2019-2020学年育英二外八下数学期中试卷答案

合集下载

2019-2020学年八年级下学期期中考试数学试卷附解答

2019-2020学年八年级下学期期中考试数学试卷附解答

2019-2020学年八年级下学期期中考试数学试卷一、选择题(每小题3分,共30分 1.(3分)如图分别给出了变量x 与y 之间的对应关系,其中y 不是x 的函数是( )A .B .C .D .2.(3分)下列式子中,属于最简二次根式的是( ) A .12B .23C .0.3D .73.(3分)已知三角形三边的长分别为3、2、5,则该三角形的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .无法确定4.(3分)下列判断错误的是( ) A .对角线相等四边形是矩形B .对角线相互垂直平分四边形是菱形C .对角线相互垂直且相等的平行四边形是正方形D .对角线相互平分的四边形是平行四边形 5.(3分)当0b <时,一次函数2y x b =+的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限 6.(3分)如图,一个梯子AB 斜靠在一竖直的墙AO 上,测得2AO m =.若梯子的顶端沿墙下滑0.5m ,这时梯子的底端也恰好外移0.5m ,则梯子的长度AB 为( )m .A .2.5B .3C .1.5D .3.57.(3分)已知点1(2,)y -,(1,0),2(3,)y 都在一次函数2y kx =-的图象上,则1y ,2y ,0的大小关系是( ) A .120y y <<B .120y y <<C .120y y <<D .210y y <<8.(3分)如图,菱形ABCD的对角线AC,BD相交于O点,E,F分别是AB,BC边上的中点,连接EF.若3EF=,4BD=,则菱形ABCD的周长为()A.4B.46C.47D.289.(3分)矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),点D的坐标为(2,0),E为AB上的点,当CDE∆的周长最小时,点E的坐标为()A.(1,3)B.(3,1)C.(4,1)D.(3,2)10.(3分)如图,在平面直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,则ABC∆的周长最小是()A.12B.4522+C.55D.2542+二、填空题(每小题3分,共15分)11.(3分)函数2xyx+=的自变量x的取值范围是.12.(3分)如图,平行四边形ABCD的对角线AC,BD交于点O,已知10AD=,14BD=,8AC=,则OBC∆的周长为.13.(3分)若方程组2x y b x y a +=⎧⎨-=⎩的解是13x y =-⎧⎨=⎩,则直线2y x b =-+与直线y x a =-的交点坐标是 .14.(3分)已知:如图,90ABC ADC ∠=∠=︒,M 、N 分别是AC 、BD 的中点,10AC =,8BD =,则MN = .15.(3分)如图1,在平面直角坐标系中,将ABCD Y 放置在第一象限,且//AB x 轴.直线y x =-从原点出发沿x 轴正方向平移,在平移过程中直线被平行四边形截得的线段长度n 与直线在x 轴上平移的距离m 的函数图象如图2所示,则ABCD Y 的面积为 .三、解答题(共8题,共75分)16.(10分)(1)计算132728712483⨯-÷+- (2)已知21x =-,21y =+,求代数式22x y xy +的值. 17.(8分)已知一次函数的图象经过(3,8)A 和(3,4)B --两点. (1)求这个一次函数的关系式;(2)若点(,21)P a a -+在这个函数的图象上,求a 的值.18.(9分)如图,点D ,C 在BF 上,//AC DE ,A E ∠=∠,BD CF =. (1)求证:AB EF =;(2)连接AF ,BE ,猜想四边形ABEF 的形状,并说明理由.19.(9分)如图,在边长为1的小正方形组成的网格中,四边形ABCD 的四个顶点都在格点上,请按要求完成下列各题.(1)线段AB 的长为 ,BC 的长为 ,CD 的长为 ;(2)连接AC ,通过计算说明ACD ∆和ABC ∆是什么特殊三角形.20.(9分)某汽车出发前油箱内有油42L ,行驶若干小时后,在途中加油站加油若干升.邮箱中剩余油量()Q L 与行驶时间()t h 之间的函数关系如图所示. (1)汽车行驶 h 后加油,加油量为 L ;(2)求加油前油箱剩余油量Q 与行驶时间t 之间的函数关系式;(3)如果加油站离目的地还有200km ,车速为40/km h ,请直接写出汽车到达目的地时,油箱中还有多少汽油?21.(9分)某市在城中村改造中,需要种植A 、B 两种不同的树苗共3000棵,经招标,承包商以15万元的报价中标承包了这项工程,根据调查及相关资料表明,A 、B 两种树苗的成本价及成活率如表: 品种 购买价(元/棵)成活率 A 28 90%B4095%设种植A 种树苗x 棵,承包商获得的利润为y 元. (1)求y 与x 之间的函数关系式;(2)政府要求栽植这批树苗的成活率不低于93%,承包商应如何选种树苗才能获得最大利润?最大利润是多少? 22.(10分)如图,在ABC ∆中,点O 是AC 边上的一个动点,过点O 作直线//MN BC ,设MN 交BCA ∠的角平分线于点E ,交BCA ∠的外角平分线于点F . (1)求证:EO FO =;(2)当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论.(3)当点O 运动到何处,且ABC ∆满足什么条件时,四边形AECF 是正方形?并说明理由.23.(11分)如图,已知直线334y x =+与坐标轴交于B ,C 两点,点A 是x 轴正半轴上一点,并且15ABC S ∆=,点F 是线段AB 上一动点(不与端点重合),过点F 作//FE x 轴,交BC 于E .(1)求AB 所在直线的解析式;(2)若FD x ⊥轴于D ,且点D 的坐标为(,0)m ,请用含m 的代数式表示DF 与EF 的长; (3)在x 轴上是否存在一点P ,使得PEF ∆为等腰直角三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(每小题3分,共30分 1.(3分)如图分别给出了变量x 与y 之间的对应关系,其中y 不是x 的函数是( )A .B .C .D .【考点】2E :函数的概念【分析】函数的意义反映在图象上简单的判断方法是:做垂直x 轴的直线在左右平移的过程中与函数图象只会有一个交点.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以B中y不是x的函数.故选:B.【点评】本题主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.2.(3分)下列式子中,属于最简二次根式的是()A.12B.23C.0.3D.7【考点】74:最简二次根式【分析】根据最简二次根式的定义(①被开方数不含有能开得尽方的因式或因数,②被开方数不含有分母,满足以上两个条件的二次根式叫最简二次根式)逐个判断即可.【解答】解:A、1223=,不是最简二次根式,故本选项错误;B、21633=,不是最简二次根式,故本选项错误;C、10.33010=,不是最简二次根式,故本选项错误;D、7是最简二次根式,故本选项正确;故选:D.【点评】本题考查了最简二次根式的定义的应用,能熟记最简二次根式的定义是解此题的关键,注意:最简二次根式满足以下两个条件:①被开方数不含有能开得尽方的因式或因数,②被开方数不含有分母.3.(3分)已知三角形三边的长分别为3、2、5,则该三角形的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定【考点】KS:勾股定理的逆定理【分析】两小边的平方和等于最长边的平方,即可由勾股定理的逆定理证明三角形是直角三角形.【解答】解:2222(5)3+=Q,∴该三角形是直角三角形,故选:B.【点评】本题考查勾股定理的逆定理:如果三角形的三边长a,b,c满足222a b c+=,那么这个三角形就是直角三角形.知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.4.(3分)下列判断错误的是()A.对角线相等四边形是矩形B.对角线相互垂直平分四边形是菱形C.对角线相互垂直且相等的平行四边形是正方形D.对角线相互平分的四边形是平行四边形【考点】7L:平行四边形的判定与性质;LC:矩形的判定;9L:菱形的判定;LF:正方形的判定【分析】利用菱形的判定定理、矩形的判定定理、平行四边形的判定定理、正方形的判定定理分别对每个选项进行判断后即可确定正确的选项. 【解答】解:A 、对角线相等四边形是矩形,错误; B 、对角线相互垂直平分四边形是菱形,正确;C 、对角线相互垂直且相等的平行四边形是正方形,正确;D 、对角线相互平分的四边形是平行四边形,正确; 故选:A .【点评】本题考查了命题与定理的知识,解题的关键是能够了解矩形和菱形的判定定理,难度不大. 5.(3分)当0b <时,一次函数2y x b =+的图象经过(( ) A .第一、二、三象限 B .第一、二、四象限 C .第二、三、四象限 D .第一、三、四象限 【考点】7F :一次函数图象与系数的关系【分析】根据一次函数系数的正负,可得出一次函数图象经过的象限,由此即可得出结论. 【解答】解:10k =>Q ,0b <,∴一次函数y x b =+的图象经过第一、三、四象限.故选:D . 【点评】本题考查了一次函数图象与系数的关系,解题的关键是找出函数图象经过的象限.本题属于基础题,难度不大,解决该题型题目时,根据一次函数的解析式结合一次函数图象与系数的关系找出函数图象经过的象限是关键. 6.(3分)如图,一个梯子AB 斜靠在一竖直的墙AO 上,测得2AO m =.若梯子的顶端沿墙下滑0.5m ,这时梯子的底端也恰好外移0.5m ,则梯子的长度AB 为( )m .A .2.5B .3C .1.5D .3.5 【考点】KU :勾股定理的应用【分析】设BO xm =,利用勾股定理用x 表示出AB 和CD 的长,进而求出x 的值,即可求出AB 的长度.【解答】解:设BO xm =,依题意,得0.5AC =,0.5BD =,2AO =. 在Rt AOB ∆中,根据勾股定理得 222222AB AO OB x =+=+, 在Rt COD ∆中,根据勾股定理22222(20.5)(0.5)CD CO OD x =+=-++, 22222(20.5)(0.5)x x ∴+=-++,解得 1.5x =,22215 2.5AB ∴=+=g ,答:梯子AB 的长为2.5m .故选:A .【点评】本题考查了勾股定理在实际生活中的应用,本题中找到AB CD =为梯子长等量关系是解题的关键.7.(3分)已知点1(2,)y -,(1,0),2(3,)y 都在一次函数2y kx =-的图象上,则1y ,2y ,0的大小关系是( ) A .120y y <<B .120y y <<C .120y y <<D .210y y <<【考点】8F :一次函数图象上点的坐标特征【分析】先根据点(1,0)在一次函数2y kx =-的图象上,求出20k =>,再利用一次函数的性质判断出函数的增减性,然后根据三点横坐标的大小得出结论. 【解答】解:Q 点(1,0)在一次函数2y kx =-的图象上, 20k ∴-=,20k ∴=>,y ∴随x 的增大而增大, 213-<<Q ,120y y ∴<<.故选:B . 【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.也考查了一次函数的性质. 8.(3分)如图,菱形ABCD 的对角线AC ,BD 相交于O 点,E ,F 分别是AB ,BC 边上的中点,连接EF .若3EF =,4BD =,则菱形ABCD 的周长为( )A .4B .46C .47D .28【考点】KX :三角形中位线定理;8L :菱形的性质【分析】首先利用三角形的中位线定理得出AC ,进一步利用菱形的性质和勾股定理求得边长,得出周长即可.【解答】解:EQ,F分别是AB,BC边上的中点,3EF=,223AC EF∴==,Q四边形ABCD是菱形,AC BD ∴⊥,132OA AC==,122OB BD==,227AB OA OB∴=+=,∴菱形ABCD的周长为47.故选:C.【点评】此题考查菱形的性质,三角形的中位线定理,勾股定理,掌握菱形的性质是解决问题的关键.9.(3分)矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),点D的坐标为(2,0),E为AB上的点,当CDE∆的周长最小时,点E的坐标为()A.(1,3)B.(3,1)C.(4,1)D.(3,2)【考点】5D:坐标与图形性质;LB:矩形的性质;PA:轴对称-最短路线问题【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时CDE∆的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时CDE∆的周长最小.(2,0)DQ,(3,0)A,(4,0)H∴,设直线CH解析式为y ax b=+,则404a bb+=⎧⎨=⎩,解得:14ab=-⎧⎨=⎩,故直线CH解析式为4y x=-+,3x∴=时,341y=-+=,∴点E坐标(3,1)故选:B.【点评】本题考查矩形的性质、坐标与图形的性质、轴对称-最短问题、一次函数等知识,解题的关键是利用轴对称找到点E位置,学会利用一次函数解决交点问题,属于中考常考题型.10.(3分)如图,在平面直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,则ABC∆的周长最小是()A.12B.4522++C.55D.2542【考点】5D:坐标与图形性质;PA:轴对称-最短路线问题【分析】根据轴对称作最短路线得出AE B E=',进而得出B O C O∆的周'=',即可得出ABC长最小时C点坐标进而可求出ABC∆的周长.【解答】解:作B点关于y轴对称点B'点,连接AB',交y轴于点C',此时ABC∆的周长最小,Q点A、B的坐标分别为(1,4)和(3,0),∴'点坐标为:(3,0)AE=,B-,4则4B E'=,即B E AE'=,Q,'C O AE//∴'='=,3B OC O∆的周长最小为∴点C'的坐标是(0,3),此时ABC2222'+=+++=+.AB AB44244225故选:D.【点评】此题主要考查了利用轴对称求最短路线以及平行线的性质和勾股定理的运用,根据已知得出C 点位置是解题关键. 二、填空题(每小题3分,共15分)11.(3分)函数2x y x+=的自变量x 的取值范围是 2x -…且0x ≠ . 【考点】4E :函数自变量的取值范围【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【解答】解:根据二次根式有意义,分式有意义得:20x +…且0x ≠, 解得:2x -…且0x ≠.故答案为:2x -…且0x ≠. 【点评】本题考查函数自变量的取值范围,知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.12.(3分)如图,平行四边形ABCD 的对角线AC ,BD 交于点O ,已知10AD =,14BD =,8AC =,则OBC ∆的周长为 21 .【考点】5L :平行四边形的性质【分析】由平行四边形的性质得出4OA OC ==,7OB OD ==,10BC AD ==,即可求出OBC ∆的周长.【解答】解:Q 四边形ABCD 是平行四边形,4OA OC ∴==,7OB OD ==,10BC AD ==,OBC ∴∆的周长471021OB OC AD =++=++=.故答案为:21【点评】本题主要考查了平行四边形的性质,并利用性质解题.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.13.(3分)若方程组2x y b x y a +=⎧⎨-=⎩的解是13x y =-⎧⎨=⎩,则直线2y x b =-+与直线y x a =-的交点坐标是 (1,3)- .【考点】FE :一次函数与二元一次方程(组)【分析】根据两个函数图象的交点就是两个函数组成的方程组的解可得答案.【解答】解:因为方程组2x y b x y a +=⎧⎨-=⎩的解是13x y =-⎧⎨=⎩, 所以直线2y x b =-+与直线y x a =-的交点坐标是(1,3)-,故答案为:(1,3)-,【点评】此题主要考查了二元一次方程(组)与一次函数的关系,关键是掌握两条直线的交点坐标应该是联立两个一次函数解析式所组方程组的解.14.(3分)已知:如图,90ABC ADC ∠=∠=︒,M 、N 分别是AC 、BD 的中点,10AC =,8BD =,则MN = 3 .【考点】KP :直角三角形斜边上的中线【分析】根据在直角三角形中,斜边上的中线等于斜边的一半得到5BM DM ==,根据等腰三角形的性质得到4BN =,根据勾股定理得到答案.【解答】解:连接BM 、DM ,90ABC ADC ∠=∠=︒Q ,M 是AC 的中点,152BM DM AC ∴===, N Q 是BD 的中点,MN BD ∴⊥,142BN BD ∴==, 由勾股定理得:2222543MN BM BN =-=-=,故答案为:3.【点评】本题考查的是直角三角形的性质、等腰三角形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.15.(3分)如图1,在平面直角坐标系中,将ABCD Y 放置在第一象限,且//AB x 轴.直线y x =-从原点出发沿x 轴正方向平移,在平移过程中直线被平行四边形截得的线段长度n 与直线在x 轴上平移的距离m 的函数图象如图2所示,则ABCD Y 的面积为 10 .【考点】7E :动点问题的函数图象【分析】根据图象可以得到当移动的距离是3时,直线经过点A ,当移动距离是7时,直线经过D ,在移动距离是8时经过B ,则835AB =-=,当直线经过D 点,设交AB 与N ,则22DN =,作DM AB ⊥于点M .利用三角函数即可求得DM 即平行四边形的高,然后利用平行四边形的面积公式即可求解.【解答】解:根据图象可以得到当移动的距离是4时,直线经过点A ,当移动距离是7时,直线经过D ,在移动距离是8时经过B ,则835AB =-=, 当直线经过D 点,设交AB 与N ,则22DN =,如图,作DM AB ⊥于点M .y x =-Q 与x 轴形成的角是45︒,又//AB x Q 轴,45DNM ∴∠=︒,2sin 452222DM DN ∴=︒=⨯=g , 则平行四边形的面积是:5210AB DM =⨯=g ,故答案为:10.【点评】本题考查了函数的图象,根据图象理解AB 的长度,正确求得平行四边形的高是关键.三、解答题(共8题,共75分) 16.(10分)(1)计算132728712483⨯-÷+- (2)已知21x =-,21y =+,求代数式22x y xy +的值.【考点】7A :二次根式的化简求值;76:分母有理化【分析】(1)利用二次根式运算法则计算即可;(2)先分解因式,然后代入求值.【解答】解:(1)原式924343=-+-11=;(2)22x y xy +()xy x y =+ (21)(21)(2121)=-+-++122=⨯22=.【点评】本题考查了二次根式的化简求值,熟练分解因式是解题的关键.17.(8分)已知一次函数的图象经过(3,8)A 和(3,4)B --两点.(1)求这个一次函数的关系式;(2)若点(,21)P a a -+在这个函数的图象上,求a 的值.【考点】8F :一次函数图象上点的坐标特征;FA :待定系数法求一次函数解析式【分析】(1)直接利用待定系数法求出一次函数解析式进而得出答案;(2)把点P 的坐标代入函数解析式,利用方程求得a 的值.【解答】解:(1)设直线AB 的表达式为y kx b =+,Q 一次函数的图象经过(3,8)A 和(3,4)B --两点,∴3834k b k b +=⎧⎨-+=-⎩, 解得22k b =⎧⎨=⎩∴直线AB 的表达式为22y x =+;(2)由(1)知,直线AB 的表达式为22y x =+,把(,21)P a a -+代入,得2221a a +=-+解得14a =-. 【点评】主要考查了待定系数法求函数解析式,一次函数图象上点的坐标特征,解本题的关键是用方程的思想解决问题.18.(9分)如图,点D ,C 在BF 上,//AC DE ,A E ∠=∠,BD CF =.(1)求证:AB EF =;(2)连接AF ,BE ,猜想四边形ABEF 的形状,并说明理由.【考点】KD :全等三角形的判定与性质【分析】(1)利用AAS 证明ABC EFD ∆≅∆,再根据全等三角形的性质可得AB EF =;(2)首先根据全等三角形的性质可得B F ∠=∠,再根据内错角相等两直线平行可得到//AB EF ,又AB EF =,可证出四边形ABEF 为平行四边形.【解答】(1)证明://AC DE Q ,ACD EDF ∴∠=∠,BD CF =Q ,BD DC CF DC ∴+=+,即BC DF =,在ABC ∆与EFD ∆中ACD EDF A EBC DF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ABC EFD AAS ∴∆≅∆,AB EF ∴=;(2)猜想:四边形ABEF 为平行四边形,理由如下:由(1)知ABC EFD ∆≅∆,B F ∴∠=∠,//AB EF ∴,又AB EF =Q ,∴四边形ABEF 为平行四边形.【点评】此题主要考查了全等三角形的判定与性质,平行四边形的判定,解决问题的关键是证明ABC EFD ∆≅∆.19.(9分)如图,在边长为1的小正方形组成的网格中,四边形ABCD 的四个顶点都在格点上,请按要求完成下列各题.(1)线段AB 的长为5 ,BC 的长为 ,CD 的长为 ;(2)连接AC ,通过计算说明ACD ∆和ABC ∆是什么特殊三角形.【考点】KQ :勾股定理;KS :勾股定理的逆定理【分析】(1)把线段AB 、BC 、CD 、放在一个直角三角形中利用勾股定理计算即可;(2)根据勾股定理的逆定理求出AC AD =,即可判断ACD ∆的形状;由勾股定理的逆定理得出ABC ∆是直角三角形.【解答】解:(1)由勾股定理得:22215AB =+=,22345BC =+=,222222CD =+=;故答案为:5,5,22;(2)222425AC =+=Q ,222425AD ==+=,AC AD ∴=,ACD ∴∆是等腰三角形;22252025AB AC BC +=+==Q ,ABC ∴∆是直角三角形.【点评】此题主要考查了勾股定理、勾股定理的逆定理以及等腰三角形的判定;熟练掌握勾股定理是解决问题的关键.20.(9分)某汽车出发前油箱内有油42L ,行驶若干小时后,在途中加油站加油若干升.邮箱中剩余油量()Q L 与行驶时间()t h 之间的函数关系如图所示.(1)汽车行驶 5 h 后加油,加油量为 L ;(2)求加油前油箱剩余油量Q 与行驶时间t 之间的函数关系式;(3)如果加油站离目的地还有200km ,车速为40/km h ,请直接写出汽车到达目的地时,油箱中还有多少汽油?【考点】FH :一次函数的应用【分析】(1)根据函数图象的横坐标,可得答案;根据函数图象的纵坐标,可得加油量;(2)根据待定系数法,可得函数解析式;(3)根据汽车每小时的耗油量乘以汽车行驶200km 所需时间,可得汽车行驶200km 的耗油量,再用36升减去行驶200km 的耗油量,可得答案.【解答】解:(1)由横坐标看出,汽车行驶5小时后加油,由纵坐标看出,加了361224L -=油.故答案为5,24;(2)设解析式为Q kt b =+,将(0,42),(5,12)代入函数解析式,得42512b k b =⎧⎨+=⎩,解得642k b =-⎧⎨=⎩. 故加油前油箱剩余油量Q 与行驶时间t 之间的函数关系式为642Q t =-+;(3)汽车每小时耗油量为421265-=升, 汽车行驶200km ,车速为40/km h ,需要耗油20063040⨯=升, 36306-=升.故汽车到达目的地时,油箱中还有6升汽油.【点评】本题考查了一次函数的应用,利用待定系数法求一次函数的解析式.观察函数图象的横坐标得出时间,观察函数图象的纵坐标得出剩余油量是解题关键.21.(9分)某市在城中村改造中,需要种植A 、B 两种不同的树苗共3000棵,经招标,承包商以15万元的报价中标承包了这项工程,根据调查及相关资料表明,A 、B 两种树苗的成本价及成活率如表:品种购买价(元/棵) 成活率 A28 90% B 40 95%设种植A 种树苗x 棵,承包商获得的利润为y 元.(1)求y 与x 之间的函数关系式;(2)政府要求栽植这批树苗的成活率不低于93%,承包商应如何选种树苗才能获得最大利润?最大利润是多少?【考点】9C :一元一次不等式的应用;FH :一次函数的应用【分析】(1)根据题意和表格中的数据可以得到y 与x 的函数关系式;(2)根据题意可以的得到相应的不等式,从而可以解答本题.【解答】解:(1)由题意可得,1500002840(3000)3000012y x x x =---=+,即y 与x 之间的函数关系式是1230000y x =+;(2)由题意可得,90%95%(3000)300093%x x +-⨯…,解得,1200x …,1230000y x =+Q ,∴当1200x =时,y 取得最大值,此时44400y =,即承包商购买A 种树苗1200棵,B 种树苗1800棵时,能获得最大利润,最大利润是44400元.【点评】本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,列出相应的方程和不等式.22.(10分)如图,在ABCMN BC,∆中,点O是AC边上的一个动点,过点O作直线//设MN交BCA∠的角平分线于点E,交BCA∠的外角平分线于点F.(1)求证:EO FO=;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.(3)当点O运动到何处,且ABC∆满足什么条件时,四边形AECF是正方形?并说明理由.【考点】LD:矩形的判定与性质;LF:正方形的判定【分析】(1)由平行线的性质和角平分线的定义得出OCE OEC∠=∠,得∠=∠,OCF OFC出EO CO=,即可得出结论;=,FO CO(2)先证明四边形AECF是平行四边形,再由对角线相等,即可得出结论;(3)由正方形的性质得出45ACB ACE∠=∠=︒即可.∠=︒,得出290ACE【解答】解:(1)Q,MN BC//∴∠=∠,32又CF∠,Q平分GCO∴∠=∠,12∴∠=∠,13∴=,FO CO同理:EO CO=,EO FO∴=.(2)当点O运动到AC的中点时,四边形AECF是矩形.Q当点O运动到AC的中点时,AO CO=,又EO FOQ,=∴四边形AECF是平行四边形,由(1)可知,FO CO=,∴===,AO CO EO FO=,AO CO EO FO∴+=+,即AC EF∴四边形AECF是矩形.(3)当点O运动到AC的中点时,且ABC∠为直角的直角三角形时,四边形∆满足ACBAECF是正方形.Q 由(2)知,当点O 运动到AC 的中点时,四边形AECF 是矩形,//MN BC Q ,AOE ACB ∴∠=∠90ACB ∠=︒Q ,90AOE ∴∠=︒,AC EF ∴⊥,∴四边形AECF 是正方形.【点评】本题考查了平行线的性质、等腰三角形的判定、矩形的判定、菱形的判定、正方形的性质;熟练掌握平行线的性质和矩形、菱形的判定方法,并能进行推理论证是解决问题的关键.23.(11分)如图,已知直线334y x =+与坐标轴交于B ,C 两点,点A 是轴正半轴上一点,并且15ABC S ∆=,点F 是线段AB 上一动点(不与端点重合),过点F 作//FE x 轴,交BC 于E .(1)求AB 所在直线的解析式;(2)若FD x ⊥轴于D ,且点D 的坐标为(,0)m ,请用含m 的代数式表示DF 与EF 的长;(3)在x 轴上是否存在一点P ,使得PEF ∆为等腰直角三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.【考点】FI :一次函数综合题【分析】(1)由直线334y x =+可求得B 、C 坐标,再结合15ABC S ∆=,则可求得A 点坐标,利用待定系数法可求得直线AB 的解析式;(2)根据直线AB 解析式可求得F 点的纵坐标,即可表示出DF 的长,由//EF x 轴则可得出E 点纵坐标,代入直线BC 解析式可求得E 点横坐标,从而可表示出EF 的长;(3)设(,0)P t ,当90PFE ∠=︒时,则有PF EF =,则可得到关于x 的方程,可求得P 点坐标;当90PEF ∠=︒时,则有PE EF DF ==,可求得P 点坐标;当90EPF ∠=︒时,过P 作PH EF ⊥,由等腰直角三角形的性质可知12PH EF =,可求得D 点坐标,从而可求得P 点坐标.【解答】解:(1)在334y x =+中,令0x =可得3y =,令0y =可求得4x =-, (0,3)B ∴,(4,0)C -,3OB ∴=,4OC =,15ABC S ∆=Q ,∴1152AC OB =g ,即1(4)3152OA +⨯=,解得6OA =, (6,0)A ∴,设直线AB 解析式为y kx b =+,∴603k b b +=⎧⎨=⎩,解得123k b ⎧=-⎪⎨⎪=⎩, ∴直线AB 解析式为132y x =-+; (2)FD x ⊥Q 轴,且(,0)D m ,F ∴点横坐标为m , 在132y x =-+中,令x m =,可得132y m =-+, 132DF m ∴=-+, //EF x Q 轴,E ∴点纵坐标为132m -+, 在334y x =+中,令132y m =-+,可得133324m x -+=+,解得23x m =-, F Q 在线段AB 上,06m ∴<<2533EF m m m ∴=+=; (3)假设存在满足条件的点P ,设其坐标为(,0)t ,PEF ∆Q 为等腰直角三角形,∴有90PFE ∠=︒、90PEF ∠=︒和90EPF ∠=︒三种情况,①当90PFE ∠=︒时,则有PF EF =,由(2)可得132PF t =-+,53EF t =, 15323t t ∴-+=,解得1813t =, 18(13P ∴,0); ②当90PEF ∠=︒时,则有PE EF =, 在334y x =+中,令x t =可得334y t =+, 334PE t ∴=+, 在132y x =-+中,令334y t =+,可得313342t x +=-+,解得32x t =-, 35()22EF t t t ∴=-+-=-,∴35342t t +=-,解得1213t =-, 12(13P ∴-,0); ③当90EPF ∠=︒时,如图,过P 作PH EF ⊥于点H ,则PH HF PD EH DF ====,由(2)可知132DF m =-+,53EF m =, 1153223m m ∴-+=⨯,解得94m =, 19153248PD DF ∴==-⨯+=,94OD =, 9153488OP OD PD ∴=-=-=, 3(8P ∴,0); 综上可知存在满足条件的点P ,其坐标为18(13,0)或12(13-,0)或3(8P ,0). 【点评】本题为一次函数的综合应用,涉及三角形的面积、待定系数法、函数图象上点的坐标特征、等腰直角三角形的性质、方程思想及分类讨论思想.在(1)中求得A 点坐标是解题的关键,在(2)中分别表示出E 、F 的坐标是解题的关键,在(3)中确定出P 点的位置,利用等腰直角三角形的性质得到关于P 点坐标的方程是解题的关键,注意分三种情况.本题考查知识点较多,综合性较强,难度适中.。

