 (k)
所以:
(+2 分)
f (k) 10 [0.5k (k 1) 0.2k (k)] 3
(+2 分)
7.已知 f1 (t) 和 f2 (t) 的波形如下图所示,画出 f (t) f1 (t) f 2 (t) 的的波形图 解: 8.已知 f (t) 的波形如下图所示。请画出 f(-2t+1)的图形

(t
1)
d r(t) dt

de(t) dt

e(t)
描述的系统是:
A

(A)线性时变系统; (B)线性时不变系统;
(C)非线性时变系统;(D)非线性时不变系统
13.如图所示周期为 8 的信号 f (t) 中,下列对其含有的谐波分量的描述中最准确的是
D。 A 只有直流、正弦项 C 只有奇次余弦项
(z 0.5)(z 2)
B。
(A)|z|<0.5 (B)|z|>2 (C)0.5<|z|<2 (D)以上答案都不对
4. 下面关于离散信号的描述正确的是 B

(A) 有限个点上有非零值,其他点为零值的信号。
(B) 仅在离散时刻上有定义的信号。 (C) 在时间 t 为整数的点上有非零值的信号。

信号与系统期末试卷2006-2007及答案

信号与系统期末试卷2006-2007及答案

南昌大学2006~2007学年第二学期期末考试试卷试卷编号: 12026 ( A)卷 课程编号: H6102005 课程名称: 信号与系统 考试形式: 闭卷 适用班级:05级电子、通信、中兴 姓名: 学号: 班级: 学院: 信息工程学院 专业: 考试日期:题号 一 二 三 四 五 六 七 八 九 十 总分 累分人 签名题分 18 21 13 12 12 12 12 100 得分一、单项选择题(每小题3分,共18分)得分 评阅人1。

序列[]()cos(2)(5)2n f n u n u n π=---的正确图形: ( )2.周期性非正弦连续时间信号的频谱,其特点为 ( ) 。

(A) 频谱是连续的,收敛的(B) 频谱是离散的,谐波的,周期的(C) 频谱是离散的,谐波的,收敛的(D) 频谱是连续的,周期的3.若)()(21t u e t f t -=,),()(2t u t f =则)(*)()(21t f t f t f =的拉氏变换为( )A .)211(21+-s sB 。

)211(21++-s sC 。

)211(21++s s D. )211(41++-s s6 下图所示的函数用阶跃函数表示:_______________________________7 如下图所示:信号()f t 的傅立叶变换为: ()()()F jw R w jX w =+则信号()y t 的傅立叶变化为:_______________三:简答题 (第一题7分第二题6)总分(13分)得分 评阅人1已知某双边序列的Z 变换为21()1092F z z z =++求该序列的时域表达式()f k 。

(7分)第11 页共11页。

信号与系统期末试题及答案(第一套)

信号与系统期末试题及答案(第一套)

信号与系统期末试题及答案(第一套)符号说明:为符号函数,为单位冲击信号,为单位脉冲序列,为单位阶跃信号,为单位阶跃序列。

一、填空(共30分,每小题3分)1. 矩形脉冲波形(高度为A,宽度为b )的信号能量为_____________。

2. 序列的自相关是一个偶对称函数,它满足关系式_____________。

3. 线性时不变连续稳定的因果系统,其传输函数的极点位于_____全部位于左半开复平面 ______。

4. 某线性时不变系统的单位冲激响应若为,则系统是___五阶________系统。

(几阶系统)5. 的傅立叶反变换为_____________。

6. 已知周期信号的第三次谐波的幅度等于3,则信号的第三次谐波的幅度等于___3__________。

7. 令,,如果,试求其和__8______。

8. 卷积____________。

9. 信号,a>0的傅立叶变换为______;_____。

10. 已知,,则。

二、计算题(共50分,每小题10分)1.某理想低通滤波器,其频率响应为当基波周期为,其傅里叶级数系数为的信号输入到滤波器时,滤波器的输出为,且。

问对于什么样的值,才保证?1、解:信号的基波角频率为:。

信号通过理想低通滤波器后,输出是其本身,这意味着信号所有频率分量均在低通滤波器的通带内。

由于周期)sgn(t )(t δ)(k δ)(t ε)(k εb A E 2=()k x )(k r xx )0()(xx xx r k r ≤)(s H )()2cos()()(t t t t e t h tεε⋅⋅+=-9)5(3)(2++=ωωj j F )(t f )()3sin(5t t e tε⋅-)(t f )2(t f kk x 2)(=)3()(-=k k y δ)()()(k y k x k z ==∑)(k z =-)(*)(t e t t εε)()1(t e tε--ta en x -=)(222ω+a a111)(--=az z X a z >=)(k x )()(k a k x k ε=⎩⎨⎧>≤=100,0100,1)(ωωωj H 6π=T n a )(t f )(t y )()(t f t y =n 0=n a )(t f ==T πω2012s rad /)(t f )(t f信号含有丰富的高次谐波分量,只有当高次谐波分量的幅度非常小时,对的贡献才忽略不计。

