应用题专题训练--函数(对勾函数)
对勾函数在解题中的妙用
![对勾函数在解题中的妙用](https://img.taocdn.com/s3/m/78d4ed11fad6195f312ba635.png)
对勾函数在解题中的妙用 常称函数)0()(>+=a xa x x f 为对勾函数,关于函数 例1:若不等式012≥++ax x 对一切)21,0(∈x 恒成立,求实数a 的取值范围。
分析:本题若将不等式的左边视为二次函数,数形结合进行求解可以,但须分类讨论,解答过程较为繁冗,其实这里若借助对勾函数的图象与性质可得如下简解: 解:因)21,0(∈x ,故原不等式可化为)1(xx a +-≥,令)1()(x x x h +-=,结合对勾函数的图象可知:函数)1()(x x x h +-=在区间)21,0(上是增函数,所以当)21,0(∈x 时,有25)21()(-=<h x h ,故25-≥a ,即所求实数a 的取值范围为),25[+∞-。
点评:本题在解答时,通过分离出参变量a 用变量x 表示,将问题转化为求对勾函数在区间)21,0(的值域的问题,进而求出参变数a 的取值范围,解答过程简捷、明快。
例2:求函数12)(2-=x x x f 的值域。
分析:表面上看直接解答本题似乎无法下手,其实若借助上述变形可得如下简解:因)1214121(21)214121(21)214141(21)21(2112)(222+-+-=-++=-+-=-=-=x x x x x x x x x x x f 注意到当21≠x 时21-x 与2141-x 同号,则1212|21|41|21||21121|=⨯≥-+-=-+-x x x x ,即121121≥-+-x x 或121121-≤-+-x x ,所以1)(≥x f 或1)(-≤x f ,故所求函数的值域为),1[]1,(+∞--∞ 。
点评:本题也可先令12-=x t ,则)1(21+=t x ,则原函数变为)21(41])1([41)(2++=+=t t t t t f ,注意到t 与t 1同号,所以2||1|||1|≥+=+t t t t (当且仅当1||=t 时取等号),即21≥+t t 或21-≤+tt ,所以1)(-≤t f 或1)(≥t f ,故所求函数的值域为),1[]1,(+∞--∞ 。
专题讲解--对勾函数
![专题讲解--对勾函数](https://img.taocdn.com/s3/m/b116e3a359eef8c75ebfb330.png)
读万卷书行万里路学大教育个性化教学学案姓名年级性别课题对勾函数教学目的了解对勾函数的概念、性质和图像教学重难点运用对勾函数的性质和图像解决实际问题。
教学过程(内容可附后)对勾函数:数学中一种常见而又特殊的函数。
如图、对勾函数f(x)=ax+ 错误!未找到引用源。
的图象与性质对勾函数是数学中一种常见而又特殊的函数。
它在高中教材上不出现,但考试总喜欢考的函数,所以也要注意它和了解它。
(一) 对勾函数的图像对勾函数是一种类似于反比例函数的一般函数,形如f(x)=ax+ 错误!未找到引用源。
(接下来写作f(x)=ax+b/x )。
当a≠0,b≠0时,f(x)=ax+b/x 是正比例函数f(x)=ax 与反比例函数f(x)= b/x 叠“加” 而成的函数。
这个观点,对于理解它的性质,绘制它的图象,非常重要。
当 a , b 同号时,f(x)=ax+b/x 的图象是由直线y =ax 与双曲线y= b/x 构成,形状酷似双勾。
故称“对勾函数”,也称“勾勾函数”、“海鸥函数”。
如下图所示:a>0 b>0a<0 b<0对勾函数的图像( ab 同号)当a,b 异号时,f(x)=ax+b/x 的图象发生了质的变化。
但是,我们依然可以看作是两个函数“叠加”而成。
(请自己在图上完成:他是如何叠加而成的。
)对勾函数的图像(ab 异号)一般地,我们认为对勾函数是反比例函数的一个延伸,即对勾函数也是双曲线的一种,只不过它的焦点和渐进线的位置有所改变罢了。
接下来,为了研究方便,我们规定a>0 ,b>0 。
之后当a<0,b<0 时,根据对称就很容易得出结论了。
(二)对勾函数的顶点对勾函数性质的研究离不开均值不等式。
利用均值不等式可以得到:当x>0 时,错误!未找到引用源。
当x<0时,错误!未找到引用源。
即对勾函数的定点坐标:(三)对勾函数的定义域、值域由(二)得到了对勾函数的顶点坐标,从而我们也就确定了对勾函数的定义域、值域等性质。
完整版对勾函数详细解析总结计划
![完整版对勾函数详细解析总结计划](https://img.taocdn.com/s3/m/a8fdc6e9eff9aef8951e06bc.png)
对勾函数的性质及应用一、对勾函数y ax b(a 0,b 0)的图像与性x质:1.定义域: ( ,0) (0, )2.值域: ( , 2 ab ] [ 2 ab , )3.奇偶性:奇函数,函数图像整体呈两个“对勾”的形状,且函数图像关于原点呈中心对称,即 f (x) f ( x)04. 图像在一、三象限,当 xb2 ab (当且仅当xb取等号),0 时,y axx a即 f ( x) 在x= b 时,取最小值2 aba由奇函数性质知:当 x<0 时,f (x)在 x=b时,取最大值2 ab a5. 单调性:增区间为(b,),(,b), 减区间是( 0,b),(b,0 )a a a a二、对勾函数的变形形式种类一:函数y ax b(a0, b 0) 的图像与性x质1. 定义域:(,0) (0, )2. 值域:(, 2 ab ] [ 2 ab , )3. 奇偶性:奇函数,函数图像整体呈两个“对勾”的形状 .4. 图像在二、四象限 , 当 x<0 时, f ( x) 在 x= b时,取最小值 2ab ;当 x 0 时,af ( x) 在 x=b时,取最大值 2 aba5. 单调性:增区间为( 0, b),(b ,0 )减区间是( b, ),(,b),aaaa种类二: 斜勾函数 yaxb( ab 0)x① a 0,b 0 作图以下1. 定义域: (,0) (0,) 2. 值域: R3. 奇偶性:奇函数4. 图像在二、四象限,无最大值也无最小值 .5. 单调性:增区间为( - ,0),(0,+ ).② a 0,b 0 作图以下:1. 定义域: (,0) (0,) 2. 值域: R3. 奇偶性:奇函数4. 图像在二、四象限,无最大值也无最小值.5. 单调性:减区间为( - ,0),(0,+ ).种类三: 函数 f ( x)ax2bx c(ac 0) 。
x此类函数可变形为 f ( x)axc c 上下平移获取b ,可由对勾函数 y axxx练习 1. 函数 f ( x)x2x 1的对称中心为x种类四: 函数 f (x ) xa (a 0, k 0)xk此类函数可变形为 f (x)( x ka ) k ,则 f ( x) 可由对勾函数 yxa左右平移,x kx上下平移获取练习 1. 作函数 f ( x)x1与 f ( x)x 3x xx 的草图222. 求函数 f (x)x1 在 (2, ) 上的最低点坐标2x 43. 求函数 f (x)xx 的单调区间及对称中心x1种类五 :函数 f (x)ax (a 0,b 0) 。
对勾函数详细分析
![对勾函数详细分析](https://img.taocdn.com/s3/m/b4bc5d01f242336c1fb95e03.png)