2019-2020学年八年级下学期期中数学试卷(含解析)

2019-2020学年八年级下学期期中数学试卷(含解析)

2019-2020学八年级第二学期期中数学试卷一、选择题1.(3分)下列运算正确的是()A.=﹣2B.C.=x D.2.(3分)下列式子是最简二次根式的是()A.B.C.D.3.(3分)若在实数范围内有意义,则x的取值范围是()A.x<﹣2B.x>﹣2C.x≤﹣2D.x≥﹣24.(3分)下列二次根式中,与是同类二次根式的是()A.B.C.D.5.(3分)下列计算正确的是()A.=±2B.C.2﹣=2D.6.(3分)下列计算正确的是()A.=x B.x2•x5=x10C.(x2)3=x6D.=+ 7.(3分)下列各组数据不是勾股数的是()A.2,3,4B.3,4,5C.5,12,13D.6,8,10 8.(3分)如图,正方形ABCD的面积是()A.5B.25C.7D.19.(3分)如图,数轴上的点A表示的数是﹣2,点B表示的数是1,CB⊥AB于点B,且BC=2,以点A为圆心,AC为半径画弧交数轴于点D,则点D表示的数为()A.B.+2C.﹣2D.210.(3分)由下列条件不能判断△ABC是直角三角形的是()A.∠A:∠B:∠C=3:4:5B.AB:BC:AC=3:4:5C.∠A+∠B=∠C D.AB2=BC2+AC211.(3分)如图,△ABC中,∠ACB=90°,AC=2,BC=3.设AB的长是m,下列关于m的四种说法,其中,所有正确说法的序号是()①m是无理数②m是13的算术平方根③2<m<3④m可以用数轴上的一个点来表示A.①②B.①③C.①②④D.②③④12.(3分)如图,高速公路上有A、B两点相距10km,C、D为两村庄,已知DA=4km,CB=6km.DA⊥AB于A,CB⊥AB于B,现要在AB上建一个服务站E,使得C、D两村庄到E站的距离相等,则EB的长是()kmA.4B.5C.6D.二、填空题(本大题共6小题,每小题3分,共18分)请把答案填在答题卷指定的位置上.13.(3分)将二次根式化为最简二次根式.14.(3分)化简:=.15.(3分)如果最简二次根式与是同类二次根式,那么a=.16.(3分)已知a=﹣1,则a2+2a+2的值是.17.(3分)如图,两树高分别为10米和4米,相距8米,一只鸟从一树的树梢飞到另一树的树梢,问小鸟至少飞行米.18.(3分)如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为.三、解答题(本大题共9小题,共66分)请在答题卷指定位置上写出解答过程.19.(6分)计算:(1);(2).20.(6分)计算:(1);(2).21.(8分)计算:(3﹣)(3+)+(2﹣)22.(8分)已知a=3+,b=3﹣,分别求下列代数式的值:(1)a2﹣b2(2)a2﹣2ab+b2.23.(8分)如图,在平面直角坐标系中,正方形网格的每个小方格都是边长为1的正方形,△ABC的顶点都在格点上.(1)直接写出点A,B,C的坐标;(2)试判断△ABC是不是直角三角形,并说明理由.24.(10分)一架梯子长25米,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米到A′,那么梯子的底端在水平方向滑动了几米?25.(10分)如图,小明将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端9米处,发现此时绳子底端距离打结处约3米,请算出旗杆的高度.26.(5分)如图,某工厂C前面有一条笔直的公路,原来有两条路AC、BC可以从工厂C 到达公路,经测量AC=600m,BC=800m,AB=1000m,现需要修建一条公路,使工厂C到公路的距离最短.请你帮工厂C设计一种方案,并求出新建的路的长.27.(5分)如图,∠ADC=90°,AD=4m,CD=3m,AB=13m,BC=12m.(1)试判断以点A,B,C为顶点的三角形的形状,并说明理由;(2)求该图的面积.参考答案一、选择题(本大题共12小题,每小题3分,共36分)每小题都给出代号为A,B,C,D的四个结论,其中只有一个是正确的,请用2B铅笔在答题卷上将选定的答案代号涂黑.1.(3分)下列运算正确的是()A.=﹣2B.C.=x D.解:A.=|﹣2|=2,此选项错误;B.与不是同类二次根式,不能合并,此选项错误;C.=|x|,此选项错误;D.==×=2,此选项正确;故选:D.2.(3分)下列式子是最简二次根式的是()A.B.C.D.解:A、=2,则不是最简二次根式,故此选项不合题意;B、是最简二次根式,故此选项符合题意;C、==,则不是最简二次根式,故此选项不合题意;D、=,则不是最简二次根式,故此选项不合题意;故选:B.3.(3分)若在实数范围内有意义,则x的取值范围是()A.x<﹣2B.x>﹣2C.x≤﹣2D.x≥﹣2解:由题意,得x+2≥0,解得x≥﹣2.故选:D.4.(3分)下列二次根式中,与是同类二次根式的是()A.B.C.D.解:A、=2,与不是同类二次根式,故本选项错误;B、=3,与不是同类二次根式,故本选项错误;C、=,与是同类二次根式,故本选项正确;D、与不是同类二次根式,故本选项错误.故选:C.5.(3分)下列计算正确的是()A.=±2B.C.2﹣=2D.解:A、原式=2,所以A选项错误;B、原式==,所以B选项正确;C、原式=,所以C选项错误;D、与不能合并,所以D选项错误.故选:B.6.(3分)下列计算正确的是()A.=x B.x2•x5=x10C.(x2)3=x6D.=+解:A、,错误;B、x2•x5=x7,错误;C、(x2)3=x6,正确;D、,错误;故选:C.7.(3分)下列各组数据不是勾股数的是()A.2,3,4B.3,4,5C.5,12,13D.6,8,10解:A、12+32≠42 ,不能构成直角三角形,所以不是勾股数,故符合题意;B、32+42=52,能构成直角三角形,所以是勾股数,故不符合题意;C、52+122=132,能构成直角三角形,所以是勾股数,故不符合题意;D、62+82=102,能构成直角三角形,所以是勾股数,故不符合题意;故选:A.8.(3分)如图,正方形ABCD的面积是()A.5B.25C.7D.1解:设正方形的边长为c,由勾股定理可知:c2=32+42,∴c2=25,故选:B.9.(3分)如图,数轴上的点A表示的数是﹣2,点B表示的数是1,CB⊥AB于点B,且BC=2,以点A为圆心,AC为半径画弧交数轴于点D,则点D表示的数为()A.B.+2C.﹣2D.2解:由题意可得,AB=3,BC=2,AB⊥BC,∴AC===,∴AD=.∴点D表示数为﹣2.故选:C.10.(3分)由下列条件不能判断△ABC是直角三角形的是()A.∠A:∠B:∠C=3:4:5B.AB:BC:AC=3:4:5C.∠A+∠B=∠C D.AB2=BC2+AC2解:A、∵∠A:∠B:∠C=3:4:5,且∠A+∠B+∠C=180°,可求得∠C≠90°,故△ABC不是直角三角形;B、不妨设AB=3x,BC=4x,AC=5x,此时AB2+BC2=25x2=AC2,故△ABC是直角三角形;C、∠A+∠B=∠C,且∠A+∠B+∠C=180°,可求得∠C=90°,故△ABC是直角三角形;D、AB2=BC2+AC2,满足勾股定理的逆定理,故△ABC是直角三角形;故选:A.11.(3分)如图,△ABC中,∠ACB=90°,AC=2,BC=3.设AB的长是m,下列关于m的四种说法,其中,所有正确说法的序号是()①m是无理数②m是13的算术平方根③2<m<3④m可以用数轴上的一个点来表示A.①②B.①③C.①②④D.②③④解:由勾股定理可知:m===,故①②④正确,∵3<<4,∴3<m<4,故③错误,故选:C.12.(3分)如图,高速公路上有A、B两点相距10km,C、D为两村庄,已知DA=4km,CB=6km.DA⊥AB于A,CB⊥AB于B,现要在AB上建一个服务站E,使得C、D两村庄到E站的距离相等,则EB的长是()kmA.4B.5C.6D.解:设BE=x,则AE=(10﹣x)km,由勾股定理得:在Rt△ADE中,DE2=AD2+AE2=42+(10﹣x)2,在Rt△BCE中,CE2=BC2+BE2=62+x2,由题意可知:DE=CE,所以:62+x2=42+(10﹣x)2,解得:x=4km.所以,EB的长是4km.故选:A.二、填空题(本大题共6小题,每小题3分,共18分)请把答案填在答题卷指定的位置上.13.(3分)将二次根式化为最简二次根式5.解:原式=5,故答案为:514.(3分)化简:=.解:原式===,故答案为.15.(3分)如果最简二次根式与是同类二次根式,那么a=1.解:∵最简二次根式与是同类二次根式,∴1+a=4a﹣2,解得a=1.故答案为1.16.(3分)已知a=﹣1,则a2+2a+2的值是12.解:∵a=﹣1,∴a2+2a+2=(a+1)2+1=(﹣1+1)2+1=11+1=12.故答案为:12.17.(3分)如图,两树高分别为10米和4米,相距8米,一只鸟从一树的树梢飞到另一树的树梢,问小鸟至少飞行10米.解:如图,设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则EBDC是矩形,连接AC,则EB=4m,EC=8m,AE=AB﹣EB=10﹣4=6(m),在Rt△AEC中,AC═=10(m),答:小鸟至少飞行10米.故答案为:10.18.(3分)如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为10.解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,∴S△AFC=•AF•BC=10.故答案为:10.三、解答题(本大题共9小题,共66分)请在答题卷指定位置上写出解答过程.19.(6分)计算:(1);(2).解:(1)原式=7﹣25=﹣18;(2)原式==.20.(6分)计算:(1);(2).解:(1)原式=2+2×2=+4=5;(2)原式=+6﹣=2+6﹣4=2+2.21.(8分)计算:(3﹣)(3+)+(2﹣)解:原式=9﹣7+2﹣2=2.22.(8分)已知a=3+,b=3﹣,分别求下列代数式的值:(1)a2﹣b2(2)a2﹣2ab+b2.解:(1)∵a=3+,b=3﹣,∴a+b=3++3﹣=6,a﹣b=3+﹣3+=2,则a2﹣b2=(a+b)(a﹣b)=6×=12;(2)由(1)知a﹣b=2,∴a2﹣2ab+b2=(a﹣b)2=(2)2=8.23.(8分)如图,在平面直角坐标系中,正方形网格的每个小方格都是边长为1的正方形,△ABC的顶点都在格点上.(1)直接写出点A,B,C的坐标;(2)试判断△ABC是不是直角三角形,并说明理由.解:(1)A(﹣1,5),B(﹣5,2),C(﹣3,1);(2)△ABC是直角三角形.证明:∵AB=,BC=,AC=,∴.由勾股定理的逆定理可知,△ABC是直角三角形,∠ACB=90°.24.(10分)一架梯子长25米,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米到A′,那么梯子的底端在水平方向滑动了几米?解:(1)由题意得:AC=25米,BC=7米,AB==24(米),答:这个梯子的顶端距地面有24米;(2)由题意得:BA′=20米,BC′==15(米),则:CC′=15﹣7=8(米),答:梯子的底端在水平方向滑动了8米.25.(10分)如图,小明将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端9米处,发现此时绳子底端距离打结处约3米,请算出旗杆的高度.解:设旗杆的高度为x米,根据勾股定理,得x2+92=(x+3)2,解得:x=12;答:旗杆的高度为12米26.(5分)如图,某工厂C前面有一条笔直的公路,原来有两条路AC、BC可以从工厂C 到达公路,经测量AC=600m,BC=800m,AB=1000m,现需要修建一条公路,使工厂C到公路的距离最短.请你帮工厂C设计一种方案,并求出新建的路的长.解:过A作CD⊥AB,垂足为D,∵6002+8002=10002,∴AC2+BC2=AB2,∴∠ACB=90°,S△ACB=AB•CD=AC•BC,×600×800=×1000×DB,解得:BD=480,∴新建的路的长为480m.27.(5分)如图,∠ADC=90°,AD=4m,CD=3m,AB=13m,BC=12m.(1)试判断以点A,B,C为顶点的三角形的形状,并说明理由;(2)求该图的面积.解:(1)以点A,B,C为顶点的三角形的形状是直角三角形,理由是:∵∠ADC=90°,AD=4m,CD=3m,∴由勾股定理得:AC==5cm,∵AB=13m,BC=12m,∴AC2+BC2=AB2,∴∠ACB=90°,即以点A,B,C为顶点的三角形的形状是直角三角形;(2)图形的面积S=S△ACB﹣S△ADC===24(cm)2.。

