概率初步专题练习2

合集下载

人教版初中九年级数学上册第二十五章《概率初步》经典复习题(含答案解析)(2)

人教版初中九年级数学上册第二十五章《概率初步》经典复习题(含答案解析)(2)

一、选择题1.下列事件:①打开电视机,正在播广告;②从只装红球的口袋中,任意摸出一个球恰好是白球;③同性电荷,相互排斥;④抛掷硬币1000次,第1000次正面向上.其中为随机事件的是( )A .①②B .①④C .②③D .②④ 2.现有三张正面分别标有数字1-,2,3的不透明卡片,它们除数字外其余完全相同,将它们背而面朝上洗均匀,随机抽取一张,记下数字后放回,背面朝上洗均匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为m ,n ,则点()P m n ,在第二象限的概率为( )A .12B .13C .23D .293.某学校在进行防溺水安全教育活动中,将以下几种在游泳时的注意事项写在纸条上并折好,内容分别是:①互相关心;②互相提醒;③不要相互嬉水;④相互比潜水深度;⑤选择水流湍急的水域;⑥选择有人看护的游泳池.小颖从这6张纸条中随机抽出一张,抽到内容描述正确的纸条的概率是( )A .12B .13C .23D .164.如图,正方形ABCD 内接于⊙O ,⊙O 的直径为2分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD 内的概率是( )A .2π B .2π C .12π D 2π5.下列事件中,属于必然事件的是( )A .深圳明天会下大暴雨B .打开电视机,正好在播足球比赛C .在13个人中,一定有两个人在同月出生D .小明这次数学期末考试得分是80分6.某市环青云湖竞走活动中,走完全部行程的队员即可获得一次摇奖机会,摇奖机是一个圆形转盘,被等分成16个扇形,摇中红、黄、蓝色区域,分获一、二、三等奖,奖品分别为自行车、雨伞、签字笔.小明走完了全程,可以获得一次摇奖机会,小明能获得签字笔的概率是( )A .116B .716C .14D .187.书架上放着三本小说和两本散文,小明从中随机抽取两本,两本都是小说的概率是( )A .310B .925C .425D .1108.从2,3,4,5中任意选两个数,记作a 和b ,那么点()a b ,在函数2611y x x =-+图象上的概率是( )A .12B .13C .14D .169.现有A 、B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A 立方体朝上的数字为x 、小明掷B 立方体朝上的数字为y 来确定点P (,x y ),那么他们各掷一次所确定的点P 落在已知抛物线24y x x =-+上的概率为( )A .118B .112C .19D .1610.袋中装有3个绿球和4个红球,它们除颜色外,其余均相同。

MBA联考数学-排列组合与概率初步(二)_真题无答案

MBA联考数学-排列组合与概率初步(二)_真题无答案

MBA联考数学-排列组合与概率初步(二)(总分372,考试时间90分钟)一、问题求解1. 设计者在石盘上装有7个按键的“锁”内,要用其中5个按键组成一个开“锁”的程序装置,并且某3个键中至少用一个但不全部选用,若依照不同顺序按不同的键的方法来设计不同的程序,则可设计不同的开“锁”程序有( )种.A. 1800B. 860C. 890D. 1900E. (E) 以上结果均不正确2. 甲盒内有红球4只,黑球2只,白球2只;乙盒内有红球5只,黑球3只;丙盒内有黑球2只,白球2只.从这三只盒子的任意一只中任意取出一只球,它是红球的概率是( ).A. 0.5625B. 0.5C. 0.45D. 0.375E. (E) 0.2253. 有5人报名参加3项不同的培训,每人只报一项,则不同的报法有( ).A. 243种B. 125种C. 81种D. 60种E. (E) 以上结果均不正确4. 10把钥匙中有3把能打开门,现任取2把,能打开门的概率为( ).5. 口袋里放有大小相等的两个红球和一个白球,有放回地每次摸取一个球,数列an满足:,如果Sn为数列an的前n项的和,那么S7=3的概率为( ).6. 某大学学位自学考试,有六门不同的科目,允许应考学生参加其中的一项或几项考试,对于一名考生来说,接受考试的方法有( )种.A. 32B. 56C. 60D. 63E. (E) 647. 用五种不同的颜色涂在图5-16中的四个区域里,每一区域涂上一种颜色,且相邻区域的颜色必须不同,则共有不同的涂法( ).A. 120种B. 140种C. 160种D. 180种E. (E) 以上结果均不正确8. 6位教师分别教6个不同的班,考试时有且仅有两位老师可以在自己所教的班上监考,则不同的监考安排有( )种.A. 75B. 90C. 105D. 120E. (E) 1359. 用数字0,1,2,3,4,5组成无重复且能被5整除的三位数有( )个.A. 24B. 32C. 36D. 40E. (E) 4810.11. 从1,2,3,4,…,20这20个自然数中任取3个不同的数,使它们成等差数列,这样的等差数列共有( )个.A. 90B. 120C. 180D. 190E. (E) 20012. 五个人站一队,甲必须站当中的概率与甲、乙全不能站两端的概率以及甲、乙不全站两端的概率分别是( ).13.14. 三种不同的工作分配给6个人,每个人只担任其中的一种工作,甲只能担任其中的栗两项工作,而乙不能担任这两项工作,不同的分配方法有( )种.A. 720B. 240C. 21 6D. 200E. (E) 16215. 设有编号为1,2,3,4,5的五个小球和编号为1,2,3,4,5的五个盒子,现将这5个小球放入这5个盒子中,要求每个盒子内放一个球,且恰好有2个球的编号与盒子编号相同,则这样的投放方法总数为( )种.A. 20B. 30C. 60D. 120E. (E) 13016. 同时掷两颗骰子,出现的点数之积为偶数的概率是( ).17. 某乒乓球男子单打决赛在甲、乙两选手问进行,比赛采用7局4胜制,已知每局比赛甲选手战胜乙选手的概率均为0.7,则甲选手以4:1战胜乙选手的概率为( ).A. 0.84×0.73B. 0.7×0.73C. 0.3×0.73D. 0.9×0.73E. (E) 以上结果均不正确18. 汽车上有10名乘客,沿途经过A区和B区各有3个一F。

中考数学总复习《概率初步》专项提升练习题(附答案)

中考数学总复习《概率初步》专项提升练习题(附答案)

中考数学总复习《概率初步》专项提升练习题(附答案) 学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列事件中,是必然事件的是( )A.明天太阳从东方升起B.打开电视机,正在播放体育新闻C.射击运动员射击一次,命中靶心D.经过有交通信号灯的路灯,遇到红灯2.事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖,则( )A.事件①是必然事件,事件②是随机事件B.事件①是随机事件,事件②是必然事件C.事件①和②都是随机事件D.事件①和②都是必然事件3.在不透明的袋子装有9个白球和一个红球,它们除颜色外其余都相同,从袋中随意摸出一个球,则下列说法中正确的是( )A.“摸出的球是白球”是必然事件B.“摸出的球是红球”是不可能事件C.摸出的球是白球的可能性不大D.摸出的球有可能是红球4.某同学午觉醒来发现钟表停了,他打开收音机想听电台整点报时,则他等待的时间不超过15分钟的概率是( )A.12B.13C.14D.155.如图,一个圆形转盘被平均分成6个全等的扇形,任意旋转这个转盘1次,则当转盘停止转动时,指针指向阴影部分的概率是( )A. B. C. D.6.从-2,-1,2这三个数中任取两个不同的数相乘,积为正数的概率是( ) A.23 B.12 C.13 D.147.小杰想用6个除颜色外均相同的球设计一个游戏,下面是他设计的4个游戏方案.不成功的是( )A.摸到黄球的概率为12,红球的概率为12B.摸到黄、红、白球的概率都为13C.摸到黄球的概率为12,红球的概率为13,白球的概率为16D.摸到黄球的概率为23,摸到红球、白球的概率都是138.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是( )实验次数100200 300 500 800 1000 2000频率 0.365 0.328 0.330 0.334 0.336 0.332 0.333 A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C.抛一个质地均匀的正六面体骰子,向上的面点数是5D.抛一枚硬币,出现反面的概率9.某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线图,则符合这一结果的实验最有可能的是( )A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.掷一枚质地均匀的正六面体骰子,向上一面的点数是4C.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌,抽中红桃D.抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面仍朝上10.同时抛掷A、B两个均匀的小立方体(每个面上分别标有数字1,2,3,4,5,6),设两立方体朝上的数字分别为x、y,并以此确定点P(x,y),那么点P落在抛物线y=-x2+3x上的概率为( )A.118B.112C.19D.16二、填空题11.抛掷一枚质地均匀的硬币,落地后正面朝上的概率是 .12.在分别写有-1,0,1,2的四张卡片中随机抽取一张,所抽取的数字平方后等于1的概率为________.13.已知一包糖果共有5种颜色(糖果只有颜色差别),如图是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是________.14.游戏是否公平是指双方获胜的可能性是否相同,只有当双方获胜的可能性 (等可能事件发生的概率相同)时,游戏才公平,否则游戏不公平.15.一个不透明的口袋里装有若干除颜色外其他完全相同的小球,其中有6个黄球,将口袋中的球摇匀,从中任意摸出一个球记下颜色后再放回,通过大量重复上述实验后发现,摸到黄球的频率稳定在30%,由此估计口袋中共有小球个.16.如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为(精确到0.1).投篮次数(n) 50 100 150 200 250 300 500投中次数(m) 28 60 78 104 123 152 251投中频率(m/n)0.56 0.60 0.52 0.52 0.49 0.51 0.50三、解答题17.一个袋中装有2个红球,3个白球,和5个黄球,每个球除了顔色外都相同,从中任意摸出一个球,分别求出摸到红球,白球,黄球的概率。

