成人高考高升专数学模拟试题及答案.docx

合集下载

成考专科数学模拟试题一及标准答案,成考专科数学模拟试题一及答案

成考专科数学模拟试题一及标准答案,成考专科数学模拟试题一及答案

成考专科数学模拟试卷一及答案一、 选择题(每小题5分,共85分)1.设集合M={-1,0,1},集合N={0,1,2},则集合M ⋃N 为( D )。

A. {0,1}B. {0,1,2}C. {-1,0,0,1,1,2}D.{-1,0,1,2}2. 不等式12x -≥的解集为( B )。

A. {13}x x -≤≤ B. {31}x x x ≥≤-或 C. {33}x x -≤≤ D. {3,3}x x x ≥≤-3. 设 甲:ABC ∆是等腰三角形。

乙:ABC ∆是等边三角形。

则以下说法正确的是( B )A. 甲是乙的充分条件,但不是必要条件B. 甲是乙的必要条件,但不是充分条件C. 甲是乙的充要条件D. 甲不是乙的充分条件也不是乙的必要条件4.设命题 甲:k=1.命题 乙:直线y=kx 与直线y=x+1.则( C )A. 甲是乙的充分条件,但不是必要条件B. 甲是乙的必要条件,但不是充分条件C. 甲是乙的充要条件D. 甲不是乙的充分条件也不是乙的必要条件5.设tan α=1,且cos α<0,则sin α=( A )A. 2-B.12- C. 12D.26.下列各函数中,为偶函数的是( D )A. 2x y =B. 2x y -=C. cos y x x =+D.22x y =7. 函数y =( B ) A.{2}x x ≤ B. {2}x x < C.{2}x x ≠ D.{2}x x >8. 下列函数在区间(0,)+∞上为增函数的是( B )A. cos y x =B.2x y =C.22y x =-D.13log y x =9.设a=(2,1),b=(-1,0),则3a -2b 为( A )A.(8,3)B.(-8,-3)C.(4,6)D.(14,-4)10.已知曲线kx=xy+4k 过点P(2,1),则k 的值为( C )A. 1B. 2C. -1D. -211. 过(1,-1)与直线3x+y-6=0平行的直线方程是( B )A. 3x-y+5=0B. 3x+y-2=0C. x+3y+5=0D. 3x+y-1=012.已知ABC ∆中,AB=AC=3,1cos 2A =,则BC 长为( A ) A. 3 B.4 C. 5 D. 613.双曲线221169x y -=的渐近线方程为( D ) A.169y x =± B. 916y x =± C.034x y ±= D.043x y ±= 14.椭圆221169x y +=的焦距为( A ) A. 10 B. 8 C. 9 D. 1115. 袋子里有3个黑球和5个白球。

2024年成人高考专升本《数学》考卷真题及答案

2024年成人高考专升本《数学》考卷真题及答案

2024年成人高考专升本《数学》考卷真题及答案一、选择题(每小题5分,共25分)1. 下列函数中,是奇函数的是()A. y = x^3B. y = x^2C. y = x^4D. y = x^2 + 12. 下列数列中,是等差数列的是()A. 1, 3, 5, 7,B. 1, 2, 4, 8,C. 1, 3, 9, 27,D. 1, 2, 3, 4,3. 下列不等式中,正确的是()A. 2x + 3 > 5x 1B. 3x 4 < 2x + 5C. 4x + 7 > 5x 2D. 5x 3 < 4x + 14. 下列立体图形中,是圆柱的是()A. 圆锥B. 球体C. 长方体D. 圆柱5. 下列积分中,正确的是()A. ∫(x^2 + 1)dx = (1/3)x^3 + x + CB. ∫(x^3 + 1)dx = (1/4)x^4 + x + CC. ∫(x^4 + 1)dx = (1/5)x^5 + x + CD. ∫(x^5 + 1)dx = (1/6)x^6 + x + C二、填空题(每小题5分,共25分)1. 函数y = x^2 4x + 3的顶点坐标是______。

2. 等差数列1, 3, 5, 7, 的前10项和是______。

3. 不等式3x 4 < 2x + 5的解集是______。

4. 圆柱的体积公式是______。

5. 积分∫(x^3 + 1)dx的值是______。

三、解答题(每小题10分,共50分)1. 解方程组:\[\begin{align}2x + 3y &= 8 \\4x 5y &= 10\end{align}\]2. 求函数y = x^3 6x^2 + 9x 1的极值。

3. 求证:等差数列1, 3, 5, 7, 的前n项和是n(n + 1)/2。

4. 求圆柱的表面积。

5. 计算积分∫(x^4 + 1)dx。

四、证明题(每小题10分,共20分)1. 证明:对于任意实数x,都有x^2 ≥ 0。

成考数学(文科)成人高考(高起专)试题及解答参考(2024年)

成考数学(文科)成人高考(高起专)试题及解答参考(2024年)

2024年成人高考成考数学(文科)(高起专)复习试题(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、若等差数列{an}的前三项分别为1,4,7,则该数列的通项公式为:A、an = 3n - 2B、an = 2n + 1C、an = n + 2D、an = 3n + 12、若函数(f(x)=x2−4x+5),则该函数的最小值为()。

A、1B、2C、3D、43、已知某工厂去年生产总值为500万元,今年的生产总值比去年增长20%,则今年的生产总值为:A. 600万元B. 620万元C. 510万元D. 480万元+2x),则函数(f(x))的定义域为:4、已知函数(f(x)=3xA.((−∞,0)∪(0,+∞))B.((−∞,+∞))C.((−∞,0))D.([0,+∞))5、若集合A = {x | x^2 - 3x + 2 = 0},则A中的元素个数为()。

A、0B、1C、2D、36、下列各数中,属于正实数的是()A、-πB、0C、1D、-57、在下列各数中,不是有理数的是:)A、(34B、(−√5)C、(0.25)D、(1.5)8、已知集合A={1, 2, 3},B={3, 4, 5},则A∩B=()。

A. {1, 2, 3, 4, 5}B. {3}C. {1, 2, 4, 5}D. {0}9、在下列各对数运算中,正确的是()A、log2(4) + log2(6) = 2 + log2(2)B、log2(8) - log2(4) = 2 - 1 / log2(8)C、log2(16) / log2(2) = 4- log2(2)D、log2(32) * log2(4) = 5 * 210、下列函数中,在定义域内是奇函数的是()A.(f(x)=x2+1)B.(f(x)=x3−x)C.(f(x)=2x+3)D.(f(x)=|x|)11、已知集合A = {x | -2 < x < 3},集合B = {x | x < 1 或 x > 4},则A∩B 等于()。

成人高考成考高等数学(二)(专升本)试卷与参考答案

成人高考成考高等数学(二)(专升本)试卷与参考答案

成人高考成考高等数学(二)(专升本)自测试卷(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、设函数(f(x)=x3−3x+2),则(f(x))在区间[-2, 2] 上的最大值为:A、2B、4C、6D、82、已知函数(f(x)=e x lnx),则该函数的定义域是:A.((0,+∞))B.((−∞,0))C.((0,1))D.((1,+∞))3、设函数f(x)=x3−3x2+2在区间[−1,3]上的最大值为M,最小值为m。