2019-2020学年八年级数学下学期期中试卷(解析版)

2019-2020学年八年级数学下学期期中试卷(解析版)

2019-2020学年八年级数学下学期期中试卷(解析版)一、选择题(本大题共6小题,每小题3分,共计18分.在每小题所给的四个选项中,请将符合要求的选项前面的字母填入下表相应的空格内)1.(3分)函数y=﹣的图象与x轴的交点的个数是()A.零个B.一个C.两个D.不能确定考点:反比例函数的图象.分析:此题可根据反比例函数的图象与两坐标轴无限接近但不相交进行解答.解答:解:∵反比例函数的图象与两坐标轴无限接近但不相交,∴函数y=﹣的图象与x轴没有交点.故选A.点评:本题考查的是反比例函数图象上点的坐标特点,即反比例函数的图象与两坐标轴无限接近但不相交.2.(3分)代数式,,,中分式有()A.1个B.2个C.3个D.4个考点:分式的定义.分析:找到分母中含有字母的式子的个数即可.解答:解:分式共有,2个,故选B.点评:本题考查分式的定义:分母中含有字母的式子就叫做分式;注意π是一个具体的数,不是字母.3.(3分)2008年1月11日,埃科学研究中心在浙江大学成立,“埃”是一个长度单位,是一个用来衡量原子间距离的长度单位.同时,“埃”还是一位和诺贝尔同时代的从事基础研究的瑞典著名科学家的名字,这代表埃科学研究中心的研究要有较为深刻的理论意义.十“埃”等于1纳米.已知:1米=109纳米,那么:15“埃”等于()A.15×10﹣8米B.1.5×10﹣8米C.15×10﹣9米D.1.5×10﹣9米考点:科学记数法—表示较小的数.专题:应用题.分析:小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:15“埃”=0.000 000 001 5米=1.5×10﹣9米.故选D.点评:注意弄清“埃”和纳米的关系.十“埃”等于1纳米,1米=109纳米.4.(3分)如果点P为反比例函数的图象上一点,PQ⊥x轴,垂足为Q,那么△POQ的面积为()A.2B.4C.6D.8考点:反比例函数系数k的几何意义.分析:此题可从反比例函数系数k的几何意义入手,△POQ的面积为点P向两条坐标轴作垂线,与坐标轴围成的矩形面积的一半即S=.解答:解:由题意得,点P 位于反比例函数的图象上,故S△POQ =|k|=2.故选A.点评:本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.5.(3分)在同一平面直角坐标系中,函数的图象大致是()A.B.C.D.考点:反比例函数的图象;一次函数的图象.分析:根据一次函数的系数、反比例函数的系数确定直线和双曲线所经过的象限即可.解答:解:∵k>0,∴3k>0,2k>0,∴直线y=3kx+3k经过第一、二、三象限,双曲线y=经过第一、三象限,故选D.点评:本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.6.(3分)(2006•天津)已知,则的值等于()A.6B.﹣6 C.D.考点:分式的基本性质;分式的加减法.专题:计算题.分析:由已知可以得到a﹣b=﹣4ab,把这个式子代入所要求的式子,化简就得到所求式子的值.解答:解:已知可以得到a﹣b=﹣4ab,则==6.故选A.点评:观察式子,得到已知与未知的式子之间的关系是解决本题的关键.二、填空题(本大题共8小题,每小题3分,共计24分.)7.(3分)已知y与(2x+1)成反比例,且当x=1时,y=2,那么当x=﹣1时,y= ﹣6 .考点:待定系数法求反比例函数解析式.分析:根据y与(2x+1)成反比例可设出反比例函数的解析式为y=(k≠0),再把已知代入求出k的值,再把x=﹣1时,代入求得y的值.解答:解:∵y与(2x+1)成反比例,∴设反比例函数的解析式为y=(k≠0),又∵当x=1时,y=2,即2=,解得:k=6,∴反比例函数的解析式为:y=,则当x=﹣1时,y=﹣6.故答案为:﹣6.点评:本题主要考查了用待定系数法求反比例函数的解析式,关键是根据题意设出解析式,求出k的值.8.(3分)如果点(m,﹣2m)在双曲线上,那么双曲线在第二、四象限.考点:反比例函数图象上点的坐标特征.分析:根据反比例函数图象上的点的坐标特征:图象上的点(x,y)的横纵坐标的积是定值k,即xy=k可得k=﹣2m2<0,根据反比例函数的性质可得答案.解答:解:∵点(m,﹣2m)在双曲线(k≠0)上,∴m•(﹣2m)=k,解得:k=﹣2m2,∵﹣2m2<0,∴双曲线在第二、四象限.故答案为:第二、四.点评:此题主要考查了反比例函数图象上的点的坐标特征,以及反比例函数的性质,关键是掌握图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.9.(3分)若分式方程无解,则m的值为 3 .考点:分式方程的解.专题:计算题.分析:分式方程去分母转化为整式方程,根据分式方程无解得到x=3,代入整式方程即可求出m的值.解答:解:去分母得:x﹣2x+6=m,将x=3代入得:﹣3+6=m,则m=3.故答案为:3.点评:此题考查了分式方程的解,方程的解即为能使方程左右两边相等的未知数的值.10.(3分)(2011•哈尔滨模拟)反比例函数y=(k≠0)的图象经过点(2,5),若点(1,n)在图象上,则n= 10 .考点:待定系数法求反比例函数解析式.专题:计算题;待定系数法.分析:将点(2,5)代入反比例函数解析式得出k值,然后再将(1,n)代入所求出的函数解析式可得出n的值.解答:解:将点(2,5)代入y=得:5=∴k=10,函数解析式为y=,将点(1,n)代入y=得:n==10∴n=10.故答案为:10.点评:本题考查了待定系数法求函数解析式,属于比较经典的题目,要注意待定系数法的掌握.11.(3分)(2006•南汇区二模)当x= ﹣2 时,分式的值为0.考点:分式的值为零的条件.专题:计算题.分析:分式的值为0的条件是:(1)分子=0;(2)分母≠0.两个条件需同时具备,缺一不可.据此可以解答本题.解答:解:∵=0,∴x=﹣2.故答案为﹣2.点评:此题考查的是对分式的值为0的条件的理解,比较简单.12.(3分)反比例函,x>0时,y随着x的增大而增大,则m的值是﹣1 .考点:反比例函数的性质;反比例函数的定义.分析:先根据反比例函数的性质判断出(2m﹣1)的符号以及利用m2﹣2=﹣1求出m的值,再写出符合条件的m即可.解答:解:∵反比例函,x>0时,y随着x的增大而增大,∴m2﹣2=﹣1,∴m2=1,m=±1,∵2m﹣1<0,∴m<,∴m=﹣1.故答案为:﹣1.点评:本题考查的是反比例函数的性质,利用反比例函数y=(k≠0),当k<0时,反比例函数图象在第二、四象限内,在每一象限内y随x的增大而增大是解题关键.13.(3分)(2011•南京)设函数y=与y=x﹣1的图象的交点坐标为(a,b),则﹣的值为﹣.考点:反比例函数与一次函数的交点问题.专题:计算题;压轴题.分析:把交点坐标代入2个函数后,得到2个方程,求得a,b的解,整理求得﹣的值即可.解答:解:∵函数y=与y=x﹣1的图象的交点坐标为(a,b),∴b=,b=a﹣1,∴=a﹣1,a2﹣a﹣2=0,(a﹣2)(a+1)=0,解得a=2或a=﹣1,∴b=1或b=﹣2,∴﹣的值为﹣.故答案为:﹣.点评:考查函数的交点问题;得到2个方程判断出a,b的值是解决本题的关键.14.(3分)观察下面给定的一列分式:,,,,…(其中y≠0).根据你发现的规律,给定的这列分式中的第7个分式是.考点:分式的定义.专题:规律型.分析:分子的指数是3,5,7,9…是连续奇数,分母的指数是大于0的自然数,奇数项的符号是负号.解答:解:第奇数个式子的符号是负数,偶数个是正数,分母是第几个式子就是y的几次方;分子是第几个式子就是x的第几加1个奇数次方.所以第七个分式是.点评:注意观察每项变化,然后找出的规律.三、解答题(本大题共10小题,共78分)15.(6分)计算:(2m2n﹣1)2÷3m3n﹣5.考点:负整数指数幂.分析:根据负整数指数幂的意义计算即可.解答:解:原式=4m4n﹣2÷3m3n﹣5=mn3.点评:本题主要考查了负指数幂的运算,解题的关键是根据负整数指数幂的意义计算.16.(6分)(2011•莒南县模拟)化简:.考点:分式的混合运算.专题:计算题.分析:先通分,计算括号里的,再除法转化成乘法,最后算减法.解答:解:原式=1﹣×=1﹣=﹣.点评:本题考查了分式的混合运算,解题的关键是注意通分以及对分式分子分母的因式分解.17.(6分)先化简,.考点:分式的混合运算.专题:计算题.分析:原式第一项利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分后通分并利用同分母分式的加法法则计算即可得到结果.解答:解:原式=•+=+=.点评:此题考查了分式的混合运算,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是约分,约分的关键是找公因式.18.(6分)解方程.考点:解分式方程.分析:观察可得最简公分母是(x﹣1)(x+2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程的两边同乘(x﹣1)(x+2),得x(x+2)﹣(x﹣1)(x+2)=3,解得x=1.检验:把x=1代入(x﹣1)(x+2)=0.所以原方程无解.点评:本题考查了分式方程的解法,注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.19.(8分)已知函数 y=(5m﹣3)x2﹣n+(n+m),(1)当m,n为何值时是一次函数?(2)当m,n为何值时,为正比例函数?(3)当m,n为何值时,为反比例函数?考点:反比例函数的定义;一次函数的定义;正比例函数的定义.分析:(1)根据一次函数的定义知2﹣n=1,且5m﹣3≠0,据此可以求得m、n的值;(2)根据正比例函数的定义知2﹣n=1,m+n=0,5m﹣3≠0,据此可以求得m、n的值;(3)根据反比例函数的定义知2﹣n=﹣1,m+n=0,5m﹣3≠0,据此可以求得m、n的值.解答:解:(1)当函数y=(5m﹣3)x2﹣n+(m+n)是一次函数时,2﹣n=1,且5m﹣3≠0,解得,n=1,m≠;(2)当函数y=(5m﹣3)x2﹣n+(m+n)是正比例函数时,,解得,n=1,m=﹣1.(3)当函数y=(5m﹣3)x2﹣n+(m+n)是反比例函数时,,解得n=3,m=﹣3.点评:本题考查了一次函数、正比例函数、反比例函数的定义.关键是掌握正比例函数是一次函数的一种特殊形式以及三种函数的关系是形式.20.(8分)A、B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运30kg,A型机器人搬运900kg原料所用时间与B型机器人搬运600kg原料所用时间相等,两种机器人每小时分别搬运多少千克化工原料?考点:分式方程的应用.分析:设B种机器人每小时搬运x千克化工原料,则A种机器人每小时搬运(x+30)千克化工原料,根据A型机器人搬运900kg原料所用时间与B型机器人搬运600kg原料所用时间相等建立方程求出其解就可以得出结论.解答:解:设B种机器人每小时搬运x千克化工原料,则A种机器人每小时搬运(x+30)千克化工原料,由题意得,解得:x=60,经检验,x=60是原方程的解,故A种机器人每小时搬运90千克化工原料.答:B种机器人每小时搬运60千克化工原料,则A种机器人每小时搬运90千克化工原料.点评:本题考查了列分时方程解实际问题的运用,分式方程的解法的运用,解答时根据A型机器人搬运900kg原料所用时间与B型机器人搬运600kg原料所用时间相等建立方程是关键.21.(9分)(2009•桂林)在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?考点:分式方程的应用.专题:工程问题.分析:(1)求的是乙的工效,工作时间明显.一定是根据工作总量来列等量关系.等量关系为:甲20天的工作量+甲乙合作24天的工作总量=1.(2)把在工期内的情况进行比较.解答:解:(1)设乙队单独完成需x天.(1分)根据题意,得:×20+(+)×24=1.(3分)解这个方程得:x=90.(4分)经检验,x=90是原方程的解.∴乙队单独完成需90天.(5分)(2)设甲、乙合作完成需y天,则有(+)y=1.解得y=36,(6分)甲单独完成需付工程款为60×3.5=210(万元).乙单独完成超过计划天数不符题意,甲、乙合作完成需付工程款为36×(3.5+2)=198(万元).(7分)答:在不超过计划天数的前提下,由甲、乙合作完成最省钱.(8分)点评:本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.22.(10分)在25℃的室内烧开一壶水用了5分钟(水温与时间的关系是一次函数关系),又过了一分钟(其中在5﹣6分钟之间,水温保持不变),随后壶中的水温按反比例关系下降.(1)在这个过程中,水温超过60℃的时间是多少分钟?(2)从水烧开到水温降至25℃用了多长时间?考点:一次函数的应用.分析:设水温为y,时间为x.(1)则由题意得到y=k1x+b(k1≠0).所以把x=0,y=25;x=5,y=100代入其中可以求得k1的值,易求该一次函数解析式;把y=60代入该解析式即可求得相应的x,即所需的时间;(2)设y=(k2≠0).把x=6,y=100代入该反比例函数解析式可以求得k2的值,易求该反比例函数解析式,然后把y=25代入该解析式即可求得x的值.解答:解:设水温为y,时间为x.(1)依题意可设y=k1x+b(k1≠0).则,解得,,则该一次函数解析式为y=15x+25.所以,当y=60时,60=15x+25,(2)由题意可设y=(k2≠0).则100=,解得x=,即在这个过程中,水温超过60℃的时间是分钟;解得,k2=600.所以,该反比例函数解析式为:y=.则当y=25时,25=,解得,x=24,即从水烧开到水温降至25℃用了24分钟.点评:本题考查了一次函数的应用.注意开水的温度是100℃,所以在解题中,这是隐含在题中的已知条件.23.(10分)如图,小明家、王老师家、学校在同一条路上.小明家到王老师家路程为3km,王老师家到学校的路程为0.5km,由于小明父母战斗在抗“非典”第一线,为了使他能按时到校,王老师每天骑自行车接小明上学,已知王老师骑自行车的速度是步行速度的3倍,每天比平时步行上班多用了20分钟,问王老师的步行速度及骑自行车的速度各是多少km/h?考点:分式方程的应用.分析:王老师接小明上学后走的总路程为3+3+0.5=6.5km,平时步行去学的路程为0.5km,根据时间=路程÷速度,以及关键语“比平时步行上班多用了20分钟”可得出的等量关系是:接小明上学后走的路程÷骑车的速度=平时上班的路程÷步行的速度+20分钟.解答:解:设王老师步行速度为xkm/h,则骑自行车的速度为3xkm/h,依题意,得=+,解得x=5,经检验x=5是原方程的根,∴3x=15.答:王老师步行速度为5km/h,骑自行车的速度为15km/h.点评:此题主要考查了分式方程的应用题,重点在于准确地找出相等关系,这是列方程的依据.本题要注意时间的单位要一致.24.(9分)(2011•临沂)如图,一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B(﹣3,n)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx+b>的解集;(3)过点B作BC⊥x轴,垂足为C,求S△ABC.考点:反比例函数与一次函数的交点问题.专题:压轴题.分析:(1)由一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B(﹣3,n)两点,首先求得反比例函数的解析式,则可求得B点的坐标,然后利用待定系数法即可求得一次函数的解析式;(2)根据图象,观察即可求得答案;(3)因为以BC为底,则BC边上的高为3+2=5,所以利用三角形面积的求解方法即可求得答案.解答:解:(1)∵点A(2,3)在y=的图象上,∴m=6,∴反比例函数的解析式为:y=,∴n==﹣2,∵A(2,3),B(﹣3,﹣2)两点在y=kx+b上,∴,解得:,∴一次函数的解析式为:y=x+1;(2)﹣3<x<0或x>2;(3)以BC为底,则BC边上的高AE为3+2=5,∴S△ABC=×2×5=5.点评:此题考查了反比例函数与一次函数的交点问题.注意待定系数法的应用是解题的关键.。

2019-2020学年八年级下学期期中数学试卷(含解析)

2019-2020学年八年级下学期期中数学试卷(含解析)