中考试题概率初步(二)课后练习一及详解

中考试题概率初步(二)课后练习一及详解

学科:数学
专题:概率初步(二)
主讲教师:黄炜 北京四中数学教师
重难点易错点解析
题一: 题面:绿豆在相同条件下的发芽试验,结果如下表所示:
每批粒数n 1
00
300 400 600 1000 2000 3000 发芽的粒数m
9
6 282 382 570 948 1912 2850 发芽的频率m n 0.960 0.940 0.955 0.95. 0.948 0.956 0.950
则绿豆发芽的概率估计值是( )
A .0.96
B .0.95
C .0.94
D .0.90
金题精讲
题一:
题面:一个不透明的盒子里有n 个除颜色外其它完全相同的小球,其中有6个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后在放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么可以推算出n 大约是( )
A .6
B .10
C .18
D .20
满分冲刺
题一:
题面:某地区为了估计该地区梅花鹿的数量,先捕捉了10只梅花鹿给它们做上标记,然后放走,待有标记的梅花鹿完全混合于鹿群后,第二次捕捉30只梅花鹿,发现其中5只有标记,从而估计这个地区的梅花鹿约有( )只
题二:
题面:向如图所示的正三角形区域扔沙包(区域中每一个小正三角形除颜色外完全相同),假设沙包击中每一个小三角形是等可能的,扔沙包1次击中阴影区域的概率等于( )。

三年级下册数学概率初步认识单元练习题

三年级下册数学概率初步认识单元练习题

三年级下册数学概率初步认识单元练习题难度等级:简单练题1:在一个有10个红球和5个蓝球的箱子中,任意抓出一个球,请问它是红球的概率是多少?练题2:某个班里有60%的男生和40%的女生,其中50%的男生喜欢足球,20%的女生喜欢足球。

假设从这个班里随机抽取一个球员,是男生,那么他喜欢足球的概率是多少?练题3:将一枚硬币抛掷4次,出现4次正面的概率是多少?练题4:在一次游戏中,抛掷1枚4面的色子,色子上数字分别是1、2、3、4,请问抛掷后出现1和2的概率是多少?练题5:某次员工晚会上,9个员工中有2个员工中奖了,请问其中一个员工中奖的概率是多少?练题6:在一个装有10张红色卡片和20张黑色卡片的盒子里,随机抽取1张卡片,抽中红色卡片的概率是多少?难度等级:中等练题7:在一个班级里,10个男生中有4个喜欢篮球,14个女生中有6个喜欢篮球。

如果从班里随机抽取1个篮球爱好者,那么他是男生的概率是多少?练题8:某电商网站有1000位用户,在这些用户中,99%的用户只使用了免费服务,1%的用户购买了高级服务。

现在从这些用户中随机选取1个用户,那么此用户一定是高级服务用户的概率是多少?练题9:某班级里有38个学生,其中10个学生参加了校园足球联赛。

从学生中随机抽取3位学生,他们都未参赛的概率是多少?练题10:将2枚硬币同时抛掷1次,出现至少1枚银币的概率是多少?难度等级:困难练题11:某个公司有3000名员工,其中60%的员工住在市中心,40%的员工住在市郊。

在住在市中心的员工中,20%的员工兼职工作;而在住在市郊的员工中,10%的员工兼职工作。

现从该公司中随机选取一名员工,请问他住在市中心并且兼职工作的概率是多少?练题12:从26个大写字母中随机选取5个,求选到的5个字母全是辅音字母的概率是多少?(注:英文字母包括A~Z共26个,元音字母有A、E、I、O、U五个,其余字母均为辅音字母)练题13:一个8位二进制数中,1的个数如果是偶数个,输出1,否则输出0。

人教版九年级数学下册 概率初步测试习题及答案

人教版九年级数学下册 概率初步测试习题及答案

专项训练二 概率初步一、选择题1.(徐州中考)下列事件中的不可能事件是( )A .通常加热到100℃时,水沸腾B .抛掷2枚正方体骰子,都是6点朝上C .经过有交通信号灯的路口,遇到红灯D .任意画一个三角形,其内角和是360°2.小张抛一枚质地均匀的硬币,出现正面朝上的可能性是( )A .25%B .50%C .75%D .85%3.(贵阳中考)2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是( ) A.110 B.15 C.310 D.254.(金华中考)小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( )A.14B.13C.12D.345.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为( )A.12B.13C.14D.16 6.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是( )A.13B.16C.19D.1127.分别转动图中两个转盘一次,当转盘停止转动时,两个指针分别落在某个数所表示的区域,则两个数的和是2的倍数或3的倍数的概率等于( )A.316B.38C.58D.1316第7题图 第8题图8.(呼和浩特中考)如图,△ABC 是一块绿化带,将阴影部分修建为花圃,已知AB =15,AC =9,BC =12,阴影部分是△ABC 的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( )A.16B.π6C.π8D.π5二、填空题9.已知四个点的坐标分别是(-1,1),(2,2),⎝⎛⎭⎫23,32,⎝⎛⎭⎫-5,-15,从中随机选取一个点,在反比例函数y =1x图象上的概率是________. 10.(黄石中考)如图所示,一只蚂蚁从A 点出发到D ,E ,F 处寻觅食物.假定蚂蚁在每个岔路口都可能随机选择一条向左下或右下的路径(比如A 岔路口可以向左下到达B 处,也可以向右下到达C 处,其中A ,B ,C 都是岔路口).那么,蚂蚁从A 出发到达E 处的概率是________.11.(贵阳中考)现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为________.12.(荆门中考)荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是________.13.(重庆中考)点P 的坐标是(a ,b ),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P (a ,b )在平面直角坐标系中第二象限内的概率是________.14.★从-1,1,2这三个数字中,随机抽取一个数记为a ,那么,使关于x 的一次函数y =2x+a 的图象与x 轴、y 轴围成的三角形的面积为14,且使关于x 的不等式组⎩⎪⎨⎪⎧x +2≤a ,1-x ≤2a 有解的概率为________.三、解答题15.(南昌中考)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m (m >1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A ,请完成下列表格: 事件A 必然事件 随机事件m 的值 ________ ________(2)先从袋子中取出m 个红球,再放入m 个一样的黑球并摇匀,随机摸出1个黑球的概率等于45,求m 的值.16.(菏泽中考)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是________;(2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是________;(3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.17.(丹东中考)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字之和为2的倍数,则甲获胜;若抽取的数字之和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.18.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,3,5,x ,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个球上数字之和,记录后将出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x 的值可以取4吗?请用列表法或画树状图法说明理由;如果x 的值不可以取4,请写出一个符合要求的x 的值.参考答案1.D 2.B 3.C 4.A 5.A 6.C 7.C8.B 解析:∵AB =15,BC =12,AC =9,∴AB 2=BC 2+AC 2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径为12+9-152=3,∴S △ABC =12AC ·BC =12×12×9=54,S 圆=9π,∴小鸟落在花圃上的概率为9π54=π6. 9.12 10.12 11.15 12.35 13.15 14.1315.解:(1)4 2或3(2)根据题意得6+m 10=45,解得m =2,所以m 的值为2. 16.解:(1)14 解析:第一道肯定能对,第二道对的概率为14,所以锐锐通关的概率为14; (2)16 解析:锐锐两次“求助”都在第二道题中使用,则第一道题对的概率为13,第二道题对的概率为12,所以锐锐能通关的概率为12×13=16; (3)锐锐将每道题各用一次“求助”,分别用A ,B 表示剩下的第一道单选题的2个选项,a ,b ,c 表示剩下的第二道单选题的3个选项,树状图如图所示.共有6种等可能的结果,锐锐顺利通关的只有1种情况,∴锐锐顺利通关的概率为16. 17.解:(1)所有可能出现的结果如下表,从表格可以看出,总共有9种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以两人抽取相同数字的概率为13; (2)不公平.从表格可以看出,两人抽取数字之和为2的倍数有5种,两人抽取数字之和为5的倍数有3种,所以甲获胜的概率为59,乙获胜的概率为13.∵59>13,∴甲获胜的概率大,游戏不公平.2 3 52 2 23 2 5 23 2 3 3 3 5 35 2 5 3 5 5 518.解:(1)0.33(2)图略,当x 为4时,数字和为9的概率为212=16≠13,所以x 不能取4;当x =6时,摸出的两个小球上数字之和为9的概率是13.。

24概率初步二每课一练(新人教版九年级上)

24概率初步二每课一练(新人教版九年级上)

学科:数学专题:概率初步(二)重难点易错点解析频率概率.题一题面:对某厂生产的直径为4cm的乒乓球进行产品质量检查,结果如下:(2)该厂生产乒乓球优等品的概率约为多少?金题精讲题一题面:为估计某天鹅湖中天鹅的数量,先捕捉10只,全部做上记号后放飞.过了一段时间后,重新捕捉40只,其中带有标记的天鹅有2只.据此可估算出该地区大约有天鹅______只.用频率估计概率满分冲刺题一题面:为估计某一池塘中鱼的总数目,小英将100尾做了标记的鱼投入池塘中,几天后,随机捕捞,每次捕捞后做好记录,然后将鱼放回,如此进行20次,记录数据如下:(2)请设计另一种标记的方法,使得估计更加精准.用频率估计概率题二题面:小明在操场上做游戏,他发现地上有一个不规则的封闭图形ABC.为了知道它的面积,小明在封闭图形内画出了一个半径为1m的圆,在不远处向圈内掷石子,且记录如下:用频率估计概率、几何概型题三题面:地面上铺满了正方形的地砖(40cm×40cm).现在向其上抛掷半径为5cm的圆碟,圆碟与地砖间的间隙相交的概率大约是多少?用频率估计概率思维拓展题一像投针实验一样,用通过概率实验所求的概率来估计我们感兴趣的一个量,这样的方法称为蒙特卡罗方法(Monte Carlo method).题二另一个有趣的概率问题:关于蒙蒂霍尔问题:汽车与羊的概率.讲义参考答案重难点易错点解析题一答案:(1)频率依次为0.90,0.92,0.91,0.89,0.90;(2)概率是0.9.金题精讲题一答案:200满分冲刺题一答案:(1)先求有标记数与总条数的比得池塘鱼数条,估计可能不太准确,因为实验次数太少.(2)可以先捞出一定数目的鱼(比如30条),做上标记再放回,一天后,在池塘里随机捞取,每次捞50条,求带有标记和不带有标记鱼的数目比.重复实验100次,求出平均值,然后用30除以平均比值,即可估计池塘里的鱼数.题二答案:随实验次数的增加,可以看出石子落在⊙O内(含⊙O上)的频率趋近0.5,有理由相信⊙O面积会占封闭图形ABC面积的一半,所以求出封闭图形ABC的面积为2π..题三答案:如图,当所抛圆碟的圆心在图中边框内(宽为5cm)部分时,圆碟将与地砖间的间隙相交,因此所求概率等于一块正方形地砖内的边框部分和该正方形的面积比,结果为.思维拓展题一(有趣的故事)题二(有趣的故事)。