对勾函数的性质及应用一.对勾函数的图像与性质:1.定义域:(-∞,0)∪(0,+∞)2.值域:(-∞,-√ab]U[√ab,+∞)3.奇偶性:奇函数,函数图像整体呈两个“对勾”的形状,且函数图像关于原点呈中心对称,即4.图像在一、三象限, 当时,2√ab(当且仅当取等号),即在x=时,取最小值由奇函数性质知:当x<0时,在x=时,取最大值5.单调性:增区间为(),(),减区间是(0,),(,0)1、对勾函数的变形形式类型一:函数的图像与性质1.定义域:2.值域:(-∞,-√ab]U[√ab,+∞)3.奇偶性:奇函数,函数图像整体呈两个“对勾”的形状.4.图像在二、四象限, 当x<0时,在x=时,取最小值;当时,在x=时,取最大值5.单调性:增区间为(0,),(,0)减区间是(),(),类型二:斜勾函数①作图如下1.定义域:2.值域:R3.奇偶性:奇函数4.图像在二、四象限,无最大值也无最小值.5.单调性:增区间为(-,0),(0,+).②作图如下:1.定义域:2.值域:R3.奇偶性:奇函数4.图像在二、四象限,无最大值也无最小值.5.单调性:减区间为(-,0),(0,+).类型三:函数。
此类函数可变形为,可由对勾函数上下平移得到练习1.函数的对称中心为类型四:函数此类函数可变形为,则可由对勾函数左右平移,上下平移得到练习 1.作函数与的草图2.求函数在上的最低点坐标3. 求函数的单调区间及对称中心类型五:函数。
此类函数定义域为,且可变形为a.若,图像如下:1.定义域: 2. 值域:3. 奇偶性:奇函数.4. 图像在一、三象限.当时,在时,取最大值,当x<0时,在x=时,取最小值5. 单调性:减区间为(),();增区间是练习1.函数的在区间上的值域为b. 若,作出函数图像:1.定义域: 2. 值域:3. 奇偶性:奇函数.4. 图像在一、三象限.当时,在时,取最小值,当x<0时,在x=时,取最大值5. 单调性:增区间为(),();减区间是练习1.如,则的取值范围是类型六:函数.可变形为,则可由对勾函数左右平移,上下平移得到练习1.函数由对勾函数向(填“左”、“右”)平移单位,向(填“上”、“下”)平移单位.2.已知,求函数的最小值;3.已知,求函数的最大值类型七:函数练习1.求函数在区间上的最大值;若区间改为则的最大值为2.求函数在区间上的最大值类型八:函数.此类函数可变形为标准形式:练习1.求函数的最小值;2.求函数的值域;3.求函数的值域类型九:函数。
专题09 对数函数、幂函数、对勾函数与双刀函数——2021年高考数学专项复习训练含真题及解析
![专题09 对数函数、幂函数、对勾函数与双刀函数——2021年高考数学专项复习训练含真题及解析](https://img.taocdn.com/s3/m/ac012716960590c69ec376dd.png)
)
A. a 2b
B. a 2b
C. a b2
D. a b2
7.(2021 年模拟题精选)若函数 f x loga x ( a 0 ,且 a 1)的定义域和值域均为t, 2t ,则 a 的值为
(
)
1
A. 或 4
2
1
B. 或
16
2
8.(高考题)若 log2
a
0
, (1)b 2
1 ,则
1
B.
0,
1 2
C.
0,
1 2
D. 0,
10.(高考题)如果 loga 2 logb 2 0, 则 (
)
A.1 a b
B.1 b a
C. 0 a b 1
D. 0 b a 1
11.(高考题)若点 a, b 在 y lg x 的图象上, a ,则下列点也在此图象上的是 (
)
2
2x 4
5
A.最大值
4
5
B.最小值
4
C.最大值 1
6.(高考题)设函数 f (x) 2x 1 1(x 0), 则 f (x) ( x
D.最小值 1 )
A.有最大值
B.有最小值
C.是增函数
D.是减函数
7.(高考题)下列函数中,在区间 0, 上为增函数的是 (
A. y ln(x 2)
B. y x 1
17.(高考题)若 a log2 3 ,则 2a 2a
。
18.(2020 年新课标全国卷 I8)设 a log3 4 2 ,则 4a = (
)
A. 1
B. 1
C. 1
D. 1
16
9
8
6
对勾函数讲解与例题解析
![对勾函数讲解与例题解析](https://img.taocdn.com/s3/m/8735a8721711cc7931b7162b.png)
对勾函数对勾函数:数学中一种常见而又特殊的函数。
如图一、对勾函数f(x)=ax+ 错误!未找到引用源。
的图象与性质对勾函数是数学中一种常见而又特殊的函数。
它在高中教材上不出现,但考试总喜欢考的函数,所以也要注意它和了解它。
(一) 对勾函数的图像对勾函数是一种类似于反比例函数的一般函数,形如f(x)=ax+错误!未找到引用源。
(接下来写作f(x)=ax+b/x)。
当a≠0,b≠0时,f(x)=ax+b/x是正比例函数f(x)=ax与反比例函数f(x)= b/x “叠加”而成的函数。
这个观点,对于理解它的性质,绘制它的图象,非常重要。
当a,b同号时,f(x)=ax+b/x的图象是由直线y=ax与双曲线y= b/x构成,形状酷似双勾。
故称“对勾函数”,也称“勾勾函数”、“海鸥函数”。
如下图所示:a>0 b>0 a<0 b<0对勾函数的图像(ab同号)当a,b异号时,f(x)=ax+b/x的图象发生了质的变化。
但是,我们依然可以看作是两个函数“叠加”而成。
(请自己在图上完成:他是如何叠加而成的。
)对勾函数的图像(ab异号)一般地,我们认为对勾函数是反比例函数的一个延伸,即对勾函数也是双曲线的一种,只不过它的焦点和渐进线的位置有所改变罢了。
接下来,为了研究方便,我们规定a>0,b>0。
之后当a<0,b<0时,根据对称就很容易得出结论了。
(二) 对勾函数的顶点对勾函数性质的研究离不开均值不等式。
利用均值不等式可以得到:当x>0时,错误!未找到引用源。
当x<0时,错误!未找到引用源。
即对勾函数的定点坐标:(三) 对勾函数的定义域、值域由(二)得到了对勾函数的顶点坐标,从而我们也就确定了对勾函数的定义域、值域等性质。
(四) 对勾函数的单调性(五) 对勾函数的渐进线 由图像我们不难得到: (六)对勾函数的奇偶性 :对勾函数在定义域内是奇函数, 二、均值不等式(基本不等式) 对勾函数性质的研究离不开均值不等式。
专题:对勾函数
![专题:对勾函数](https://img.taocdn.com/s3/m/04d6dae14431b90d6d85c7b8.png)
基本不等式与对勾函数之答禄夫天创作创作时间:二零二一年六月三十日 二、 对勾函数by ax x=+)0,0(>>b a 的图像与性质 性质:1.界说域:),0()0,(+∞⋃-∞2. 值域:),2()2,(+∞⋃--∞ab ab3.奇偶性:奇函数, 函数图像整体呈两个“对勾”的形状, 且函数图像关于原点呈中心对称, 即0)()(=-+x f x f4.图像在一、三象限那时0x >, 由基本不等式知b y ax x=+≥ab 2(当且仅当b x a=取等号),即)(x f 在x=ab 时, 取最小值ab 2由奇函数性质知: 当x<0时, )(x f 在x=a b -时, 取最年夜值ab 2-5.单调性:增区间为(∞+,a b ), (ab -∞-,)减区间是(0,ab ), (ab -,0)一、对勾函数的变形形式类型一:函数b y ax x=+)0,0(<<b a 的图像与性质此函数与对勾函数xb x a y )()(-+-=关于原点对称, 故函数图像为 性质:类型二:斜勾函数b y ax x=+)0(<ab①,0<>b a 作图如下性质: ②0,0><b a 作图如下: 类型三:函数)0()(2>++=ac xc bx ax x f此类函数可变形为b x c ax x f ++=)(, 则)(x f 可由对勾函数xc ax y +=上下平移获得 例1作函数xx x x f 1)(2++=的草图解:11)(1)(2++=⇒++=xx x f x x x x f 作图如下:类型四:函数)0,0()(≠>++=k a kx ax x f 此类函数可变形为kkx ak x x f -+++=)()(, 则)(x f 可由对勾函数xax y +=左右平移, 上下平移获得 例2作函数21)(-+=x x x f 的草图解:2212)(21)(+-+-=⇒-+=x x x f x x x f 作图如下: 例3作函数x x x x f +++=23)(的作图: 解:1212211212)(23)(-+++=+++=++++=⇒+++=x x x x x x x x f x x x x f 练习:1.