2019-2020学年八年级第二学期期中数学试卷一、填空题(共6小题).1.(3分)计算×2=.2.(3分)已知一个直角三角形的两直角边长分别为3和4,则斜边长是.3.(3分)要使式子有意义,则x的取值范围是.4.(3分)如图,在△ABC中,D、E分别为AB、AC边的中点,若DE=2,则BC边的长为.5.(3分)如图,一棵大树在离地面3m、5m两处折成三段,中间一段AB恰好与地面平行,大树顶部落在离大树底部6m处,则大树折断前的高度是.6.(3分)菱形ABCD的对角线AC=4,BD=2,以AC为边作正方形ACEF,则BF的长为.二、选择题(本大题共8小题,每小题4分,共32分)7.(4分)下列式子是最简二次根式的是()A.B.C.D.8.(4分)判断下列各组数能作为直角三角形三边的是()A.3,4,6B.4,5,7C.2,3,D.7,6,9.(4分)如图,已知菱形ABCD的对角线交于点O,DB=6,AD=5,则菱形ABCD的面积为()A.20B.24C.30D.3610.(4分)在Rt△ABC中,∠ABC=90°,D为斜边AC的中点,BD=5,则AC=()A.5B.6C.8D.1011.(4分)下列计算中,正确的是()A.B.C.D.12.(4分)不能判定四边形ABCD为平行四边形的条件是()A.AB∥CD,AD=BC B.AB∥CD,∠A=∠CC.AD∥BC,AD=BC D.∠A=∠C,∠B=∠D13.(4分)如图,延长矩形ABCD的边BC至点E,使CE=CA,连接AE,若∠BAC=52°,则∠E的度数是()A.18°B.19°C.20°D.40°14.(4分)已知a=2+,b=2﹣,则a2+b2的值为()A.12B.14C.16D.18三、解答题(本大题共9小题,共70分)15.(6分)计算:16.(6分)国家交通法规定:小汽车在城市街道上行驶速度不得超过60km/h,一辆小汽车在一条城市街道上由西向东行驶,此时在小汽车正南方向25m处有一个车速检测仪,过了4s后,测得小汽车距离测速仪65m.这辆小汽车超速了吗?通过计算说明理由(1m/s =3.6km/h)17.(8分)如图,四边形ABCD是平行四边形,E为BC的中点,连接AE交DC延长线于点F.求证:DC=CF.18.(6分)如图,在四边形ABCD中,AB=1,AD=,BD=2,∠ABC+∠ADC=180°,CD=.求四边形ABCD的面积.19.(7分)先化简,再求值:,其中a=﹣1.20.(8分)如图,在笔直的高速路旁边有A、B两个村庄,A村庄到公路的距离AC=8km,B村庄到公路的距离BD=14km,测得C、D两点的距离为20km,现要在CD之间建一个服务区E,使得A、B两村庄到E服务区的距离相等,求CE的长.21.(8分)如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC,对角线AC、BD相交于点O,OA=OB.(1)求证:四边形ABCD是矩形;(2)若AB=5,∠AOB=60°,求BC的长.22.(9分)观察下列等式等式一:﹣1;等式二:;等式三:;……;解决下列问题:(1)化简:;(2)若有理数a、b满足,求a+b的值.23.(12分)如图,四边形ABCD是菱形,∠ABC=60°,AB=10,连接BD,点P是BC上的点,连接AP,交BD于点E,连接EC(1)求证:△ABE≌△CBE;(2)求菱形ABCD的面积;(3)当点P在线段BC的延长线上时,是否存在点P,使得△PEC是直角三角形?若存在,求出BP的长;若不存在,请说明理由.参考答案一、填空题1.(3分)计算×2=4.解:×2=2×2=4.故答案为:4.2.(3分)已知一个直角三角形的两直角边长分别为3和4,则斜边长是5.解:由勾股定理得,斜边长==5,故答案为:5.3.(3分)要使式子有意义,则x的取值范围是x≥﹣5.解:因为式子有意义,则x的取值范围是x≥﹣5.故答案为:x≥﹣5.4.(3分)如图,在△ABC中,D、E分别为AB、AC边的中点,若DE=2,则BC边的长为4.解:∵D、E分别为AB、AC边的中点,∴DE是△ABC的中位线,∴BC=2DE=4,故答案为:4.5.(3分)如图,一棵大树在离地面3m、5m两处折成三段,中间一段AB恰好与地面平行,大树顶部落在离大树底部6m处,则大树折断前的高度是10m.解:如图,作BE⊥OC于点E,由题意得:AD=BE=3m,AB=DE=2m,∵DC=6m,∴EC=4m,∴由勾股定理得:BC==5(m),∴大树的高度为5+5=10(m),故答案为:10m.6.(3分)菱形ABCD的对角线AC=4,BD=2,以AC为边作正方形ACEF,则BF的长为或.解:∵四边形ABCD是菱形,AC=4,BD=2,∴AO=AC=2,BO=BD=1,①如图1,正方形ACEF在AC的上方时,过点B作BG⊥AF交FA的延长线于G,则BG=AO=2,AG=OB=1,FG=AF+AG=4+1=5,在Rt△BFG中,BF===;②如图2,正方形ACEF在AC的下方时,过点B作BG⊥AF于G,则BG=AO=2,FG=AF﹣AG=4﹣1=3,在Rt△BFG中,BF===,综上所述,BF长为或.故答案为:或.二、选择题(本大题共8小题,每小题4分,共32分)7.(4分)下列式子是最简二次根式的是()A.B.C.D.解:A、是最简二次根式;B、==,被开方数含分母,不是最简二次根式;C、==2,被开方数含能开得尽方的因数,不是最简二次根式;D、=,被开方数含分母,不是最简二次根式;故选:A.8.(4分)判断下列各组数能作为直角三角形三边的是()A.3,4,6B.4,5,7C.2,3,D.7,6,解:A、∵32+42≠62,∴不能作为直角三角形三边;B、∵42+52≠72,∴不能作为直角三角形三边;C、∵22+()2≠32,∴不能作为直角三角形三边;D、∵62+()2=72,∴能作为直角三角形三边.故选:D.9.(4分)如图,已知菱形ABCD的对角线交于点O,DB=6,AD=5,则菱形ABCD的面积为()A.20B.24C.30D.36解:∵四边形ABCD是菱形,∴AO=CO=AC,BO=DO=BD=3,AC⊥BD,∴AO===4,∴AC=8,∴菱形ABCD的面积=×AC×BD=×6×8=24,故选:B.10.(4分)在Rt△ABC中,∠ABC=90°,D为斜边AC的中点,BD=5,则AC=()A.5B.6C.8D.10解:∵在Rt△ABC中,∠ABC=90°,D为斜边AC的中点,BD=5,∴AC=2BD=2×5=10,故选:D.11.(4分)下列计算中,正确的是()A.B.C.D.解:(A)原式=3,故A错误.(B)原式==3,故B错误.(D)原式=×=2,故D错误.故选:C.12.(4分)不能判定四边形ABCD为平行四边形的条件是()A.AB∥CD,AD=BC B.AB∥CD,∠A=∠CC.AD∥BC,AD=BC D.∠A=∠C,∠B=∠D解:A、AB∥CD,AD=BC,不能判定四边形ABCD为平行四边形,错误;B、∵AB∥CD,∴∠A+∠D=180°,∵∠A=∠C,∴∠C+∠D=180°,∴AD∥BC,∴四边形ABCD为平行四边形,正确;C、∵AD∥BC,AD=BC,∴四边形ABCD为平行四边形,正确;D、∵∠A=∠C,∠B=∠D,∴∠A+∠D=∠C+∠D=180°,∴AD∥BC,AB∥CD,∴四边形ABCD为平行四边形,正确;故选:A.13.(4分)如图,延长矩形ABCD的边BC至点E,使CE=CA,连接AE,若∠BAC=52°,则∠E的度数是()A.18°B.19°C.20°D.40°解:∵CE=CA,∴∠E=∠CAE,∵四边形ABCD是矩形,∴∠B=90°,∴∠ACB=90°﹣∠BAC=90°﹣52°=38°,∵∠ACB=∠E+∠CAE=2∠E,∴∠E=19°;故选:B.14.(4分)已知a=2+,b=2﹣,则a2+b2的值为()A.12B.14C.16D.18解:∵a=2+,b=2﹣,∴a+b=4,ab=4﹣3=1,∴a2+b2=(a+b)2﹣2ab=42﹣2×1=14.故选:B.三、解答题(本大题共9小题,共70分)15.(6分)计算:解:原式=2+1﹣+8=+9.16.(6分)国家交通法规定:小汽车在城市街道上行驶速度不得超过60km/h,一辆小汽车在一条城市街道上由西向东行驶,此时在小汽车正南方向25m处有一个车速检测仪,过了4s后,测得小汽车距离测速仪65m.这辆小汽车超速了吗?通过计算说明理由(1m/s =3.6km/h)解:由勾股定理得:BC=(米);60÷4=15米/秒=54千米/小时<60千米/小时,所以不超速了.17.(8分)如图,四边形ABCD是平行四边形,E为BC的中点,连接AE交DC延长线于点F.求证:DC=CF.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠B=∠FCE,∠F=∠BAE,∵E为BC中点,∴BE=CE,在△ABE和△FCE中,,∴△ABE≌△FCE(AAS),∴AB=CF,∵AB=DC,∴DC=CF.18.(6分)如图,在四边形ABCD中,AB=1,AD=,BD=2,∠ABC+∠ADC=180°,CD=.求四边形ABCD的面积.解:∵AB=1,AD=,BD=2,∴AB2+AD2=BD2,∴∠DAB=90°,∵∠ABC+∠ADC=180°,∴∠C=90°∴BC===,∴四边形ABCD的面积=×AB×AD+×CD×CB=×1×+××=1+.19.(7分)先化简,再求值:,其中a=﹣1.解:===,当a=﹣1时,原式==.20.(8分)如图,在笔直的高速路旁边有A、B两个村庄,A村庄到公路的距离AC=8km,B村庄到公路的距离BD=14km,测得C、D两点的距离为20km,现要在CD之间建一个服务区E,使得A、B两村庄到E服务区的距离相等,求CE的长.解:设CE=x,则DE=20﹣x,由勾股定理得:在Rt△ACE中,AE2=AC2+CE2=82+x2,在Rt△BDE中,BE2=BD2+DE2=142+(20﹣x)2,由题意可知:AE=BE,所以:82+x2=142+(20﹣x)2,解得:x=13.3所以,E应建在距C点13.3km,即CE=13.3km.21.(8分)如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC,对角线AC、BD相交于点O,OA=OB.(1)求证:四边形ABCD是矩形;(2)若AB=5,∠AOB=60°,求BC的长.【解答】(1)证明:∵AD∥BC,∴∠ABC+∠BAD=180°,∠ADC+∠BCD=180°,∵∠ABC=∠ADC,∴∠BAD=∠BCD,∴四边形ABCD是平行四边形,∴OA=OC=AC,OB=OD=BD,∵OA=OB,∴AC=BD,∴四边形ABCD是矩形.(2)解:∵OA=OB,∠AOB=60°,∴△AOB是等边三角形,∴OA=AB=5,由(1)得:四边形ABCD是矩形,∴∠ABC=90°,AC=2OA=10,∴BC===5.22.(9分)观察下列等式等式一:﹣1;等式二:;等式三:;……;解决下列问题:(1)化简:;(2)若有理数a、b满足,求a+b的值.解:(1)化简:,观察已知等式可知:原式=﹣;(2)因为,所以a(﹣1)+b(+1)=2﹣1,(a+b)﹣(a﹣b)=2﹣1,所以a+b=2,a﹣b=1,答:a+b的值为2.23.(12分)如图,四边形ABCD是菱形,∠ABC=60°,AB=10,连接BD,点P是BC上的点,连接AP,交BD于点E,连接EC(1)求证:△ABE≌△CBE;(2)求菱形ABCD的面积;(3)当点P在线段BC的延长线上时,是否存在点P,使得△PEC是直角三角形?若存在,求出BP的长;若不存在,请说明理由.【解答】(1)证明:∵四边形ABCD是菱形,∴BA=BC,∠ABE=∠CBE.在△ABE和△CBE中,,∴△ABE≌△CBE(SAS);(2)解:连接AC,BD交于点O,则AC⊥BD,∵菱形ABCD中,∠ABC=60°,AB=10,∴∠ABD=30°,AC=10,∴BO=5,∴BD=10,∴菱形ABCD的面积为==50;(3)解:因为点P在线段BC的延长线上,所以∠EPC不可能为直角.如图2所示:①当∠ECP=90°时,∵△ABE≌△CBE,∴∠BAE=∠BCE=90°,∵∠ABC=60°,AB=10,∴BP=2AB=20.②当∠CEP=90°时,∵△ABE≌△CBE,∴∠AEB=∠CEB=45°,∴AO=OE=AB=5,∴OB=OD=5,∴ED=5﹣5,BE=5+5.∵AD∥BP,∴△ADE∽△PBE,∴,∴,∴BP=10+5.综上所述,当△EPC是直角三角形时,线段BP的长为20或10+5.。

2019-2020学年度第二学期八年级数学期中试卷及答案

2019-2020学年度第二学期八年级数学期中试卷及答案
1.C2.A3.D4.B5.B6.C 7.C8.D
二、填空题(本大题共8小题,每小题3分,共24分)
9. 10. 11. 12.
13.114.6015.616.
三、解答题(本大题共有11小题,共102分.解答时应写出文字说明、推理过程或演算步骤)
17.(6分)解:(1) × = = =4―――2分
(2) ―――2分
(第14题)(第15题)(第16题)
三、解答题(本大题共有11小题,共102分.解答时应写出文字说明、推理过程或演算步骤)
17.(6分)计算:(1) × (2) (3) ÷
18.(6分)计算:(1) × (2)
19.(8分)作出反比例函数 的图象,结合图象回答:
(1)当 时, 的值;
(2)当 时, 的取值范围.
根据题意,得 ―――3分
解得:
经检验 是原方程的解,且符合题意,―――3分
答:第一批某品牌盒装粽子每盒的进价是 元.―――2分
(过程不规范不整齐的,酌情扣1-2分.文字书写不一定要完备,但要有)
26.(12分)解:(1)由题意得: , ,代入反比例函数关系 中,
解得: ,
所以函数关系式为: .―――6分
(3) ―――2分
18.(6分)解:(1)原式= × +2 × = +6 ―――2分
(2)原式= 2- 2=3-2=1―――2分
19.(8分)解:(1)图略. .―――6分(图4分)
(2) .―――2分
20.(8分)解:(1) ―――2分
(2) ―――2分
(3) · = ―――2分
(4) ÷ = பைடு நூலகம் ―――2分
1.下面图形中,不是中心对称图形的是(▲)
A. B. C. D.

2019-2020学年___八年级(下)期中数学试卷-解析版

2019-2020学年___八年级(下)期中数学试卷-解析版

2019-2020学年___八年级(下)期中数学试卷-解析版2019-2020学年___八年级(下)期中数学试卷一、选择题(本大题共8小题,共24.0分)1.下列图形,①角;②两相交直线;③圆;④平行四边形,其中一定是轴对称图形的有()A.四个B.三个C.两个D.一个2.2019年被称为中国的5G元年,如果运用5G技术下载一个4.8M的短视频,大约只需要0.秒,将数字0.用科学记数法表示应为()A.0.96×10^-4B.9.6×10^-3C.9.6×10^-5D.96×10^-63.要使√(x+4)有意义,则()A.x<-4B.x≤-4C.x≥-4D.x>-44.如图,在△ABC中,AB=AC,分别以点A、点B为圆心,以大于AB长为半径画弧,两弧交点的连线交AC于点D,交AB于点E,连接BD,若∠x=40°,则∠xxx=()A.40°B.30°C.20°D.10°5.疫情无情,人有情爱心捐款传真情,感染的肺炎疫情期间,某班同学积极参加献爱心活动,该班50名学生的捐款统计情况如表:金额/元人数5 610 1730 1450 8100 5则他们捐款金额的平均数和中位数分别是()A.39,10B.39,30C.30.4,30D.30.4,106.如图,在△ABC中,已知AB=15,AC=13,CD=5,则BC的长为()A.14B.13C.12D.97.设计一个摸球游戏,先在一个不透明的小盒子中放入5个白球,如果希望从中任意摸出一个球,是白球的概率为4/5,那么应该向盒子中再放入多少个其他颜色的球(游戏用球除颜色外均相同)()A.5B.10C.158.在平行四边形ABCD中,对角线AC的垂直平分线交AD于点E连接CE,若平行四边形ABCD的周长为30,则△CDE的周长为()A.25B.20C.15D.20二、填空题(本大题共12小题,共36.0分)9.等腰三角形一个角等于100°,则它的一个底角是80°.10.若点P(a,-3)在第四象限,且到原点的距离是5,则a=4.11.如图,在△ABC中,∠C=90°,∠BAC=∠ADC=60°,若CD=4,则BD=4√3.12.如果分式(a-2)/(a+3)的值是-1/2,则a=1.三、解答题(共4小题,共20.0分)13.如图,已知ABCD为矩形,AC=2BD,E为BC上一点,且∠BAE=45°,连接DE交AC于F,若AF=6,则DF的长为()解:由题意,AC=2BD,又ABCD为矩形,故AD=BC=BD,因此△ABD为等腰直角三角形,∠ABD=45°,又∠BAE=45°,所以△ABE为等腰直角三角形,BE=AB/√2,即BD/√2,又∠BDE=45°,所以△BDE为等腰直角三角形,DE=BD,因此DF=AF-AE=6-DE=6-BD=6-AD/√2=6-BC/√2=6-AC/2√2=6-6/2√2=6-3√2.答:DF的长为6-3√2.14.如图,在△ABC中,∠A=60°,D为BC上一点,且AD=AC,连接AC,BD,交于点E,若AB=2,则BE的长为()解:由题意,AD=AC=AB/2,所以△ACD为等边三角形,∠ACD=60°,又∠A=60°,所以△ABC为等边三角形,AB=BC=AC=2AD,所以BD=AB-AD=3AD,又由相似三角形可得AE=2AD,所以DE=AE-AD=AD,所以△BDE为等腰直角三角形,BE=BD/√2=3AD/√2=3AC/√2=3AB/4√2=3/2√3.答:BE的长为3/2√3.15.解不等式:(x+1)/(x-2)>0.解:首先求出不等式的定义域,即x≠2,然后找出函数的零点,即x=-1,然后根据零点将实数轴分成三段:x2,然后在每一段上确定函数的正负性,x0,x>2时,(x+1)/(x-2)2}.答:不等式的解集为{x|x2}.16.如图,在△ABC中,∠C=90°,AB=8,BC=6,D为BC上一点,且AD垂直于BC,连接AC,BD,交于点E,若∠BAE=∠CAD,则AE的长为()解:由题意,∠BAE=∠CAD,所以△ABE与△CAD相似,因此AE/AC=AB/AD,即AE/(AE+CE)=AB/BD,代入已知条件可得AE/(AE+6)=8/AD,又由勾股定理可得AD=10,代入上式可得AE=20/3.答:AE的长为20/3.1.判断轴对称图形的关键在于寻找对称轴,图形两部沿对称轴叠后可重合。