则M−m 的值是:A. 4B. 6C. 8D. 10),则该函数的间断点是:4、设函数(f(x)=11+x2A.(x=0)B.(x=1)C.(x=−1)D.(x)无间断点5、设函数(f(x)=x3−3x+1),则该函数在区间 [-2, 2] 上的最大值为:A、4B、3C、2D、16、设函数f(x)=x3−6x2+9x+1,则该函数的极值点为:A.x=1B.x=2C.x=3D.x=47、若函数(f(x)=ln(x2+1)),则(f(x))在(x=1)处的导数(f′(1))是:)A、(12B、1C、2)D、(238、设函数(f(x)=x3−6x2+9x+1),则函数的极值点个数是:A. 0B. 1C. 2D. 39、设函数(f(x)=3x2−4x+5),则该函数的对称轴为:A.(x=1))B.(x=−13)C.(x=23D.(x=2)10、在下列函数中,连续函数为:())(x∈R)A.(f(x)=1x3)(x∈R)B.(f(x)=√xC.$( f(x) =)$D.(f(x)=|x|)(x∈R)),则(f′(0))的值为:11、已知函数(f(x)=1x2+1A. 0B. 1C. -1D. 不存在),求(f′(x))。

12、设函数(f(x)=2x+3x−1)A.(2(x−1)2B.(2x2−1)C.(2(x+1)(x−1))D.(1x−1)二、填空题(本大题有3小题,每小题7分,共21分)1、设函数(f(x)=e ax+b),其中(a,b)为常数,若(f(x))的单调递减区间为((−∞,1a)),则(a)的取值范围为______ 。

成考数学(文科)成人高考(高起本)试题及答案指导

成考数学(文科)成人高考(高起本)试题及答案指导

成人高考成考数学(文科)(高起本)模拟试题(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1.下列哪个数是有理数?A. √2B. πC. -3/4D. e2、下列哪个数不是素数?A. 8B. 9C. 10D. 153、若一个不等式及其逆不等式都成立,则该不等式称为()。

A、非严格不等式B、可逆不等式C、半严格不等式D、严格不等式4、过点 P( -2 , 3 ) 的直线与直线 L : 2 x + y - 5 = 0 垂直,则该直线方程为 ( )A.x - 2y + 8 = 0B.2x + y + 1 = 0C.x + 2y + 4 = 0D.2x - y + 7 = 05、题目:lim 2−√4−6x+x2√27+x336、设函数f(x) = sin x + a · cos x 在x = π/4 处取得极值,则实数a 的值为多少?• A. 根号二分之一倍的a• B. 负根号二分之一倍的a• C. 正根号二倍的a• D. 负根号二倍的a7、已知函数f(x) = x^3 - 3x^2 + 2,则f’(x)的值为( )。

A. 6xB. 6C. 3x^2 - 6xD. 3x^2 - 6x + 28.已知函数f(x) = 2x^3 - 3x^2 - 12x + 1,那么f(x)在区间[-2, 3]上的最大值是:A. 17B. 25C. 41D. 539、若 f(x) 是定义在集合 S 的函数,且集合 T 是集合 S 的子集,则下列说法中正确的是()A. f(S) 必须包含在 f(T) 内B. f(T) 必须包含在 f(S) 内C. 只有当 f(x) 是一一对应的映射时,f(S) 才可能包含在 f(T) 内D. 只有当 f(x) 不是连续的函数时,f(S) 才可能包含在 f(T) 内10、已知a和b是两个不相等的自然数,且满足a+b=10,则a×b的最大值是:A. 25B. 20C. 16D. 1511、下列函数中为减函数的是()A. y=2^xB. y=x^3C. y=-xD. y=-2^x12.函数y=√x−2的定义域为 ( )A.(−∞,2)B.[2,∞)C.(2,∞)D.R二、填空题(本大题有3小题,每小题7分,共21分)1.(1分) 在下列各数中,______ 是分数,______ 是整数。

2024年成人高考成考(高起专)数学(文科)试题及答案指导

2024年成人高考成考(高起专)数学(文科)试题及答案指导

2024年成人高考成考数学(文科)(高起专)模拟试题(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、已知函数f(x)=2x2−3x+1,则该函数的导数f′(x)为:A.4x−3B.2x−3C.4x+1D.2x+12、在下列各数中,绝对值最小的是()A、-3/2B、-1/2C、3/2D、1/23、若一个正方形的边长增加其原长的25%,则新正方形的面积比原来增加了多少百分比?A、50%B、56.25%C、75%D、100%4、在下列各数中,不是有理数的是:A、-5.25B、√16C、πD、0.35、已知直线(l)的方程为(2x−3y+6=0),则直线(l)的斜率是多少?)A、(23)B、(32)C、(−23)D、(−326、下列函数中,定义域为全体实数的是()A、f(x) = √(x+1)B、f(x) = √(x^2 - 4)C、f(x) = 1 / (x-2)D、f(x) = 1 / (x^2 + 1)7、设函数f(x)=2x2−3x+1,则该函数的最小值为()。

A.−18B.18C.−1D.1),则下列说法正确的是:8、若函数(f(x)=3x2−2x+1)的图像的对称轴为(x=13A.(f (0)=f (1))B.(f (0)=f (−13))C.(f (13)=f (−13))D.(f (0)+f (1)=2f (13))9、若直线(l )的方向向量为((3,−4)),则直线(l )的斜率为:A.(34)B.(−34)C.(43)D.(−43)10、在下列各数中,有理数是( )A.√2B.πC.13D.ln211、一个等差数列的前三项分别是2、5、8,那么该数列的公差是多少?A 、3B 、4C 、5D 、612、已知函数f (x )=2x−1x 2−2x+1,下列说法正确的是:A. 函数的定义域为(−∞,1)∪(1,+∞)B. 函数的值域为(−∞,0)∪(0,+∞)C. 函数的增减性在x=1处发生改变D. 函数的图像关于直线x=1对称二、填空题(本大题有3小题,每小题7分,共21分)1、若函数f(x)=12x2−3x+4在x=1处取得极值,则该极值为_______ 。

成人高考成考高等数学(二)(专升本)试卷及解答参考

成人高考成考高等数学(二)(专升本)试卷及解答参考

成人高考成考高等数学(二)(专升本)复习试卷(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、设函数(f(x)=2x−3x),则函数的零点个数是:A. 1B. 2C. 3D. 02、设函数(f(x)=e x sinx),则该函数的导数(f′(x))为:A.(e x(sinx+cosx))B.(e x(sinx−cosx))C.(e x cosx)D.(e x sinx)3、设函数f(x)=x3-6x2+9x,若函数在x=1处取得极值,则该极值是:A. 4B. 0C. -4D. 84、下列函数中,定义域为实数集的有()A、f(x) = √(x^2 - 1)B、g(x) = 1/xC、h(x) = |x| + 1D、k(x) = √(-x)5、设函数(f(x)=x3−3x+2),则(f(x))的极值点为:A.(x=−1)和(x=1)B.(x=−1)和(x=2)C.(x=0)和(x=1)D.(x=0)和(x=2)6、设函数(f(x)=3x2−4x+1),则该函数的图像开口方向是:A. 向上B. 向下C. 水平D. 垂直),其定义域为((−∞,0)∪(0,+∞)),则函数(f(x))在(x=0)处7、设函数(f(x)=1x的极限值为:A. -∞B. +∞C. 0D. 不存在8、若函数(f(x)=x3−3x2+4x+1)在点(x=1)处可导,且其导数的反函数为(g(x)),则(g′(1))等于:B. -1C. 0D. 29、若函数(f(x)=11+x2)的定义域为(D f),则(D f)为:A.((−∞,+∞))B.((−∞,−1)∪(−1,+∞))C.((−∞,−1]∪[−1,+∞))D.((−1,1]∪[1,+∞))10、设函数f(x)=1xlnx,则f(x)的导数f′(x)为:A.−1x2lnx+1x2B.1x2lnx−1x2C.1x lnx−1x2D.−1x lnx+1x211、设函数(f(x)=11+x2),则(f′(0))的值为:A.(−1)B.(0)C.(12)D.(11+02)12、设函数f(x)=x 3−3xx2−1,则f′(1)的值为:A. 1C. 0D. 无定义二、填空题(本大题有3小题,每小题7分,共21分)1、设函数f(x) = x² - 3x + 2,若f(x)在x=1处的导数为0,则f(x)的极值点为______ 。

