移动基站开关电源接地规范
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、前言开关电源设备是现代通信系统中的重要组成部分,其目的是为通信设备提供安全、可靠、高效、稳定、不间断的能源。随着科技水平的进步,对于开关电源设备性能的要求也逐步提高,除必须满足基本的功能外,还要求具备交流配电、自动切换、直流配电、远程智能集中监控、电池自动管理等功能,从而满足网络监控管理的需求。
开关电源的发展经历了从线性电源、相控电源到高频相控电源的发展历程,由于开关电源具有功率转换效率高、稳压范围宽、功率密度比大、重量轻等优点,从而成为开关电源的主体,并向着高频小型化、高效率、高可靠性的方向发展。计算机控制、通信和网络技术的快速发展,为开关电源远程监控系统的发展和完善提供了更加便利的条件,使其无人值守成为可能。
通常开关电源系统由交流配电、整流模块、直流配电和监控模块组成,如图1所示。监控系统可将交流配电柜、直流配电和整流模块进行实时监控。直流配电主要完成直流输出路数分配、电池接入和负载边接等功能,一般要求可自由出线,可出面操作维护,可实现柜内并机和柜外并机,具有状态显示和告警功能,能检测每一路熔断器的通断状态;多个并联的整流模块的主要功能是将输入交流220V转换输出为满足通信要求的-48V的直流电。
通信电源系统组成框图
监控模块主要实现交流配电柜、直流配电柜和模块监控,此外还要进行电池自动管理功能。开关电源系统作为通信网络的能源供给者,除了必须具备可靠、稳定等基础特性外,其电磁兼容设计、防护设计、可操作性和可维护性也是非常关键的因素。安全性是电源设备最重要的指标,其不安全隐患不但不能完成正常的供电要求,而且还有可能发生严重的事故,甚至造成机毁人亡的巨大损失。为此,必须加强安全性设计工作。而目前影响电源设备安全性最重要的工作是如何有效提高其防雷电浪涌和操作过电压的能力。
二、开关电源遭雷击的故障点
1、
整流模块被损坏(交流侧、直流侧)
2、监控模块端口被损坏
3、开关电源内C类SPD发生损坏
4、开关电源内主空开频繁跳
5、开关电源雷电过后的“吊死”
三、雷电入侵移动基站开关电源的几种方式
1、
通过220V市电引入传导进入
雷电通过直接或感应的方式通过市电电源线入侵基站,虽然大部分雷电流在进入开关电源前通过B类SPD对地释放,但仍然会有部分雷电流进入开关电源,这部分雷电流的大小取决于B类SPD的性能及是否能与C类SPD进行良好的配合。
2、
通过地网传导进入(地电位反击)
移动基站采用联合接地,雷电流通过铁塔避雷针接闪或雷电流通过防雷器,雷电流通过接地系统和地网对地释放,由于地网存在接地电阻,在雷电流对地释放的过程中将地网的整体电位抬升,连接到地网的设备的电位也随之抬升。这个时间是非常短的,瞬间地与系统设备某个低电位点形成瞬态过电压,雷电电荷通过该点释放导致设备损坏。低电位点通常存在于如直流负荷如BTS电源、基站动力环境监控、开关电源整流模块的N线(远端接地),开关电源的监控模块等。
3、
雷电电磁脉冲感应
感应雷可通过两种不同的感应方式侵入导体,一是静电感应:在雷云中的电荷积聚时,附近的导体也会感应上相反的电荷,当雷击放电时,雷云中的电荷迅速释放,而导体中原来被雷云电场束缚住的静电也会沿导体流动寻找释放通道,就在电路中形成电脉冲。二是电磁感应:在雷云放电时,迅速变化的雷电流在其周围产生强大的瞬变电磁场,在其附近的导体中产生很高的感生电动势。由于开关电源对其它设备进行供电及对一些设备进行监控,存在连接线路过多,这些线路中容易产生感应雷电流。
四、如何做好开关电源雷电防护几个主要问题:
1、
开关电源内交流输入C类SPD几个关键参数的选择
a)
通流能力设计
开关电源在供电系统中的位置相当于分配电箱,从“防雷分区、分级防护”的理念来讲它至少要处于一级防雷的保护之下,通常它作为整个基站供电系统的第二级防护屏障。在YD/T 5098-2001 标准中3.7.9
要求在分配电屏电缆输入侧电源芯线对地安装标称放电电流为20KA的限压型SPD。
b)
残压特性及最大持续工作电压
残压特性是电源避雷器的最重要特性,残压越低,保护效果就越好。根据IEC60664-1 1992«低压系统内设备的绝缘配合»中对处于不同安装位置的电气设备的过电压类别(IV III II I)划分,从开关电源的位置而言它属于III类,其耐受能力要求为4KV,但开关电源内含有整流模块、直流输出、监控系统等属于II类设备,其耐受能力要求为2.5KV,考虑到雷电流在SPD连接线和接线端子上的压降及要有冗余,故通常要求开关电源内C类SPD的最大残压即SPD的电压保护水平Up要小于2KV。考虑到我国电网电压普遍不稳定、波动范围大的实际情况,在尽量选择残压较低的电源避雷器的同时,还必须考虑避雷器有足够高的最大连续工作电压。如果最大连续工作电压偏低,则易造成避雷器发热自毁。通常交流输入端使用的C类SPD的最大连续工作电压要求为385V。
c)
安全性能要求
必须具有失效分离装置,当SPD在失效时,能自动与电源系统断开,而不影响通信电源系统的正常供电;电源避雷器必须具有阻燃功能,在失效、或自毁时不能起火;应该要有有失效警告指示、并能提供遥测端口功能的电源避雷器,以方便监控、管理和日后维护。
d)
类型选择
类型选择主要指SPD的保护模式,分共模保护和差模保护。共模保护指所有线路对地进行保护,如相线-地线(L-PE)、零线-地线(N-PE)间的保护;差模保护指相线-零线(L-N)、相线-相线(L-L)间的保护。仅选用L-PE、N-PE的共模保护模式是有缺陷的,会引起很多问题,其原由在于我们国家规定在N线上不能安装空开,当电路出现L-N短路故障或零点产生较大漂移时使N-PE上SPD长时间有大电流通过,加速SPD的老化容易引发SPD烧毁。故对于低压侧除选择共模的保护方式外,还应选择包括差模在内的保护,3+1类型的保护模
式则可以很好的解决这类问题,采用“3+1”电路,即用3个ZnO压敏电阻模块分别接在L1、2、3与N线间,用一个放电间隙模块接在N/PE间如图,其优点在于采用这种电路后,限压型SPD模块皆置于L/N 间,一旦出现短路失效,由于回路电阻比原来L-PE的方式小了很多(低压供电系统L/N间短路电流一般为数千安培),SPD前面的过流保护装置将更容易动作,从而避免火灾,而且实现了差模保护。另外这种类型SPD有个关键在于其N-PE 间的模块(对N-PE模块的要求下面单独说明),它通常为一个间隙型放电元件,由于加在N/PE间,不存在动作分散性问题、灭弧问题、响应速度问题,当L-N间SPD动作后促使N-PE间SPD动作从而实现雷电流L-PE对地释放的共模保护。3+1结构是一种全模式的保护方式,适用于各种接地方式的供电系统,故在开关电源的C类SPD的使用上应采用“3+1”这种全保护类型模式。