求函数421)(-+=x x x f 在),2(+∞上的最低点坐标2. 求函数1)(-+=x xx x f 的单调区间及对称中心类型五:函数)0,0()(2>≠+=b a b x axx f此类函数界说域为R , 且可变形为x b x axbx a x f +=+=2)(a.若0>a , 则)(x f 的单调性和对勾函数xb x y +=的单调性相反, 图像如下:性质:1.界说域:),(+∞-∞ 2. 值域:)21,21(ba ba ⋅⋅-3. 奇偶性:奇函数, 函数图像整体呈两个倒着的“对勾”的形状, 且函数图像关于原点呈中心对称, 即0)()(=-+x f x f4. 图像在一、三象限那时0x >, 由基本不等式知ba xb x a x f 22)(=⋅≤(当且仅当b x =取等号),即)(x f 在b x =时, 取最年夜值ba 2由奇函数性质知:当x<0时, )(x f 在x=b -时, 取最小值ba2-5. 单调性:减区间为(∞+,b ), (b -∞-,)增区间是],[b b -例4作函数1)(2+=x xx f 的草图 解:x x xx x f x xx f 1111)(1)(22+=+=⇒+=b.若0<a , 作出函数图像: 例5作函数42)(2+-=x xx f 的草图 类型六:函数)0()(2≠+++=a mx c bx ax x f此类函数可变形为)0()()()()(2>++++=+++++=at s mx t m x a m x t m x s m x a x f ,则)(x f 可由对勾函数xtax y +=左右平移, 上下平移获得 例6说明函数11)(2+++=x x x x f 由对勾函数x x y 1+=如何变换而来解:111111)1()1()(2-+++=+++-+=x x x x x x f故 此函数)(x f 可由对勾函数xx y 1+=向(填“左”、“右”)平移单元, 向(填“上”、“下”)平移单元.草图如下:练习:1.已知1->x , 求函数1107)(2+++=x x x x f 的最小值1<x , 求函数1109)(2--+=x x x x f 的最年夜值类型七:函数)0()(2≠+++=a cbx ax mx x f 例7求函数21)(2++-=x x x x f 在区间),1(+∞上的最年夜值解:那时1=x , 0)1(=f 那时1≠x , 3141114)1(3)1(14)1(3)1(1)(22+-+-=-+-+-=+-+--=x x x x x x x x x f问:若区间改为),4[+∞则)(x f 的最年夜值为 练习232)(22++++=x x x x x f 在区间),0[+∞上的最年夜值类型八:函数ax b x x f ++=)(此类函数可变形为标准形式:)0()(>-+-++=+-++=a b ax a b a x ax ab a x x f例8求函数13)(-+=x x x f 的最小值解:141141)(-+-=-+-=x x x x x f练习:1.求函数15)(++=x x x f 的值域2.求函数32)(++=x x x f 的值域类型九:函数)0()(22>++=a ax b x x f此类函数可变形为标准形式:)()()(22222o a b ax a b a x ax ab a x x f >-+-++=+-++=例9求函数45)(22++=x x x f 的最小值解:45)(22++=x x x f 414414)(2222+++=+++=⇒x x x x x f练习:1. 求函数171)(22++=x x x f 的值域 例10已知20,a >求函数.解:2令t ),则1t t +y=11a ≥时, min y101a <<时, 2min y =。
对勾函数讲解与例题解析
![对勾函数讲解与例题解析](https://img.taocdn.com/s3/m/7c59bfc1e53a580216fcfe80.png)
对勾函数对勾函数:数学中一种常见而又特殊的函数。
如图一、对勾函数f(x)=ax+ 的图象与性质对勾函数是数学中一种常见而又特殊的函数。
它在高中教材上不出现,但考试总喜欢考的函数,所以也要注意它和了解它。
(一) 对勾函数的图像对勾函数是一种类似于反比例函数的一般函数,形如f(x)=ax+(接下来写作f(x)=ax+b/x )。
当a≠0,b≠0时,f(x)=ax+b/x 是正比例函数f(x)=ax 与反比例函数f(x)= b/x “叠加”而成的函数。
这个观点,对于理解它的性质,绘制它的图象,非常重要。
当a ,b 同号时,f(x)=ax+b/x 的图象是由直线y =ax 与双曲线y= b/x 构成,形状酷似双勾。
故称“对勾函数”,也称“勾勾函数”、“海鸥函数”。
如下图所示:当a ,b 异号时,f(x)=ax+b/x 的图象发生了质的变化。
但是,我们依然可以看作是两个函数“叠加”而成。
(请自己在图上完成:他是如何叠加而成的。
)一般地,我们认为对勾函数是反比例函数的一个延伸,即对勾函数也是双曲线的一种,只不过它的焦点和渐进线的位置有所改变罢了。
a>0 b>0 a<0 b<0 对勾函数的图像(ab 同号)对勾函数的图像(ab 异号)接下来,为了研究方便,我们规定a>0,b>0。
之后当a<0,b<0时,根据对称就很容易得出结论了。
(二) 对勾函数的顶点对勾函数性质的研究离不开均值不等式。
利用均值不等式可以得到:当x>0时,。
当x<0时,。
即对勾函数的定点坐标:(三) 对勾函数的定义域、值域由(二)得到了对勾函数的顶点坐标,从而我们也就确定了对勾函数的定义域、值域等性质。
(四) 对勾函数的单调性(五) 对勾函数的渐进线 由图像我们不难得到: (六)对勾函数的奇偶性 :对勾函数在定义域内是奇函数, 二、均值不等式(基本不等式)对勾函数性质的研究离不开均值不等式。
专题:对勾函数 (2)
![专题:对勾函数 (2)](https://img.taocdn.com/s3/m/8b6dd1da551810a6f5248691.png)