2024成考高起专、高起本数学(文)-考前模拟押题题

2024成考高起专、高起本数学(文)-考前模拟押题题

全国各类成人高等学校招生考试高起点数学(文史财经类)考前模拟(一)一、选择题(本大题共12小题,每小题7分,共84分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列函数中,为偶函数的是A.y=log2xB.y=x2C.y=π2D.y=x2+x2.已知f(x)是偶函数且满足f(x+3)=f(x),f(1)=-1,则f(5)+f(11)等于A.-2B.2C.-1D.13.如果二次函数y=ax2+bx+1的图像的对称轴是x=1,并且通过点A(-1,7),则a,b的值分别是A.2,4B.2,-4C.-2.4D.-2,-44.设M={x|x≤√10,a=√2+√3那么A.a⊂MB.a⊂MC.{a}⊂MD.{a}⊂M5.函数f(x)=3+2x-12x2的最大值是A.4B.5C.2D.36.已知直线l与直线2x-3y+5=0平行,则l的斜率为A. 327.等差数列{a n }中,a 1+a 2=15,a =-5,则前8项的和等于A.-60B.-140C.-175D.-1258.若sin (π-α)=log 814,且αϵ(-π2,0)则cot (2π-α)的值为 A.-√52B.√52C.±√52D.-√5 9.设F 1、F 2为椭圆注图B193@@的焦点,P 为椭圆上的一点,则ΔPF 1F 2的周长等于A.10+2√34B.18C.14D.1210.已知向量a =(3,1),b =(-2,5),则3a-2b =A.(2,7)B.(13,-7)C.(2,-7)D.(13,13)11.已知双曲线上一点到两焦点(-5,0),(5,0)距离之差的绝对值等于6,则双曲线方程为A.x 29−y 216=1 B.y 29−x 216=1C.x 225−y 216=1D.y 225−x 216=112.某同学每次投篮投中的概率为注图B206@@.该同学投篮2次,只投中1次的概率为D.35二、填空题(本大题共3小题,每小题7分,共21分)13.若平面向量a =(x ,1),b =(1,-2),且a⊂b ,则x =______.14.已知α、β为锐角,cos (α+β)=1213,cos (2α+β)=35,则cosα=______.15.从5位男生和4位女生中选出2人作代表,恰好一男生和一女生的概率是______.三、解答题(本大题共3小题,共45分.解答应写出推理、演算步骤)16.问数列:lg100,lg (100sin45°),lg (100sin 245°),···,lg (100sin n-145°)前几项和最大?并求最大值.(1g2=0.3010)17.已知f (x )=4x 2-mx +5(x⊂R )在(-∞,-2]上是减函数,在[-2,+∞)上是增函数,求f (1)的值,并比较f (-4)与log 128的大小. 18.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),斜率为1的直线l 与C 相交,其中一个交点的坐标为(2,√2),且C 的右焦点到l 的距离为1.(⊂)求a ,b ;(⊂)求C 的离心率.全国各类成人高等学校招生考试高起点数学(文史财经类)考前模拟(一)参考答案及解析一、选择题1.【答案】B【考情点拨】本题主要考查的知识点为偶函数的性质.【应试指导】A项,log2x≠log2(-x),故A项不是偶函数;C项,4x ≠4−x,故C项不是偶函数;D项,x2+x≠(-x)2-x,故D项也不是偶函数;而B项中x2=(-x)2,故B项是偶函数.2.【答案】A【考情点拨】本题主要考查的知识点为偶函数与周期函数的性质.【应试指导】⊂f(x)是偶函数,⊂f(-x)=f(x),又⊂f(x+3)=f(x),⊂函数f(x)的周期T=3,⊂f(1)=-1,⊂f(-1)=f(1)=-1,⊂f(5)+f(11)=f(2+3)+f(2+3×3)=f(2)+f(2)=2f(2)=2f(-1+3)=2f(-1)=2x(-1)=-2.3.【答案】B【考情点拨】本题主要考查的知识点为二次函数的对称性.【应试指导】由于二次函数y=ax2+bx+1的图像的对称轴是x=1,且过点A(-1,7),4.【答案】D【考情点拨】本题主要考查的知识点为元素与集合的关系.5.【答案】B【考情点拨】本题主要考查的知识点为函数的最值.6.【答案】C【考情点拨】本题主要考查的知识点为直线的斜率.【应试指导】已知直线l与直线2x-3y+5=0平行,故k l=23 7.【答案】B【考情点拨】本题主要考查的知识点为等差数列.【应试指导】由已知条件及等差数列的定义得8.【答案】B【考情点拨】本题主要考查的知识点为三角函数的性质及诱导公式.9.【答案】B【考情点拨】本题主要考查的知识点为椭圆的定义.【应试指导】由方程x 225+y29得a=5,b=3,⊂c=4,由椭圆的定义得ΔPF1F2的周长=2a+2c=2×5+2×4=18.[注]此题主要是考查椭圆的定义及a 、b 、c 三者之间的关系,可用图形来帮助理解.|PF 1|+|PF 2|=2a ,|F 1F 2|=2c.10.【答案】B【考情点拨】本题主要考查的知识点为向量的坐标运算.【应试指导】由a =(3,1),b =(-2,5),则3a-2b =3·(3,1)-2·(-2,5)=(13,-7).11.【答案】A【考情点拨】本题主要考查的知识点为双曲线的定义.【应试指导】由已知条件知双曲线焦点在x 轴上属于第一类标准式,又知c =5,2a =6,⊂a =3,⊂b2=c2-a2=25-9=16,所求双曲线的方程为x 29−y 216=112.【答案】A【考情点拨】本题主要考查的知识点为随机事件的概率.【应试指导】只投中1次的概率为:C 21×25×35=1225 二、填空题13.【答案】-12 【考情点拨】本题主要考查的知识点为平行向量的性质.【应试指导】由于a⊂b ,故x 1=1−2,即x =-1214.【答案】5665【考情点拨】本题主要考查的知识点为两角和公式.15.【答案】59【考情点拨】本题主要考查的知识点为随机事件的概率.