信号与系统期末考试-A卷-答案

信号与系统期末考试-A卷-答案

120 信号与系统期末试题答案一、填空题(4小题,每空2分,共20分)1.线性 时变 因果 稳定2. 离散性 谐波性 收敛性3.)()(0t t k t h -=δ 0)()()(ωωϕωωj j j Ke e e H -==j H4.)()(11nT t f t f n T -∑+∞-∞=或二、简答题(5小题,共 25 分)1、解:该方程的一项系数是y(t)的函数,而y(2t)将使系统随时间变化,故描述的系统是非线性时变系统。

(每个知识点1分)(4分)2、解:当脉冲持续时间τ不变,周期T 变大时,谱线间的间隔减小,同频率分量的振幅减小(2分);当脉冲持续时间τ变小,周期T 不变时,谱线间的间隔不变,同频率分量的振幅减小(3分)。

(5分)3、解:信号通过线性系统不产生失真时,)()(0t t k t h -=δ0)()()(ωωϕωωj j j Ke e e H -==j H (每个知识点2分)(4分)4、解: 由于是二阶系统,所以系统的稳定性只需要其特征多项式的各系数大于零。

则本系统稳定的条件为:K-5>0(3分)和3K+1>0(3分).解之可得K>5(2分)。

(8分)5、解:香农取样定理:为了能从抽样信号 f s(t)中恢复原信号 f (t),必须满足两个条件:(1)被抽样的信号f (t)必须是有限频带信号,其频谱在|ω|>ωm 时为零。

(1分)(2)抽样频率 ωs ≥2ωm 或抽样间隔 mm S f T ωπ=≤21(1分) 。

其最低允许抽样频率m s f f 2=或m ωω2=称为奈奎斯特频率(1分),其最大允许抽样间隔mm N f T ωπ==21 (1分)称为奈奎斯特抽样间隔。

(每个知识点1分)(4分) 三.简单计算(5小题,5分/题,共25分)1.(5分)解:cos(101)t +的基波周期为15π, sin(41)t -的基波周期为12π 二者的最小公倍数为π,故())14sin()110cos(2--+=t t t f 的基波周期为π。

信号与系统》期末试卷与答案

信号与系统》期末试卷与答案

信号与系统》期末试卷与答案信号与系统》期末试卷A卷班级:__________ 学号:_________ 姓名:_________ 成绩:_________一.选择题(共10题,20分)1、序列x[n] = e^(j(2πn/3)) + e^(j(4πn/3)),该序列的周期是:A。

非周期序列B。

周期 N = 3C。

周期 N = 3/8D。

周期 N = 242、连续时间系统 y(t) = x(sin(t)),该系统是:A。

因果时不变B。

因果时变C。

非因果时不变D。

非因果时变3、连续时间LTI 系统的单位冲激响应h(t) = e^(-4t)u(t-2),该系统是:A。

因果稳定B。

因果不稳定C。

非因果稳定D。

非因果不稳定4、若周期信号 x[n] 是实信号和奇信号,则其傅立叶级数系数 a_k 是:A。

实且偶B。

实且为奇C。

纯虚且偶D。

纯虚且奇5、信号x(t) 的傅立叶变换X(jω) = {1,|ω|2},则x(t) 为:A。

sin(2t)/2tB。

sin(2t)sin(4t)sin(4t)/πtC。

0D。

16、周期信号x(t) = ∑δ(t-5n),其傅立叶变换X(jω) 为:A。

∑δ(ω-5)B。

∑δ(ω-10πk)C。

5D。

10πjω7、实信号 x[n] 的傅立叶变换为X(e^jω),则 x[n] 奇部的傅立叶变换为:A。

jRe{X(e^jω)}B。

Re{X(e^jω)}C。

jIm{X(e^jω)}D。

Im{X(e^jω)}8、信号 x(t) 的最高频率为 500Hz,则利用冲激串采样得到的采样信号 x(nT) 能唯一表示出原信号的最大采样周期为:A。

500B。

1000C。

0.05D。

0.0019、信号 x(t) 的有理拉普拉斯共有两个极点 s = -3 和 s = -5,若 g(t) = e^(xt),其傅立叶变换G(jω) 收敛,则 x(t) 是:A。