概率初步练习题及讲解高中

概率初步练习题及讲解高中

概率初步练习题及讲解高中在高中数学课程中,概率论是学生必须掌握的一个重要概念。

它涉及到随机事件及其发生的可能性。

以下是一些概率的初步练习题及讲解,旨在帮助学生理解并应用概率的基本规则。

练习题1:一个袋子里有5个红球和3个蓝球。

随机从袋子中取出一个球,取出红球的概率是多少?答案:总共有8个球,其中5个是红球。

所以取出红球的概率是5/8。

练习题2:如果一个事件A发生的概率是0.4,另一个事件B发生的概率是0.3,这两个事件互斥(即不会同时发生)。

求这两个事件中至少有一个发生的总概率。

答案:由于事件A和事件B互斥,它们的联合概率是它们各自概率的和。

所以至少有一个事件发生的概率是0.4 + 0.3 = 0.7。

练习题3:一个骰子有6个面,每个面上的数字从1到6。

如果投掷一次骰子,出现偶数的概率是多少?答案:骰子的偶数面有2、4和6,共有3个。

所以投掷出偶数的概率是3/6,简化后为1/2。

练习题4:如果一个事件A发生的概率是0.6,事件B发生的条件是事件A已经发生。

如果事件B发生的概率是0.5,求事件A和事件B同时发生的概率。

答案:事件A和事件B同时发生的联合概率是事件A的概率乘以事件B在A发生时的条件概率。

所以联合概率是0.6 * 0.5 = 0.3。

练习题5:一个班级有30个学生,其中15个男生和15个女生。

随机选择一个学生,这个学生是女生的概率是多少?答案:班级中女生的人数是15,总人数是30。

所以随机选择一个学生是女生的概率是15/30,简化后为1/2。

这些练习题和答案旨在帮助学生理解概率的基本概念,如互斥事件、独立事件以及条件概率等。

通过解决这些问题,学生可以更好地准备高中数学的概率部分考试。

高中概率初步练习题及讲解

高中概率初步练习题及讲解

高中概率初步练习题及讲解一、单选题1. 某班级有50名学生,其中男生30人,女生20人。

随机抽取一人,抽到男生的概率是多少?A. 0.4B. 30%C. 0.6D. 60%2. 一个袋子里有5个红球和3个蓝球,随机抽取一个球,抽到红球的概率是多少?A. 0.6B. 1/2C. 2/3D. 3/53. 抛一枚均匀硬币,连续抛掷两次,出现两次正面的概率是多少?A. 1/4B. 1/2C. 1/8D. 1/16二、多选题1. 以下哪些事件是必然事件?A. 抛一枚硬币,出现正面或反面B. 掷骰子,出现1点或2点C. 掷骰子,出现1点D. 抛一枚硬币,出现正面2. 以下哪些事件是不可能事件?A. 抛一枚硬币,出现正面和反面B. 掷骰子,出现7点C. 掷骰子,出现6点D. 抛一枚硬币,出现正面三、计算题1. 某学校有200名学生,其中100名男生,100名女生。

学校决定随机抽取10名学生进行调查。

求抽取到至少8名男生的概率。

2. 一个盒子里有10个球,其中3个红球,7个白球。

如果随机抽取3个球,求至少抽到2个红球的概率。

四、解答题1. 描述什么是互斥事件,并给出一个现实生活中的例子。

2. 解释什么是独立事件,并给出一个例子说明两个事件是否独立。

五、应用题1. 某公司有100名员工,其中60名男性,40名女性。

公司决定随机选择5名员工参加培训。

求至少有3名男性员工被选中的概率。

2. 某城市有两家医院,A医院和B医院。

A医院每天接待200名患者,B医院每天接待150名患者。

如果随机选择一名患者进行调查,求这名患者来自A医院的概率。

以上题目涵盖了概率论的基本概念,包括单选题、多选题、计算题、解答题和应用题,旨在帮助学生理解和掌握概率论的基础知识。

概率初步精选练习题(含答案)

概率初步精选练习题(含答案)

概率初步练习题一、选择题1、“任意买一张电影票,座位号是2的倍数”,此事件是( )A .不可能事件B .不确定事件C .必然事件D .以上都不是2、任意掷一枚质地均匀的骰子,掷出的点数大于4的概率是 ( ) A .21 B .31 C .32 D .61 3、一个袋中装有2个红球,3个蓝球和5个白球,它们除颜色外完全相同,现在从中任意摸出一个球,则P (摸到红球)等于 ( )A .21 B . 32 C .51 D .101 4、如图,有甲、乙两种地板样式,如果小球分别在上面自由滚动,设小球在甲种地板上最终停留在黑色区域的概率为1P ,在乙种地板上最终停留在黑色区域的概率为2P ,则 ( )A .21P P >B . 21P P <C . 21P P =D .以上都有可能5、100个大小相同的球,用1至100编号,任意摸出一个球,则摸出的是5的倍数编号的球的概率是 ( )A .201B . 10019C .51 D .以上都不对二、填空题6、必然事件发生的概率是________,即P(必然事件)= _______;不可能事件发生的概率是_______,即P (不可能事件)=_______;若A 是不确定事件,则______)<(<A P ______.7、一副扑克牌去掉大王、小王后随意抽取一张,抽到方块的概率是______,抽到3的概率是______.8、任意掷一枚质地均匀的骰子,朝上的点数是奇数的概率是______.9、数学试卷的选择题都是四选一的单项选择题,小明对某道选择题完全不会做,只能靠猜测获得结果,则小明答对的概率是_____.10、在数学兴趣小组中有女生4名,男生2名,随机指定一人为组长恰好是女生的概率是_______.11、布袋中装有2个红球,3个白球,5个黑球,它们除颜色外均相同,则从袋中任意摸出一个球是白球的概率是_________.12、有一组卡片,制作的颜色,大小相同,分别标有0—10这11个数字,现在将它们背面向上任意颠倒次序,然后放好后任取一组,则:(1)P (抽到两位数)= ;(2)P (抽到一位数)= ;(3)P (抽到的数大于8)= ;13、某路口南北方向红绿灯的设置时间为:红灯40s ,绿灯60s ,黄灯3s .小刚的爸爸随机地由南往北开车经过该路口时遇到红灯的概率是_________.14、如图是一个可自由转动的转盘,转动转盘,停止后,指针指向3的概率是_______.15、(2011山东烟台中考题)如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是 .16、若从一个不透明的口袋中任意摸出一球是白球的概率为61,已知袋中白球有3个,则袋中球的总数是________。

2021年九年级数学上册第二十五章《概率初步》经典练习(答案解析)(2)

2021年九年级数学上册第二十五章《概率初步》经典练习(答案解析)(2)