【应试指导】从5位男生和4位女生中任选2人的选法共有注图B239@@种,恰好一男生和一女生的选法共有C 51∙C 41种,所以恰好选出一男生和一女生的概率是C 51∙C 41C 92 =59 三、解答题17.18.全国各类成人高等学校招生考试高起点数学(文史财经类)全真模拟(二)一、选择题(本大题共12小题,每小题7分,共84分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.等差数列{a n }中,若a 1=2,a 3=6,则a 7=A.10B.12C.14D.82.不等式|2x-3|≤1的解集为A.{x|1≤x≤2}B .{x |x≤-1或x≥2}C.{x|1≤x≤3}D.{x|2≤x≤3}3.函数y =3x 与(13)x 的图像之间的关系是 A.关于原点对称B.关于x 轴对称C .关于直线y =1对称D.关于y 轴对称4.已知函数f (x )=x2+2x +2(x <-1),则f-1(2)的值为A.-2B.10C.0D.25.若直线l 沿x 轴负方向平移3个单位,再沿y 轴正方向平移1个单位后,又回到原来的位置,那么直线l 的斜率是A.−13B.-3C.13D.36.点P (2,5)到直线x +y-9=0的距离是A.2√2929C.√2D.−√227.已知A (-1,0),B (2,2),C (0,y ),若AB⃗⃗⃗⃗⃗ ⊥BC ⃗⃗⃗⃗⃗ ,则y = A.3B.5C.-3D.-58.把6个苹果平均分给3个小孩,不同的分配方法有A .90种B .30种C .60种D ).15种9.已知直线y =3x +1与直线x +my +1=0互相垂直,则m 的值是A.13B.−13C.-3D.310.设等比数列{a n }的公比q =2,且a 2·a 4=8,a 1·a 7=A.8B.16C.32D.6411.已知数列前n 项和S n =12(3n 2−n ),则第5项的值是A.7B.10C.32D.1612.函数注图的最小正周期和最大值分别是A.2π,12B.2π,2D.π2,-12二、填空题(本大题共3小题,每小题7分,共21分)13.设0<α<π2,则√1−sinαsin α2−cos α2=______.14.在ΔABC 中,AB =3,BC =5,AC =7,则cosB =______.15.从某班的一次数学测试卷中任意抽出10份,其得分情况如下:81,98,43,75,60,55,78,84,90,70,则这次测验成绩的样本方差是______.三、解答题(本大题共3小题,共45分.解答应写出推理、演算步骤)16.设椭圆的中心是坐标原点,长轴在x 轴上,离心率e =√32,已知点P (0,32)到椭圆上的点的最远距离是√7,求椭圆的方程.17.在ΔABC 中,AB =2,BC =3,B =60°.求AC 及ΔABC 的面积.18.已知等差数列{a n }前n 项和S n =-2n 2-n .(⊂)求通项a n 的表达式;(⊂)求a 1+a 3+a 5+···+a 25的值.全国各类成人高等学校招生考试高起点数学(文史财经类)考前模拟(二)参考答案及解析一、选择题1.【答案】C【考情点拨】本题主要考查的知识点为等差数列的性质.【应试指导】因为{a n}是等差数列,设公差为d,则a3=a1+2d⇒2+2d=6⇒d=2,所以a7=a1+6d=2+6×2=14. 2.【答案】A【考情点拨】本题主要考查的知识点为不等式的解集.【应试指导】|2x-3|≤1⇒-1≤2x-3≤1⇒2≤2x≤4⇒1≤x≤2,故原不等式的解集为{x|1≤x≤2}.3.【答案】D【考情点拨】本题主要考查的知识点为曲线的对称性.4.【答案】A【考情点拨】本题主要考查的知识点为反函数的性质.5.【答案】A【考情点拨】本题主要考查的知识点为直线的平移.【应试指导】由已知条件知直线经过两次平移后又回到原来的位置,因为直线是满足条件的点集,所以取直线上某一点来考查,若设点P(x,y)为l上的任一点,则经过平移后的对应点也应在这条直线上,这样,可由直线上的两点确定该直线的斜率.方法一:设点P(x,y)为直线l上的任一点,当直线按已知条件平移后,点P随之平移,平移后的对应点为P'(x-3,y+1),点P'仍在直线上,所以直线的斜率k=y+1−yx−3−x =−13方法二:设直线l的方程为y=kx+b,直线向左平移3个单位,方程变为y=k(x+3)+b,再向上平移一个单位,方程变为y=k(x+3)+b+1,即y=kx+3k+b+1,此方程应与原方程相同,对应项系数相等,比较常数项可得,3k+b+1=b,∴k=−136.【答案】C【考情点拨】本题主要考查的知识点为点到直线的距离公式.7.【答案】B【考情点拨】本题主要考查的知识点为垂直向量的性质.【应试指导】此题是已知向量的两端点的向量垂直问题,要根据两向量垂直的条件列出等式,来求出未知数y的值.8.【答案】A【考情点拨】本题主要考查的知识点为分步计数原理.【应试指导】因为把6个苹果平均分给3个小孩与顺序无关属于组合,第一步从6个苹果中任取2个分配给3个小孩中的任一个,分配的方法有注图C62种,第二步在剩余的4个中任取2个分给剩下2个小孩中的任一个有C42种分法,第三步把剩下的2个分给最后一个小孩有C22种分法,由分步计数原理得不同的分配方法有C62∙C42∙C22=6×52×1×4×32×1×1=15×6×1=90(种).9.【答案】D【考情点拨】本题主要考查的知识点为两直线垂直的性质.【应试指导】易知直线y=3x+1的斜率为3,由x+my+1=0中m≠0得y=−1m x−1m,其斜率为−1m,⊂两直线互相垂直,⊂−1m·3=-1,⊂m=310.【答案】C【考情点拨】本题主要考查的知识点为等比数列的性质.【应试指导】⊂{an}是公比为q=2的等比数列且a2·a4=8,由通项公式a n=a1q n-1得a1q·a1q3=8,(a1q2)2=8,⊂a1·a7=a1·a1q6=(a1q2)2·q2=8x4=32.11.【答案】C【考情点拨】本题主要考查的知识点为数列的前n 项和.【应试指导】a n =S n -S n -1=12(3n 2−n )−12[3(n −1)2−(n −1)]=3n-2,当n =5时,a5=3×5-2=13. 12.【答案】C【考情点拨】本题主要考查的知识点为三角函数的最小正周期及最值.二、填空题13.【答案】-1【考情点拨】本题主要考查的知识点为三角函数的变换。