左边B。

右边C。

双边D。

不确定10、系统函数 H(s) = (s+1)/s,Re(s)。

2022年《信号与系统》试卷

2022年《信号与系统》试卷

《信号与系统》卷子〔A 卷〕一、填空题〔每空1分,共18分〕1.假设)()(s F t f ↔,则↔)3(t F 。

2.ℒ()n t t ε⎡⎤=⎣⎦,其收敛域为 。

3.()(21)f t t ε=-的拉氏变换)(s F = ,其收敛域为 。

4.利用拉氏变换的初、终值定理,可以不经反变换计算,直接由)(s F 决定出()+o f 及)(∞f 来。

今已知)3)(2(3)(+++=s s s s s F ,[]Re 0s > 则)0(+f ,)(∞f = 。

5.已知ℒ[]022()(1)f t s ωω=++,Re[]1s >-,则()F j ω=ℱ[()]f t = 。

6.已知ℒ0220[()](1)f t s ωω=-+,Re[]1s >,则()F j ω=ℱ[()]f t = 。

7.已知()[3(1)](1)t f t e Sin t t ε-=--,试写出其拉氏变换()F s 的解析式。

即()F s = 。

8.对连续时间信号进行均匀冲激取样后,就得到 时间信号。

9.在LTI 离散系统分析中, 变换的作用类似于连续系统分析中的拉普拉斯变换。

10.Z 变换能把描述离散系统的 方程变换为代数方程。

11.ℒ 0(3)k t k δ∞=⎡⎤-=⎢⎥⎣⎦∑ 。

12.已知()()f t F s ↔,Re[]s α>,则↔--)1()1(t t f e t ε ,其收敛域为 。

13.已知22()(1)sse F s s ω-=++,Re[]1s >-,则=)(t f 。

14.单位样值函数)(k δ的z 变换是 。

二、单项选择题〔在每题的备选答案中,选出一个正确答案,并将正确答案的序号填在括号内。

每题1分,共8分〕 1.转移函数为327()56sH s s s s=++的系统,有〔 〕极点。

A .0个 B .1个 C .2个 D .3个 2.假设11)(1+↔s t f ,Re[]1s >-;)2)(1(1)(2++↔s s t f ,Re[]1s >-,则[]12()()()y t f t f t =-的拉氏变换()Y s 的收敛区是〔 〕。

(完整版)《信号与系统》期末试卷与答案

(完整版)《信号与系统》期末试卷与答案

《信号与系统》期末试卷A 卷班级: 学号:__________ 姓名:________ _ 成绩:_____________一. 选择题(共10题,20分) 1、n j n j een x )34()32(][ππ+=,该序列是 D 。

A.非周期序列B.周期3=NC.周期8/3=ND. 周期24=N2、一连续时间系统y(t)= x(sint),该系统是 C 。

A.因果时不变B.因果时变C.非因果时不变D. 非因果时变3、一连续时间LTI 系统的单位冲激响应)2()(4-=-t u et h t,该系统是 A 。

A.因果稳定B.因果不稳定C.非因果稳定D. 非因果不稳定4、若周期信号x[n]是实信号和奇信号,则其傅立叶级数系数a k 是 D 。

A.实且偶B.实且为奇C.纯虚且偶D. 纯虚且奇5、一信号x(t)的傅立叶变换⎩⎨⎧><=2||02||1)(ωωω,,j X ,则x(t)为 B 。

A.tt22sin B.t t π2sin C. t t 44sin D. ttπ4sin 6、一周期信号∑∞-∞=-=n n t t x )5()(δ,其傅立叶变换)(ωj X 为 A 。

A.∑∞-∞=-k k )52(52πωδπB. ∑∞-∞=-k k)52(25πωδπ C. ∑∞-∞=-k k )10(10πωδπD.∑∞-∞=-k k)10(101πωδπ7、一实信号x[n]的傅立叶变换为)(ωj e X ,则x[n]奇部的傅立叶变换为C 。

A. )}(Re{ωj eX j B. )}(Re{ωj e X C. )}(Im{ωj e X j D. )}(Im{ωj e X8、一信号x(t)的最高频率为500Hz ,则利用冲激串采样得到的采样信号x(nT)能唯一表示出原信号的最大采样周期为 D 。

A. 500 B. 1000 C. 0.05D. 0.0019、一信号x(t)的有理拉普拉斯共有两个极点s=-3和s=-5,若)()(4t x e t g t=,其傅立叶变换)(ωj G 收敛,则x(t)是 C 。

信号与系统期末考试试卷(有详细答案)

信号与系统期末考试试卷(有详细答案)

信号与系统期末考试试卷(有详细答案)《信号与系统》考试试卷(时间120分钟)院/系专业姓名学号⼀、填空题(每⼩题2分,共20分)1.系统的激励是)t (e ,响应为)t (r ,若满⾜dt)t (de )t (r =,则该系统为线性、时不变、因果。