一、选择题1.从2020年10月12日起,金牛实验中学校开展施行“垃圾分类”主题教育,如图是生活中的四个不同的垃圾分类(A、B、C、D)投放桶.小明投放了两袋垃圾.不同类的概率是().A.13B.23C.14D.342.在不透明的布袋中,装有三个颜色分别为红色、白色、绿色的小球,所有小球除颜色外其他都相同,若分别从两个布袋中随机各取出一个小球,则所取出的两个小球颜色相同的概率是()A.13B.12C.23D.13.下列事件:①打开电视机,正在播广告;②从只装红球的口袋中,任意摸出一个球恰好是白球;③同性电荷,相互排斥;④抛掷硬币1000次,第1000次正面向上.其中为随机事件的是()A.①②B.①④C.②③D.②④4.由两个可以自由转动的转盘、每个转盘被分成如图所示的几个扇形、游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色,下列说法正确的是()A.两个转盘转出蓝色的概率一样大B.如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性变小了C.游戏者配成紫色的概率为1 6D.先转动A转盘再转动B转盘和同时转动两个转盘,游戏者配成紫色的概率不同5.下列说法:①“明天的降水概率为80%”是指明天有80%的时间在下雨;②连续抛一枚硬币50次,出现正面朝上的次数一定是25次()A.只有①正确B.只有②正确C.①②都正确D.①②都错误6.袋子中装有10个黑球、1个白球,它们除颜色外无其他差别,随机从袋子中摸出一个球,则()A.这个球一定是黑球B.摸到黑球、白球的可能性的大小一样C.这个球可能是白球D.事先能确定摸到什么颜色的球7.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,则它获得食物的概率是()A.16B.14C.13D.128.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中黄球1个,红球1个,白球2个,“从中任意摸出2个球,它们的颜色相同”这一事件是()A.必然事件B.不可能事件C.随机事件D.确定事件9.有一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是()A.415B.15C.13D.21510.如图,在4×4的正方形网格中,黑色部分的图形构成了一个轴对称图形,现在任意取一个白色小正方形涂黑,使黑色部分仍然是一个轴对称图形的概率是()A.613B.513C.413D.31311.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE,PF分别交AB,AC于点E,F,现给出以下四个结论:(1)AE=CF;(2)△EPF是等腰直角三角形;(3)S四边形AEPF=12S△ABC;(4)当∠EPF在△ABC内绕顶点P旋转时始终有EF=AP.(点E不与A、B重合),上述结论中是正确的结论的概率是()A.1个B.3个C.14D.3412.盒子中装有形状、大小完全相同的3个小球,球上分别标有数字-1,1,2,从中随机取出一个,其上的数字记为k,放回后再取一次,其上的数记为b,则函数y=kx+b是增函数的概率为()A.38B.116C.12D.2313.甲袋中装有3个白球和2个红球,乙袋中装有30个白球和20个红球,这些球除颜色外都相同.把两只袋子中的球搅匀,并分别从中任意摸出一个球,从甲袋中摸出红球记为事件A,从乙袋中摸出红球记为事件B,则A.P(A)>P(B) B.P(A)<P(B) C.P(A)=P(B) D.无法确定14.在1,2,3,4四个数中,随机抽取两个不同的数,其乘积大于4的概率为()A.12B.13C.23D.1615.下列说法正确的是()A.“穿十条马路连遇十次红灯”是不可能事件B.任意画一个三角形,其内角和是180°是必然事件C.某彩票中奖概率为1%,那么买100张彩票一定会中奖D.“福山福地福人居”这句话中任选一个汉字,这个字是“福”字的概率是1 2二、填空题16.六张大小、质地均相同的卡片上分别标有1、2、3、4、5、6,现将标有数字的一面朝下扣在桌面上,从中随机抽取一张(放回洗匀),再随机抽取第二张.记前后两次抽得的数字分别为m、n,若把m、n分别作为点A的横坐标和纵坐标,则点A(m,n)在函数y=12x的图象上的概率是_____.17.一个盒子中装有10个红球和若干个白球,这些球除颜色外都相同,摇匀后从中随机摸出一个球,若摸到白球的概率为57,则盒子中原有的白球的个数为_________个.18.在一个不透明的布袋中,蓝色,黑色,白色的玻璃球共有20个,除颜色外其他完全相同.将布袋中的球摇匀,从中随机摸出一个球,记下它的颜色再放回去,通过多次摸球试验后发现,摸到黑色、白色球的频率分别稳定在10%和35%,则口袋中蓝色球的个数很可能是_____.19.小明、小虎、小红三人排成一排拍照片,小明站在中间的概率是____________.20.三名运动员参加定点投篮比赛,原定出场顺序是:甲第一个出场,乙第二个出场,丙第三个出场,由于某种原因,要求这三名运动员用抽签方式重新确定出场顺序,则抽签后每个运动员的出场顺序都发生变化的概率为________.21.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是_____.22.一个仅装有球的不透明布袋里共有4个球(只有编号不同),编号分别为1,2,3,5.从中任意摸出一个球,记下编号后放回,搅匀,再任意摸出一个球,则两次摸出的球的编号之和为偶数的概率是_____.23.在一个不透明的盒子里装有3个分别写有数字﹣2,0,1的小球,它们除了数字不同以外其余完全相同,先从盒子里随机抽取1个小球,再从剩下的小球中抽取1个,将这两个小球上的数字依次记为a,b,则满足关于x的方程x2+ax+b=0有实数根的概率为_____.24.在一个不透明的盒子中,装有红、黄、绿三种只有颜色不同、其余均相同的小球各2个,从中任取一个球,取出的球为红色的概率为_____.25.甲、乙、丙三人每人写好一张卡片放入一个盒子里,每人摸出一张,甲恰好摸到自己的卡片的概率为___.26.现有4张完全相同的卡片分别写着数字-1、1、2、3,将卡片的背面朝上并洗匀,从中任意抽取一张,将卡片上的数字记作a,再从余下的卡片中任意抽取一张,将卡片上的数字记作b,则a b为奇数的概率为________.参考答案三、解答题27.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有6个黄球.(1)若先从盒子里拿走m个黄球,这时从盒子里随机摸出一个球是黄球的事件为“随机事件”,则m 的最大值为 ;(2)若在盒子中再加入2个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在40%,问n 的值大约是多少?28.在一只不透明的口袋里,装有若干个除了颜色外均相同的小球,某数学学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:摸球的次数n100 150 200 500 800 1000 摸到白球的次数m59 96 b 295 480 601 摸到白球的频率m n a0.64 0.58 0.59 0.60 0.601(1)上表中的a =________,b =________;(2)“摸到白球的”的概率的估计值是_________(精确到0.1);(3)如果袋中有12个白球,那么袋中除了白球外,还有多少个其它颜色的球? 29.在4月23日“世界读书日”来临之际,某校为了了解学生的课外阅读情况,从全校随机抽取了部分学生,调查了他们平均每周的课外阅读时间t (单位:小时).把调查结果分为四档,A 档:8t <;B 档:89t ≤<;C 档:910t ≤<;D 档:10t ≥.根据调查情况,给出了部分数据信息:①A 档和D 档的所有数据是:7,7,7.5,10,7,10,7,7.5,7,7,10.5,10.5; ②图1和图2是两幅不完整的统计图.根据以上信息解答问题:(1)求本次调查的学生人数,并将图2补充完整;(2)已知全校共1200名学生,请你估计全校B 档的人数;(3)学校要从D 档的4名学生中随机抽取2名作读书经验分享,已知这4名学生1名来自七年级,1名来自八年级,2名来自九年级,请用列表或画树状图的方法,求抽到的2名学生来自不同年级的概率.30.刘雨泽和黎昕两位同学玩抽数字游戏.五张卡片上分别写有2、4、6、8、x 这五个数字,其中两张卡片上的数字是相同的,从中随机抽出一张,已知P (抽到数字4的卡片)2.5(1)求这五张卡片上的数字的众数;(2)若刘雨泽已抽走一张数字2的卡片,黎昕准备从剩余4张卡片中抽出一张.①所剩的4张卡片上数字的中位数与原来5张卡片上数字的中位数是否相同?并简要说明理由;②黎昕先随机抽出一张卡片后放回,之后又随机抽出一张,用列表法(或树状图)求黎昕两次都抽到数字4的概率.。

2022年北师七下第六章《概率初步》专项练习(附答案)(全章)2

2022年北师七下第六章《概率初步》专项练习(附答案)(全章)2

第六章概率初步单元检测题8一、选择题1.高速公路上依次有A,B,C三个出口,A,B之间的距离为m km,B,C之间的距离为n km,决定在A,C之间的任意一处增设一个生活效劳区,那么此生活效劳区设在A,B之间的概率为().A.nm B.mn C.nm+nD.mm+n2.在一个暗箱里放有a个除颜色外其他完全相同的球,这a个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在25%,那么可以推算出a大约是().A.12 B.9 C.4 D.33.一个布袋里装有2个红球,3个白球和a个黄球,这些球除颜色外其余都相同.假设从该布袋里任意摸出1个球,是红球的概率为13,那么a等于( )A.1 B.2 C.3 D.44.在一个不透明的布袋中,红球、黑球、白球共有假设干个,除颜色外,它们的形状、大小、质地等完全相同.小新从布袋,他总结出以下结论:①假设进行大量摸球试验,摸出白球的频率应稳定于0.3;②假设从布袋中任意摸出一个球,该球是黑球的概率最大;③假设再摸球100次,必有20次摸出的是红球.其中说法正确的选项是( )A.①②③B.①②C.①③D.②③5.以下事件发生的概率为0的是( )A.射击运发动只射击1次,就命中靶心B.任取一个数x,都有|x|≥0C.画一个三角形,使其三边的长分别为8 cm,6 cm,2 cmD.抛掷一枚质地均匀且六个面分别刻有1到6的点数的正方体骰子,朝上一面的点数为A. 翻开电视机,正播放新闻B. 通过长期努力学习,你会成为数学家C. 从一副扑克牌中任意抽取一张牌,花色是红桃D. 某校在同一年出生的有367名学生,那么至少有两人的生日是同一天 7.书架上有两套同样的教材,每套分上、下两册,在这四册教材中随机抽取两册,恰好组成一套教材的概率是A. B. C. D.8.如图是小鹏自己制作的正方形飞镖盘,并在盘内画了两个小正方形,那么小鹏在投掷飞镖时,飞镖扎在阴影局部的概率为〔 〕A .14B .15C . 38D .139.某学习小组做“用频率估计概率〞的实验时,统计了某一结果出现的频率,绘制了如下的表格,那么符合这一结果的实验最有可能的是〔 〕 实验次数实验次数100200 300 500 800 1000 2000 频率0.365 0.328 0.330 0.334 0.336 0.332 0.333A .一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃B .在“石头、剪刀、布〞的游戏中,小明随机出的是“剪刀〞C .抛一个质地均匀的正六面体骰子,向上的面点数是5D .抛一枚硬币,出现反面的概率10.100个大小相同的球,用1至100编号,任意摸出一个球,那么摸出的是5的倍数编号的球的概率是 〔 〕A.201B. 10019C.51D.以上都不对 二、填空题11.如图,在两个同心圆中,四条直径把大圆分成八等份,假设往圆面投掷飞镖,那么飞镖落在黑色区域的概率是 .61,袋中白球有3个,那么袋中球的总数是____________。

人教版初中九年级数学上册第二十五章《概率初步》经典练习(含答案解析)(2)

人教版初中九年级数学上册第二十五章《概率初步》经典练习(含答案解析)(2)