成人高考成考(高起专)数学(理科)试卷及解答参考

成人高考成考(高起专)数学(理科)试卷及解答参考

成人高考成考数学(理科)(高起专)模拟试卷(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、若函数(f(x)=x3−3x2+4)的导数(f′(x))等于0,则(f(x))的极值点为:A、(x=0)B、(x=1)C、(x=2)D、(x=−1)2、已知函数f(x)=x 2−4x−2,则函数的定义域为()A.x≠2B.x≠0C.x≠2且x≠0D.x≠0且x≠−23、若函数(f(x)=1x−2+√x+1)在区间([−1,2))上有定义,则函数(f(x))的定义域为:A.([−1,2))B.([−1,2])C.((−1,2))D.((−1,2])4、在下列各数中,正实数 a、b、c 的大小关系是:a = 2^(3/2),b = 3^(2/3),c = 5^(1/4)。

A、a < b < cB、b < a < cC、c < b < aD、a = b = c5、已知函数f(x)=2x3−9x2+12x+1,若函数的图像在(−∞,+∞)上恒过点(a,b),则a和b的值分别为:A.a=2,b=9B.a=3,b=10C.a=1,b=2D.a=0,b=1+2x)在(x=1)处有极值,则此极值点处的导数值为:6、若函数(f(x)=3xA. 1B. -1C. 0D. 3在点x=1处的导数等于多少?7、若函数f(x)=2x−3x+1A、2B、−1C、1D、08、已知函数f(x)=x 3−3x2+4xx2−2x+1,则f(x)的奇偶性为:A. 奇函数B. 偶函数C. 非奇非偶函数D. 无法确定9、在下列数列中,属于等差数列的是()A、1, 2, 3, 4, 5B、1, 3, 6, 10, 15C、2, 4, 8, 16, 32D、1, 3, 6, 9, 1210、已知函数(f(x)=1x+x2)在区间((−∞,+∞))上的定义域为(D),且函数的值域为(R),则(D)和(R)分别是:A.(D=(−∞,0)∪(0,+∞),R=(−∞,0)∪(0,+∞))B.(D=(−∞,0)∪(0,+∞),R=[0,+∞))C.(D=(−∞,+∞),R=(−∞,+∞))D.(D=(−∞,+∞),R=[0,+∞))11、若函数f(x)=x3−3x2+4x,则函数的对称中心为:A.(1,2)B.(1,1)C.(0,0)D.(−1,−1)12、若函数(f(x)=√x2−4)的定义域为(D f),则(D f)为:A.(x≥2)B.(x≤−2)或(x≥2)C.(x≤−2)或(x≥2)D.(x≥2)或(x≤−2)二、填空题(本大题有3小题,每小题7分,共21分)1、在△ABC中,若sinA=√55,cosB=−√1010,则sinC=____.2、已知直线(l)的方程为(3x−4y+10=0),求直线(l)在 y 轴上的截距。

成人高考成考(高起本)数学(文科)试题与参考答案

成人高考成考(高起本)数学(文科)试题与参考答案

成人高考成考数学(文科)(高起本)复习试题(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1.下列哪个数是有理数?A. √2B. πC. -3/4D. e2.已知函数f(x) = 2x^3 - 3x^2 - 12x + 1,那么f(x)在区间[-2, 3]上的最大值是:A. 17B. 25C. 33D. 413、如果一个数的小数点向左移动2位,则这个数缩小了原来的()倍。

A、100B、10C、1/100D、1/104、若函数f(x)满足f(1) = 4, f’(1) = 2, x > 0。

若存在一个常数c,使得对于任意x > 0,都有f(x) ≥ cx^2,则c的最大值是(A、0B、1C、2D、45、一元二次方程的判别式为零时,该方程的实数根的情况是()A. 方程有两个相等的实数根B. 方程没有实数根C. 方程有两个非相等的实数根D. 以上都不正确6.等差数列2, 5, 8, 11, … 的第 20 项是多少?A. 59B. 61C. 65D. 677、直线l过点(1, 3)且与双曲线x 22−y21=1一条渐近线平行,则()。

A. 直线l无斜率B. 直线l的斜率为±√2C. 直线l的斜率为-1或-√2D. 直线l的斜率为±1解析:双曲线x 22−y21=1的渐近线方程为y=±√22x,又直线l过点(1, 3),故当直线l 与渐近线y=√22x 平行时,直线l 的斜率为√22(舍去);当直线l 与渐近线y=-√22x 平行时,直线l 的斜率为-√22;当直线l 与渐近线垂直时,直线l 的斜率不存在。

综上可知:直线l 的斜率为-1或-√2。

选C 。

8、在多项式x 2+2x +1中,x 2+2x 的系数是( )。

A. -1B. 1C. -2D. 29、一个多项式函数的最小项是关于x 的3次幂,则该多项式函数的次数至少是( )次。

A 、4B 、3C 、2D 、110、已知函数 f(x) = ax^3 + bx^2 + cx 在 x=x ₀ 处取得极值,且 f’(x ₀) = 0,则关于函数 f(x) 的极值说法正确的是:A. f(x) 在 x=x ₀ 处一定有极大值或极小值B. 若 f’(x ₀) 是正的或负的,则 f(x) 在 x=x ₀ 处有极大值或极小值C. f(x) 在 x=x ₀ 处没有极值,导数等于零不一定有极值点出现D. 函数是否存在极值与变量 x ₀ 有关,所以需要通过实际代入求解来确定极值的存在性。

2024年成人高考专升本《数学》试卷真题附答案

2024年成人高考专升本《数学》试卷真题附答案

2024年成人高考专升本《数学》试卷真题附答案一、选择题(每小题5分,共30分)1. 设集合A={x|x^24x+3<0},B={x|x^24x+3≥0},则A∪B=______。

A. RB. (∞, 3]C. (3, +∞)D. 空集2. 函数f(x)=x^33x+2的导数f'(x)的零点个数是______。

A. 1B. 2C. 3D. 43. 若等差数列{an}的通项公式为an=2n1,则数列{an^2}的前5项和是______。

A. 55B. 60C. 65D. 704. 设函数f(x)=ln(x+1),则f(x)在区间(0, +∞)上是______。

A. 单调递增B. 单调递减C. 先增后减D. 先减后增5. 已知三角形ABC的边长分别为a、b、c,且满足a^2+b^2=c^2,则三角形ABC是______。

A. 直角三角形B. 钝角三角形C. 锐角三角形D. 等腰三角形6. 若直线y=2x+3与圆x^2+y^2=9相切,则圆的半径是______。

A. 3B. 2C. 1D. √2二、填空题(每小题5分,共20分)7. 已知函数f(x)=x^24x+3,则f(x)的极小值为______。

8. 已知等比数列{an}的公比为q,且a1+a2+a3=14,a1a2a3=8,则q=______。

9. 已知抛物线y=x^24x+3的顶点坐标为______。

10. 已知直线y=2x+3与圆x^2+y^2=9相切,则切点坐标为______。

三、解答题(每小题10分,共30分)11. 解不等式组:x2y≤4,2x+y≥6。

12. 已知等差数列{an}的前n项和为Sn=n^2+3n,求an。

13. 已知函数f(x)=x^33x+2,求f(x)的单调区间和极值。

四、证明题(10分)14. 已知等差数列{an}的公差为d,证明:an+1an1=2d。

五、应用题(10分)15. 已知一个长方体的长、宽、高分别为a、b、c,且满足a^2+b^2+c^2=36,求长方体的最大体积。

2024年成人高考专升本《数学》考试真题附答案

2024年成人高考专升本《数学》考试真题附答案

2024年成人高考专升本《数学》考试真题附答案一、选择题(每题1分,共5分)A. 牛顿B. 欧拉C. 高斯D. 希尔伯特2. 设函数f(x)在区间(∞, +∞)内连续,且f(x) = f(x),则f(x)是()A. 奇函数B. 偶函数C. 周期函数D. 非奇非偶函数A. 交换两行B. 两行相加C. 两行互换D. 两行相乘4. 若函数y = f(x)在点x0处可导,则f'(x0)表示()A. 曲线在点(x0, f(x0))处的切线斜率B. 曲线在点(x0, f(x0))处的法线斜率C. 函数在点x0处的极值D. 函数在点x0处的拐点5. 设A、B为两个事件,若P(A) = 0.4,P(B) = 0.6,P(A∩B) =0.2,则P(A|B) = ()A. 0.2B. 0.4C. 0.5D. 0.6二、判断题(每题1分,共5分)1. 任何实数的平方都是非负数。