(是否线性、时不变、因果?)2.求积分dt )t ()t (212-+?∞∞-δ的值为 5 。

3.当信号是脉冲信号f(t)时,其低频分量主要影响脉冲的顶部,其⾼频分量主要影响脉冲的跳变沿。

4.若信号f(t)的最⾼频率是2kHz ,则t)f(2的乃奎斯特抽样频率为 8kHz 。

5.信号在通过线性系统不产⽣失真,必须在信号的全部频带内,要求系统幅频特性为⼀常数相频特性为_⼀过原点的直线(群时延)。

6.系统阶跃响应的上升时间和系统的截⽌频率成反⽐。

7.若信号的3s F(s)=(s+4)(s+2),求该信号的=)j (F ωj 3(j +4)(j +2)ωωω。

8.为使LTI 连续系统是稳定的,其系统函数)s(H 的极点必须在S 平⾯的左半平⾯。

9.已知信号的频谱函数是))00(()j (F ωωδωωδω--+=,则其时间信号f(t)为01sin()t j ωπ。

10.若信号f(t)的211)s (s )s (F +-=,则其初始值=+)(f 0 1 。

⼆、判断下列说法的正误,正确请在括号⾥打“√”,错误请打“×”。

(每⼩题2分,共10分)1.单位冲激函数总是满⾜)()(t t -=δδ( √ )2.满⾜绝对可积条件∞不存在傅⽴叶变换。

( × ) 3.⾮周期信号的脉冲宽度越⼩,其频带宽度越宽。

( √ )4.连续LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点⽆关。

( √ )5.所有周期信号的频谱都是离散谱,并且随频率的增⾼,幅度谱总是渐⼩的。

( × )三、计算分析题(1、3、4、5题每题10分,2题5分, 6题15分,共60分)1.信号)t (u e )t (f t -=21,信号<<=其他,01012t )t (f ,试求)t (f *)t (f 21。

信号与系统期末考试试卷(有详细答案).doc

信号与系统期末考试试卷(有详细答案).doc

格式《信号与系统》考试试卷(时间 120 分钟)院 / 系专业姓名学号题号一二三四五六七总分得分一、填空题(每小题 2 分,共 20 分)得分1.系统的激励是 e(t) ,响应为 r(t) ,若满足de(t)r ( t) ,则该系统为线性、时不变、因果。

dt(是否线性、时不变、因果?)2 的值为 5。

2.求积分 (t1)(t2)dt3.当信号是脉冲信号f(t)时,其低频分量主要影响脉冲的顶部,其高频分量主要影响脉冲的跳变沿。

4.若信号f(t)的最高频率是2kHz,则 f(2t)的乃奎斯特抽样频率为8kHz。

5.信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为一常数相频特性为 _一过原点的直线(群时延)。

6.系统阶跃响应的上升时间和系统的截止频率成反比。

.若信号的F(s)=3s j37。

,求该信号的 F ( j)(s+4)(s+2) (j+4)(j+2)8.为使LTI 连续系统是稳定的,其系统函数H(s ) 的极点必须在S 平面的左半平面。

1。

9.已知信号的频谱函数是0)()F(( ,则其时间信号f(t)为0j)sin(t)js110.若信号 f(t)的F ( s ) ,则其初始值f(0)1。

2(s1 )得分二、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。

(每小题 2 分,共 10 分)《信号与系统》试卷第1页共 7页专业资料整理格式1.单位冲激函数总是满足 ( t )( t ) (√)2.满足绝对可积条件 f ( t ) dt 的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。

(×)3.非周期信号的脉冲宽度越小,其频带宽度越宽。

(√)4.连续 LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。

(√)5.所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。

(×)得分三、计算分析题(1、 3、 4、 5 题每题 10 分, 2 题 5 分,6 题15 分,共 60 分)t 10t11.信号f(t)2eu(t) ,1,信号 f ,试求 f 1 (t)*f 2 (t)。

《信号与系统》A试卷答案

《信号与系统》A试卷答案

西南交通大学2011-2012学年第(1)学期考试试卷课程代码 3122400 课程名称 信号与系统A 考试时间 120分钟阅卷教师签字: 一、选择题:(20分)本题共10个小题,每题回答正确得2分,否则得零分。

每小题所给答案中只有一个是正确的。

1. 已知f (t )的傅里叶变换为)(ωj F ,则f (1-t )的傅里叶变换为( C ) (A )ωωj e j F )(-- (B )ωωj ej F -)((C )ωωj e j F --)((D )ωωj ej F )(-2.连续周期信号的频谱具有( D )(A )连续性、周期性 (B )连续性、非周期性 (C )离散性、周期性 (D )离散性、非周期性3.某系统的系统函数为H (s ),若同时存在频响函数H (j ω),则该系统必须满足条件(C ) (A )时不变系统 (B )因果系统 (C )稳定系统 (D )线性系统4. 已知)(1n f 是1N 点的时限序列,)(2n f 是2N 点的时限序列,且12N N >,则)()()(21n f n f n y *= 是( A )点时限序列。