基本不等式与对勾函数一、 对勾函数by ax x=+)0,0(>>b a 的图像与性质性质: 1. 定义域:),0()0,(+∞⋃-∞2. 值域:),2()2,(+∞⋃--∞ab ab3. 奇偶性:奇函数,函数图像整体呈两个“对勾”的形状,且函数图像关于原点呈中心对称,即0)()(=-+x f x f 4. 图像在一、三象限当0x >时,由基本不等式知by ax x=+≥ab 2(当且仅当x = 即)(x f 在x=ab时,取最小值ab 2 由奇函数性质知: 当x<0时,)(x f 在x=ab-时,取最大值ab 2- 5. 单调性:增区间为(∞+,a b ),(a b -∞-,) 减区间是(0,ab ),(a b -,0)一、 对勾函数的变形形式 类型一:函数byax x=+)0,0(<<b a 的图像与性质此函数与对勾函数xb x a y )()(-+-=关于原点对称,故函数图像为 性质:类型二:斜勾函数byax x=+)0(<ab ①0,0<>b a 作图如下性质: ②0,0><b a 作图如下:类型三:函数)0()(2>++=ac xc bx ax x f此类函数可变形为b xc ax x f ++=)(,则)(x f 可由对勾函数xcax y +=上下平移得到 例1作函数xx x x f 1)(2++=的草图解:11)(1)(2++=⇒++=xx x f x x x x f 作图如下: 类型四:函数)0,0()(≠>++=k a kx ax x f 此类函数可变形为k k x a k x x f -+++=)()(,则)(x f 可由对勾函数xax y +=左右平移,上下平移得到 例2作函数21)(-+=x x x f 的草图 解:2212)(21)(+-+-=⇒-+=x x x f x x x f 作图如下: 例3作函数x x x x f +++=23)(的作图: 解:1212211212)(23)(-+++=+++=++++=⇒+++=x x x x x x x x f x x x x f练习:1.求函数421)(-+=x x x f 在),2(+∞上的最低点坐标2.求函数1)(-+=x xx x f 的单调区间及对称中心 类型五:函数)0,0()(2>≠+=b a bx axx f此类函数定义域为R ,且可变形为x b x axbx a x f +=+=2)( a.若0>a ,则)(x f 的单调性和对勾函数xbx y +=的单调性相反,图像如下:性质:1.定义域:),(+∞-∞2.值域:)21,21(ba ba ⋅⋅-3.奇偶性:奇函数,函数图像整体呈两个倒着的“对勾”的形状,且函数图像关于原点呈中心对称,即0)()(=-+x f x f4.图像在一、三象限当0x >时,由基本不等式知ba xb x a x f 22)(=⋅≤(当且仅当b x =取等号),即)(x f 在b x =时,取最大值ba 2由奇函数性质知: 当x<0时,)(x f 在x=b -时,取最小值ba 2-5.单调性:减区间为(∞+,b ),(b -∞-,)增区间是],[b b -例4作函数1)(2+=x xx f 的草图 解:x x xx x f x xx f 1111)(1)(22+=+=⇒+=b.若0<a,作出函数图像:例5作函数42)(2+-=x xx f 的草图类型六:函数)0()(2≠+++=a mx cbx ax x f 此类函数可变形为)0()()()()(2>++++=+++++=at s mx tm x a m x t m x s m x a x f , 则)(x f 可由对勾函数xtax y +=左右平移,上下平移得到 例6说明函数11)(2+++=x x x x f 由对勾函数x x y 1+=如何变换而来解:111111)1()1()(2-+++=+++-+=x x x x x x f 故此函数)(x f 可由对勾函数xx y 1+=向(填“左”、“右”)平移单位,向(填“上”、“下”)平移单位.草图如下:练习:1.已知1->x ,求函数1107)(2+++=x x x x f 的最小值2.已知1<x ,求函数1109)(2--+=x x x x f 的最大值类型七:函数)0()(2≠+++=a cbx ax mx x f 例7求函数21)(2++-=x x x x f 在区间),1(+∞上的最大值 解:当1=x 时,0)1(=f当1≠x 时,3141114)1(3)1(14)1(3)1(1)(22+-+-=-+-+-=+-+--=x x x x x x x x x f问:若区间改为),4[+∞则)(x f 的最大值为练习:1.求函数232)(22++++=x x x x x f 在区间),0[+∞上的最大值类型八:函数ax b x x f ++=)(此类函数可变形为标准形式:)0()(>-+-++=+-++=a b ax a b a x ax ab a x x f例8求函数13)(-+=x x x f 的最小值解:141141)(-+-=-+-=x x x x x f练习:1.求函数15)(++=x x x f 的值域2.求函数32)(++=x x x f 的值域 类型九:函数)0()(22>++=a ax b x x f此类函数可变形为标准形式:)()()(22222o a b ax a b a x ax ab a x x f >-+-++=+-++=例9求函数45)(22++=x x x f 的最小值解:45)(22++=x x x f 414414)(2222+++=+++=⇒x x x x x f练习:1.求函数171)(22++=x x x f 的值域例10已知20,a >求函数的最小值。
高考数学 黄金100题系列 第18题 几类特殊函数(对勾函数绝对值函数等)理
![高考数学 黄金100题系列 第18题 几类特殊函数(对勾函数绝对值函数等)理](https://img.taocdn.com/s3/m/74fc912d5a8102d276a22fbd.png)
第18题 几类特殊函数(对勾函数、绝对值函数等)I .理论基础·解题原理 (I )对勾函数 一、对勾函数的定义形如)0,0(>>+=b a xbax y 的函数,叫做对勾函数. 二、对勾函数)0,0()(>>+=b a xbax x f 的图象与性质1.定义域 0}{≠∈x R x2.值域当0>x 时,ab xbax x b ax 22=⋅≥+(当且仅当x b ax =,即a b x =时取等号). 当0<x 时,ab x b ax x b ax x b ax 2))((2)]()[(-=---≤-+--=+(当且仅当x b ax -=-,即abx -=时取等号). 函数)0,0()(>>+=b a xbax x f 的值域为,2[]2,(ab ab ⋃--∞)∞+. 3.奇偶性由于双勾函数定义域关于原点对称,)()(xbax x b ax x f +-=--=-)(x f -=,则对勾函数为奇函数. 4.单调性 由于2)(x b a x f -=',令0)(>'x f ,解得a b x -<或a b x >,令0)(>'x f ,解得0<<-x ab或ab x <<0,所以函数)(x f 在),(a b -∞上为增函数,在)0,(a b -上为减函数,在),0(a b 上为减函数,在),(+∞ab上为增函数. 5.渐近线当0>x 时,0>+x b ax ,当0<x 时,0<+xbax ,说明函数的的图象在第一、第三象限. 当0>x 时,xbx b ax x f >+=)(,说明函数在第一象限的图象在直线ax y =的上方,当0<x 时,ax xbax x f <+=)(,说明函数在第三象限的图象在直线ax y =的下方. 双勾函数就是以y 轴和直线x y =为渐近线的双曲线. 特别1,1==b a 时,xx x f 1)(+=,函数图象如下图所示:(II )绝对值函数一、绝对值函数的定义:形如b ax y +=的函数,叫做绝对值函数.含绝对值的函数本质上是分段函数,往往需要先去绝对值再结合函数图像进行研究,由于去绝对值函数大多要涉及到分类讨论,对能力要求较高,故备受高考命题者青睐,高考常考的主要有以下3类:1.形如()f x 的函数,研究此类函数往往结合()f x 图像,可以看成由()f x 的图像在x 轴上方部分不变,下方部分关于x 轴对称得到;2.形如()fx 的函数,此类函数是偶函数,因此可以先研究0x ≥的情况,0x <的情况可以根据对称性得到;3.函数解析式中部分含有绝对值,如1y x x a =-+,2y x x a =+-等,这种函数是普通的分段函数,一般先去绝对值,再结合图像进行研究. 二、绝对值函数b ax x f +=)(的图象与性质 1.定义域:R ; 2.值域:),0[+∞;3.单调性:函数)(x f 在)(a b-∞-,上为减函数,在),(+∞-ab上为增函数. 