()2. 若矩阵A的行列式为零,则A不可逆。

()3. 函数的极值点必定在导数为零的点处取得。

()4. 概率论中的大数定律表明,随机事件的频率会随着试验次数的增加而稳定在概率附近。

()5. 线性方程组的解一定是唯一的。

()三、填空题(每题1分,共5分)1. 若函数f(x) = x^3 3x,则f'(x) = _______。

2. 矩阵A = [[1, 2], [3, 4]]的行列式值是 _______。

3. 在平面直角坐标系中,点(1, 2)到原点的距离是 _______。

4. 设随机变量X服从正态分布N(μ, σ^2),则μ表示 _______。

5. 若函数f(x)在区间[a, b]上连续,且f(a)·f(b) < 0,则根据闭区间上连续函数的零点定理,至少存在一点ξ∈(a, b),使得f(ξ) = _______。

四、简答题(每题2分,共10分)1. 简述罗尔定理的条件和结论。

2. 什么是矩阵的秩?如何求矩阵的秩?3. 简述导数的物理意义。

成考数学(文科)成人高考(高起专)试卷与参考答案(2024年)

成考数学(文科)成人高考(高起专)试卷与参考答案(2024年)

2024年成人高考成考数学(文科)(高起专)复习试卷(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、下列数中,有理数是()A、√2B、πC、−3.14D、2√32、在下列各数中,哪个数是负数?A、-5B、3C、0D、-2.53、若函数(f(x)=2x3−3x2+4),则(f(1))的值是多少?A. 3B. 5C. 7D. 94、若函数f(x)=x3−3x2+4x−1在x=1处取得极值,则该极值是:A、极大值B、极小值C、拐点D、非极值5、在下列各数中,属于实数集的有:A、√−1B、1C、πD、0.1010010001...6、已知函数f(x) = (x-1)^2 + 2,其图像的对称轴为:A. x = 1B. y = 1C. x = 0D. y = 0+√x+1)的定义域为((−∞,−1]∪(2,+∞)),则函数(f(x))7、已知函数(f(x)=1x−2的值域为:A.((−∞,−2]∪[1,+∞))B.((−∞,−2]∪[2,+∞))C.((−∞,−2]∪[0,+∞))D.((−∞,−2]∪[0,2])8、若函数(f(x)=3x2−4x+5)的图像开口向上,则其对称轴为:)A.(x=23B.(x=−23)C.(x=43)D.(x=−43)9、在下列函数中,f(x) = x^2 - 4x + 4 的图像是一个:A. 圆B. 抛物线C. 直线D. 双曲线10、若函数(f(x)=x3−3x2+4x)的图像在(x)轴上有一个交点,则(f(x))的对称中心为:A.((1,0))B.((2,0))C.((1,2))D.((2,2))11、已知函数(f(x)=2x2−3x+1),则该函数的对称轴为:A.(x=−b2a =−−32×2=34)B.(x=−b2a =−−32×2=34)C.(x=−b2a =−−32×2=34)D.(x=−b2a =−−32×2=34)12、在下列函数中,当x=2时,函数y=3x^2-5x+2的值是()A. 1B. 4C. 7D. 9二、填空题(本大题有3小题,每小题7分,共21分)1、若函数f(x)=2x3−3x2+4x−5的图像与直线y=3相切,则该切点的横坐标是________ 。

成人高考高升专数学模拟试卷

成人高考高升专数学模拟试卷

成人高考高升专数学模拟试卷一、选择题(本大题共17小题,每小题5分,共85分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1. 设集合A = {xx^2 - 3x + 2 = 0},B={1, 2},则A与B的关系是()A. A⊂neqq BB. A = BC. A⊃neqq BD. A∩ B=varnothing2. 函数y=√(x - 1)的定义域是()A. (-∞,1]B. [1,+∞)C. (-∞, 0]D. [0,+∞)3. 若a < b,则下列不等式一定成立的是()A. a^2 < b^2B. (1)/(a)>(1)/(b)C. a - 3 < b - 3D. -2a<-2b4. 一次函数y = kx + b(k≠0)的图象过点(1,3)和(-1, - 1),则k,b的值分别为()A. k = 2,b = 1B. k=1,b = 2C. k=-2,b = 1D. k = - 1,b = 25. 二次函数y=x^2+2x - 3的对称轴方程是()A. x = - 1B. x = 1C. x = 2D. x=-26. 已知对数函数y = log_ax(a>0,a≠1)的图象过点(4,2),则a的值为()A. √(2)B. 2C. (1)/(2)D. 47. 计算sin(π)/(3)+cos(π)/(3)的值为()A. (√(3)+ 1)/(2)B. (√(3)-1)/(2)C. √(3)+1D. √(3)-18. 在等差数列{a_n}中,a_1=1,d = 2,则a_5的值为()A. 9B. 11C. 13D. 159. 等比数列{a_n}中,a_1=2,q = 3,则a_3的值为()A. 18B. 12C. 6D. 210. 函数y = 3sin(2x+(π)/(3))的最小正周期是()A. πB. 2πC. (π)/(2)D. (2π)/(3)11. 已知向量→a=(1,2),→b=(3, - 1),则→a·→b的值为()A. 1B. 5C. -1D. -512. 过点(1,2)且与直线y = 3x+1平行的直线方程为()A. y = 3x - 1B. y=3x+2C. y=-3x+1D. y = - 3x - 113. 圆x^2+y^2=4的圆心坐标和半径分别是()A. (0,0),2B. (0,0),4C. (2,0),2D. (-2,0),214. 从5名男生和3名女生中选3人参加某项活动,其中至少有1名女生的选法有()种。

成人高考成考(高起专)数学(理科)试题及解答参考

成人高考成考(高起专)数学(理科)试题及解答参考

成人高考成考数学(理科)(高起专)复习试题(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、下列函数中,是奇函数的是()。

A.y=x2B.y=arctanxC.y=e xD.y=x 3−1x−1,x≠12、若分子是正数的分数与负数相乘,则结果一定()A、是正数B、是负数C、可能为正数,也可能为负数D、不确定3.已知函数f(x) = 2x^3 - 3x^2 - 12x + 1,那么f(x)在区间[-2, 3]上的最大值是:A. 17B. 25C. 33D. 414、已知向量a⃗=(2,−3),b⃗⃗=(5,1), 则2a⃗−b⃗⃗的大小为A.√29B.√13C.√37D.√265.题目:已知圆的方程为 x^2 + y^2 = 9,点 A(-3, 0),则点 A 与圆的位置关系是()A. 在圆内B. 在圆上C. 在圆外D. 无法确定6、若函数f(x)=x2−4x+3,则不等式f(x)<0的解集为A.(1,3)B.(−∞,1)∪(3,+∞)C.(−∞,1]∪[3,+∞)D.(1,+∞)7、若函数y=x^2的图像向上平移2个单位,向右平移1个单位,则平移后的函数解析式为()A、y=x^2+2x+3B、y=x^2+2x+1C、y=x^2+2D、y=(x-1)^2+28、在甲、乙两队拔河比赛中,甲队最大能拉动横绳中间的白带的水平距离为6米。