2019-2020学年05月20日南京鼓楼区育英二外八下期中数学考试试卷+答案

2019-2020学年05月20日南京鼓楼区育英二外八下期中数学考试试卷+答案

2019-2020学年第二学期南京鼓楼区育英二外八年级数学期中考试一、选择题(本题共6小题,每小题2分,共12分)1、下列四个图形分别是四届国际数学大会的会标,其中不属于中心对称图形的是()A.B.C.D.2、下列事件中,是必然事件的是()A.在标准大气压下,温度低于0℃时冰融化B.3天内将下雨C.小明乘12路公交车去上学,到达公共汽车站时,12路公交车正在驶来D.在同一年出生的13名学生中,至少有2人出生在同一个月3、在同一平面直角坐标系中,函数要y x k=+与kyx=(k为常数,k≠0)的图像大致是()A.B.C.D.4、为了研究特殊四边形,王老师制作了这样一个教具(如图1):钉子将四根木条钉成一个平行四边形的活动框架ABCD,并在A与C、B与D两点之间分别用一根橡皮筋拉直固定,课上,王老师把DC沿着CB方向平行移动,当AB=BC时(如图2),观察所得到的四边形,下列判断正确的是()5、若关于x的方程3333x m mx x++=−−的解为正数,则m的取值范围是()A.92m≤B.9322m m<≠且C.94m>−D.9344m m>−≠−且图(1)DCBA AB CD图(2)6、若一个边长为3cm 的正方形与一个长、宽分别为5cm 、1.5cm 的矩形重叠放在一起,在下列四个图形中,重叠部分的面积最大的是( )A .B .C .D .二、填空题(本题共10小题,每空2分,共计20分)7x 的取值_____________.8、任意掷一枚质地均匀的骰子,比较下列事件发生的可能性大小,将它们的序号按从小往大排列为_____________.①面朝上的点数小于3;②面朝上的点数大于2;③面朝上的点数是偶数. 9、已知反比例函数ky x=的图像经过点A (3,a ),B (a +2,1),则k 的值等于_____________. 10、某林场要考察一种幼树在一定条件下的移植成活率,在移植过程中的统计图结果如下表所示:11、已知实数a 在数轴上的位置如图所示,则化简的1a −_____________.12、如图,在□ABCD 中,∠A =72°,将□ABCD 绕点B 顺时针旋转到□A 1BC 1D 1,当C 1D 1首次经过顶点C 时,旋转角∠ABA 1=_____________°.(第12题图) (第13题图)13、如图,矩形ABCD 的对角线AC 、BD 相较于点O ,DE ∥AC ,CE ∥BD ,若BD =5,则四边形DOCE 的周长为_____________.14、若点A (-2,y 1)、B (-1,y 2)、C (1,y 3)都在反比例函数21k y x+=(k 为常数)的图像上,则y 1、y 2、y 3的大小关系为_____________(用“<”连接).15、如图,正方形ABCD ,点E 、F 在对角线BD 上,四边形AECF 是菱形,且∠F AE =60°,AF =2,则BE 的长为_____________.(第15题图) (第16题图)16、如图,在四边形ABCD 中,∠ADC =∠ABC =90°,AD =CD ,DP ⊥AB 于P ,若∠A =60°,2AB =,则四边形ABCD 的面积是_____________.三、解答题(本题共计11题,共68分) 17、(6分)计算⑴+⑵(22+18、(6分)先化简 212111x xx x +−−−−,并回答下列问题⑴ 上式化简的结果的值是否为0_____________(是或否);简要叙述你的理由_______________________________________. ⑵ 请你判断分式方程:212111x xx x +−=−−是否有解_____________(是或否). 19、(4分)解方程 34211242x x x x ++=−−−.20、(5分)先化简:()35222a a a a a −⎛⎫−+÷⎪++⎝⎭,再选择合适的数a 代入求值.PDCB A21、(7分)⑴为了解某校在“抗疫新型冠状病毒”自愿捐款活动的情况,你认为以下哪种调查方式比较合理_____________ A. 调查八年级全体学生 B. 调查七、八、九三个年级(1)班的学生 C. 调查七、八、九三个年级各10%的学生通过调查,得到一组数据,然后将数据安组整理统计如下(图中信息不完整):请结合以上信息解答下列问题.⑵本次调查样本的容量是_____________, a =_____________; ⑶先求出C 组的人数,再补全“捐款人数分组统计图1”;⑷根据统计情况,估计该校参加捐款的4500名学生有多少人捐款在10至30元之间. 22、(6分)如图,在菱形ABCD 中,过点D 作DE AB ⊥,点F 在边CD 上,且CF AE =,连接BF .⑴求证:四边形DEBF 是矩形;⑵已知2, 4DF DE ==,求菱形ABCD 的面积.捐款人数分组统计图2B AC 40%8% E D28%23、(6分)如图,一次函数(0)y kx b k=+≠与反比例函数myx=的图象有公共点A(1,)a,()2,1D−−.直线l与x轴垂直于点N(3,0),与一次函数图象、反比例函数图象分别交于点B、C.⑴求反比例函数与一次函数的表达式;⑵求△CON的面积;⑶结合图象直接写出不等式kxmbx+>的解集.24、(5分)列方程解应用题:港珠澳大桥是世界上最长的跨海大桥,是被誉为“现代世界七大奇迹”的超级工程,它是我国从桥梁大国走向桥梁强国的里程碑之作,开通后从香港到珠海的车程由原来的180千米缩短到50千米.港珠澳大桥的设计时速比按原来路程行驶的平均时速多40千米,若开通后按设计时速行驶,行驶完全程时间仅为原来路程行驶完全程时间的16,求港珠澳大桥的设计时速是多少.25、(6分)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.⑴ 如图1,四边形ABCD 中,点E 、F 、G 、H 分别为边AB 、BC 、CD 、DA 的中点,求证:中点四边形EFGH 是平行四边形;⑵ 如图2,点P 是四边形ABCD 外一点,且满足P A =PD ,PB =PC ,APB CPD ∠=∠,点E 、F 、G 、H 分别为边AB 、BC 、CD 、DA 的中点,猜想中点四边形EFGH 的形状,并证明你的猜想.26、(8分)⑴模型建立:如图⑴,如果l 1∥l 2,点A 、B 在l 2上,点C 、D 在l 1上,依据平行线间的距离处处相等,我们很容易得到ABC ABD S S =△△.(无需证明)反之,如图⑵,点A 、B 在l 2上,点C 、D 是直线l 2同侧两点,且都在直线l 1上,若ABC ABD S S =△△,求证:l 1∥l 2图(1)H G F EDCBAA EBFCG DH 图(2)P图(1)AE BF CDl 2l 1l 1l 2DCBA图(2)⑵模型应用:如图⑶,直线y kx b =+与双曲线ay x=在第一象限内交于A 、B 两点,过点A 作AC ⊥x 轴,垂足为C ,过点BF ⑶灵活运用:如图⑷,直线y kx b =+与双曲线ay x=分别交于一、三象限内的A 、B 两点,过点A 作AH ⊥y 轴,垂足为H ,过点B 作BG ⊥x 轴,垂足为G ,直线AB 分别交y 轴、x 轴于点E 、F ,求证:AE =BF .O 图(4)BF EAH Gxy27、(9分)⑴如图⑴,将正方形OBAD 放置在平面直角坐标系中,使得点O 与坐标原点重合,点B 、D 分别在y 轴、x 轴的正半轴上,点P (a ,0)是x 轴上一点,连接BP ,将线段BP 以点P 为中心顺时针旋转90度,得到线段PC ,过点C 作CE ⊥x 轴于点E .当a <0时,求证:DE =OP .⑵若点P 在x 轴上运动,则∠PDC 的大小是否变化?如果不变化,请说明理由;如果变化,请直接写出a 的取值范围及相应的∠PDC 的大小.正方形边长为2.⑶如图⑵,过点C 作CG ∥x 轴,过点D 作DG ∥PC ,CG 、DG 交于点G ,N 为DC 的中点,M 为线段BP 的中点,正方形边长为2,请直接写出:在点P 运动过程中,线段MN 长度的最小值是多少?并指出此时的a 值.EO图(1)PC ABD xy y xD BA备用图Oy xD BA备用图ON M Gy xDB AC P图(2)O2020【育英二外】八年级(下)数学期中(答案)二、填空题(本题共10小题,每空2分,共计20分)三、解答题(本题共计11题,共68分) 17、(6分)⑴解:原式=+=−.⑵解:原式43=++7=+7=+ 18、(6分)解:原式()2221211x x x x +−−+=−222212+11x x x x x ++−−=−221x =−.⑴否,理由:分式的分子为常数,不等于0,分式不可能为0 ⑵否19、(4分)解:两边同时乘24x −:()()3422124x x x +=+−− 344224x x x +=+−+ 3426x x +=+ 2x = 将2x =代入24=0x −,∴2x =是增根∴原方程无解.20、(5分)解:原式()()()225322a a a a a a −++−=÷++()245223a a a a a −++=⨯+−()()()33223a a a a a a +−+=⨯+−3a a+=−要使分式有意义则:20a +≠且()30a a −≠,∴2a ≠−,0,3 可取1a =,代入上式得:1341+−=−.(答案不唯一) 21、(7分)解:⑴C⑵样本容量500,20a =;解析:已知E 组有40人,占总人数8%,样本容量为408%=500÷; B 组有100人,占总人数100100%=20%500⨯; 故A 组占1-20%-40%-28%-8%=4%,5004%20a =⨯=. ⑶C 组人数:200解析:50040%200⨯=⑷据统计情况,捐款在10至30元之间的占总人数20%40%60%+=, 4500名学生中约有450060%2700⨯=名学生在此区间. 22、(6分)⑴ 证明:∵四边形ABCD 是菱形∴AB CD =,AB ∥CD ∵AE CF =∴AB AE CD CF −=−,即BE DF =. 在四边形DEBF 中,BE ∥DF 且BE DF = ∴四边形DEBF 是平行四边形. ∵DE AB ⊥ ∴90DEB ∠=°∴四边形DEBF 是矩形.⑵ 解:设菱形的AB x =∵四边形ABCD 是菱形 ∴AB BC CD DA x ==== ∵2DF =∴2CF AE x ==−在Rt △ADE 中,222AD DE AE =+ 即:2224(2)x x =+−解得:5x = ∴5AB =∴菱形ABCD 的面积S DE AB =⨯=20.23、(6分)⑴ ∵反比例函数图象经过()2,1D −−∴代入解析式得:12m−=−,即2m = ∴反比例函数的表达式为:2y x= ∵反比例函数上有点()1,A a ∴解得2a = ∴A 点坐标为()1,2∵一次函数(0)y kx b k =+≠经过()1,2A 和()2,1D −−∴221k b k b +=⎧⎨−+=−⎩,解得11k b =⎧⎨=⎩ ∴一次函数的表达式为:1y x =+.⑵ ∵直线l 与x 轴垂直于(3,0)N 且与反比例函数交于点C ,∴2(3,)3C∴112=31223CON S ON CN ⨯⨯=⨯⨯=△⑶ 20x −<<或1x >.24、(5分)解:设港珠澳大桥的设计时速是x 千米/时,则按原来路程形式的平均时速是(40)x −千米/时.根据题意,得501180640x x ⋅−= 解得:100x =经检验,100x =是原方程的解,且符合题意.答:港珠澳大桥的设计时速是每小时100千米/时.25、(6分)⑴证明:连接BD在△ABD 中,∵E 、H 分别为边AB 、AD 的中点 ∴EH ∥BD ,12EH BD =在△CBD 中,∵F 、G 分别为边CB 、CD 的中点 ∴FG ∥BD ,12FG BD =∴EH ∥FG ,EH =FG∴中点四边形EFGH 是平行四边形.⑵答:中点四边形EFGH 是菱形 理由如下:连接AC 、BD ∵APB CPD ∠=∠∴APB BPC CPD BPC ∠+∠=∠+∠,即APC BPD ∠=∠ 在△APC 和△DPB 中, PA PD APC DPB PC PB =⎧⎪∠=∠⎨⎪=⎩∴△APC ≌△DPB (SAS ) ∴AC =DB在△DAC 中,∵H 、G 分别为边DA 、DC 的中点 ∴12HG AC =由⑴得:12EH BD =∴HG =EH由⑴得:中点四边形EFGH 是平行四边形 ∴中点四边形EFGH 是菱形. 26、(8分)⑴ 证明:过点C 、D 作CE 、DF 垂直于2l ,垂足分别为E 、F∴∠CEF =∠DFB =90°, ∴CE ∥DF∵12ABC S AB CE =⋅△,12ABD S AB DF =⋅△又∵ABC ABD S S =△△∴CE =DF∴四边形CEFD 是平行四边形 ∴CD ∥EF ,即1l ∥2l .P 图(2)HD G CF BE A l 1l 2DCF B E A图(2)ABCD E F G H 图(1)⑵ 证明:连接AD 、∵AC ⊥x ∴∠HDC =∴四边形 ∴12ADC S =△ 设()11,A x y ∵A 、B ∴11x y a =由图可得:2BD x =,11122ADC a S x y ==△,22122BDC aS x y ==△∴ADC BDC S S =△△由⑴可得:CD ∥AB ,即CD ∥BF ∵BD ⊥y 轴∴BD ∥CF∴四边形BDCF 是平行四边形.⑶ 证明:连接AG 、BH 、AO 、BO ∵AH ⊥y 轴,BG ⊥x 轴∴AH ∥x 轴,BG ∥y 轴由⑴可得:AHG AHO S S =△△,BGH BGO S S =△△ 设()11,A x y ,()22,B x y∵A 、B 在双曲线a y x=上 ∴11x y a =,22x y a =由图可得:11,HO y AH x ==;22,GO x BG y =−=− ∴AHO BGO S S =△△,∴AHG BGH S S =△△由⑴可得:GH ∥AB ,即GH ∥BE ,GH ∥AF 又∵BG ∥HE ,AH ∥GF∴四边形BGHE 、四边形AHGF 是平行四边形 ∴BE =GH =AF ∴AE =BF .O图(4)BF EAH Gxy27、(9分)⑴ 证明: 当a <0时,P 点在O 点左侧,且∠BOP =90° 由旋转可知PB =PC ,∠BPC =90°,即∠1+∠2=90°, ∵CE ⊥x 轴,∴∠CEP =90° ∴Rt △PCE 中,∠2+∠C =90° ∴∠1=∠C , 在△BOP 和△PEC 中1BOP PECCBP PC =∠⎧⎪∠=∠⎨⎪=⎩∠ ∴△BOP ≌△PEC (AAS ) ∴BO =PE∵正方形OBAD 中,OB=OD ∴OD=PE ,即OP +OE =DE +OE ∴OP =DE . ⑵变化.a <0时,∠PDC =45°;(如图①)a =0时,∠PDC 不存在(C 与D 重合); 0<a <2时,∠PDC =135°;(如图②) a =2时,∠PDC 不存在(P 与D 重合); a >2时,∠PDC =45°;(如图③)①a <0时,C (a +2,a )、D (2,0),∴CD 中点N (2a +1,2a ); ②a =0时,C 与D 重合,舍去;③0<a <2时,C (a +2,a )、D (2,0)不变,∴N (2a +1,2a ); ④2a ≥时,C (a +2,a )、D (2,0)不变,∴N (2a +1,2a );综上,MN =a =2时,线段MN 长度的最小值是1.21y xD BAC P图(1)OE。

2019-2020学年八年级下学期期中考试数学试卷(解析版)

2019-2020学年八年级下学期期中考试数学试卷(解析版)