一、选择题1.小明制作了5张卡片,上面分别写了一个条件:①AB BC =;②AB BC ⊥;③AD BC =;④AC BD ⊥,⑤AC BD =.从中随机抽取一张卡片,能判定ABCD 是菱形的概率为( )A .15B .25C .35D .452.用如图所示的两个转盘进行“配紫色”(红色与蓝色能配成紫色)游戏,配得紫色的概率是( )A .12B .13C .14D .163.下列事件中,属于必然事件的是( )A .掷一枚硬币,正面朝上B .三角形任意两边之差小于第三边C .一个三角形三个内角之和大于180°D .在只有红球的盒子里摸到白球 4.下列说法:①“明天的降水概率为80%”是指明天有80%的时间在下雨;②连续抛一枚硬币50次,出现正面朝上的次数一定是25次( )A .只有①正确B .只有②正确C .①②都正确D .①②都错误 5.如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是( )A .15B .310C .13D .126.下列事件中,是必然事件的是( )A .购买一张彩票,中奖B .打开电视,正在播放广告C .抛掷一枚质地均匀且6个面上分别标上数字1~6的骰子,朝上一面的数字小于7D .一个不透明的袋子中只装有2个黑球,搅匀后从中随机摸出一个球,结果是红球 7.从1到9这9个自然数中任取一个,既是2的倍数,又是3的倍数的概率是( ) A .19 B .13 C .12 D .798.如图,随机闭合开关1S ,2S ,3S 中的两个,则能让两盏灯泡同时发光的概率为( )A .23B .12C .13D .169.袋中装有3个绿球和4个红球,它们除颜色外,其余均相同。

从袋中摸出4个球,下列属于必然事件的是( )A .摸出的4个球其中一个是绿球B .摸出的4个球其中一个是红球C .摸出的4个球有一个绿球和一个红球D .摸出的4个球中没有红球 10.某班学生做“用频率估计概率”的实验时,给出的某一结果出现的频率折线图,则符合这一结果的实验可能是( )A .抛一枚硬币,出现正面朝上B .从标有1,2,3,4,5,6的六张卡片中任抽一张,出现偶数C .从一个装有6个红球和3个黑球的袋子中任取一球,取到的是黑球D .一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃 11.盒子中装有形状、大小完全相同的3个小球,球上分别标有数字-1,1,2,从中随机取出一个,其上的数字记为k ,放回后再取一次,其上的数记为b ,则函数y=kx+b 是增函数的概率为( )A .38B .116C .12D .2312.从等腰三角形、平行四边形、菱形、角、线段中随机抽取两个,得到的都是中心对称图形的概率是( )A .15B .25C .310D .4513.下列事件:(1)如果a 、b 都是实数,那么a+b=b+a ;(2)从分别标有数字1~10的10张小标签中任取1张,得到10号签;(3)同时抛掷两枚骰子向上一面的点数之和为13;(4)射击1次中靶.其中随机事件的个数有( )A .0个B .1个C .2个D .3个14.在四边形ABCD 中,从以下四个条件中:①//AB CD ②//AD BC ③AD BC =④B D ∠=∠,其中任选两个能判定四边形ABCD 为平行四边形的概率为( )A .13B .12C .23D .5615.下列说法正确的是()A.为了了解某中学1200名学生的视力情况,从中随机抽取了50名学生进行调查,在此次调查中,样本容量为50名学生的视力B.若一个游戏的中奖率是2%,则做50次这样的游戏一定会中奖C.了解无锡市每天的流动人口数,采用抽样调查方式D.“掷一枚硬币,正面朝上”是必然事件二、填空题16.下表显示了在同样条件下对某种小麦种子进行发芽实验的部分结果.试验种子数n(粒)1550100200500100020003000…发芽频率m04459218847695119002850…发芽频率mn00.80.90.920.940.9520.9510.950.95…则下列推断:①随着试验次数的增加,此种小麦种子发芽的频率总在0.95附近摆动,显示出一定的稳定性,可以估计此种小麦种子发芽的概率是0.95;②当试验种子数为500粒时,发芽频率是476,所以此小麦种子发芽的概率是0.952;③若再次试验,则当试验种子数为1000时,此种小麦种子发芽的频率一定是0.951;其中合理的是____________(填序号)17.一只袋中装有三只完全相同的小球,三只小球上分别标有1,2-,3,第一次从袋中摸出一只小球,把这只小球的标号数字记作一次函数y kx b=+中的k,然后放回袋中搅匀后,再摸出一只小球,把这只小球的标号数字记作一次函数y kx b=+中的b.则一次函数y kx b=+的图象经过一、二、三象限的概率为______.18.重庆市某校初二(3)班同学,在学校组织的语文作文选拔考试中,有三名同学满分,其中有一名男生和两名女生,现在从三名满分同学中随机抽取两名同学参加重庆市优秀作文比赛,则选出来的两名同学刚好是一男一女的概率是_____.19.如图,AD平分∠BAC,BD⊥AD,垂足为D,连接CD,若三角形△ABC内有一点P,则点P落在△ADC内(包括边界的阴影部分)的概率为__________.20.一个不透明的口袋中装有3个红球和5个黄球,它们除颜色外,其他都相同,往口袋中再放入x 个红球和y 个黄球,若从口袋中随机摸出一个红球的概率是14,则y 与x 之间的函数表达式是_______. 21.在一个不透明的盒子里装有6个形状大小完全相同的乒乓球,上面分别标有-1,-2,0,0.5,1,2,六个数字,现将它们摇匀后从中任取一个乒乓球,将该乒乓球上的数字记为m ,则使关于x 的一元二次方程mx 2+4x+4=0有实数根,且使关于x 的分式方程112m x -=-有正数解的概率为______. 22.从112-,两个数中随机选取一个数记为,a 再从301-,,三个数中随机选取一个数记为b ,则a b 、的取值使得直线y ax b =+不过第二象限的概率是______.23.在x 2□2xy□y 2的空格□中,分别填上“+”或“﹣”,在所得的代数式中,能构成完全平方式的概率是_______.24.如图,这个图案是3世纪我国汉代数学家赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.已知AE=5,BE=3,若向正方形ABCD 内随意投掷飞镖(每次均落在正方形ABCD 内,且落在正方形ABCD 内任何一点的机会均等),则恰好落在正方形EFGH 内的概率为__________.25.甲、乙、丙三人每人写好一张卡片放入一个盒子里,每人摸出一张,甲恰好摸到自己的卡片的概率为___.26.现有4张完全相同的卡片分别写着数字-1、1、2、3,将卡片的背面朝上并洗匀,从中任意抽取一张, 将卡片上的数字记作a ,再从余下的卡片中任意抽取一张,将卡片上的数字记作b ,则+a b 为奇数的概率为________.参考答案三、解答题27.为了解某校落实新课改精神的情况,现以该校某班的同学参加课外活动的情况为样本,对其参加“球类”,“绘画类”,“舞蹈类”,“音乐类”,“棋类”活动的情况进行调查统计,并绘制了如图所示的统计图.(1)参加音乐类活动的学生人数为________人,参加球类活动的人数的百分比为________;(2)请把条形统计图补充完整;(3)若该校学生共1600人,那么参棋类活动的大约有多少人?(4)该班参加舞蹈类活动4位同学中,有1位男生(用E表示)和3位女生(分别F,G,H表示),现准备从中选取两名同学组成舞伴,请用列表或画树状的方法求恰好选中一男一女的概率.28.2019年10月下旬,我校初三年级举办了“教育教学质量周”活动,在本次活动中每个学科都举办了学科特色活动.其中数学学科举办了“计算能力竞赛”活动,并在班内进行了评比:A为优秀;B为良好;C为合格;D为不合格.某班的数学老师对该班学生的成绩做了统计,绘制了下列两幅尚不完整的统计图,请根据下列所给信息回答问题:(1)该班共有人,扇形统计图中的C所对应的圆心角为度.(2)请根据信息补全条形统计图.(3)为了初步了解学生出错的原因,该班数学老师从D类学生中随机抽取2人的试卷进行错题统计.已知D类学生中有2名男生,2名女生,请用树状图或列表法求出恰好选中一男一女的试卷的概率.29.小明和小亮用如图所示两个可以自由转动的转盘做游戏,每个转盘被分成面积相等的几个扇形,转动两个转盘各一次,若两次数字之积小于3,则小明胜,否则小亮胜.这个游戏对双方公平吗?请列表或画树状图说明理由.30.一只不透明的箱子里共有8个球,其中2个白球,1个红球,5个黄球,它们除颜色外均相同.(1)从箱子中随机摸出一个球是白球的概率是多少?(2)再往箱子中放入多少个黄球,可以使摸到白球的概率变为0.2?。

2022年最新北师大版七年级数学下册第六章概率初步专题测试练习题(名师精选)

2022年最新北师大版七年级数学下册第六章概率初步专题测试练习题(名师精选)