特别0,1==b a 时,x x f =)(,图象如下图所示(III )取整函数 取整函数的定义若x 为实数,[]x 表示不超过x 的最大整数,则函数][)(x x f =叫做取整函数.举例如下:,0]8.0[,0]35.0[,1]2.1[,2]8.2[=-===1]9.1[-=-等.IV .题型攻略·深度挖掘 【考试方向】这类试题在考查题型上,可以是选择题或填空题,也可以是解答题,难度较大,往往与函数的单调性、奇偶性、周期性及对称性有联系,主要考查函数的性质的应用等. 【技能方法】解决此类问题一般要把先求函数的定义域,在定义域内研究函数的相关性质.最好先画出函数的图象,利用数形结合思想,解决相应问题. 【易错指导】注意定义域先行原则,必须先求出函数的定义域,在定义域内解决相应问题. V .举一反三·触类旁通 考向1 对勾函数【例1】【2018河北唐山模拟】已知1()1f x x x=+-,()2f a =,则()f a -=( ) A .4- B .2- C .1- D .3- 【答案】A【解析】∵1()1f x x x =+-,∴xx x f 11)(+=+,令1)()(+=x f x F ,则)(x F 为奇函数,则)()(x F x F -=-,所以1)(1)(--=+-x f x f ,有4222)()(-=--=--=-a f a f ,故选A .考点:函数值、函数的奇偶性.【例2】【2018云南省师大附中模拟】若函数32()3f x x tx x =-+在区间[1,4]上单调递减,则实数t 的取值范围是( ) A .51(,]8-∞ B .(,3]-∞ C .51[,)8+∞ D .[3,)+∞ 【答案】C考点:导数的运算、利用导数判断函数的单调性. 【例3】【2017山西四校联考】若函数)()(R b xbx x f ∈+=的导函数在区间(1,2)上有零点,则)(x f 在下列区间上单调递增的是A .(]1,-∞-B . ()0,1-C .()1,0D .()+∞,2 【解析】01)(2=-='xb x f ,b x =2,显然0>b ,函数)()(R b x b x x f ∈+=的导函数在区间(1,2)上有零点,41<<b ,)(x f 为增函数,只需b x xb x x b x f ≥≥-=-='2222,01)(,故选D . 【名师点睛】1.要结合图象,理解对勾函数的各种性质,单调性,对称性,奇偶性等. 2.通过对勾函数的研究,要明确均值不等式的使用条件.3.对渐近线的认识,应进一步加深,我们可以理解为,函数图象无限靠近直线,且总在直线的一侧.【例4】【2018吉林百校联盟高三九月联考】已知函数()12,1,2{ 12,1,2x x x x x f x x ->=-≤函数()()g x f x m =-,则下列说法错误的是( ) A .若32m ≤-,则函数()g x 无零点 B .若32m >-,则函数()g x 有零点C .若3322m -<≤,则函数()g x 有一个零点 D .若32m >,则函数()g x 有两个零点 【答案】A【解析】作出函数()f x 的图象如图所示:观察可知:当32m =-时,函数()g x 有一个零点,故A 错误.故选A . 【跟踪练习】 1.若函数()4f x x x=+,则下列结论正确的是( ) ()()()()4(0,2),(2,)4(0,2),(2.)...,A f x B f x C f x D f x +∞+∞的最小值为在上单调递减在上单调递增的最大值为在函数函数函数函上单调递增在数上单调递减2.关于函数()21lg ||f x x x +=有下列命题:(1)其图象关于y 轴对称;(2)函数f (x )在(0,)+∞上单调递增,在(,0)-∞上单调递减; (3)函数f (x )的最小值为lg 2;(4)函数f (x )在(1,0),(2,)-+∞上单调递增; (5)函数f (x )无最大值,也无最小值 其中所有正确结论的序号是( )【解析】注意函数的定义域为0x ≠.如图:所以在(0,)+∞上,g (x )在(0,1)上递减,在(1,)+∞上递增.所以由复合函数单调性可知,f (x ) 在(0,1)上递减,在(1,)+∞上递增.由函数对称性,f (x ) 在(1,0)-上递增,在(,1)-∞-上递减,所以(2)不正确,(4)正确.又因为,函数g (x )的最小值为2,所以f (x )的最小值为lg2,所以(3)正确,(5)不正确. 3.函数224log ([2,4])log y x x x=+∈的最大值为______ 【答案】54.求函数3()f x x x=+在下列条件下的值域: (1)()(,0)0,x ∈-∞+∞;(2)(2,3]x ∈【解析】(1)当x>0时,由均值不等式,有3x x +≥=当3x x=时,即x =当x<0时,有 33[()]x x x x+=--+≤--所以函数的值域为:()-∞-⋃∞,5.已知函数()af x x x=+其中常数a>0.(1)证明:函数f(x)在上是减函数,在)+∞ 上是增函数; (2)利用(1)的结论,求函数20y x x=+(x ∈[4,6])的值域; (3)借助(1)的结论,试指出函数27()1xg x x x-=++ 的单调区间,不必证明.(3)55(1)111y x x x x =+=-++--,所以值域为:1,)+∞. 考向2 绝对值函数【例5】【2017云南昆明下学期第二次统测】已知关于x 的方程12a x x =+有三个不同的实数解,则实数a 的取值范围是 ( )A .(),0-∞B .()0,1C .()1,+∞D .()0,+∞ 【答案】C【例6】已知函数21,0()log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩,若方程()f x a =有四个不同的解1x ,2x ,3x ,4x ,且1234x x x x <<<,则3122341()x x x x x ++的取值范围是( ) A .(1,)-+∞ B .(]1,1- C .(,1)-∞ D .[)1,1- 【答案】B【例7】【2018上海交通大学附中高三上学期开学摸底考试】已知函数()2,1{2,1x x f x x x x+<=+≥,设a R ∈,若关于x 的不等式()2xf x a ≥+在R 上恒成立,则a 的取值范围是__________. 【答案】[]2,2-【例8】【2015高考湖北卷】a 为实数,函数2()||f x x ax =-在区间[01],上的最大值记为()g a . 当a = 时,()g a 的值最小.【答案】3-【解析】()()2f x x ax x x a =-=-.①当0a <时,函数()f x 的图像如图所示.函数()f x 在区间[]0,1上单调递增,()()()max 11f x g a f a ===-.②当0a =时,2()f x x =,()f x 在区间[]0,1上的最大值为()()11f g a a ==-.③当0a >时,函数()f x 的图像如图所示.【例9】函数x x g 2log )(= )21(>x ,关于x 的方程2()()230g x m g x m +++=恰有三个不同实数解,则实数m 的取值范围为 . 【答案】3423m -<≤-【例10】【2018广东广州模拟】已知函数()()11f x x x x R =-++∈ (1)证明:函数()f x 是偶函数;(2)利用绝对值及分段函数知识,将函数解析式写成分段函数的形式,然后画出函数图像(草图),并写出函数的值域;(3)在同一坐标系中画出直线2y x =+,观察图像写出不等式()2f x x >+的解集. 【答案】(1)见解析;(2)见解析;(3){|02}x x x 或.