2019-2020学年八年级下学期期中考试数学试卷一.填空题(每小题4分,共24分)1.若,则的值是.2.命题“角平分线上的点到角的两边的距离相等”的逆命题是.3.如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC、BC为直径作半圆,面积分别记为S1、S2,则S1+S2等于.4.如图,△ABC的周长为32,且AB=AC,AD⊥BC于D,△ACD的周长为24,那么DC的长为.5.如图,正方形ABCD被分成两个小正方形和两个长方形,如果两个小正方形的面积分别是6cm2和2cm2,那么两个长方形的面积和为cm2.6.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是.二.选择题(每小题4分,共32分)下列各小题均有四个答案,其中只有一个是正确的,把你认为正确的答案前的代号字母填入题后括号内7.下列二次根式中属于最简二次根式的是()A.B.C.D.8.等式成立的条件是()A.a>5B.a≥0且a≠5C.a≠5D.a≥09.下列各数中,与的积为有理数的是()A.B.C.D.10.已知直角三角形两直角边的边长之和为,斜边长为2,则这个三角形的面积是()A.0.25B.0.5C.1D.211.如图一直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm12.如图,在正方形ABCD的外侧,作等边三角形ADE,连结BE交AD于点F,则∠DFE的度数为()A.45°B.55°C.60°D.75°13.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的()A.B.C.D.14.如图,在▱ABCD中,AE⊥BC于点E,AF⊥CD于点F,若AE=4,AF=6,且▱ABCD的周长为40,则▱ABCD的面积为()A.24B.36C.40D.48三.解答题(共44分)15.(5分)计算(1).(2).16.(5分)先将化简,然后自选一个合适的x值,代入化简后的式子求值.17.(6分)如图,在4×4正方形网格中,每个小正方形的边长都为1.(1)求△ABC的周长;(2)求证:∠ABC=90°.18.(6分)如图,ABCD是平行四边形,P是CD上一点,且AP和BP分别平分∠DAB和∠CBA.(1)求∠APB的度数;(2)如果AD=5cm,AP=8cm,求△APB的周长.19.(7分)如图所示,DE是▱ABCD的∠ADC的平分线,EF∥AD,交DC于F.(1)求证:四边形AEFD是菱形;(2)如果∠A=60°,AD=5,求菱形AEFD的面积.20.(7分)如图:已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:△BED≌△CFD;(2)若∠A=90°,求证:四边形DFAE是正方形.21.(8分)阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)(1)请用不同的方法化简.参照(三)式得=;参照(四)式得=.(2)化简:+++…+.参考答案与试题解析一.填空题(每小题4分,共24分)1.若,则的值是2.【分析】直接利用二次根式的性质计算得出答案.【解答】解:∵,∴a=,b=﹣1,∴=2÷=2.故答案为:2.【点评】此题主要考查了非负数的性质以及二次根式的乘除运算,正确掌握相关运算法则是解题关键.2.命题“角平分线上的点到角的两边的距离相等”的逆命题是到角的两边的距离相等的是角平分线上的点.【分析】把一个命题的题设和结论互换即可得到其逆命题,“角平分线上的点到角的两边的距离相等”的条件是“到角两边距离相等的点”,结论是“角平分线上的点”.【解答】解:“角平分线上的点到角的两边的距离相等”的逆命题是“到角的两边的距离相等的是角平分线上的点”.故答案为:到角的两边的距离相等的是角平分线上的点.【点评】根据逆命题的定义来回答,对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.3.如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC、BC为直径作半圆,面积分别记为S1、S2,则S1+S2等于2π.【分析】根据半圆面积公式结合勾股定理,知S1+S2等于以斜边为直径的半圆面积.【解答】解:S1=π()2=πAC2,S2=πBC2,所以S1+S2=π(AC2+BC2)=πAB2=2π.故答案为:2π.【点评】此题根据半圆的面积公式以及勾股定理证明:以直角三角形的两条直角边为直径的半圆面积和等于以斜边为直径的半圆面积,重在验证勾股定理.4.如图,△ABC的周长为32,且AB=AC,AD⊥BC于D,△ACD的周长为24,那么DC的长为6.【分析】由已知条件根据等腰三角形三线合一的性质可得到BD=DC,再根据三角形的周长定义得到AD,然后根据勾股定理即可得到结论.【解答】解:∵AB=AC,AD⊥BC,∴BD=DC.∵AB+AC+BC=32,即AB+BD+CD+AC=32,∴AC+DC=16∴AC+DC+AD=24∴AD=8,设CD=x,则AC=16﹣x,∵AC2=AD2+CD2,∴(16﹣x)2=82+x2,∴x=6,∴CD=6,故答案为:6.【点评】本题考查等腰三角形的性质,勾股定理,由已知条件结合图形发现并利用AC+CD是△ABC的周长的一半是正确解答本题的关键.5.如图,正方形ABCD被分成两个小正方形和两个长方形,如果两个小正方形的面积分别是6cm2和2cm2,那么两个长方形的面积和为4cm2.【分析】先根据两个小正方形的面积分别是6cm2和2cm2求出正方形的边长,进而可得出矩形的长和宽,进而得出结论.【解答】解:∵两个小正方形的面积分别是6cm2和2cm2,∴两个正方形的边长分别为和,∴两个矩形的长是,宽是,∴两个长方形的面积和=2××=4cm2.故答案为:4.【点评】本题考查的是实数的运算,熟知实数混合运算的法则是解答此题的关键.6.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是16.【分析】由把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,∠EFB=60°,易证得△EFB′是等边三角形,继而可得△A′B′E中,B′E=2A′E,则可求得B′E的长,然后由勾股定理求得A′B′的长,继而求得答案.【解答】解:在矩形ABCD中,∵AD∥BC,∴∠DEF=∠EFB=60°,∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,∴∠EFB=∠EFB′=60°,∠B=∠A′B′F=90°,∠A=∠A′=90°,AE=A′E=2,AB =A′B′,在△EFB′中,∵∠DEF=∠EFB=∠EB′F=60°∴△EFB′是等边三角形,Rt△A′EB′中,∵∠A′B′E=90°﹣60°=30°,∴B′E=2A′E,而A′E=2,∴B′E=4,∴A′B′=2,即AB=2,∵AE=2,DE=6,∴AD=AE+DE=2+6=8,∴矩形ABCD的面积=AB•AD=2×8=16.故答案为:16.【点评】此题考查了矩形的性质、折叠的性质、勾股定理以及等边三角形的判定与性质.此题难度适中,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想的应用.二.选择题(每小题4分,共32分)下列各小题均有四个答案,其中只有一个是正确的,把你认为正确的答案前的代号字母填入题后括号内7.下列二次根式中属于最简二次根式的是()A.B.C.D.【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【解答】解:A、=,二次根式的被开方数中含有没开的尽方的数,故A选项错误;B、==4,二次根式的被开方数中含有没开的尽方的数,故B选项错误;C、符合最简二次根式的定义,故C选项正确;D、的被开方数中含有分母,故D选项错误;故选:C.【点评】本题考查了最简二次根式的定义.在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.8.等式成立的条件是()A.a>5B.a≥0且a≠5C.a≠5D.a≥0【分析】直接利用二次根式的性质分析得出答案.【解答】解:等式成立的条件是:,解得:a>5.故选:A.【点评】此题主要考查了二次根式的乘除运算,正确掌握二次根式的性质是解题关键.9.下列各数中,与的积为有理数的是()A.B.C.D.【分析】利用二次根式乘法法则判断即可.【解答】解:•2=6,故选:C.【点评】此题考查了分母有理化,熟练掌握二次根式乘法法则是解本题的关键.10.已知直角三角形两直角边的边长之和为,斜边长为2,则这个三角形的面积是()A.0.25B.0.5C.1D.2【分析】此题可借助于方程.设直角三角形两直角边的边长分别为x、y,根据题意得:x+y=,x2+y2=4;把xy看作整体求解即可.【解答】解:设直角三角形两直角边的边长分别为x、y,根据题意得:x+y=,x2+y2=4,则(x+y)2=x2+y2+2xy,∴6=4+2xy,∴xy=1,∴这个三角形的面积是xy==0.5,故选:B.【点评】此题考查了勾股定理的应用,解题时注意方程思想与整体思想的应用.11.如图一直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm【分析】首先根据题意得到:△AED≌△ACD;进而得到AE=AC=6,DE=CD;根据勾股定理求出AB=10;再次利用勾股定理列出关于线段CD的方程,问题即可解决.【解答】解:由勾股定理得:==10,由题意得:△AED≌△ACD,∴AE=AC=6,DE=CD(设为x);∠AED=∠C=90°,∴BE=10﹣6=4,BD=8﹣x;由勾股定理得:(8﹣x)2=42+x2,解得:x=3(cm),故选:B.【点评】该命题主要考查了翻折变换及其应用问题;解题的关键是借助翻折变换的性质,灵活运用勾股定理、全等三角形的性质等几何知识来分析、判断、推理或解答.12.如图,在正方形ABCD的外侧,作等边三角形ADE,连结BE交AD于点F,则∠DFE的度数为()A.45°B.55°C.60°D.75°【分析】根据正方形的性质得出AB=AD,∠BAD=90°,根据等边三角形的性质得出∠AED=∠EAD=60°,AE=AD,求出∠BAE=150°,AB=AE,∠ABE=∠AEB=15°,求出∠AFB即可.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∵△AED是等边三角形,∴∠AED=∠EAD=60°,AE=AD,∴∠BAE=150°,AB=AE,∴∠ABE=∠AEB=(180°﹣150°)=15°,∴∠DFE=∠AFB=90°﹣15°=75°,故选:D.【点评】本题考查了正方形的性质,等边三角形的性质,三角形的内角和定理,等腰三角形的性质和判定的应用,解此题的关键是求出∠ABE的度数,难度适中.13.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的()A.B.C.D.【分析】本题主要根据矩形的性质,得△EBO≌△FDO,再由△AOB与△OBC同底等高,△AOB 与△ABC同底且△AOB的高是△ABC高的得出结论.【解答】解:∵四边形为矩形,∴OB =OD =OA =OC ,在△EBO 与△FDO 中, ∵,∴△EBO ≌△FDO (ASA ),∴阴影部分的面积=S △AEO +S △EBO =S △AOB ,∵△AOB 与△ABC 同底且△AOB 的高是△ABC 高的,∴S △AOB =S △OBC =S 矩形ABCD .故选:B .【点评】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.14.如图,在▱ABCD 中,AE ⊥BC 于点E ,AF ⊥CD 于点F ,若AE =4,AF =6,且▱ABCD 的周长为40,则▱ABCD 的面积为( )A .24B .36C .40D .48【分析】根据平行四边形的周长求出BC +CD =20,再根据平行四边形的面积求出BC =CD ,然后求出CD 的值,再根据平行四边形的面积公式计算即可得解.【解答】解:∵▱ABCD 的周长=2(BC +CD )=40,∴BC +CD =20①,∵AE ⊥BC 于E ,AF ⊥CD 于F ,AE =4,AF =6,∴S ▱ABCD =4BC =6CD ,整理得,BC =CD ②,联立①②解得,CD =8,∴▱ABCD 的面积=AF •CD =6CD =6×8=48.故选:D .【点评】本题考查了平行四边形的性质,根据平行四边形的周长与面积得到关于BC、CD的两个方程并求出CD的值是解题的关键.三.解答题(共44分)15.(5分)计算(1).(2).【分析】(1)直接利用二次根式的性质以及零指数幂的性质、绝对值的性质分别化简得出答案;(2)利用二次根式的乘法运算法则计算得出答案.【解答】解:(1)原式=﹣﹣(﹣1)﹣1+=﹣﹣+1﹣1+=0;(2)原式=1﹣12﹣(1+3﹣2)=﹣15+2.【点评】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.16.(5分)先将化简,然后自选一个合适的x值,代入化简后的式子求值.【分析】先化简,再代入计算即可,注意x>2.【解答】解:原式=×=当x=4时,原式=2.【点评】本题考查二次根式的化简求值,解题的关键是熟练掌握二次根式的性质,注意一定要先化简再代入求值.17.(6分)如图,在4×4正方形网格中,每个小正方形的边长都为1.(1)求△ABC的周长;(2)求证:∠ABC=90°.【分析】(1)运用勾股定理求得AB,BC及AC的长,即可求出△ABC的周长.(2)运用勾股定理的逆定理求得AC2=AB2+BC2,得出∠ABC=90°.【解答】解:(1)AB==2,BC==,AC==5,△ABC的周长=2++5=3+5,(2)∵AC2=25,AB2=20,BC2=5,∴AC2=AB2+BC2,∴∠ABC=90°.【点评】本题主要考查了勾股定理及勾股定理的逆定理,熟记勾股定理是解题的关键.18.(6分)如图,ABCD是平行四边形,P是CD上一点,且AP和BP分别平分∠DAB和∠CBA.(1)求∠APB的度数;(2)如果AD=5cm,AP=8cm,求△APB的周长.【分析】(1)根据平行四边形性质得出AD∥CB,AB∥CD,推出∠DAB+∠CBA=180°,求出∠PAB+∠PBA=90°,在△APB中求出∠APB即可;(2)求出AD=DP=5,BC=PC=5,求出DC=10=AB,即可求出答案.【解答】解:(1)∵四边形ABCD是平行四边形,∴AD∥CB,AB∥CD∴∠DAB+∠CBA=180°,又∵AP和BP分别平分∠DAB和∠CBA,∴∠PAB+∠PBA=(∠DAB+∠CBA)=90°,在△APB中,∴∠APB=180°﹣(∠PAB+∠PBA)=90°;(2)∵AP平分∠DAB,∴∠DAP=∠PAB,∵AB∥CD,∴∠PAB=∠DPA∴∠DAP=∠DPA∴△ADP是等腰三角形,∴AD=DP=5cm同理:PC=CB=5cm即AB=DC=DP+PC=10cm,在Rt△APB中,AB=10cm,AP=8cm,∴BP==6(cm)∴△APB的周长是6+8+10=24(cm).【点评】本题考查了平行四边形性质,平行线性质,等腰三角形的性质和判定,三角形的内角和定理,勾股定理等知识点的综合运用.19.(7分)如图所示,DE是▱ABCD的∠ADC的平分线,EF∥AD,交DC于F.(1)求证:四边形AEFD是菱形;(2)如果∠A=60°,AD=5,求菱形AEFD的面积.【分析】(1)可先证明四边形DAEF是平行四边形,再由角的关系求得∠AED=∠1,根据等角对等边得AD=AE,再依据有一组邻边相等的平行四边形是菱形可得四边形AEFD是菱形;(2)由已知求得两条对角线的长,根据菱形的面积等于两条对角线的积的一半,求得菱形的面积.【解答】(1)证明:∵四边形ABCD是平行四边形,∴DF∥AE,∵EF∥AD,∴四边形DAEF是平行四边形,∵∠2=∠AED,∵DE是▱ABCD的∠ADC的平分线∴∠1=∠2,∴∠AED=∠1.∴AD=AE.∴四边形AEFD是菱形.(2)解:∵∠A=60°,∴△AED为等边三角形.∴DE=5,连接AF与DE相交于O,则EO=.∴OA==.∴AF=5.=AF•DE=.∴S菱形AEFD【点评】此题主要考查菱形的性质和判定以及面积的计算,使学生能够灵活运用菱形知识解决有关问题.20.(7分)如图:已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:△BED≌△CFD;(2)若∠A=90°,求证:四边形DFAE是正方形.【分析】(1)利用等腰三角形的性质,可得到∠B=∠C,D又是BC的中点,利用AAS,可证出:△BED≌△CFD.(2)利用(1)的结论可知,DE=DF,再加上三个角都是直角,可证出四边形DFAE是正方形.【解答】证明:(1)∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°.∵AB=AC,∴∠B=∠C.∵D是BC的中点,∴BD=CD.∴△BED≌△CFD.(2)∵DE⊥AB,DF⊥AC,∴∠AED=∠AFD=90°.∵∠A=90°,∴四边形DFAE为矩形.∵△BED≌△CFD,∴DE=DF.∴四边形DFAE为正方形.【点评】本题利用了全等三角形的判定和性质以及矩形、正方形的判定.解答此题的关键是利用等腰三角形的两个底角相等,从而证明Rt△BED和Rt△CFD中的两个锐角对应相等.21.(8分)阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)(1)请用不同的方法化简.参照(三)式得=;参照(四)式得=.(2)化简:+++…+.【分析】(1)中,通过观察,发现:分母有理化的两种方法:1、同乘分母的有理化因式;2、因式分解达到约分的目的;(2)中,注意找规律:分母的两个被开方数相差是2,分母有理化后,分母都是2,分子可以出现抵消的情况.【解答】解:(1)=,=;(2)原式=+…+=++…+=.【点评】学会分母有理化的两种方法.。

2019-2020学年第二学期八年级数学期中考试试题(含答案)

2019-2020学年第二学期八年级数学期中考试试题(含答案)

2019-2020学年第二学期期中质量检测八年级数学测试卷一、单项选择题(每小题3分,共24分)1.当a =﹣3时,下列式子有意义的是 ( ) (A )2+a . (B )a -. (C )a 5. (D )12+a .2.下列计算正确的是 ( ) (A )123=-. (B )2222=+.(C )228=-. (D )6212=. 3.在三边分别为下列长度的三角形中,不是直角三角形的是 ( ) (A )6,8,10. (B )1,2,3. (C )2,3,5. (D )4,5,7.4.如图,在□ABCD 中,M 是BC 延长线上的一点,若∠A =135°,则∠MCD 的度数等 于 ( )(A )45°. (B )55°. (C )65°. (D )75°5.如图,在△ABC 中,∠ACB =90°,∠BAC =30°,AB =8cm ,以AC 为边向外作正方 形ACEF ,则正方形ACEF 的面积为 ( ) (A )64cm 2. (B )60cm 2. (C )48cm 2. (D )16cm 2.(第 4 题)(第 5 题)6.校园内有一个花坛,是由两个边长均为2.5m 的正六边形围成的(如图中的阴影部分所 示),学校现要将这个花坛在原有的基础上扩建成一个如图所示的菱形区域,则扩建 后菱形区域的周长为 ( ) (A )30m. (B )330m. (C )20m. (D )320m.7.如图,在数轴上点A ,B 所表示的数分别为-1,1,CB ⊥AB ,BC =1,以点A 为圆心, AC 长为半径画弧,交数轴于点D (点D 在点B 的右侧),则点D 所表示的数是( ) (A )5. (B )15-. (C )2. (D )52-. 8.如图,在平面直角坐标系中,点A ,B 均在坐标轴上,且AB=4,以A ,O ,B 为顶点 作矩形AOBC ,对角线AB ,OC 相交于点P ,设点P 的坐标为(x ,y ),则x ,y 应满 足的关系是 ( ) (A )1=+y x . (B )122=+y x . (C )4=+y x . (D )422=+y x . 二、填空题(每小题3分,共18分)9.化简:352⨯-)(= . 10.如图,在菱形ABCD 中,P 是对角线AC 上的一点,PE ⊥AB 于点E ,若PE =3,则 点P 到AD 的距离为 .11.如图,l 1∥l 2,D 是BC 的中点,若S △ABC =20cm 2,则S △BDE = cm 2.(第 6 题) (第 7 题)(第 8 题)(第 10 题)(第 11 题)ECABD P12.请写出一个不同于12的无理数,使它与12的积为有理数,则这个无理数可以是 (写出一个即可).13.命题“平行四边形的两条对角线互相平分”的逆命题是 命题(填“真”或 “假”).14.如图,在正方形ABCD 中,对角线AC ,BD 相交于点O ,点P 在BD 上,且BP =7cm , DP =1cm ,连结AP ,则AP = cm.三、解答题(每小题5分,共10分) 15.计算:3231127+-.16.计算:648346122÷-⨯.四、解答题(每小题6分,共12分)17.图①,图②都是6×6的正方形网格,每个小正方形的边长均为1,每个小正方形的顶 点称为格点,点A 、B 都在格点上,请以格点为顶点,画出符合要求的图形.(第 14 题)D(1)在图①中,画一个以AB 为直角边的直角三角形; (2)在图②中,画一个以AB 为对角线且面积为6的矩形.18.如图是一个滑梯示意图,点A ,C ,D 在同一水平线上,滑梯的高度BC =3米,DC =1米,AB=AD ,求滑梯AB 的长.五、解答题(每小题8分,共16分)19.如图,在平面直角坐标系中,菱形ABCD 的顶点A ,B 的坐标分别为(﹣6,0),图①图②(第 18 题)(第 17 题)BABA(4,0),点D在y轴上.(1)求点C的坐标;(2)求对角线AC的长.(第19 题)20.如图,在△ABC中,D是AB的中点,E是CD的中点,过点C作CF∥AB交AE的延长线于点F,连结BF.(1)求证:四边形BDCF是平行四边形;(2)当AC=BC时,判断四边形BDCF是哪种特殊的平行四边形,并证明你的结论.(第20题)六、解答题(每小题9分,共18分)21.如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连结BM ,MN .(1)求证BM =MN ;(2)若∠BCN =135°,求∠BMN 的度数.22.如图,在□ABCD 中,∠DAB 的平分线交CD 于E 点,且DE =5,EC =8. (1)求□ABCD 的周长;(2)连结AC ,若AC =12,求□ABCD 的面积.(第 22 题)D(第 21题)七、解答题(每小题11分,共22分)23.如图,在等边△ABC中,AB =24 cm,射线AG∥BC,点E从点A出发沿射线AG以3cm/s的速度运动,同时点F从点B出发沿射线BC以5cm/s的速度运动,设点E运动的时间为t(s).(1)当点F在线段BC上运动时,CF= cm,当点F在线段BC的延长线上运动时,CF= cm(请用含t的式子表示);(2)在整个运动过程中,当以点A,C,E,F为顶点的四边形是平行四边形时,求t 的值;(3)当t = s时,E,F两点间的距离最小.(第23题)24.阅读理解:二次根式的除法,要化去分母中的根号,需将分子、分母同乘以一个恰当的二次根式. 例如:化简121-.解:将分子、分母同乘以12+得:12)12)(12(12121+=+-+=-.类比应用: (1)化简:=-11321;(2)化简:=++++++891231121 .拓展延伸: 宽与长的比是215-的矩形叫黄金矩形.如图①,已知黄金矩形ABCD 的宽AB =1. (1)黄金矩形ABCD 的长BC = ;(2)如图②,将图①中的黄金矩形裁剪掉一个以AB 为边的正方形ABEF ,得到新的 矩形DCEF ,猜想矩形DCEF 是否为黄金矩形,并证明你的结论; (3)在图②中,连结AE ,则点D 到线段AE 的距离为 .图①图②(第24题)八年级数学测试卷答案阅卷说明:1.评卷采分最小单位为1分,每步标出的是累计分.2.考生若用本“参考答案”以外的解(证)法,可参照本“参考答案”的相应步骤给分. 一、单项选择题(每小题3分,共24分)1.B2.C3.D4.A5.C6.A7. B8. D 二、填空题(每小题3分,共18分)9.35 10. 3 11. 10 12.答案不唯一 13.真 14.5 三、解答题(每小题5分,共10分) 15.解:原式=33233233+-(3分)=33. (5分)16.解:原式=2623- (3分) =23- (5分) 四、解答题(每小题6分,共12分)17.(1)(答案不唯一)(3分) (2)(6分)18.解:设滑梯AB 的长为x 米. ∵AB =AD ,DC =1米,∴AC =(x -1)米. (1分) 在Rt △ABC 中,根据勾股定理可知:AC 2+BC 2=AB 2,∴22231x x =+-)(. (4分)解得:x =5. (6分) 答:滑梯AB 的长为5米.五、解答题(每小题8分,共16分)19.解:(1) ∵A ,B 的坐标分别为(-6,0),(4,0),∴OA =6,AB =10. (1分)∵四边形ABCD 是菱形,∴AD =DC =AB =10. (2分) 在Rt △AOD 中,86102222=-=-=OA AD OD . (3分)BABANMD B A C EBDCA∴点C 的坐标为(10,8); (4分) (2)过点C 作CE ⊥x 轴于点E . (5分)易知:CE =8,AE =16. (7分)∴588162222=+=+=CE AE AC . (8分)20.(1)证明:∵ CF // AB ,∴∠EAD =∠EFC ,∠EDA =∠ECF . (1分)∵E 是CD 的中点,∴DE=CE .∴△ADE ≌△FCE. (2分) ∴DA =CF . (3分) ∵D 是AB 的中点,∴DA =DB .∴DB =CF . (4分) ∴四边形BDCF 是平行四边形; (5分) (2)结论:当AC =BC 时,四边形BDCF 是矩形. (6分) 证明:∵AC=BC ,DA=DB ,∴CD ⊥AB .由(1)得,四边形BDCF 是平行四边形,∴四边形BDCF 是矩形. (8分)六、解答题(每小题9分,共18分)21.(1)证明:在△ABC 中,∵∠ABC =90°,M 是AC 的中点,∴BM =21AC . (2分) ∵M ,N 分别为AC ,CD 的中点,∴MN=21AD . (4分)∵AC =AD , ∴BM =MN ; (5分)(2)解:∵BM =21AC , CM =21AC , ∴BM = CM . ∴∠MBC =∠MCB . (6分) 又∵MN=BM ,∴MN = CM .∴∠MNC =∠MCN . (7分) ∴∠MBC +∠MNC =∠MCB +∠MCN=∠BCN =135°. (8分) ∴∠BMN =360°-(∠MBC +∠MNC +∠BCN )=360°-(135°+135°)=90°. (9分)22.解:(1)∵四边形ABCD 是平行四边形,∴AB ∥CD.∴∠BAE =∠AED . (1分) 又∵AE 平分∠DAB ,∴∠DAE =∠BAE .∴∠DAE =∠AED . ∴AD =DE . (3分) ∵DE =5,EC =8,∴AD =5,DC = DE + EC =13. (4分)∴□ABCD 的周长为2(AD + DC )=2×(5+13)=36. (5分) (2)在△ADC 中,∵AD =5,AC =12,DC =13,∴AD 2+ AC 2= 52+ 122=169,DC 2=132=169. ∴AD 2+ AC 2=DC 2. (7分) ∴∠DAC =90°. (8分) ∴□ABCD 的面积为AD •AC =5×12=60. (9分) 七、解答题(每小题11分,共22分)23.(1)(24-5t ),( 5t -24); (2分) (2)∵AG ∥BC ,∴当AE =CF 时,以点A ,C ,E ,F 为顶点的四边形是平行四边形. (3分) ①当点F 在线段BC 上运动时,由AE =CF 得,3t =24-5t . (5分) 解得:t =3. (6分)(第19题) (第 20题) (第 21题)(第 22 题)八年级数学第 11 页 (共8页)②当点F 在线段BC 的延长线上运动时,由AE =CF 得,3t =5t -24. (8分) 解得:t =12. (9分) ∴当以点A ,C ,E ,F 为顶点的四边形是平行四边形时,t 的值为3或12.(3)6. (11分)24. 类比应用:(1)1132+; (2分) (2)2. (4分)拓展延伸: (1)215+ (6分) (2)结论:矩形DCEF 是黄金矩形. (7分)证明:∵BC =,,1215==+AB BE ∴2151215-=-+=-=BE BC CE . (8分) ∵CD =AB =1, ∴.215-=CD CE ∴矩形DCEF 是黄金矩形. (9分)(3)4210+. (11分)。