北师大版七年级数学下册第六章概率初步专题测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、乒乓球比赛以11分为1局,水平相当的甲、乙两人进行乒乓球比赛,在一局比赛中,甲已经得了8分,乙只得了2分,对这局比赛的结果进行预判,下列说法正确的是()A.甲获胜的可能性比乙大B.乙获胜的可能性比甲大C.甲、乙获胜的可能性一样大D.无法判断2、如图,有5张形状、大小、材质均相同的卡片,正面分别印着北京2022年冬奥会的越野滑雪、速度滑冰、花样滑冰、高山滑雪、单板滑雪大跳台的体育图标,背面完全相同.现将这5张卡片洗匀并正面向下放在桌上,从中随机抽取一张,抽出的卡片正面恰好是“滑冰”项目的图案的可能性是().A.15B.25C.35D.453、小梅随机选择在下周一至周五的某一天去打新冠疫苗,则她选择在周二去打疫苗的概率为()A.1 B.15C.17D.134、学校招募运动会广播员,从三名男生和一名女生共四名候选人中随机选取一人,则选中男生的概率为()A.14B.12C.23D.345、袋中有白球3个,红球若干个,他们只有颜色上的区别.从袋中随机取出一个球,如果取到白球的可能性更大,那么袋中红球的个数可能是()A.2个B.3个C.4个D.4个或4个以上6、书架上放着两本散文和一本数学书,小明从中随机抽取一本,抽到数学书的概率是()A.1 B.12C.23D.137、下列说法正确的是()A.在同一年出生的400名学生中,至少有两人的生日是同一天B.某种彩票中奖的概率是1%,买100张这种彩票一定会中奖C.天气预报明天下雨的概率是50%,所以明天将有一半的时间在下雨D.抛一枚图钉,钉尖着地和钉尖朝上的概率一样大8、在相同条件下,移植10000棵幼苗,有8000棵幼苗成活,估计在相同条件下移植一棵这种幼苗成活的概率为()A.0.1 B.0.2 C.0.9 D.0.89、下列事件中,是必然事件的是()A.从一个只有白球的盒子里摸出一个球是白球. B.掷一枚硬币,正面朝上.C.任意买一张电影票座位是3.D.汽车经过红绿灯路口时前方正好是绿灯.10、下列说法中,正确的是()A.“射击运动员射击一次,命中靶心”是必然事件B.事件发生的可能性越大,它的概率越接近1C.某种彩票中奖的概率是1%,因此买100张该种彩票就一定会中奖D.抛掷一枚图钉,“针尖朝上”的概率可以用列举法求得第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个不透明的袋中装有6个黄球,m个红球,n个白球,每个球除颜色外都相同.把袋中的球搅匀,从中任意摸出一个球,摸出黄球记为事件A,摸出的球不是黄球记为事件B,若P(A)=2P(B),则m与n的数量关系是________.2、在一个不透明的口袋中装有若干个只有颜色不同的球,如果已知袋中只有4个红球,且摸出红球的概率为25,那么袋中的球共有_______个.3、P(A)的取值范围:∵m≥0,n>0,∴0≤m≤n.∴0≤ m/n≤1,即_______≤P(A)≤_______.当A为必然事件时,P(A)=__________;当A为不可能事件时,P(A)=_________.事件发生的可能性越大,它的概率越接近____;反之,事件发生的可能性越小,它的概率越接近______.4、一个可以自由转动的圆形转盘,转盘分三个扇形区域,分别涂上红、黄、白三种颜色,其中红色、黄色、白色区域的扇形圆心角度数分别为70°,80°,210°,则指针落在红色区域的概率是____________5、在一只不透明的口袋中放入只有颜色不同的白球7个,黑球5个,黄球n个,搅匀后随机从中摸取一个恰好是黄球的概率为13,则放入的黄球总数n __________.三、解答题(5小题,每小题10分,共计50分)1、在一个不透明的口袋中,装有10个除颜色外其它完全相同的球,其中5个红球,3个蓝球,2个白球,它们已经在口袋中搅匀了.下列事件中,哪些是必然发生的?哪些是不可能发生的?哪些是可能发生的?(1)从口袋中任取出一个球,它恰是红球;(2)从口袋中一次性任意取出2个球,它们恰好全是白球;(3)从口袋中一次性任意取出5个球,它们恰好是1个红球,1个蓝球,3个白球.2、有7张纸签,分别标有数字1,2,3,4,5,6,7,小明从中任意抽取一张纸签(不放回),小颖从剩余的纸签中任意抽取一张,谁抽到的数字大谁就获胜,然后两人把抽到的纸签都放回,重新开始游戏.(1)现小明已经抽到数字4,然后小颖抽纸签,那么小明获胜的概率是多少?小颖获胜的概率又是多少?(2)若小明已经抽到数字6,小明、小颖获胜的概率分别是多少?若小明已经抽到数字1,情况又如何?3、如图所示有8张卡片,分别写有1,2,3,4,5,6,8,9这八个数字,将它们背面朝上洗匀后,任意抽出一张.(1)P(抽到数字9)=;(2)P(抽到两位数)=;(3)P(抽到的数大于5)=;(4)P(抽到偶数)=.4、袋子中装有4个黑球、2个白球,这些球的形状、大小、质地等完全相同,即除颜色外无其他差别.在看不到球的条件下,随机从袋子中摸出1个球.(1)这个球是白球还是黑球?(2)如果两种球都有可能被摸出,那么摸出黑球和摸出白球的可能性一样大吗?为了验证你的想法,动手摸一下吧!每名同学随机从袋子中摸出1个球,记下球的颜色,然后把球重新放回袋子并摇匀.汇总全班同学摸球的结果并把结果填在下表中.比较表中记录的数字的大小,结果与你事先的判断一致吗?在上面的摸球活动中,“摸出黑球”和“摸出白球”是两个随机事件.一次摸球可能发生“摸出黑球”,也可能发生“摸出白球”,事先不能确定哪个事件发生.由于两种球的数量不等,所以“摸出黑球”与“摸出白球”的可能性的大小不一样,“摸出黑球”的可能性大于“摸出白球”的可能性.你们的试验结果也是这样吗?5、某校数学兴趣小组成员小华对本班上学期末考试数学成绩(成绩取整数,满分为100分)作了统计分析,绘制成频数分布直方图和频数、频率分布表,请你根据图表提供的信息,解答下列问题:a______,b=______;(1)频数、频率分布表中=(2)补全频数分布直方图;(3)数学老师准备从不低于90分的学生中选1人介绍学习经验,那么取得了93分的小华被选上的概率是______.-参考答案-一、单选题1、A【分析】根据事件发生的可能性即可判断.【详解】∵甲已经得了8分,乙只得了2分,甲、乙两人水平相当∴甲获胜的可能性比乙大故选A.【点睛】此题主要考查事件发生的可能性,解题的关键是根据题意进行判断.2、B【分析】先找出滑冰项目图案的张数,再根据概率公式即可得出答案.【详解】解:∵有5张形状、大小、质地均相同的卡片,滑冰项目图案的有速度滑冰和花样滑冰2张,∴从中随机抽取一张,抽出的卡片正面恰好是滑冰项目图案的概率是25;故选:B.【点睛】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.3、B【分析】根据题意中从下周一至周五的某一天去打新冠疫苗,共有5种情况,且每种情况的可能性相同,即可得出选择周二打疫苗的概率.【详解】解:小梅选择周一到周五共有5种情况,且每种情况的可能性相同,均为15,∴选择周二打疫苗的概率为:15,故选:B.【点睛】题目主要考查简单概率的计算,理解题意是解题关键.4、D【分析】直接利用概率公式求出即可.【详解】解:∵共四名候选人,男生3人,∴选到男生的概率是:34.故选:D.【点睛】本题考查了概率公式;用到的知识点为:概率=所求情况数与总情况数之比.5、A【分析】根据取到白球的可能性较大可以判断出白球的数量大于红球的数量,从而得解.【详解】解:∵袋中有白球3个,取到白球的可能性较大,∴袋中的白球数量大于红球数量,即袋中红球的个数可能是2个或2个以下.故选:A.【点睛】本题考查可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.6、D【分析】根据概率公式求解即可.【详解】∵书架上放着两本散文和一本数学书,小明从中随机抽取一本,∴1 ()=3P抽到数学书.故选:D.【点睛】本题考查随机事件的概率,某事件发生的概率等于某事件发生的结果数与总结果数之比,掌握概率公式的运用是解题的关键.7、A【分析】由题意根据概率的意义、随机事件的意义逐项进行分析判断即可.【详解】解:A. 在同一年出生的400名学生中,至少有两人的生日是同一天,因为一年最多有366天,故本选项正确;B. 某种彩票中奖的概率是1%,买100张这种彩票一定会中奖错误,故本选项错误;C. 天气预报明天下雨的概率是50%,所以明天将有一半的时间在下雨错误,故本选项错误;D. 抛一枚图钉,钉尖着地和钉尖朝上的概率一样大错误,故本选项错误;故选:A.【点睛】本题考查随机事件、概率的意义,熟练掌握随机事件和概率的意义是正确判断的前提.8、D【分析】利用成活的树的数量÷总数即可得解.【详解】解:8000÷10000=0.8,故选:D.【点睛】此题主要考查了概率,解答本题的关键是明确概率的定义,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.9、A【分析】根据必然事件和随机事件的定义逐项判断即可得.【详解】解:A、“从一个只有白球的盒子里摸出一个球是白球”是必然事件,此项符合题意;B、“掷一枚硬币,正面朝上”是随机事件,此项不符题意;C、“任意买一张电影票座位是3”是随机事件,此项不符题意;D、“汽车经过红绿灯路口时前方正好是绿灯”是随机事件,此项不符题意;故选:A.【点睛】本题考查了必然事件和随机事件,掌握理解定义是解题关键.10、B【分析】根据随机事件,必然事件,不可能事件的定义可判断A,根据随机事件发生的机会大小,估计概率的大小可判断B,可判断C,不规则物体的概率只能通过大数次的实验,使频率达到稳定时用频率估计概率可判断D.【详解】解:“射击运动员射击一次,命中靶心”可能会发生,也可都能不会发生是随机事件不是必然事件,故选项A不正确;事件发生的可能性越大,说明发生的机会越大,它的概率越接近1,故选项B正确;某种彩票中奖的概率是1%,因此买100张该种彩票每一张彩票中奖的概率都是1%,可能会中奖,但一定会中奖机会很小,故选项C不正确;图钉是不规则的物体,抛掷一枚图钉,“针尖朝上”的概率只能通过实验,大数次的实验,使频率稳定时,可用频率估计概率,不可以用列举法求得,故选项D不正确.故选择B.【点睛】本题考查事件,事件发生的可能性,概率,实验概率,掌握事件,事件发生的可能性,概率,实验概率知识是解题关键.二、填空题1、m+n=3【分析】根据概率公式求出摸到黄球和摸不到黄球的概率,再根据P(A)=2P(B),列出关系式,然后求解即可得出答案.【详解】解:∵一个不透明的袋中装有6个黄球,m个红球,n个白球,∴任意摸出一个球,是黄球的概率P(A)=66m n+++,摸出的球不是黄球的概率P(B)=6m nm n+++∵P(A)=2P(B),∴6266m nm n m n+=⨯+++++,∴m+n=3,故答案为:m+n=3.【点睛】本题主要考查了简单的概率计算,解题的关键在于能够熟练掌握概率计算公式.2、10【分析】设袋中共有x个球,再由袋中只装有4个红球,且摸出红球的概率为25求出x的值即可.【详解】解:设袋中共有x个球,∵袋中只装有4个红球,且摸出红球的概率为25,∴425x=,解得x=10.经检验,x=10是分式方程的解,且符合题意,故答案为:10.【点睛】本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.3、0 1 1 0 1 0【详解】略4、7 36【分析】求出红色区域圆心角在整个圆中所占的比例,这个比例即为所求的概率.【详解】解:∵红色扇形区域的圆心角为70°,所以红色区域所占的面积比例为707 36036︒=︒,即指针停在红色区域的概率是736, 故答案为:736. 【点睛】本题主要考查几何概率,掌握随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数是解题的关键.5、6【分析】利用概率公式,将黄球个数除以所有球总个数即可得出随机从中摸取一个恰好是黄球的概率.【详解】解:由题可知:1753n n =++, 解得:6n =,经检验,符合题意;故答案为:6.【点睛】本题考查了随机事件的概率,解题的关键是牢记概率公式,正确列出方程并求解.三、解答题1、(1)可能发生,因为袋中有红球;(2)可能发生,因为袋中刚好有2个白球;(3)不可能发生,因为袋中只有2个白球,取不出3个白球.【分析】根据必然事件、不可能事件、随机事件的概念可判断它们分别属于那一种类别.【详解】(1)可能发生,因为袋中有红球;(2)可能发生,因为袋中刚好有2个白球;(3)不可能发生,因为袋中只有2个白球,取不出3个白球.【点睛】解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2、(1)小明获胜的概率是12;小颖获胜的概率是12;(2)小明已经抽到数字6,小明获胜的概率是5 6;小颖获胜的概率是16;小明已经抽到数字1,则小明获胜的概率是0,小颖获胜的概率是1.【分析】(1)根据题意列出可能性,根据概率公式即可求解;(2)根据题意列出可能性,根据概率公式即可求解.【详解】解:(1)共有7张纸签,小明已经抽到数字4,如果小明获胜的话,小颖只可能抽到数字1、2、3,所以小明获胜的概率是31 62 =.如果小颖要获胜,抽到的数字只能是5、6、7,所以小颖获胜的概率是31 62 =(2)若小明已经抽到数字6,如果小明获胜的话,小颖只可能抽到数字1,2、3、4,5,所以小明获胜的概率是56.如果小颖要获胜,抽到的数字只能是7,所以小颖获胜的概率是16.若小明已经抽到数字1,则小明获胜的概率是0,小颖获胜的概率是1.【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了二次函数图象上点的坐标特征.3、(1)18;(2)0;(3)38;(4)12【分析】(1)(2)(4)根据概率公式直接求解即可,(3)根据确定性事件的定义即可判断.【详解】1,2,3,4,5,6,8,9这八个数字,将它们背面朝上洗匀后,任意抽出一张.(1)P(抽到数字9)=18;(2)1,2,3,4,5,6,8,9这八个数字中,没有两位数,∴P(抽到两位数)=0;(3)大于5的有,6,8,9,共3个数∴P(抽到的数大于5)=38;(4)1,2,3,4,5,6,8,9这八个数字中,偶数有4个∴P(抽到偶数)=12.【点睛】本题考查了简单概率公式的计算,熟悉概率公式是解题的关键.4、(1)都有可能;(2)不一样大,黑球的可能性大;验证:30,15(答案不唯一);结果和事先判断一致,试验结果一致【分析】(1)根据随机事件的定义可知;(2)根据事件发生的可能性大小判断即可.【详解】(1)都有可能;(2)不一样大,黑球的可能性大.验证:答案不唯一,假设全班学生共45人,汇总全班同学摸球的结果并把结果填在下表中.根据等可能性的概率,试验结果和事先判断一致;试验结果一致.故答案为:30,15(答案不唯一).【点睛】本题考查了事件的可能性,简单概率的求法,掌握比较事件的可能性是解题的关键.5、(1)8,0.08;(2)补全频数分布直方图见解析;(3)14.【分析】(1)利用频数=频率×总数可得a的值,利用频率=频数÷总数可得b的值;(2)由(1)的结论中,补全频数分布直方图;(3)根据频率分布表可得信息90分以上的同学有4人,根据概率的公式即可得答案;【详解】(1)0.16508,4500.08a b =⨯==÷=;故答案为:8,0.08;(2)由(1)8a =,补全频数分布直方图如图:(3)根据频率分布表可得信息90分以上的同学有4人,∴小华被选上的概率是14. 故答案为:14.【点睛】本题考查了频数分布表和频数分布直方图的综合,概率的简单计算,解答此类题目,要善于发现二者之间的关联点,用频数分布表中某部分的频数除以它的频率求出样本容量,进而求解其它未知的量.。