【解析】试题分析: 判断函数的奇偶性,首先要考查函数的定义域,函数的定义域关于原点对称是函数具有奇偶性的前提,当函数的定义域关于原点对称式, 根据f(-x)与f(x)的关系,判断函数f(x)为奇偶性;再利用零点分区间讨论法分段去掉绝对值符号,化为分段函数,画出函数图象;根据图象解不等式,这是一种数形结合思想. 试题解析:(1)依题可得: ()f x 的定义域为R()()1111f x x x x x f x -=--+-+=++-= ∴ ()f x 是偶函数(2)()()2(1){2112(1)xx f x x x x -<-=-≤≤> 由函数图象知,函数的值域为[)2,+∞ (3)由函数图象知,不等式的解集为{|02}x x x 或 【跟踪练习】1.【2018浙江台州模拟】函数{}()min 2f x x =-,其中{},min ,,a a ba b b a b ≤⎧=⎨>⎩,若动直线y m=与函数()y f x =的图像有三个不同的交点,它们的横坐标分别123,,x x x ,则123x x x ⋅⋅的最大值为( ) A .4 B .3C .2D .1【答案】D由m x x =-=-2222,得m x -=22,02>-m 由m x x =-=-2233,得23+=m x ,02>+m()()()12441441224222222321=⎥⎦⎤⎢⎣⎡-+≤-=+⋅-⋅=⋅⋅∴m m m m m m m x x x ,当且仅当224m m -=,即2=m 时取到等号,故答案为D .考点:1、函数图象的应用;2、基本不等式的应用.2.【2018北京西城区模拟】设函数3||, 1,()log , 1.x a x f x x x -⎧=⎨>⎩≤ (1)如果(1)3f =,那么实数a =___;(2)如果函数()2y f x =-有且仅有两个零点,那么实数a 的取值范围是___. 【答案】2-或4;(1,3]-【解析】由题意()113,f a =-= ,解得2a =-或4a =; 第二问如图:考点:1.分段函数值;2.函数的零点. 3.设函数a R x a x x x f ,(2)(2∈-+=为常数) (1)a =2时,讨论函数)(x f 的单调性;(2)若a >-2,函数)(x f 的最小值为2,求a 的值.(2)2222)(22ax a x a x x a x x x f <≥⎩⎨⎧+--+=,12,2->∴->a a ,结合图像可得 当2≥a 时函数)(x f y =的最小值为1)1(-=a f =2,解得a =3符合题意;当22<<-a 时函数)(x f y =的最小值为24)2(2==a a f ,无解; 综上,a =3.考向3 取整函数与程序框图【例11】【2018山西四校联考】执行图中的程序框图(其中[]x 表示不超过x 的最大整数),则输出的S 值为A .5B .7C .9D .12考向4 取整函数与函数的周期性【例12】【2018陕西西北工业大学附中模拟】x 为实数,[]x 表示不超过x 的最大整数,则函数()[]f x x x =-在R 上为 ( )A .奇函数B .偶函数C .增函数D . 周期函数 【答案】D【解析】因为f (x )=x-[x],所以f (x+1)=(x+1),-[x+1]=x+1-[x]-1=x-[x]=f (x ), ∴f (x )=x-[x]在R 上为周期是1的函数.所以选D . 考点:函数的周期性.【例13】【2017重庆一中高三上学期一诊模拟考试】高斯是德国著名的数学家,享有“数学王子”之称,以他的名字“高斯”命名的成果达110个,设,用表示不超过的最大整数,并用表示的非负纯小数,则称为高斯函数,已知数列满足:,则__________.【答案】考点:归纳推理、数列的递推公式及新定义问题.【跟踪练习】1.【2018重庆铜梁一中高三上学期第一次月考】阅读下列一段材料,然后解答问题:对于任意实数,符号表示“不超过的最大整数”,在数轴上,当是整数,就是,当不是整数时,是点左侧的第一个整数点,这个函数叫做“取整函数”,也叫高斯(Gauss)函数.如.求的值为()A.0 B.-2 C.-1 D.1【答案】C【解析】=−2,−2<<−1,=−1,=0,=1,1<<2,=2,由“取整函数”的定义可得,=−2−2−1+0+1+1+2=−1.故选:C.点睛:正确理解高斯(Gauss)函数的概念是解题的关键,表示“不超过的最大整数”,首先小于等于此实数,并且其为最大的整数,条件想全面.2.【2018江苏南京模拟】函数[]y x =称为高斯函数,又称取整函数,对任意实数,[]x x 是不超过x 的最大整数,则函数[]1(0.5 2.5)y x x =+-<<的值域为 . 【答案】}{0,1,2,33.【2018福建三明模拟】对于任意x ∈R ,令[]x 为不大于x 的最大整数,则函数()[]f x x =称为高斯函数或取整函数.若数列{}n a 满足()4n na f =()n +∈N ,且数列{}n a 的前n 项和为n S ,则4n S 等于 . 【答案】22n n - 【解析】由定义知41235678940,1,2,n a a a a a a a a a a n==========,244(12...1)2n S n n n n∴=+++-+=-.考向5 取整函数与函数的零点【例14】【2018天津南开中学第三次月考】已知,x R ∈符号[]x 表示不超过x 的最大整数,若函数()[]()0x f x a x x=->有且仅有3个零点,则a 的取值范围是 .【答案】34,45⎛⎤ ⎥⎝⎦【解析】由f (x )=0得a xx =][,令g (x )=x x ][(x>0),作出g (x )的图象,利用数形结合即可得到a的取值范围.由f (x )=0得a xx =][;令g (x )=x x ][,(x>0),则当0<x <1,[x]=0,此时g (x )=0,当1≤x <2,[x]=1,此时g (x )=x 1,此时1)(21≤<x g ;当2≤x<3,[x]=2,此时g (x )=x 2,此时1)(32≤<x g ;当3≤x<4,[x]=3,此时g (x )=x 3,此时1)(43≤<x g ;当4≤x<5,[x]=4,此时g (x )=x 4,此时1)(54≤<x g ;作出g (x )的函数的图象,要使函数()[]()0x f x a x x=->有且仅有3个零点,即函数g (x )的图象与直线y=a 有且只有三个零点,由图象可知:5443≤<a .故答案为:5443≤<a . 考点:函数的零点与方程根的关系.【例15】【2018杭州重点中学联考】已知x R ∈,符号[]x 表示不超过x 的最大整数,若函数[]()(0)x f x a x x=-≠有且仅有3个零点,则a 的取值范围是3443.,,4532A ⎡⎤⎡⎤⋃⎢⎥⎢⎥⎣⎦⎣⎦ 3443.,,4532B ⎛⎤⎡⎫⋃ ⎪⎥⎢⎝⎦⎣⎭ 1253.,,2342C ⎛⎤⎡⎫⋃ ⎪⎥⎢⎝⎦⎣⎭ 1253.,,2342D ⎡⎤⎡⎤⋃⎢⎥⎢⎥⎣⎦⎣⎦【答案】B若x >0,此时[x]≥0;若[x]=0,则[]0x x=,若[x]≥1,因为[x]≤x<[x]+1,故[][][]1a 1[]11[]1x x x x x x +++<,<,且[][]1x x +随着[x]的增大而增大.若x <0,此时[x]<0;若﹣1≤x<0,则[]1x x≥,若x <-1,因为[x]≤x<-1;[x]≤x<[x]+1,故[x][x][x]11a x [x]1[x]1++<,<,且[][]1x x +随着[x]的增大而增大.又因为[x]一定是不同的x 对应不同的a 值.所以为使函数[x]f x a x =-()有且仅有3个零点,只能使[x]=1,2,3;或[x]=-1,-2,-3.