乐清市育英国际实验学校2019-2020学年八年级下学期期中数学试卷(含解析)

乐清市育英国际实验学校2019-2020学年八年级下学期期中数学试卷(含解析)

乐清市育英国际实验学校2019-2020学年八年级下学期期中数学试卷一、选择题(本大题共10小题,共40.0分)1.倡导节约,进入绿色,节约型社会,在食品包装、街道、宣传标语上随处可见节能、回收、绿色食品、节水的标志,在这些标志中,是轴对称图形的是()A. B. C. D.2.二零一五年我国与“一带一路”国家贸易额达9955亿美元.数据9955用科学记数法表示为()A. 99.55×102B. 9.955×103C. 9.9×103D. 10×103v的速度到达中点,再3.甲乙两人同时从A地出发到B地,如果甲的速度v保持不变,而乙先用12用2v的速度到达B地,则下列结论中正确的是()A. 甲乙同时到达B地B. 甲先到达B地C. 乙先到达B地D. 谁先到达B地与速度v有关4.如图,一块边长为6cm的等边三角形木板ABC,在水平桌面上绕C点按顺时针方向旋转到△A′B′C′位置,则边AB的中点D运动的路径长是()A. 4πB. 2√3πC. 2πD. √3π5.满足下列条件的四边形不是正方形的是()A. 对角线相互垂直的矩形B. 对角线相等的菱形C. 对角线相互垂直且相等的四边形D. 对角线垂直且相等的平行四边形6. 4.对于函数使得随的增大而增大的的取值范围是A. B. C. D.7.甲、乙两辆汽车沿同一路线赶赴距出发地480km的某地,甲匀速行驶一段时间出现故障,停车检修后又继续行驶,图中折线OABC、线段DE分别表示甲、乙两车所行路程y(km)与甲车出发时间x(ℎ)间的函数关系,以下结论中错误的有()①乙车比甲车晚出发2h;②乙车的平均速度为60km/ℎ;③甲车检修后的平均速度为l20km/ℎ;④两车第二次相遇时,它们距出发地320km.A. 1个B. 2个C. 3个D. 48.一艘在南北航线上的测量船,于A点处测得海岛B在点A的南偏东30°方向,继续向南航行30海里到达C点时,测得海岛B在C点的北偏东15°方向,那么海岛B离此航线的最近距离是()(结果保留小数点后两位)(参考数据:√3≈1.732,√2≈1.414)A. 4.64海里B. 5.49海里C. 6.12海里D. 6.21海里9.已知等腰三角形的两条中位线的长分别为3和5,则此等腰三角形的周长为()A. 22B. 26C. 22或26D. 1310.如图,已知菱形ABCD边长为4,E、F是动点,AF=DE,∠BAD=60°,则下列结论正确的有()①△ABF≌△DBE;②△BEF为等边三角形;③∠DEB=∠DGF;④若DE=1,则GEFG =13.A. 4个B. 3个C. 2个D. 1个二、填空题(本大题共6小题,共30.0分)11.分解因式:x3−116x=______.12.已知反比例函数y=kx (k≠0)的图象过点(−2,−12),如果点A(m,1)是反比例函数图象上的点,则在坐标轴上存在______个点P,使以A、O、P三点为顶点的三角形是直角三角形.13. 如图,已知∠EOF =90°,△ABC 中,AC =BC =10,AB =12,点A 、B分别在边OE 、OF 上运动,△ABC 的形状大小始终保持不变.在运动的过程中,点C 到点O 的最大距离为______.14. 有4条线段的长度分别是3cm 、7cm 、9cm 和11cm ,选择其中能组成三角形的三条线段作三角形,则可作______ 个不同三角形.15. 已知点A 、B 是半径为2的⊙O 上两点,且∠BOA =120°,点M 是⊙O上一个动点,点P 是AM 的中点,连接BP ,则BP 的最小值是______.16. 在平面直角坐标系中,已知点P 的坐标是(1,2),则点P 关于x 轴对称的点的坐标是______ .三、计算题(本大题共3小题,共26.0分)17. 计算:(5√2−1)0+(12)−1+√33×3−|−2|−tan60°18. 学完三角函数知识后,某校“数学社团”的小明和小华决定用自己学到的知识测量纪念塔的高度.如图,CD 是高为1 m 的测角仪,在D 处测得塔顶端A 的仰角为40°,向塔方向前进40m ,在E 处测得塔顶端A 的仰角为63.4°,求纪念塔AB 的高度(结果取整数).参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,tan63.4°≈2.00.19.(1)、①若点Q的运动速度与点P的运动速度相等,经过1秒后,BPE和CQP是否全等,请说明理由。

2019-2020学年八年级下学期期中考试数学试卷(含答案)

2019-2020学年八年级下学期期中考试数学试卷(含答案)

2019-2020学年八年级下学期期中考试数学试卷一、选择题(本题共12个小题.在每题所列四个选项中,只有一个符合题意,把符合题意的选项所对应的字母代号写在答题纸中各题对应的方格里).1、下列式子:①;②;③﹣;④;⑤,是二次根式的有()A.①③ B.①③⑤ C.①②③ D.①②③⑤2、在菱形ABCD中,如果∠B=110°,那么∠D的度数是A.35° B.70° C.110° D.130°3、在三边分别为下列长度的三角形中,是直角三角形的是()A.9,12,14 B.2,, C.4,3, D.4,3,54、化简的结果是()A.﹣ B.﹣ C.﹣ D.﹣5、如图,在▱ABCD中,∠ODA=90°,AC=20cm,BD=12cm,则AD的长为()A.8cm B.10cm C.12cm D.16cm6、已知a、b、c是三角形的三边长,如果满足(a﹣6)2+=0,则三角形形状是(A.底与腰不相等的等腰三角形B.等边三角形C.钝角三角形 D.直角三角形7、下列运算正确的是()A.﹣= B. =2 C.﹣= D. =2﹣8、如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为16,则BE=()A.2 B.3 C.4 D.59、如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BA E=22.5°,则BE的长为()A. B.2 C.4﹣4 D.4﹣210、已知a<b,则化简二次根式的正确结果是()A.B.C.D.11、实数a在数轴上的位置如图所示,则化简后为()A.7 B.﹣7 C.2a﹣15 D.无法确定12、已知直角梯形ABCD中,AD∥BC,AB⊥BC,AD=4,BC=DC=5,点P在BC上移动,则当PA+PD取最小值时,BP长为()A.1 B.2 C.2.5 D.3二、填空题(本题共6个小题.请把最终结果填写在答题纸中各题对应的横线上13、小红说:“因为4=2,所以4不是二次根式.”你认为小红的说法对吗?(填对或错).14、已知x=+1,则x2﹣2x+4= .15、如图,四边形ABCD中,AD=3,AB=4,BC=12,CD=13,∠A=90°,计算四边形ABCD的面积.16、如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24厘米,△OAB的周长是18厘米,则EF= 厘米.17、如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若EF=2,BC=10,则AB的长为.18、对于任意不相等的两个数a,b,定义一种运算※如下:a※b=,如3※2=.那么12※4= .三、解答题(共66分。

2019-2020学年度第二学期八年级数学期中调研试题答案 (1)

2019-2020学年度第二学期八年级数学期中调研试题答案 (1)

2019~2020学年度第二学期期中测试八年级数学参考答案 2020.5说明:本评分标准每题给出了一种解答供参考,如果考生的解法与本解答不同,参照本评分标准的精神酌情给分.一、选择题(本大题共有8小题,每小题3分,共24分.)9. 0.4 10.抽取的150名考生的中考数学成绩 11. 30 12.①③④13. 11a - 14. 60°12或-1 18.3三、解答题(本大题共10小题,共96分.)19.21)(1)(1)(1)x x x x x x x --=⋅-+(-2原式 ……………………………2分=21x x--……………………………4分 2x =-当时, ……………………………6分34=原式 ……………………………8分 20. 去分母,得 216(1)x x -=- ……………………………2分 解这个方程得 54x = ……………………………4分 经检验,54x =是此方程的根 ……………………………6分 所以,原方程的根为54x = ……………………………8分21. (1) P (甲1红)=412,P (乙1红)=612,P (丙1红)=512 ………………2分∴ P (甲1红)<P (丙1红)<P (乙1红) …………4分 (2)4151,122122x y x y ++==++ ………………………6分解得 x=4,y=2 ………………………8分 22.(1)90,36m n ==…………………………4分(2) 28.8° …………………………6分 (3902000600300⨯=(人)答:该校参加书画社团的有600人 …………………………8分23.(1)……………………2分(2) 平行 ……………………………… ……………………4分 (3) (0,3)、(2,-1)、(6,5) ……………… ………………………10分 24.(1)连接BD,交AC 于O在 ABCD 中,OA=OC ,OB=OD 在△DOE 和△BOF 中,12OB OD =⎧⎪=⎨⎪=⎩∠∠∠EOD ∠FOB ∴ △DOE ≌△BOF ∴ OE=OF∴ AE=CF ………………………5分 (2)∵ OB=OD ,OE=OF∴ 四边形EBFD 为平行四边形, ………………………8分 ∴BE ∥DF . ………………………10分 25.设甲每天加工运动装x 套。

乐清市育英学校初中2019-2020学年八年级下学期期中数学试卷(含解析)

乐清市育英学校初中2019-2020学年八年级下学期期中数学试卷(含解析)