(A )121-+N N (B )2N (C )1N (D )21N N +5. 若对f (t )进行理想取样,其奈奎斯特取样频率为f s ,则对)231(-t f 进行取样,其奈奎斯特取样频率为( B )。

(A )3f s (B )s f 31 (C )3(f s -2) (D ))2(31-s f 班 级 学 号 姓 名密封装订线 密封装订线 密封装订线6. 周期信号f(t)如题图所示,其直流分量等于( B )(A )0 (B )4 (C )2(D )67. 理想不失真传输系统的传输函数H (jω)是 ( B )。

(A )0j tKe ω- (B )0t j Ke ω-(C )0t j Ke ω-[]()()c c u u ωωωω+--(D )00j t Keω- (00,,,c t k ωω为常数)8.已知)()(ωj F t f ↔,则信号)5()()(-=t t f t y δ的频谱函数 )(ωj Y 为( A )。

华中师范大学信号与系统期末考试(A卷)2016-2017

华中师范大学信号与系统期末考试(A卷)2016-2017

院(系): 专业: 年级: 学生姓名: 学号:------------------------------------------------- 密 ---------------------------------- 封 ----------------------------- 线 ---------------------------------------------------------第 1 页(共 4 页)4.一个连续时间周期信号,其傅里叶级数表示为∑∞-∞==kt jke k t x 502)cos()(ππ,该信号是( )Consider the continuous-time periodic signal whose Fourier series representation is∑∞-∞==kt jke k t x 502)cos()(ππ, what is the signal ?A 不是实值函数 not realB 实奇函数real and oddC 实偶函数 real and evenD 不能确定cannot be ascertained 5.如果)(t f 的傅里叶变换是)(ωj F ,则)3()(-t t f δ的傅里叶变换是( )。

)(ωj F is the Fourier transform of )(t f , which of the following is the Fourier transformof )3()(-t t f δ?A ωj e f 3)3(-B ωωj e j F 3)(-C ωj e f 3)3(D ωωj e j F 3)( 6.有多少个信号在其收敛域内都有如下所示的拉普拉斯变换( ) How many signals have a Laplace transform that may be expressed as below?A 2个B 3个C 4个D 5个 得分 评阅人 II. 填空题Fill in the blanks (每空3分3 points for each correct answer )1.一个连续时间线性系统S 的输入为,)(21t j e t x =对应的输出为,)(31t j e t y =输入为,)(2-2t j e t x =对应的输出为,)(3-2t j e t y =若输入),2cos()(3t t x =求系统S 的输出=)(3t y 。

(完整版)信号与系统期末试卷与答案

(完整版)信号与系统期末试卷与答案

《信号与系统》期末试卷A 卷班级: 学号:__________ 姓名:________ _ 成绩:_____________一. 选择题(共10题,20分) 1、n j n j een x )34()32(][ππ+=,该序列是 。

A.非周期序列B.周期3=NC.周期8/3=ND. 周期24=N2、一连续时间系统y(t)= x(sint),该系统是 。

A.因果时不变B.因果时变C.非因果时不变D. 非因果时变3、一连续时间LTI 系统的单位冲激响应)2()(4-=-t u et h t,该系统是 。

A.因果稳定B.因果不稳定C.非因果稳定D. 非因果不稳定4、若周期信号x[n]是实信号和奇信号,则其傅立叶级数系数a k 是 。

A.实且偶B.实且为奇C.纯虚且偶D. 纯虚且奇5、一信号x(t)的傅立叶变换⎩⎨⎧><=2||02||1)(ωωω,,j X ,则x(t)为 。

A.tt22sin B.t t π2sin C. t t 44sin D. ttπ4sin 6、一周期信号∑∞-∞=-=n n t t x )5()(δ,其傅立叶变换)(ωj X 为 。

A.∑∞-∞=-k k )52(52πωδπB. ∑∞-∞=-k k)52(25πωδπ C. ∑∞-∞=-k k )10(10πωδπD.∑∞-∞=-k k)10(101πωδπ7、一实信号x[n]的傅立叶变换为)(ωj e X ,则x[n]奇部的傅立叶变换为 。

A. )}(Re{ωj eX j B. )}(Re{ωj e X C. )}(Im{ωj e X j D. )}(Im{ωj e X8、一信号x(t)的最高频率为500Hz ,则利用冲激串采样得到的采样信号x(nT)能唯一表示出原信号的最大采样周期为 。