已知绳的轻质、不可伸长,横绳的重量忽略不计,两队发力使对方过界并保持不动撤力后,白带即回到恰好在界线的不动平衡位置。

问两队发力过界时,白带向哪边过界?最多能拉动白带的最大水平距离是多少米?已知甲队最大拉力为F1=600N,乙队最大拉力F2=320N。

A. 乙队方向,12米B. 甲队方向,5米C. 乙队方向,5米D. 甲队方向,12米9、若一元二次方程ax² + bx + c = 0 的两个根互为倒数,则下列式子一定成立的是()A. a + b + c = 0B. b² = 4acC. a = bD. c = 010、一个正整数,它的各位数字之和为9,这个数可能是( )。

2024年成人高考成考(高起本)数学(文科)试题与参考答案

2024年成人高考成考(高起本)数学(文科)试题与参考答案

2024年成人高考成考数学(文科)(高起本)自测试题(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、下列函数中,哪个是一次函数?A、y = x^2 + 3B、y = 2x + 1C、y = sin(x)D、y = e^x2、若函数(y=x 2−4x+2)的定义域为(D),则(D)等于:A.(R,)即所有实数B.((−2,+∞))C.((−∞,−2]∪[−2,+∞))D.((−∞,−2)∪(−2,+∞))3、已知函数f(x)=x2−4x+4,则该函数的对称轴为:A.x=1B.x=2C.y=1D.y=44、下列数中,不是有理数的是()B、-1/2C、πD、0.1010010001…5、函数(y=log2(4−x))的定义域是()。

A、((−∞,4])B、((4,+∞))C、((−∞,4))D、([4,+∞))6、函数f(x)=x2−4x+3的图像与x轴的交点坐标为:A. (1, 0) 和 (3, 0)B. (0, 3) 和 (4, 0)C. (1, 3) 和 (3, 1)D. (2, 0) 和 (2, 0)7、设函数(f(x)=x2−4x+3),则该函数的最小值为:A. -1B. 0C. 1D. 28、已知函数f(x)=x3−3x2+2,下列哪个选项是该函数的极值点?A.x=0B.x=1D.x=39、如果等差数列{a_n}的首项a_1=3,公差d=2,则a_5等于()。

A、11B、13C、15D、1710、已知函数f(x) = x^2 - 4x + 4,若函数f(x)的图像开口向上,且顶点坐标为(a,b),则下列说法正确的是:A、a=2,b=-4B、a=4,b=2C、a=2,b=0D、a=1,b=211、若函数f(x)=2x3−3x2+4的图像在区间[1,2]上是连续的,则f(x)在该区间上的极值点个数为()A. 1B. 2C. 3D. 012、设函数(f(x)=x2−4x+3),则该函数图像与(x)轴的交点个数为:A. 无交点B. 1个交点C. 2个交点D. 无法确定二、填空题(本大题有3小题,每小题7分,共21分)1、已知函数f(x)=x2−4x+4,若f(x)的对称轴为y=1,则a=______ 。

成考数学(理科)成人高考(高起专)试题与参考答案(2024年)

成考数学(理科)成人高考(高起专)试题与参考答案(2024年)

2024年成人高考成考数学(理科)(高起专)模拟试题(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、()下列哪个数是有理数?A. √2B. πC. -3/4D. e2、已知函数f(x) = 2x^3 - 3x^2 - 12x + 1,那么f(x)在区间[-2, 3]上的最大值是:A. 17B. 25C. 41D. 533、若二次函数 f(x) = ax^2 + bx + c 在点 (x, f(x)) 和点 (-x, f(-x)) 处的斜率之积等于一个定值 k,则以下结论正确的是:A. a = kB. b = kC. c = kD. a 与 k 的关系不确定4、已知函数f(x) = 2x^3 - 3x^2 - 12x + 1,那么f(x)在区间[-2, 3]上的最大值是:A. 17B. 25C. 33D. 415、已知函数f(x) = 2x^3 - 3x^2 - 12x + 1,那么f(x)在区间[-2, 3]上的最大值是:A. 17B. 25C. 33D. 416、已知函数f(x) = 2x^3 - 3x^2 - 12x + 1,那么f(x)在区间[-2, 3]上的最大值是:A. 17B. 25C. 33D. 417、已知函数f(x) = 2x^3 - 3x^2 - 12x + 1,那么f(x)在区间[-2, 3]上的最大值是:A. 17B. 25C. 33D. 418、已知函数f(x) = 2x^3 - 3x^2 - 12x + 1,那么f(x)在区间[-2, 3]上的最大值是:A. 17B. 25C. 33D. 419、已知函数f(x) = 2x^3 - 3x^2 - 12x + 1,那么f(x)在区间[-2, 3]上的最大值是:A. 17B. 25C. 33D. 4110、函数 y = sin x 与函数y = √x 在第一象限的图象的交点个数为()A. 0个B. 1个C. 无数个D. 不能确定具体数量但一定有交点11、若直线 y = ax 与曲线y = √(x) 在它们的交点处相切,则实数 a 的值为多少?A. 1/2B. 1C. 2D. 无法确定12、函数 f(x) = cos^2 x + sin x 在区间[π/4, π/2] 上的最大值是()A. 根号下(二分之五)B. 二分之根号二C. 二分之一D. 一加根号二二、填空题(本大题有3小题,每小题7分,共21分)1、(10分) 已知函数f(x) = 2x^3 - 3x^2 - 12x + 1,那么f(x)在区间[-2, 3]上的最大值是 ______ ,最小值是 ______ 。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 0 1 6年成人高考高升专数学模拟题本试卷共 5 页, 150 分。

考试时长 120 分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本市卷和答题卡一并交回。

第一部分(选择题,共40 分)一、选择题共 8小题,每小题 5 分,共 40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)若集合A{ x | 5 x2}, B { x | 3 x3} ,则AI B( A){ x | 3x 2}(B){ x | 5x 2}( C){ x | 3x 3}(D){ x | 5x 3}(2)圆心为( 1, 1)且过原点的圆的方程是( A)( x 1)2( y 1)21( B)(x 1)2( y 1)21( C)( x 1)2( y 1)22(D)( x 1)2( y 1)22(3)下列函数中为偶函数的是( A)y x2 sin x( B)y x2 cos x( C)y| ln x |( D)y 2 x(4)某校老年,中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320 人,则该样本的老年教师人数为(A) 90(B) 100(C) 180(D) 300(5)执行如果所示的程序框图,输出的k 值为(A) 3(B) 4(C)5(D)6(6)设a, b是非零向量,“ agb| a || b |”是“ a // b ”的( A)充分而不必要条件(B)必要而不充分条件( C)充分必要条件(D)既不充分也不必要条件(7)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为(A) 1(B)2(C)3(D) 2(8)某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况。

注:“累计里程” 指汽车从出厂开始累计行驶的路程在这段时间内,该车每100 千米平均耗油量为(A)6 升(B)8升(C) 10 升(D) 12 升第二部分(非选择题共110 分)二、填空题(共 6 小题,每小题 5 分,共 30 分)(9)复数i(1 i)的实部为 ________________1(10) 2 3 ,3 2 ,log 2 5 三个数中最大数的是________________(11)在△ ABC中,a 3,b6,A 2,则 B ________________ 3(12)已知( 2, 0)是双曲线x2y21(b0) 的一个焦点,则b________________b2(13)如图, ABC 及其内部的点组成的集合记为 D ,P( x, y)为 D中任意一点,则 z 2x3y 的最大值为________________(14)高三年级 267 位学生参加期末考试,某班 37 位学生的语文成绩、数学成绩与总成绩在全年级中的排名情况如下图所示,甲、乙、丙为该班三位学生。