乐清市育英学校初中2019-2020学年八年级下学期期中数学试卷一、选择题(本大题共10小题,共30.0分)1.在式子:①(x−1)0,②√x−1,③1中,x可以取1的是()x−1A. ①和②B. 只有①C. 只有②D. 只有③2.下列英文大写正体字母中,可以看成是中心对称图形的是()A. EB. MC. SD. U3.已知(x+y)(x+y+2)−8=0,则x+y的值是()A. −4或2B. −2或4C. 2或−3D. 3或−24.设四边形的内角和等于a,五边形的外角和等于b,则a与b的关系是()A. a>bB. a=bC. a<bD. b=a+180°5.若某同学在一次综合性测试中,语文、数学、英语、科学、社会5门学科的名次在其所在班级里都不超过3(记第一名为1,第二名为2,第三名为3,以此类推且没有并列名次情况),则称该同学为超级学霸.现根据不同班级的甲、乙、丙、丁四位同学对一次综合性测试名次数据的描述,一定可以推断是超级学霸的是()A. 甲同学:平均数为2,中位数为2B. 乙同学:中位数是2,唯一的众数为2C. 丙同学:平均数是2,标准差为2D. 丁同学:平均数为2,唯一的众数为26.用反证法证明“四边形的四个内角中至少有一个不小于90°”时第一步应假设()A. 四个角中最多有一个角不小于90°B. 四个内角中至少有一个不大于90°C. 四个内角全都小于90°D. 以上都不对7.反比例函数的图象上有三个点,且,则的大小关系是()A. B. C. D.8.2020年12月29日,贵阳轨道交通2号线实现试运行,从白云区到观山湖区轨道公司共设计了132种往返车票,则这段线路有多少个站点?设这段线路有x个站点,根据题意,下面列出的方程正确的是()A. x(x+1)=132B. x(x−1)=132C. 12×(x+1)=132 D. 12x(x−1)=1329.如图所示,在△ABC中,AB=AC,D,E在BC上,BD=CE,AF⊥BCF,则图中全等三角形的对数为()A. 1B. 2C. 3D. 410.如图,矩形ABCD中,AB=4,BC=3,将△ABC沿AC折叠,点B落到E点,此时AE交CD于F,则AF:EF=()A. 24:7B. 25:7C. 2:1D. 3:1二、填空题(本大题共8小题,共24.0分)11.已知:√3.14≈1.772,√31.4≈5.604,则√314≈______.12.如图,已知矩形ABCO的面积为8,反比例函数y=kx(k≠0)的图象经过矩形ABCO对角线的交点E,则k=______.13.在平行四边形ABCD中,∠D=65°,过点C作CE⊥AB于E,则∠BCE的度数为______.14.长方形剪去一角,它可能是______ 边形.15.我们知道,一元二次方程x2=−1没有实数根,即不存在一个实数的平方等于−1.若我们规定一个新数“i”,使其满足i2=−1(即方程x2=−1有一个根为i).并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有i1=i,i2=−1,i3=i2⋅i=−i,i4=(i2)2=(−1)2=1,从而对于任意正整数n,我们可以得到i4n+1=i4n⋅i=i,同理可得i4n+2=−1,i4n+3=−i,i4n=1.那i+i2+i3+i4+⋯+i2018+i2019的值为______.16.在△ABC中,∠C=90°,AD平分∠BAC,若DC=7,则D点到AB的距离为______.17.用一段长30米的篱笆围成一个一边靠墙的矩形花圃,墙长为18米,另三边用篱笆恰好围成.围成的花圃是如图的矩形ABCD.设AB边的长为x米,花圃ABCD的面积为S平方米,则S与x之间的函数关系式是______ .(不必写出自变量取值范围)18.将一副三角尺如图拼接:含30°角的三角尺(△ABC)的长直角边与含45°角的三角尺(△ACD)的斜边恰好重合.已知AB=2√3,E是AC上的一点(AE>CE),且DE=BE,则AE的长为.三、解答题(本大题共6小题,共46.0分)19.选择适当方法解下列方程:(1)3(x−2)2=x(x−2);(2)2x2−2√2x−5=0;(3)(y+2)2=(3y−1)2.20.已知等腰三角形ABC的底边BC=20cm,D是腰AB上一点,且CD=16cm,BD=12cm.(1)求证:CD⊥AB;(2)求该三角形的腰的长度.21.如图,在5×5的正方形网格,每个小正方形的边长都为1,线段AB的端点落在格点上,要求画一个四边形,所作的四边形为中心对称图形,同时满足下列要求:(1)在图1中画出以AB为一边的四边形;(2)分别在图2和图3中各画出一个以AB为一条对角线的四边形.22.某销售公司10名销售员,去年完成的销售额情况如下表:销售额(万元)34567820销售人数(人)1321111(1)求销售额的平均数,众数,中位数(2)今年公司为了调动员工的积极性提高年销售额,准备采取超额有奖的措施,请根据(1)的结果,通过比较,选用哪个数据作为今年每个销售员统一销售额标准比较合理?说明你确定这一标准的理由.23.如图,矩形花坛ABCD面积是24平方米,两条邻边AB,BC的和是10米(AB<BC),求边AB的长.24.如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限一点,CB⊥y轴,交y轴负半轴于B(0,b),且(a−3)2+|b+4|=0,S四边形AOBC=16.(1)求C点坐标;(2)如图2,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE的角平分线的反向延长线交于点P,求∠APD的度数.(3)如图3,当D点在线段OB上运动时,作DM⊥AD交BC于M点,∠BMD、∠DAO的平分线交于N点,则D点在运动过程中,∠N的大小是否变化?若不变,求出其值,若变化,说明理由.【答案与解析】1.答案:C解析:解:①当x=1时,00无意义;②当x=1时,√x−1=0,有意义;③当x=1时,1无意义;x−1故选:C.分别根据0指数幂、二次根式、分式的意义解答.本题考查的是二次根式有意义的条件,熟知二次根式具有非负性是解答此题的关键.2.答案:C解析:解:A、“E”不是中心对称图形,故此选项不合题意;B、“M”不是中心对称图形,故此选项不合题意;C、“S”是中心对称图形,故此选项符合题意;D、“U”不是中心对称图形,故此选项不合题意;故选:C.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.此题主要考查了中心对称图形定义,关键是找出对称中心.3.答案:A解析:解:设x+y=a,原方程可化为a(a+2)−8=0即:a2+2a−8=0解得a1=2,a2=−4∴x+y=2或−4故选A.本题主要考查了换元法在一元二次方程中的应用,关键是构造元和换元,设a=x+y,则原方程转化为关于a的一元二次方程,通过解该方程求得a即x+y的值即可.4.答案:B解析:本题考查的是多边形的内角与外角,熟知多边形的内角和定理是解答此题的关键.根据多边形的内角和定理以及多边形外角和即可得出结论.解:∵四边形的内角和等于a,∴a=(4−2)⋅180°=360°.∵五边形的外角和等于b,∴b=360°,∴a=b.故选:B.5.答案:D解析:本题考查了平均数、中位数、众数、标准差的意义,平均数是指在一组数据中所有数据之和再除以数据的总个数.它是反映数据集中趋势的一项指标.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.一组数据中出现次数最多的数据叫做众数.样本方差的算术平方根表示样本的标准差,它也描述了数据对平均数的离散程度.本题有一定难度,透彻理解定义是解题的关键.根据平均数、中位数、众数、标准差的意义,分别分析各选项,举出反例利用排除法即可求解.解:A、由于中位数为2,那么5门学科的名次为1,1,2,x,y或者1,2,2,x,y(2≤x≤y),由平均数为2得出x+y=6或5,当x=2时,y=4(不合题意)或3,故本选项错误;B、由于中位数为2,那么5门学科的名次为1,1,2,x,y,或者1,2,2,x,y,(2≤x≤y),由唯一的众数为2,那么第二种情况1,2,2,x,y,当x=4,y=5时不合题意,故本选项错误;[(x1−2)2+(x2−C、由标准差为2,得出方差为4,设5门学科的名次为x1,x2,x3,x4,x5,那么152)2+⋯+(x5−2)2]=4,整理得x12+x22+⋯+x52=40,那么这五个数可以是1,1,2,3,5,不合题意,故本选项错误;D、由唯一的众数为2,那么5门学科的名次为2,2,x,y,z,由平均数为2,得出x+y+z=6,x,y,z可以是1,1,4或1,2,3,而1,1,4与唯一的众数为2不符,所以x,y,z是1,2,3,符合题意,故本选项正确.故选D.6.答案:C解析:用反证法证明“四边形的四个内角中至少有一个不小于90°”时第一步应假设:四个角都小于90度.故选C.7.答案:C解析:解:∵6>0∴反比例函数的图象在第一、三象限∴故选C.8.答案:B解析:解:设有x个站点,则x(x−1)=132.故选:B.设有x个队站点,根据煤两个站点之间有来往两种车票,共要设计132中往返票,可列出方程.本题考查由实际问题抽象出一元二次方程,关键是根据总票张数做为等量关系列方程求解.9.答案:D解析:本题主要考查等腰三角形的性质及全等三角形的性质,根据AB=AC,得∠B=∠C,再由BD= CE,得△ABD≌△ACE,进一步推得△ABE≌△ACD;进而利用HL定理可证得△ABF≌△ACF,△ADF≌△AEF,即可求解.解:∵AB=AC,∴∠B=∠C,又BD=CE,∴△ABD≌△ACE(SAS).∴AD=AE(全等三角形的对应边相等),∴∠AEB=∠ADC.∴△ABE≌△ACD(AAS).∴AD=AE,∵AB=AC,AF=AF,AF⊥BC,∴△ABF≌△ACF;∵AD=AE,AF=AF,AF⊥BC,△ADF≌△AEF.故选D.10.答案:B解析:本题考查的是翻转变换的性质、矩形的性质,翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.根据折叠的性质得到AE=AB,∠BAC=∠EAC,根据平行线的性质、等腰三角形的判定定理得到FD=FE,根据勾股定理计算即可.解:由折叠的性质可知,AE=AB,∠BAC=∠EAC,∵AB//CD,∴∠BAC=∠DCA,∴∠EAC=∠DCA,∴FA=FC,∴FD=FE,在Rt△AFD中,AF2=AD2+DF2,即AF2=32+(4−AF)2,解得,AF=258,∴DF=4−258=78,∴AF:EF=AF:DF=25:7,故选:B.11.答案:17.72解析:解:∵√3.14≈1.772,∴√314≈17.72,故答案为:17.72根据算术平方根的定义解答可得.本题主要考查算术平方根,解题的关键是熟练掌握算术平方根的定义.12.答案:2解析:解:过E点作ED⊥x轴于D,EF⊥y轴于F,如图,∵四边形OABC为矩形,点E为对角线的交点,∴S矩形ODEF =14S矩形OABC=2.∴k=2.故答案为:2.过E点作ED⊥x轴于D,EF⊥y轴于F,根据矩形的性质得S矩形ODEF =14S矩形OABC=2,然后根据反比例函数的比例系数k的几何意义求解.本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=kx(k≠0)的图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.13.答案:25°解析:解:∵四边形ABCD是平行四边形,∴∠B=∠D=65°,∵CE⊥AB,∴∠EBC=90°,∴∠BCE=180°−90°−65°=25°,故答案为:25°.首先利用三角形内角和定理得出∠B的度数,再利用平行四边形的对角相等,进而得出答案,此题主要考查了三角形内角和定理以及平行四边形的性质,正确掌握平行四边形的性质是解题关键.14.答案:三或四或五解析:解:长方形剪去一角,它可能是三或四或五边形.沿对角线剪去时,可得到三角形;沿一个顶点和另一边上的一点剪时,可得到四边形;当沿相邻两边上的任意两点剪时,可得到五边形.注意分不同情况进行讨论.15.答案:−1解析:解:由于i4n+1=i4n⋅i=i,i4n+2=−1,i4n+3=−i,i4n=1.∴i4n+i4n+1+i4n+2+i4n+3=0,∴原式=(i+i2+i3+i4)+(i5+i6+i7+i8)+⋯…(i2017+i2018+i2019)=504×0−1=−1,故答案为:−1根据题意给出的规律即可求出答案.本题考查新定义,解题的关键是正确理解新定义,本题属于中等题型.16.答案:7解析:解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=DC=7.故答案为:7.作出图形,过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=DC.本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键,作出图形更形象直观.17.答案:s =x(30−2x)解析:解:∵四边形ABCD 是矩形,AB =x ,BC =30−2x ,∴S =AB ⋅BC =x(30−2x);根据矩形的面积公式计算即可.本题考查矩形的性质,解题的关键是理解题意,直径矩形的面积公式,属于基础题,中考常考题型. 18.答案:52解析:试题分析:根据直角三角形30°角所对的直角边等于斜边的一半求出BC ,再利用勾股定理列式求出AC ,过点D 作DF ⊥AC 于F ,根据等腰直角三角形的性质求出DF =CF =12AC ,设CE =x ,表示出EF ,然后分别用勾股定理表示出DE 2、BE 2,再列出方程求解即可.∵AB =2√3,∠BAC =30°,∴BC =12AB =12×2√3=√3,根据勾股定理,AC =√AB 2−BC 2=√(2√3)2−√32=3,过点D 作DF ⊥AC 于F ,∵△ACD 是等腰直角三角形, ∴DF =CF =12AC =32,设CE =x ,则EF =32−x , 在Rt △DEF 中,DE 2=DF 2+EF 2=(32)2+(32−x)2,在Rt △BCE 中,BE 2=BC 2+CE 2=√32+x 2,∵DE =BE ,∴(32)2+(32−x)2=√32+x 2,解得x =12, 所以,AE =AC −CE =3−12=52.故答案为:52. 19.答案:解:(1)∵3(x −2)2−x(x −2)=0,∴(x −2)(3x −6−x)=0,即(x −2)(2x −6)=0,则x −2=0或2x −6=0,解得x 1=2,x 2=3;(2)∵2x 2−2√2x −5=0,∴a =2,b =−2√2,c =−5,则△=(−2√2)2−4×2×(−5)=48>0,∴x =2√2±4√34=√2±2√32, 即x 1=√2+2√32,x 2=√2−2√32; (3)∵(y +2)2=(3y −1)2.∴y +2=3y −1或y +2=−3(3y −1),解得y 1=32,y 2=110.解析:(1)利用因式分解法求解可得;(2)利用公式法求解可得;(3)利用直接开平方法求解可得.本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.20.答案:解:(1)∵BC =20cm ,CD =16cm ,BD =12cm ,∴满足BD 2+CD 2=BC 2,∴根据勾股定理逆定理可知,∠BDC =90°,即CD ⊥AB ;(2)设腰长为x ,则AD =x −12,由(1)可知AD2+CD2=AC2,即:(x−12)2+162=x2,,解得x=503cm.∴腰长为503解析:(1)依据勾股定理的逆定理,即可得到∠BDC=90°,即可得到CD⊥AB;(2)设腰长为x,则AD=x−12,由(1)可知AD2+CD2=AC2,解方程(x−12)2+162=x2,即可得到腰长.本题主要考查了勾股定理的逆定理,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.21.答案:解:(1)如图1所示,平行四边形ABCD即为所求作的四边形;(2)如图2所示,平行四边形ACBD即为所求作的四边形;如图3所示,正方形ACBD即为所求作的四边形;解析:本题考查了应用与设计作图,熟练掌握常见特殊四边形的对称性是解题的关键,常见的特殊四边形如平行四边形、矩形、菱形、正方形都是中心对称图形.(1)根据平行四边形是中心对称图形,利用网格结构作一个以线段AB为边的平行四边形即可;(2)在图2中,利用网格结构作一个以AB为对角线的平行四边形即可;在图3中,利用网格结构作一个以AB为对角线的正方形.(3×1+4×3+5×2+6×1+7×1+8×1+20×1)=6.6(万元);22.答案:解:(1)平均数x−=110出现次数最多的是4万元,所以众数是4(万元);因为第五,第六个数均是5万元,所以中位数是5(万元).(2)今年每个销售人员统一的销售标准应是5万元.理由如下:若规定平均数6.6万元为标准,则多数人无法或不可能超额完成,会挫伤员工的积极性;若规定众数4万元为标准,则大多数人不必努力就可以超额完成,不利于提高年销售额;若规定中位数5万元为标准,则大多数人能完成或超额完成,少数人经过努力也能完成.因此把5万元定为标准比较合理.解析:(1)根据平均数公式求得平均数,根据次数出现最多的数确定众数,按从小到大顺序排列好后求得中位数.(2)根据平均数,中位数,众数的意义回答.本题为众数,中位数,平均数的意义.解题的关键是根据众数,中位数,平均数的意义求出答案.23.答案:解:设AB的长为x米,则BC的长为(10−x)米,根据题意得,x(10−x)=24,解得:x1=4,x2=6,当x=4时,10−x=6,当x=6时,10−x=4<6(不合题意舍去),答:边AB的长为4米.解析:设AB的长为x米,则BC的长为(10−x)米,根据题意列方程即可得到结论.本题考查了一元二次方程的应用,矩形的面积公式,熟练掌握矩形的面积公式是解题的关键.24.答案:解:(1)∵(a−3)2+|b+4|=0,∴a−3=0,b+4=0,∴a=3,b=−4,∴A(3,0),B(0,−4),∴OA=3,OB=4,=16.∵S四边形AOBC(OA+BC)×OB=16,∴12(3+BC)×4=16,∴12∴BC=5,∵C是第四象限一点,CB⊥y轴,∴C(5,−4).(2)如图,延长CA,∵AF是∠CAE的角平分线,∴∠CAF=1∠CAE,2∵∠CAE=∠OAG,∴∠CAF=1∠OAG,2∵AD⊥AC,∴∠DAO+∠OAG=∠PAD+∠PAG=90°,∵∠AOD=90°,∴∠DAO+∠ADO=90°,∴∠ADO=∠OAG,∴∠CAF=12∠ADO,∵DP是∠ODA的角平分线,∴∠ADO=2∠ADP,∴∠CAF=∠ADP,∵∠CAF=∠PAG,∴∠PAG=∠ADP,∴∠APD=180°−(∠ADP+∠PAD)=180°−(∠PAG+∠PAD)=180°−90°=90°,即:∠APD=90°.(3)不变,∠ANM=45°.理由:如图,∵∠AOD=90°,∴∠ADO+∠DAO=90°,∵DM⊥AD,∴∠ADO+∠BDM=90°,∴∠DAO=∠BDM,∵NA是∠OAD的平分线,∴∠DAN=12∠DAO=12∠BDM,∵CB⊥y轴,∴∠BDM+∠BMD=90°,∴∠DAN=12(90°−∠BMD),∵MN是∠BMD的角平分线,∴∠DMN=12∠BMD,∴∠DAN+∠DMN=12(90°−∠BMD)+12∠BMD=45°在△DAM中,∠ADM=90°,∴∠DAM+∠DMA=90°,在△AMN中,∠ANM=180°−(∠NAM+∠NMA)=180°−(∠DAN+∠DAM+∠DMN+∠DMA)=180°−[(∠DAN+∠DMN)+(∠DAM+∠DMA)]=180°−(45°+90°)=45°,∴D点在运动过程中,∠N的大小不变,其值为45°.解析:此题是四边形综合题,主要考查了非负数的性质,四边形的面积的计算方法,角平分线的意义,解本题的关键是用整体思想解决问题,也是本题的难点.(1)利用非负数的和为零,各项分别为零,求出a,b即可;(2)用同角的余角相等和角平分线的意义即可;(3)利用角平分线的意义和互余两角的关系计算证明即可.。

2019-2020学年初中八年级(下)数学期中考试试卷(含答案)

2019-2020学年初中八年级(下)数学期中考试试卷(含答案)

是这个台阶两个相对的端点,A 点有一只蚂蚁,想到 B 点去吃可口的食物,则蚂蚁沿着台
阶面爬到 B 点的最短路程是_________.
16.△ABC 中,AB=2 3 ,AC=2,BC 边上的高 AD= 3 ,则 BC=__________.
三、解答题(共 72 分) 17.(20 分)计算:
(1) 3 3 8 2 27

13.三角形的两边长分别为 3 和 5,要使这个三角形是直角三角形,则第三边长是

14 . 在 数 轴 上 表 示 实 数 a 的 点 如 图 所 示 , 化 简 (a 5)2 a 2 的 结 果


0 2 a5
15.如图,是一个三级台阶,它的每一级的长、宽、高分别为 20dm、3dm、2dm,A 和 B
(2) (4 2 3 6) 2 2
(3) 46 0.5) ( 8 6 1 )
2
32
3
18.(8分)已知等式 | a 2019 | a 2020 a 成立,求 a 20192 的值.
19、(10 分)如图,在四边形 ABCD 中,∠B=90°,AB=BC=2,AD=1,CD=3. (1)求∠DAB 的度数. (2)求四边形 ABCD 的面积.
A.16 B.8 C.4 D.2
6.甲、乙两艘客轮同时离开港口,航行的速度都是 40m/min,甲客轮用 15min 到达点 A,
乙客轮用 20min 到达点 B,若 A,B 两点的直线距离为 1000m,甲客轮沿着北偏东 30°的方
向航行,则乙客轮的航行方向可能是( )
A.北偏西 30°
B.南偏西 30°
D. 6
A. 8 2 10 B. 2 2 2 2 C. 2 3 6 D. 12 2 6
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在△CBD 中,∵F、G 分别为边 CB、CD 的中点
∴FG∥BD, FG = 1 BD 2
∴EH∥FG,EH=FG ∴中点四边形 EFGH 是平行四边形.
HD
A G
E
B
F
C
图(1)
⑵答:中点四边形 EFGH 是菱形 理由如下:连接 AC、BD ∵ APB = CPD ∴ APB + BPC = CPD + BPC ,即 APC = BPD 在△APC 和△DPB 中,
26、(8 分)
⑴ 证明:过点 C、D 作 CE、DF 垂直于 l2 ,垂足分别为 E、F ∴∠CEF=∠DFB=90°,
∴CE∥DF
∵ S△ABC
=
1 2
AB CE , S△ABD
=
1 2
AB DF
C
D
l1
又∵ S△ABC = S△ABD ∴CE=DF ∴四边形 CEFD 是平行四边形
AE
F B l2
图(2)
∴CD∥EF,即 l1 ∥ l2 .
⑵ 证明:连接 AD、BC,设 AC、BD 交于点 H ∵AC⊥ x 轴,BD⊥ y 轴
∴∠HDC=∠HCD=∠DOC =90° ∴四边形 ODHC 为矩形,∴∠DHC=90°
∴ S△ADC
=
1 2
AC
DH
, S△BDC
=
1 2
BD CH
设 A( x1, y1 ) , B( x2, y2 )
y
HA
E
G
FO
x
B
图(4)
27、(9 分)
⑴ 证明:
y
当 a<0 时,P 点在 O 点左侧,且∠BOP=90°
由旋转可知 PB=PC,∠BPC=90°,即∠1+∠2=90°,
B
A
∵CE⊥x 轴,∴∠CEP=90°
∴Rt△PCE 中,∠2+∠C=90° ∴∠1=∠C, 在△BOP 和△PEC 中
1
E
2020【育英二外】八年级(下)数学期中(答案)
一、选择题(本题共 6 小题,每小题 2 分,共 12 分)
题号
1
2
3
4
5
6
答案
A
D
B
C
B
C
二、填空题(本题共 10 小题,每空 2 分,共计 20 分)
题号
7
8
9
10
11
答案
x≥1
① ③②
3
0.86
1
题号
12
13
14
15
16
答案
36
10
y2<y1<y3
∵A、B 在双曲线 y = a 上 x
∴ x1 y1 = a , x2 y2 = a 由图可得: AC = y1 , DH = OC = x1 ; BD = x2 , CH = OD = y2 ;
S△ADC
=
1 2
x1
y1
=
a 2
, S△BDC
=
1 2
x2 y2
=
a 2
∴ S△ADC = S△BDC 由⑴可得:CD∥AB,即 CD∥BF
y
B
A
y
y
C
B
A
B
A
E
PO
D
x
C
C
O P DEx O
DP
Ex
图①
图②
⑶ 线段 MN 图长(度1的)最小值是 1.此时 a=2.
图③
解:易知 B(0,2)、P(a,0),∴BP 中点 M( a ,1) 2
①a<0 时,C(a+2,a)、D(2,0),∴CD 中点 N( a +1, a );
2
2
②a=0 时,C 与 D 重合,舍去;
3 −1
12
三、解答题(本题共计 11 题,共 68 分) 17、(6 分)
⑴解:原式 = 5 2 − 5 + 2 52
= 11 2 − 5 .
2
5
⑵解:原式 = 4 + 4 3 + 3 + 48 − 12
=7+4 3+4 3−2 3 =7+6 3.
18、(6
分)解:原式
=
(
x
+ 1)2
− x2
2x − −1
PA = PD APC = DPB PC = PB
∴△APC≌△DPB(SAS) ∴AC=DB 在△DAC 中,∵H、G 分别为边 DA、DC 的中点
∴ HG = 1 AC 2
P
A
H
D
E
G
B
F
C
图(2)
由⑴得: EH = 1 BD 2
∴HG=EH 由⑴得:中点四边形 EFGH 是平行四边形 ∴中点四边形 EFGH 是菱形.
x=2 将 x = 2 代入 2x − 4=0 , ∴ x = 2 是增根 ∴原方程无解.
20、(5 分)解:原式 = (2 − a)(a + 2) + 5 a (a − 3)
a+2
a+2
4 − a2 + 5 a + 2
=
a + 2 a(a − 3)
(3+ a)(3− a)
=
a+2
a+2
a(a − 3)
⑵ 解:设菱形的 AB = x ∵四边形 ABCD 是菱形 ∴ AB = BC = CD = DA = x ∵ DF = 2 ∴ CF = AE = x − 2 在 Rt△ ADE 中, AD2 = DE2 + AE2
即: x2 = 42 + (x − 2)2
解得: x = 5 ∴ AB = 5 ∴菱形 ABCD 的面积 S = DE AB =20.
根据题意,得 50 = 1 180 x 6 x − 40
解得: x =100 经检验, x =100 是原方程的解,且符合题意. 答:港珠澳大桥的设计时速是每小时 100 千米/时.
25、(6 分) ⑴证明:连接 BD 在△ABD 中,∵E、H 分别为边 AB、AD 的中点
∴EH∥BD, EH = 1 BD 2
③0<a<2 时,C(a+2,a)、D(2,0)不变,∴N( a +1, a );
2
2
④ a 2 时,C(a+2,a)、D(2,0)不变,∴N( a +1, a );
2
2
综上, MN = 12 + (a −1)2 ,当 a=2 时,线段 MN 长度的最小值是 1. 2
∵A、B 在双曲线 y = a 上 x
∴ x1 y1 = a , x2 y2 = a 由图可得: HO = y1, AH = x1 ; GO = −x2 , BG = − y2 ∴ S△AHO = S△BGO ,∴ S△AHG = S△BGH 由⑴可得:GH∥AB,即 GH∥BE,GH∥AF 又∵BG∥HE,AH∥GF ∴四边形 BGHE、四边形 AHGF 是平行四边形 ∴BE=GH=AF ∴AE=BF.
23、(6 分)
⑴ ∵反比例函数图象经过 D(−2, −1)
∴代入解析式得: −1 = m ,即 m = 2 −2
∴反比例函数的表达式为: y = 2 x
∵反比例函数上有点 A(1, a)
∴解得 a = 2
∴A 点坐标为 (1,2)
∵一次函数 y = kx + b(k 0) 经过 A(1,2) 和 D(−2, −1)
4500 名学生中约有 4500 60% = 2700 名学生在此区间.
22、(6 分) ⑴ 证明:∵四边形 ABCD 是菱形 ∴ AB = CD , AB ∥ CD ∵ AE = CF ∴ AB − AE = CD − CF ,即 BE = DF . 在四边形 DEBF 中, BE ∥ DF 且 BE = DF ∴四边形 DEBF 是平行四边形. ∵ DE ⊥ AB ∴ DEB = 90 ° ∴四边形 DEBF 是矩形.
=−a+3 a
要使分式有意义则: a + 2 0 且 a(a − 3) 0 ,∴ a −2 , 0 , 3
可取 a = 1,代入上式得: − 1 + 3 = −4 .(答案不唯一) 1
21、(7 分) 解:⑴C ⑵样本容量 500, a = 20 ; 解析:已知 E 组有 40 人,占总人数 8%,样本容量为 40 8%=500 ;
x2
+1
=
x2
+
2x
+1− 2x x2 −1

x2
+1
=
2 x2 −1

⑴否,理由:分式的分子为常数,不等于 0,分式不可能为 0
⑵否
19、(4 分)解:两边同时乘 2x − 4 : 3x + 4 = 2(2x +1) − (2x − 4)
3x + 4 = 4x + 2 − 2x + 4 3x + 4 = 2x + 6
P 2O
D
x
∠BOP = PEC 1 = C BP = PC
C 图(1)
∴△BOP≌△PEC(AAS) ∴BO=PE ∵正方形 OBAD 中,OB=OD ∴OD=PE,即 OP+OE=DE+OE ∴OP=DE. ⑵ 变化. a<0 时,∠PDC=45°;(如图①) a=0 时,∠PDC 不存在(C 与 D 重合); 0<a<2 时,∠PDC=135°;(如图②) a=2 时,∠PDC 不存在(P 与 D 重合); a>2 时,∠PDC=45°;(如图③)
相关文档
最新文档