若[x]=1,有121≤<a 若[x]=2,有132≤<a 若[x]=3,有143≤<a 若[x]=4,有154≤<a 若[x]=-1,有a >1;若[x]=-2,有1≤a<2;若[x]=-3,有231<≤a 若[x]=-4,有341<≤a ,综上所述,5443<<a 或2334<<a .故选:B .考点:函数零点的判定定理. 【跟踪练习】1.【2018福建省莆田模拟】在计算机的算法语言中有一种函数[]x 叫做取整函数(也称高斯函数),[]x 表示不超过x 的最大整数.例如:[2]2,[3.1]3,[ 2.6]3==-=-.设函数[()][()]y f x f x =+-的值域为 ( )A .{}0B .{}1,0-C .{}1,0,1-D .{}2,0- 【答案】B2.某学校要招开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数[]y x =(其中[]x 表示不大于x 的最大整数)可以表示为( ) A .510x y +⎡⎤=⎢⎥⎣⎦ B .410x y +⎡⎤=⎢⎥⎣⎦ C .310x y +⎡⎤=⎢⎥⎣⎦D .10x y ⎡⎤=⎢⎥⎣⎦ 【答案】C【解析】根据题意,当16x =时1y =,所以选项,A B 不正确,当17x =时2y =,所以D 不正确,故选C .3.【2018浙江浙大附中模拟】对于实数x ,][x 称为取整函数或高斯函数,亦即][x 是不超过x 的最大整数.例如:2]3.2[=.直角坐标平面内,若),(y x 满足4]1[]1[22=-+-y x ,则 22y x +的取值范围是.【答案】(1,5)[10,20)。
对勾函数讲解与例题解析
![对勾函数讲解与例题解析](https://img.taocdn.com/s3/m/e9cb992ba300a6c30c229fde.png)
对勾函数对勾函数:数学中一种常见而又特殊的函数。
如图一、对勾函数f(x)=ax+错误!未找到引用源。
的图象与性质对勾函数是数学中一种常见而又特殊的函数。
它在高中教材上不出现,但考试总喜欢考的函数,所以也要注意它和了解它。
(一) 对勾函数的图像对勾函数是一种类似于反比例函数的一般函数,形如f(x)=ax+错误!未找到引用源。
(接下来写作f(x)=ax+b/x )。
当a≠0,b≠0时,f(x)=ax+b/x 是正比例函数f(x)=ax 与反比例函数f(x)= b/x “叠加”而成的函数。
这个观点,对于理解它的性质,绘制它的图象,非常重要。
当a ,b 同号时,f(x)=ax+b/x 的图象是由直线y =ax 与双曲线y= b/x 构成,形状酷似双勾。
故称“对勾函数”,也称“勾勾函数”、“海鸥函数”。
如下图所示:当a ,b 异号时,f(x)=ax+b/x 的图象发生了质的变化。
但是,我们依然可以看作是两个函数“叠加”而成。
(请自己在图上完成:他是如何叠加而成的。
)一般地,我们认为对勾函数是反比例函数的一个延伸,即对勾函数也是双曲线的一种,只不过它的焦点和渐进线的位置有所改变罢了。
a>0 b>0 a<0 b<0 对勾函数的图像(ab 同号)对勾函数的图像(ab 异号)接下来,为了研究方便,我们规定a>0,b>0。
之后当a<0,b<0时,根据对称就很容易得出结论了。
(二) 对勾函数的顶点对勾函数性质的研究离不开均值不等式。
利用均值不等式可以得到:当x>0时,错误!未找到引用源。
当x<0时,错误!未找到引用源。
即对勾函数的定点坐标:(三) 对勾函数的定义域、值域由(二)得到了对勾函数的顶点坐标,从而我们也就确定了对勾函数的定义域、值域等性质。
(四) 对勾函数的单调性(五) 对勾函数的渐进线 由图像我们不难得到: (六)对勾函数的奇偶性 :对勾函数在定义域内是奇函数, 二、均值不等式(基本不等式) 对勾函数性质的研究离不开均值不等式。
对勾函数讲解与例题解析
![对勾函数讲解与例题解析](https://img.taocdn.com/s3/m/51529223580216fc700afde8.png)
对勾函数对勾函数:数学中一种常见而又特殊的函数。
如图一、对勾函数f(x)=ax+ 错误!未找到引用源。
的图象与性质对勾函数是数学中一种常见而又特殊的函数。
它在高中教材上不出现,但考试总喜欢考的函数,所以也要注意它和了解它。
(一) 对勾函数的图像对勾函数是一种类似于反比例函数的一般函数,形如f(x)=ax+错误!未找到引用源。
(接下来写作f(x)=ax+b/x )。
当a≠0,b≠0时,f(x)=ax+b/x 是正比例函数f(x)=ax 与反比例函数f(x)= b/x “叠加”而成的函数。
这个观点,对于理解它的性质,绘制它的图象,非常重要。
当a ,b 同号时,f(x)=ax+b/x 的图象是由直线y =ax 与双曲线y= b/x 构成,形状酷似双勾。
故称“对勾函数”,也称“勾勾函数”、“海鸥函数”。
如下图所示:当a ,b 异号时,f(x)=ax+b/x 的图象发生了质的变化。
但是,我们依然可以看作是两个函数“叠加”而成。
(请自己在图上完成:他是如何叠加而成的。
)一般地,我们认为对勾函数是反比例函数的一个延伸,即对勾函数也是双曲线的一种,只不过它的焦点和渐进线的位置有所改变罢了。
a>0 b>0 a<0 b<0 对勾函数的图像(ab 同号)对勾函数的图像(ab 异号)接下来,为了研究方便,我们规定a>0,b>0。
之后当a<0,b<0时,根据对称就很容易得出结论了。
(二) 对勾函数的顶点对勾函数性质的研究离不开均值不等式。
利用均值不等式可以得到:当x>0时,错误!未找到引用源。
当x<0时,错误!未找到引用源。
即对勾函数的定点坐标:(三) 对勾函数的定义域、值域由(二)得到了对勾函数的顶点坐标,从而我们也就确定了对勾函数的定义域、值域等性质。
(四) 对勾函数的单调性(五) 对勾函数的渐进线 由图像我们不难得到: (六)对勾函数的奇偶性 :对勾函数在定义域内是奇函数, 二、均值不等式(基本不等式) 对勾函数性质的研究离不开均值不等式。
对勾函数讲解与例题解析
![对勾函数讲解与例题解析](https://img.taocdn.com/s3/m/8e0d7b8de009581b6bd9ebb4.png)
对勾函数对勾函数:数学中一种常见而又特殊的函数。
如图一、对勾函数f(x)=ax+ 的图象与性质对勾函数是数学中一种常见而又特殊的函数。
它在高中教材上不出现,但考试总喜欢考的函数,所以也要注意它和了解它。
(一) 对勾函数的图像对勾函数是一种类似于反比例函数的一般函数,形如f(x)=ax+(接下来写作f(x)=ax+b/x )。
当a≠0,b≠0时,f(x)=ax+b/x 是正比例函数f(x)=ax 与反比例函数f(x)= b/x “叠加”而成的函数。
这个观点,对于理解它的性质,绘制它的图象,非常重要。
当a ,b 同号时,f(x)=ax+b/x 的图象是由直线y =ax 与双曲线y= b/x 构成,形状酷似双勾。
故称“对勾函数”,也称“勾勾函数”、“海鸥函数”。
如下图所示:当a ,b 异号时,f(x)=ax+b/x 的图象发生了质的变化。
但是,我们依然可以看作是两个函数“叠加”而成。
(请自己在图上完成:他是如何叠加而成的。
)一般地,我们认为对勾函数是反比例函数的一个延伸,即对勾函数也是双曲线的一种,只不过它的焦点和a>0 b>0 a<0 b<0 对勾函数的图像(ab 同号)对勾函数的图像(ab 异号)渐进线的位置有所改变罢了。
接下来,为了研究方便,我们规定a>0,b>0。
之后当a<0,b<0时,根据对称就很容易得出结论了。
(二) 对勾函数的顶点对勾函数性质的研究离不开均值不等式。
利用均值不等式可以得到:当x>0时,。
当x<0时,。