从这次考试成绩看,①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是________________②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是________________三、解答题(共 6 小题,共 80 分,解答应写出文字说明,演算步骤或证明过程)(15)(本小题13 分)已知函数 f ( x) sin x 2 3 sin 22(Ⅰ)求 f ( x) 的最小正周期;(Ⅱ)求 f ( x) 在区间(16)(本小题13 分)20,上的最小值。

3已知等差数列{ a n} 满足 a1a210, a4a3 2 .(Ⅰ)求 { a n } 的通项公式;(Ⅱ)设等比数列{ b n} 满足 b2a3, b3a7.问: b6与数列 { a n } 的第几项相等?(17)(本小题13 分)某超市随机选取 1000 位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买。

商品甲乙丙丁顾客人数100√×√√217×√×√200√√√×300√×√×85√×××98×√××(Ⅰ)估计顾客同时购买乙和丙的概率(Ⅱ)估计顾客在甲、乙、丙、丁中同时购买 3 种商品的概率(Ⅲ)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中那种商品的可能性最大?(18)(本小题14 分)如图,在三棱锥V ABC 中,平面VAB平面ABC ,VAB 为等边三角形,AC BC 且AC BC 2 ,O, M分别为AB,VA的中点。

(Ⅰ)求证:VB //平面MOC .(Ⅱ)求证:平面MOC平面VAB(Ⅲ)求三棱锥V ABC 的体积。

(19)(本小题13 分)设函数x2f (x)k ln x, k 02(Ⅰ)求 f (x) 的单调区间和极值;(Ⅱ)证明:若 f ( x) 存在零点,则 f ( x)在区间 (1, e] 上仅有一个零点。

(20)(本小题14 分)已知椭圆 C : x2 3 y2 3 ,过点且不过点的直线与椭圆 C 交于A, B两点,直线AE 与直线 x 3 交于点 M .(Ⅰ)求椭圆的离心率;(Ⅱ)若 AB 垂直于x轴,求直线BM 的斜率;(Ⅲ)试判断直线BM 与直线 DE 的位置关系,并说明理由。

参考答案一、选择题(共8小题,每小题 5 分,共 40分)(1)A(2)D(3)B(4)C (5)B(6)A(7)C(8)B 二、填空题(共6小题,每小题 5 分,共 30分)(9)-1(10)log25( 11)(12)34( 13)7(14)乙数学三、解答题(共6小题,共 80 分)(15)(共13 分)解:(Ⅰ)因为 f ( x)sin x3cos x3所以 f (x) 的最小正周期为2(Ⅱ)因为 0 x 2x,所以3323当 x,即 x时, f (x) 取得最小值33所以 f (x) 在区间 [0,2] 上的最小值为 f (2)333(16)(共13 分)解:(Ⅰ)设等差数列 { a n} 的公差为d因为 a4a32,所以d 2又因为 a1a210 ,所以 2a1 d 10 ,故 a1 4所以 a n42(n 1) 2n 2( n 1,2,...)(Ⅱ)设等比数列{b n } 的公比为q因为 b2a38, b3a716所以q 2, b14所以 b6 4 26 1128由 128 2n 2 得 n63所以 b6与数列 { a n} 的第63项相等(17)(共13 分)解:(Ⅰ)从统计表可以看出,在这1000 为顾客中有200 位顾客同时购买了乙和丙,所以顾客同时购200买乙和丙的概率可以估计为0.21000(Ⅱ)从统计表可以看出,在这1000 位顾客中有100 位顾客同时购买了甲、丙、丁,另有200 为顾客同时购买了甲、乙、丙,其他顾客最多购买了 2 种商品。

所以顾客在甲、乙、丙、丁中同时购买 3 种商品的概率可以估计为(Ⅲ)与(Ⅰ)同理,可得:100 20010000.3顾客同时购买甲和乙的概率可以估计为2000.2 ,1000顾客同时购买甲和丙的概率可以估计为10020030010000.6 ,100顾客同时购买甲和丁的概率可以估计为0.1,1000所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大。

(18)(共14 分)解:(Ⅰ)因为 O, M 分别为 AB ,VA 的中点,所以 OM // VB又因为 VB平面MOC,所以 VB // 平面 MOC(Ⅱ)因为AC BC , O 为 AB 的中点,所以 OC AB又因为平面 VAB平面ABC,且OC平面ABC,所以 OC平面VAB所以平面 MOC平面VAB(Ⅲ)在等腰直角三角形ACB 中,AC BC2所以 AB 2,OC1所以等边三角形VAB 的面积 S VAB3又因为 OC平面VAB,所以三棱锥 C VAB 的体积等于1OC gS VAB3 33又因为三棱锥 V ABC 的体积与三棱锥 C VAB 的体积相等,所以三棱锥 V3 ABC 的体积为3(19)(共 13 分)解:x2k ln x(k 0) 得(Ⅰ)由 f ( x)2由 f (x) 0 解得 x kf ( x) 与 f ( x) 在区间 (0,) 上的情况如下:-0+所以, f (x) 的单调递减区间是(0, k ) ,单调递增区间是( k ,) ;f ( x) 在 x k 处取得极小值k (1 ln k)f ( k )2k(1ln k )(Ⅱ)由(Ⅰ)知, f (x) 在区间 (0,) 上的最小值为 f (k ),k(1ln k)2因为 f (x) 存在零点,所以e0 ,从而 k2当 k e时, f ( x)在区间(1, e)上单调递减,且 f ( e)0 ,所以 x e 是 f (x) 在区间 (1,e] 上的唯一零点。

当 k e时, f ( x)在区间(0,e) 上单调递减,且1e kf (1)0, f ( e)0 ,22所以 f (x) 在区间 (1, e] 上仅有一个零点。

综上可知,若 f ( x) 存在零点,则 f ( x) 在区间 (1,e] 上仅有一个零点。

(20)(共14 分)解:(Ⅰ)椭圆 C 的标准方程为x2y213所以 a3, b 1,c2c6所以椭圆 C 的离心率e3a(Ⅱ)因为 AB 过点D (1,0)且垂直于x轴,所以可设A(1,y1), B(1,y1)直线 AE 的方程为y1(1y1)( x2)令 x3,得M (3,2y1 )所以直线 BM 的斜率k BM 2 y1y1131(Ⅲ)直线 BM 与直线DE平行。

证明如下:当直线 AB的斜率不存在时,有(Ⅱ)可知kBM1又因为直线 DE的斜率k DE 101,所以BM // DE 21当直线 AB的斜率存在时,设其方程为y k ( x1)(k1)设 A( x1 , y1 ), B( x2 , y2 ) ,则直线AE的方程为 y1y11( x2)x11令 x 3 ,得点M (3,y1x13) x12x 2 3y 2 3, 得 (1 3k 22 6k 2 x 3k2 3 0由k( x 1)) xy所以 x 1x 2 6k 22, x 1 x2 3k 231 3k1 3k 2y 1x 1 3 y 2x 1 2直线 BM 的斜率 k BM3 x 2因为 k BM1k( x 1 1) x 13 k( x 2 1)( x 12) (3 x 2 )( x 1 2)(3x 2 )( x 1 2)所以 k BM 1kDE所以 BM // DE综上可知,直线BM 与直线 DE 平行。

相关文档
最新文档