2021年九年级数学上册第二十五章《概率初步》经典习题(答案解析)(2)

2021年九年级数学上册第二十五章《概率初步》经典习题(答案解析)(2)

一、选择题1.从1,2,3,4,5这5个数字任取两个数字,使其乘积为偶数的概率为()A.45B.710C.35D.122.在不透明的布袋中,装有三个颜色分别为红色、白色、绿色的小球,所有小球除颜色外其他都相同,若分别从两个布袋中随机各取出一个小球,则所取出的两个小球颜色相同的概率是()A.13B.12C.23D.13.布袋中有红、黄、蓝三种颜色的球各一个,从中摸出一个球之后不放回布袋,再摸第二个球,这时得到的两个球的颜色中有“一红一黄”的概率是()A.16B.29C.13D.234.下列说法中正确的是()A.通过多次试验得到某事件发生的频率等于这一事件发生的概率B.某人前9次掷出的硬币都是正面朝上,那么第10次掷出的硬币反面朝上的概率一定大于正面朝上的概率C.不确定事件的概率可能等于1D.试验估计结果与理论概率不一定一致5.下列事件中,属于必然事件的是()A.掷一枚硬币,正面朝上B.三角形任意两边之差小于第三边C.一个三角形三个内角之和大于180°D.在只有红球的盒子里摸到白球6.一位批发商从某服装制造公司购进60包型号为L的衬衫,由于包装工人疏忽,在包裹中混进了型号为M的衬衫,每包混入的M号衬衫数及相应的包数如表所示.一位零售商从60包中任意选取一包,则包中混入M号衬衫数不超过3的概率是()A.120B.115C.920D.4277.下列说法正确的是()A.调查舞水河的水质情况,采用抽样调查的方式B.数据2.0,﹣2,1,3的中位数是﹣2C.可能性是99%的事件在一次实验中一定会发生D.从2000名学生中随机抽取100名学生进行调查,样本容量为2000名学生8.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是()A.13B.415C.15D.2159.有一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是()A.415B.15C.13D.21510.汉代数学家赵爽在注解(周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝,如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边分别是2和3.现随机向该图形内掷一枚飞镖,则飞镖落在小正方形内(非阴影区域)的概率为()A.1 B.1213C.112D.11311.甲袋中装有3个白球和2个红球,乙袋中装有30个白球和20个红球,这些球除颜色外都相同.把两只袋子中的球搅匀,并分别从中任意摸出一个球,从甲袋中摸出红球记为事件A,从乙袋中摸出红球记为事件B,则A.P(A)>P(B) B.P(A)<P(B) C.P(A)=P(B) D.无法确定12.罚球是篮球比赛中得分的一个组成部分,罚球命中率的高低对篮球比赛的结果影响很大.如图是对某球员罚球训练时命中情况的统计:下面三个推断:①当罚球次数是500时,该球员命中次数是411,所以“罚球命中”的概率是0.822;②随着罚球次数的增加,“罚球命中”的频率总在0.812附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.812;③由于该球员“罚球命中”的频率的平均值是0.809,所以“罚球命中”的概率是0.809.其中合理的是()A.①B.②C.①③D.②③第II卷(非选择题)请点击修改第II卷的文字说明参考答案13.下列说法正确的是().A.投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次B.天气预报“明天降水概率10%,是指明天有10%的时间会下雨”C.一种福利彩票中奖率是千分之一,则买这种彩票1000张,一定会中奖D.连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上14.下列事件发生的可能性为0的是( )A.掷两枚骰子,同时出现数字“6”朝上B.小明从家里到学校用了10分钟,从学校回到家里却用了15分钟C.今天是星期天,昨天必定是星期六D.小明步行的速度是每小时50千米15.有下列事件:①367人中必有2人的生日相同;②抛掷一枚均匀的骰子两次,朝上一面的点数之和一定不小于2;③在标准大气压下,温度低于0℃时冰融化;④如果a,b 为实数,那么a+b=b+a.其中是必然事件的有( )A.1个B.2个C.3个D.4个二、填空题16.2020 年“中华魂”读书活动的主题为“科技托起强国梦”,现准备从万州二中校园电视台2名男主播和3名女主播中任选两人担任演讲比赛主持人,则选中一男一女的概率为__________.17.综合实践小组的同学做了某种黄豆在相同条件下的发芽试验,结果如表,那么这种黄豆发芽的概率约为__________.(结果精确到0.01)每批粒数n800100012001400160018002000发芽的频数m76294811421331151817101902发芽的频率mn0.9530.9480.9520.9510.9490.9500.95118.如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为2m 的正方形,使不规则区域落在正方形内,现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.25附近,由此可估计不规则区域的面积是__m 2.19.从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概率是__________. 20.大成蔬菜公司以2.1元/千克的成本价购进10000kg 番茄,公司想知道番茄的损坏率,从所有随机抽取若干进行统计,部分结果如表: 番茄总质量()m kg100200 300 400 500 1000 损坏番茄质量()m kg 10.60 19.42 30.6339.24 49.54 101.10 番茄损坏的频率 0.106 0.097 0.102 0.098 0.099 0.101估计这批番茄损坏的概率为______(精确到0.1),据此,若公司希望这批番茄能获得利润15000元,则销售时(去掉损坏的番茄)售价应至少定为______元/千克.21.在一个不透明的口袋中,有大小、形状完全相同的红、绿两种颜色的球共15个,从中摸出红球的概率为13,则袋中绿球的个数为__________个. 22.往一个装了很多黑球的袋子里放入10个白球,每次倒出5个,记下所倒出的白球的数目,再把它们放回去,共倒了120次,倒出白球共180个,袋子里原有黑球约______个. 23.已知抛物线的解析式为21y ax bx =++,现从﹣1,﹣2,﹣3,4四个数中任选两个不同的数分别作为a 、b 的值,则抛物线21y ax bx =++与x 轴有两个交点的概率是_____. 24.在一个不透明的袋中装有若干个红球,为了估计袋中红球的个数,小明在袋中放入3个黑球(每个球除颜色外其余都与红球相同),摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,则袋中红球约有_____个.25.甲、乙、丙三人每人写好一张卡片放入一个盒子里,每人摸出一张,甲恰好摸到自己的卡片的概率为___.26.我市倡导垃圾分类投放,将日常垃圾分成四类,分别投放四种不同颜色的垃圾桶中,在“垃圾分类”模拟活动中,某同学把两个不同类的垃圾随意放入两个不同颜色的垃圾筒中,则这个同学正确分类投放垃圾的概率是______.三、解答题27.汉代数学家赵爽在注解《周髓算经》时给出的“赵爽弦图”是我国古代数学的瑰宝,如图①,在Rt ABC ∆中,90C =∠,两条直角边长分别为,a b ,斜边长为c .现将与Rt ABC∆全等的四个直角三角形拼成一个正方形EFMN,如图②这个图形就是“赵爽弦图”()1利用“赵爽弦图”验证勾股定理.()2若Rt ABC∆的两直角边之比均为2:5.现随机向图②图形内掷一枚小针,则针尖落在四个直角三角形区域的概率是多少?()3若正方形EFMN的边长为6,Rt ABC∆的周长为14,求Rt ABC∆的面积.28.一个口袋中放有16个球,其中红球6个,白球和黑球各若干个,每个球除了颜色外没有任何区别.小明通过大量反复的试验(每次将球搅匀后,任意摸出一个球记下颜色后再放回)发现,取出黑球的频率稳定在14附近,请你估计袋中白球的个数29.某校为了解九年级学生的体育达标情况,随机抽取50名九年级学生进行体育达标项目测试,测试成绩如下表,请根据表中的信息,解答下列问题:测试成绩(分)2325262830人数(人)4181585(1)该校九年级有450名学生,估计体育测试成绩为25分的学生人数;(2)该校体育老师要对本次抽测成绩为23分的甲、乙、丙、丁4名学生进行分组强化训练,要求两人一组,求甲和乙恰好分在同一组的概率.(用列表或树状图方法解答)30.某校期末评选出四名“三好学生”,其中有2名男生和2名女生,若从他们中任选2人作为“三好学生”代表发言,请用画树状图(或列表)的方法,求恰好选中1男1女的概率.。