A. 500 B. 1000 C. 0.05D. 0.0019、一信号x(t)的有理拉普拉斯共有两个极点s=-3和s=-5,若)()(4t x e t g t=,其傅立叶变换)(ωj G 收敛,则x(t)是 。

信号与系统期末考试题库及答案

信号与系统期末考试题库及答案

信号与系统期末考试题库及答案1.下列信号的分类方法不正确的是( A ):A 、数字信号和离散信号B 、确定信号和随机信号C 、周期信号和非周期信号D 、因果信号与反因果信号2。

下列说法正确的是( D ):A 、两个周期信号x (t ),y (t )的和x (t )+y (t )一定是周期信号。

B 、两个周期信号x (t ),y (t )的周期分别为2和2,则其和信号x (t )+y (t ) 是周期信号。

C 、两个周期信号x (t ),y (t )的周期分别为2和π,其和信号x (t )+y (t )是周期信号.D 、两个周期信号x (t ),y (t )的周期分别为2和3,其和信号x (t )+y (t )是周期信号.3。

下列说法不正确的是( D ). A 、一般周期信号为功率信号。

B 、 时限信号(仅在有限时间区间不为零的非周期信号)为能量信号。

C 、ε(t )是功率信号;D 、e t 为能量信号;4。

将信号f (t )变换为( A )称为对信号f (t )的平移或移位。

A 、f (t –t 0) B 、f (k–k 0) C 、f (at ) D 、f (—t )5.将信号f (t )变换为( A )称为对信号f (t )的尺度变换. A 、f (at ) B 、f (t –k 0) C 、f (t –t 0) D 、f (-t )6。

下列关于冲激函数性质的表达式不正确的是( B )。

A 、)()0()()(t f t t f δδ=B 、()t aat δδ1)(=C 、)(d )(t tεττδ=⎰∞- D 、)()-(t t δδ=7.下列关于冲激函数性质的表达式不正确的是( D ).A 、⎰∞∞-='0d )(t t δ B 、)0(d )()(f t t t f =⎰+∞∞-δC 、)(d )(t tεττδ=⎰∞- D 、⎰∞∞-=')(d )(t t t δδ8.下列关于冲激函数性质的表达式不正确的是( B )。

信号与系统期末考试试题(有答案的)

信号与系统期末考试试题(有答案的)

信号与系统期末考试试题一、选择题(共10题,每题3分,共30分,每题给出四个答案,其中只有一个正确的)1、卷积f1(k+5)*f2(k—3) 等于。

(A)f1(k)*f2(k) (B)f1(k)*f2(k-8)(C)f1(k)*f2(k+8)(D)f1(k+3)*f2(k—3)2、积分等于。

(A)1。

25(B)2.5(C)3(D)53、序列f(k)=—u(-k)的z变换等于。

(A)(B)-(C)(D)4、若y(t)=f(t)*h(t),则f(2t)*h(2t)等于.(A)(B)(C)(D)5、已知一个线性时不变系统的阶跃相应g(t)=2e—2t u(t)+,当输入f(t)=3e—t u(t)时,系统的零状态响应y f(t)等于(A)(—9e—t+12e—2t)u(t) (B)(3-9e-t+12e-2t)u(t)(C)+(—6e—t+8e-2t)u(t) (D)3 +(—9e-t+12e-2t)u(t)6、连续周期信号的频谱具有(A)连续性、周期性(B)连续性、收敛性(C)离散性、周期性(D)离散性、收敛性7、周期序列2的周期N等于(A)1(B)2(C)3(D)48、序列和等于(A)1 (B) ∞(C) (D)9、单边拉普拉斯变换的愿函数等于10、信号的单边拉氏变换等于二、填空题(共9小题,每空3分,共30分)1、卷积和[(0。

5)k+1u(k+1)]*=________________________2、单边z变换F(z)=的原序列f(k)=______________________3、已知函数f(t)的单边拉普拉斯变换F(s)=,则函数y(t)=3e-2t·f(3t)的单边拉普拉斯变换Y(s)=_________________________4、频谱函数F(j)=2u(1-)的傅里叶逆变换f(t)=__________________5、单边拉普拉斯变换的原函数f(t)=__________________________6、已知某离散系统的差分方程为,则系统的单位序列响应h(k)=_______________________7、已知信号f(t)的单边拉氏变换是F(s),则信号的单边拉氏变换Y(s)=______________________________8、描述某连续系统方程为该系统的冲激响应h(t)=9、写出拉氏变换的结果,三、(8分),求(1) (2)六、(10分)某LTI系统的系统函数,一、选择题(共10题,每题3分,共30分,1、D2、A3、C4、B5、D6、D7、D8、二、填空题(共9小题,每空3分,共30分)1、2、3、4、5、6、7、8、9、,22k!/S k+1四、(10分)解:1)2)六、(10分)解:由得微分方程为将代入上式得二、写出下列系统框图的系统方程,并求其冲激响应。

精选范文精选范文《信号与系统》期末考试试卷a答案

精选范文精选范文《信号与系统》期末考试试卷a答案

班 级 学 号 姓 名A .实偶函数 B.纯虚函数 C.任意复函数 D.任意实函数 8.信号)100()(t Sa t f =,其最低取样频率s f 为(A )A.π100B.π200C.100π D. 200π 9.已知信号)(t f 的傅氏变换为),(ωj F 则)3-2-(t f 的傅氏变换为( C ) A .ωω2)3(3j e j F - B.ωω2)3(3j e j F -- C .ωω6)3(3j e j F - D.ωω6)3(3j e j F -- 10.已知Z 变换Z 11[()]10.5x n z -=-,收敛域0.5z >,求逆变换得x (n )为( A )A .0.5()n u n B. 0.5(1)n u n --- C. 0.5()n u n -- D. 0.5(1)n u n ---- 二、(14分)画图题1.已知)21(t f -波形如图所示,画出)(t f 的波形。

解:)()2()12()21(2121t f t f t f t f t t t t tt −−→−−−→−+−−→−-→-→-→ 2.已知)(n f 及)(n h 如下图,试求 )()()(n h n f n y *=解:)]2()1()([)()(-+--*=n n n n f n y δδδ)2()1()(-+--=n f N f n f三、(20分) 已知某因果LTI 系统的频响特性()H j ω及激励信号的频谱()F j ω如题图所示,1.画出()y t 的频谱()Y j ω,并写出()Y j ω的表示式; 2.若()cos(1000)p t t =,画出()s y t 的频谱()s Y j ω;3.若()()40n n p t t πδ∞=-∞=-∑,画出()s y t 的频谱()s Y j ω,并写出()s Y j ω的表示式。

答案:2.{}1()[(1000)][(1000)]2s Y j Y j Y j ωωω=++-3)()40[(580)(580)]s n Y j u n u n ωωω∞=-∞=+----∑四、(20分)已知因果LTI 系统的微分方程为:()5()6()2()8()y t y t y t x t x t ''''++=+当激励()()t x t e u t -=时,初始状态(0)3,(0)2y y --'==(1)求系统函数()H s ,画系统的零极点图,判断系统的稳定性;(2)求系统的零输入响应、零状态响应以及全响应;(3)指出全响应中的自由响应分量和受迫响应分量,以及稳态响应分量和暂态响应分量;(4)画出系统的模拟结构框图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《信号与系统》期末试卷A 卷
班级: 学号:__________ 姓名:________ _ 成绩:_____________
一. 选择题(共10题,20分) 1、n j n j e
e
n x )3
4(
)3
2(][ππ+=,该序列是 D 。

A.非周期序列
B.周期3=N
C.周期8/3=N
D. 周期24=N
CDCC
2、一连续时间系统y(t)= x(sint),该系统是 C 。

A.因果时不变
B.因果时变
C.非因果时不变
D. 非因果时变
3、一连续时间LTI 系统的单位冲激响应)2()(4-=-t u e t h t ,该系统是 A 。

A.因果稳定
B.因果不稳定
C.非因果稳定
D. 非因果不稳定
4、若周期信号x[n]是实信号和奇信号,则其傅立叶级数系数a k 是 D 。

A.实且偶
B.实且为奇
C.纯虚且偶
D. 纯虚且奇
5、一信号x(t)的傅立叶变换⎩⎨
⎧><=2||02||1)(ωωω,

j X ,则x(t)为 B 。

A.
t
t
22sin B.
t t π2sin C. t t 44sin D. t
t
π4sin 6、一周期信号∑∞
-∞
=-=
n n t t x )5()(δ,其傅立叶变换)(ωj X 为 A 。

A.
∑∞
-∞
=-k k )52(5
2πωδπ
B. ∑∞
-∞
=-
k k
)5
2(25
πωδπ C. ∑∞
-∞
=-k k )10(10πωδπ
D.
∑∞-∞
=-k k
)10(101
πωδπ
7、一实信号x[n]的傅立叶变换为)(ωj e X ,则x[n]奇部的傅立叶变换为 c 。

A. )}(Re{ωj e X j
B. )}(Re{ωj e X
C. )}(Im{ωj e X j
D. )}(Im{ωj e X 8、一信号x(t)的最高频率为500Hz ,则利用冲激串采样得到的采样信号x(nT)能唯一表示出原信号的最大采样周期为 D 。