2019年初中数学概率初步(一) 课后练习二及详解

2019年初中数学概率初步(一) 课后练习二及详解

学科:数学专题:概率初步(一)重难点易错点解析题一:题面:下列说法正确的是()A、两名同学5次成绩的平均分相同,则方差较大的同学成绩更稳定.B、某班选出两名同学参加校演讲比赛,结果一定是一名男生和一名女生.C、学校气象小组预报明天下雨的概率为0.8,则明天下雨的可能性较大.D、为了解我市学校“阳光体育”活动开展情况,必须采用普查的方法.金题精讲题一:题面:分别写有数字0,-1,-2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是()A.B.C.D.满分冲刺题一:题面:为验证“掷一个质地均匀的骰子,向上的点数为偶数的概率是0.5”,下列模拟实验中,不科学的是()A.袋中装有1个红球一个绿球,它们除颜色外都相同,计算随机摸出红球的概率.B.用计算器随机地取不大于10的正整数,计算取得奇数的概率.C.随机掷一枚质地均匀的硬币,计算正面朝上的概率.D.如图,将一个可以自由旋转的转盘分成甲、乙、丙3个相同的扇形,转动转盘任其自由停止,计算指针指向甲的概率.题二:题面:要从小强、小红和小华三人中随机选两人作为旗手,则小强和小红同时入选的概率是()A.23B.13C.12D.16题三:题面:有三张正面分别标有数字-2,3, 4的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后,从中任取一张(不放回),再从剩余的卡片中任取一张,则两次抽取的卡片上的数字之积为正偶数的概率是()A.49B.112C.13D.16课后练习详解重难点易错点解析题一:答案:C.详解:根据方差的意义,概率的意义,调查方法的选择逐一作出判断:A、两名同学5次成绩的平均分相同,则方差较小的同学成绩更稳定,故本选项错误;B、某班选出两名同学参加校演讲比赛,结果不一定是一名男生和一名女生,故本选项错误;C、学校气象小组预报明天下雨的概率为0.8,则明天下雨的可能性较大,故本选项正确;D、为了解我市学校“阳光体育”活动开展情况,易采用抽样调查的方法,故本选项错误.故选C.金题精讲题一:答案:B.详解:用是负数的卡片数除以总卡片数即为所求的概率,即可选出:∵五张卡片分别标有0,-1,-2,1,3五个数,数字为负数的卡片有2张,∴从中随机抽取一张卡片数字为负数的概率为.故选B.满分冲刺题一:答案:D.详解:分析每个试验的概率后,与原来掷一个质地均匀的骰子的概率比较即可:A、袋中装有1个红球一个绿球,它们除颜色外都相同,随机摸出红球的概率是12,故本选项正确;B、用计算器随机地取不大于10的正整数,取得奇数的概率是12,故本选项正确;C、随机掷一枚质地均匀的硬币,正面朝上的概率是12,故本选项正确;D、将一个可以自由旋转的转盘分成甲、乙、丙3个相同的扇形,转动转盘任其自由停止,指针指向甲的概率是13,故本选项错误.题二:答案:B.详解:因为从小强、小红和小华三人中随机选两人作为旗手,共有小强和小红、小强和小华.小红和小华三种情况,小强和小红同时入选只有一种情况,所以小强和小红同时入选的概率是13.故选B.题三:答案:C.详解:根据题意画出树状图或列表,然后由图表求得所有等可能的结果与两次抽取的卡片上的数字之积为正偶数的情况,再利用概率公式求解即可求得答案:画树状图得:∵共有6种等可能的结果,两次抽取的卡片上的数字之积为正偶数的有2种情况,∴两次抽取的卡片上的数字之积为正偶数的概率是:21=63.故选C.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率初步专题练习
姓名:
例1:在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个,红球2个,摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是
变1:在一个不透明的箱子里放有除颜色外,其余都相同的8个小球,其中红球3个、白球1个.黄球4个,搅匀后,从中同时摸出2个小球,求摸出一红一兰球的概率
变2:四张质地相同的卡片如图所示.将卡片洗匀后,背面朝上放置在桌面上.
(1)求随机抽取一张卡片,恰好得到数字2的概率;
(2)小贝和小晶想用以上四张卡片做游戏,游戏规则见信息图.你认为这个游戏公平吗?请用列表法或画树形图法说明理由.
变3:袋中放有一套(五枚)北京2008年奥运会吉祥物福娃纪念币,依次取出(不放回)两枚纪念币,恰好能够组成“欢迎”的概率是( )A .251 B .201 C .101 D .5
1
练习:1、有大小、形状、颜色完全相同的5个乒乓球,每个球上分别标有数字1,2,3,4,5中的一个,将这5个球放入不透明的袋中搅匀,如果不放回地从中随机连续抽取两个,求这两个球上的数字之和为偶数的概率
2、从下面的6张牌中,一次任意抽取两张,则其点数和是奇数的概率为______.
1、下列说法正确的是( ).
A.抛掷一枚硬币5次,5次都出现正面,所以投掷一枚硬币出现正面的概率为1
B.“从我们班上查找一名未完成作业的学生的概率为0”表示我们班上所有的学生都完成了作业C.一个口袋里装有99个白球和一个红球,从中任取一个球,得到红球的概率为1%,所以从袋中取至少100次后必定可以取到红球(每次取后放回,并搅匀)
D.抛一枚硬币,出现正面向上的概率为50%,所以投掷硬币两次,那么一次出现正面,一次出现反面2、下面4个说法中,正确的个数为( ).A.3 B.2 C.1 D.0
(1)“从袋中取出一只红球的概率是99%”,这句话的意思是肯定会取出一只红球,因为概率已经很大
(2)袋中有红、黄、白三种颜色的小球,这些小球除颜色外没有其他差别,因为小张对取出一只红球没有把握,所以小张说:“从袋中取出一只红球的概率是50%”(3)小李说,这次考试我得90分以上的概率是200%(4)“从盒中取出一只红球的概率是0”,这句话是说取出一只红球的可能性很小。

相关文档
最新文档