A. 500 B. 1000 C. 0.05
D. 0.001
9、一信号x(t)的有理拉普拉斯共有两个极点s=-3和s=-5,若)()(4t x e t g t =,其傅立叶变换)(ωj G 收敛,则x(t)是 C 。

A. 左边 B. 右边 C. 双边
D. 不确定
10、一系统函数1}Re{1
)(->+=
s s e s H s
,,该系统是 C 。

A. 因果稳定 B. 因果不稳定 C. 非因果稳定 D. 非因果不稳定
二. 简答题(共6题,40分)
1、 (10分)下列系统是否是(1)无记忆;(2)时不变;(3)线性;(4)因果;(5)
稳定,并说明理由。

(1) y(t)=x(t)sin(2t); (2)y(n)= )
(n x e
2、 (8分)求以下两个信号的卷积。

⎩⎨
⎧<<=值其余t T
t t x 0
01
)( ⎩⎨
⎧<<=值
其余t T t t
t h 0
20)(
3、 (共12分,每小题4分)已知)()(ωj X t x ⇔,求下列信号的傅里叶变换。

(1)tx(2t) (2) (1-t)x(1-t) (3)dt
t dx t
)
( 4. 求 2
2)(22++=-s s e s s F s
的拉氏逆变换(5分)
5、已知信号sin 4(),t
f t t t
ππ=
-∞<<∞,当对该信号取样时,试求能恢复原信号的最大抽样周期T max 。

(5分)
,求系统的响应。

)若(应;)求系统的单位冲激响(下列微分方程表征:系统的输入和输出,由分)一因果三、(共)()(21)(2)(15)
(8)(LT I 1042
2t u e t x t x t y dt t dy dt
t dy t -==++
四、(10分)求周期矩形脉冲信号的傅立叶级数(指数形式),并大概画出其频谱图。

不是因果的。

)系统既不是稳定的又()系统是因果的;
(系统是稳定的;系统的单位冲激响应)求下列每一种情况下(的零极点图;,并画出)求该系统的系统函数(下列微分方程表征:系统的输入和输出,由分)一连续时间五、(共c b a t h s H s H t x t y dt t dy dt t dy )()
(2)()(1)()(2)
()(LT I 202
2=--
t t
t Sa j F t u e t f t sin )(1)()()(=
+=
⇔=-;注:ωαωα
《信号与系统》期末试卷A 卷答案
一、选择题(每题2分,共10题)
DCADBACDCC
二、 简答题(共6题,40分)
1、 (1)无记忆,线性,时变,因果,稳的;(5分)
(2)无记忆,非线性,时不变,因果,稳定(5分) 2、(8分)
⎪⎪⎪⎪

⎪⎪⎪⎪⎨⎧<<<++-<<-<<<=t
T T t T T Tt t T t T T Tt T t t t t y 30322321221
02100)(222
2
3、(3×4分=12分)
(1) ω
ωd j dX j t tx )
2/(2)2(⇔
(2) ω
ωωωωω
ωj j j e j jX e j X d d
j e j X t tx t x t x t -----=---⇔---=--)(])([)()
1()1()1()1(' (3) ω
ωωωd j dX j X dt t dx t
)
()()(--⇔
4、(5分)2
22
2122:222+++-=++s s s s s s 解
s
s e s s e s F --+++-
=1
)1()1(2)(2
)1()1cos(2)1()()1(----=--t u t e t t f t δ
5、(5分)因为f(t)=4Sa(4πt),所以X(j ω)=R 8π(j ω),其最高角频率ω=4π。

根据时
域抽样定理,可得恢复原信号的最大抽样周期为max 1
4
m T πω=
= 三、(10分)(1)()5
1
3115
82
)(2+-
+=
++=
ωωωωωj j j j j H 2分 )()()(53t u e t u e t h t t ---= 3分


)(3)
(2)()()(4
2
5131)5)(3)(4(2)(24
1)(2453t u e t u e t u e t y j j j j j j j Y j j X t t t ----+=+-
+++=+++=
+=
ωωωωωωωωω 四、(10分)

分分
22Sa 2sin 2)(3)2()(2)sin(221)(1111111111111221221011⎪⎭⎫ ⎝
⎛=⎪⎭⎫ ⎝⎛
=
====
===⎰⎰--τωττωωωτωπτωπτ
τπτπτ
τ
τ
n T E n T n E n F n Sa E T n Sa T E T n n E a T E dt E T dt t f T a n T T
3分
五、(20分)
2113
/123/12
1)(12
,,极点--=)(+---=
s s s s s H (8分) 分
,-则若系统非稳定非因果,分
-,若系统因果,则分
-,若系统稳定,则-)4)
(3
1
)(31)(1}Re{)(4)(3
1
)(31)(2}Re{)(4)(31
)(31)(2}Re{1)(2(222t u e t u e t h s c t u e t u e t h s b t u e t u e t h s a t t t t t t -+--=<=>--=<<---。

相关文档
最新文档