即对勾函数的定点坐标:(三) 对勾函数的定义域、值域由(二)得到了对勾函数的顶点坐标,从而我们也就确定了对勾函数的定义域、值域等性质。
(四) 对勾函数的单调性(五) 对勾函数的渐进线 由图像我们不难得到: (六)对勾函数的奇偶性 :对勾函数在定义域内是奇函数, 二、均值不等式(基本不等式) 对勾函数性质的研究离不开均值不等式。
对勾函数讲解与例题解析
![对勾函数讲解与例题解析](https://img.taocdn.com/s3/m/112599f050e2524de5187e60.png)
对勾函数对勾函数:数学中一种常见而又特殊的函数。
如图一、对勾函数f(x)=ax+错误!未找到引用源。
的图象与性质对勾函数是数学中一种常见而又特殊的函数。
它在高中教材上不出现,但考试总喜欢考的函数,所以也要注意它和了解它。
(一) 对勾函数的图像对勾函数是一种类似于反比例函数的一般函数,形如f(x)=ax+错误!未找到引用源。
(接下来写作f(x)=ax+b/x )。
当a≠0,b≠0时,f(x)=ax+b/x 是正比例函数f(x)=ax 与反比例函数f(x)= b/x “叠加”而成的函数。
这个观点,对于理解它的性质,绘制它的图象,非常重要。
当a ,b 同号时,f(x)=ax+b/x 的图象是由直线y =ax 与双曲线y= b/x 构成,形状酷似双勾。
故称“对勾函数”,也称“勾勾函数”、“海鸥函数”。
如下图所示:当a ,b 异号时,f(x)=ax+b/x 的图象发生了质的变化。
但是,我们依然可以看作是两个函数“叠加”而成。
(请自己在图上完成:他是如何叠加而成的。
)一般地,我们认为对勾函数是反比例函数的一个延伸,即对勾函数也是双曲线的一种,只不过它的焦点和渐进线的位置有所改变罢了。
a>0 b>0 a<0 b<0 对勾函数的图像(ab 同号)对勾函数的图像(ab 异号)接下来,为了研究方便,我们规定a>0,b>0。
之后当a<0,b<0时,根据对称就很容易得出结论了。
(二) 对勾函数的顶点对勾函数性质的研究离不开均值不等式。
利用均值不等式可以得到:当x>0时,错误!未找到引用源。
当x<0时,错误!未找到引用源。
即对勾函数的定点坐标:(三) 对勾函数的定义域、值域由(二)得到了对勾函数的顶点坐标,从而我们也就确定了对勾函数的定义域、值域等性质。
(四) 对勾函数的单调性(五) 对勾函数的渐进线 由图像我们不难得到: (六)对勾函数的奇偶性 :对勾函数在定义域内是奇函数, 二、均值不等式(基本不等式) 对勾函数性质的研究离不开均值不等式。
应用题专题训练__函数(对勾函数)
![应用题专题训练__函数(对勾函数)](https://img.taocdn.com/s3/m/b860968bf524ccbff12184a3.png)
应用题综合复习----对勾函数1、甲、乙两地相距S千米,汽车从甲地匀速行驶到乙地,速度不得超过c千米/时,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成;可变部分与速度v(千米/时)的平方成正比,比例系数为b;固定部分为a元。
①把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出函数的定义域;②为了使全程运输成本最小,汽车应以多大速度行驶?2、某森林出现火灾,火势正以每分钟2m100的速度顺风蔓延,消防站接到警报立即派消防队员前去,在火灾发生后五分钟到达救火现场,已知消防队员在现场平均每人每分钟灭火2m50,所消耗的灭火材料、劳务津贴等费用为每人每分钟125元,另附加每次救火所耗损的车辆、器械和装备等费用平均每人100元,而烧毁一平方米森林损失费为60元.(1)设派x名消防队员前去救火,用t分钟将火扑灭,试建立t与x的函数关系式;(2)问应该派多少消防队员前去救火,才能使总损失最少?专业知识整理分享专业知识整理分享3、某学校要建造一个面积为10000平方米的运动场。
如图,运动场是由一个矩形ABCD 和分别以AD 、BC 为直径的两个半圆组成。
跑道是一条宽8米的塑胶跑道,运动场除跑道外,其他地方均铺设草皮。
已知塑胶跑道每平方米造价为150元,草皮每平方米造价为30元 (1) 设半圆的半径OA=r (米),试建立塑胶跑道 面积S 与r 的函数关系S(r )(2) 由于条件限制[]30,40r ∈,问当r 取何值时,运动场造价最低?(精确到元)4、已知某种稀有矿石的价值y (单位:元)与其重量ω(单位:克)的平方成正比,且3克该种矿石的价值为54000元。
⑴写出y (单位:元)关于ω(单位:克)的函数关系式;⑵若把一块该种矿石切割成重量比为1:3的两块矿石,求价值损失的百分率; ⑶把一块该种矿石切割成两块矿石时,切割的重量比为多少时,价值损失的百分率最大。
(注:价值损失的百分率100%-=⨯原有价值现有价值原有价值;在切割过程中的重量损耗忽略不计)专业知识整理分享5、国家加大水利工程建设,某地区要修建一条灌溉水渠,其横断面为等腰梯形(如图),底角A 为060,考虑到坚固性及用料原因,要求其横断面的面积为记水渠深为x 米,用料部分的周长(即渠底BC 及两腰长的和)为y 米,⑴.求y 关于x 的函数关系式,并指出其定义域; ⑵.当水渠的腰长x 为多少米时,水泥用料最省(即断面的用料部分的周长最小)?求此时用料周长的值 ⑶.如果水渠的深限制在⎡⎣范围内时,横断面用料部分周长的最小值是多少米?6、因客流量临时增大, 某鞋店拟用一个高为50㎝(即EF =50㎝)的平面镜自制一个竖直摆放的简易鞋镜. 根据经验,一般顾客AB 的眼睛B 到地面的距离(cm)x 在区间[140,180内. 设支架FG 高为(090)h h <<㎝,100AG =㎝, 顾客可视的镜像范围为CD (如图所示), 记CD 的长度为y(y GD GC =-).(1) 当40h =㎝时, 试求y 关于x 的函数关系式和y 的最大值;(2) 当顾客的鞋A 在镜中的像1A 满足不等关系1GC GA GD <≤(不计鞋长)时, 称顾客可在镜中看到自己的鞋. 若使一般顾客都能在镜中看到自己的鞋, 试求h 的取值范围.第6题ABCDEF G A 1 ·专业知识整理分享7、某城市坐落在一个三角形海域的顶点O 处(如图),一条海岸线AO 在城市O 的正东方向,另一条海岸线OB 在城市O 北偏东)31(tan =θθ方向,位于城市O 北偏东3(cos )25παα-=方向15km 的P 处有一个美丽的小岛. 旅游公司拟开发如下一条旅游观光线路:从城市O 出发沿海岸线OA 到达C 处,再从海面直线航行,途经小岛P 到达海岸线OB 的D 处,然后返回城市O. 为了节省开发成本,要求这条旅游观光线路所围成的三角形区域面积最小,问C 处应选址何处?并求这个三角形区域的最小面积.8、某工厂利用辐射对食品进行灭菌消毒,现准备在该厂附近建一职工宿舍,并对宿舍进行防辐射处理,建房防辐射材料的选用与宿舍到工厂距离有关.若建造宿舍的所有费用p (万元)和宿舍与工厂的距离()x km 的关系为:(08)35kp x x =≤≤+,若距离为1km 时,测算宿舍建造费用为100万元.为了交通方便,工厂与宿舍之间还要修一条道路,已知购置修路设备需5万元,铺设路面每公里成本为6万元,设()f x 为建造宿舍与修路费用之和. (I )求()f x 的表达式;(II )宿舍应建在离工厂多远处,可使总费用()f x 最小,并求最小值.(第7题图)专业知识整理分享9、在某次水下考古活动中,需要潜水员潜入水深为30米的水底进行作业.其用氧量包含3个方面:①下潜时,平均速度为v (米/单位时间),单位时间内用氧量为2cv (c 为正常数);②在水底作业需5个单位时间,每个单位时间用氧量为0.4;③返回水面时,平均速度为2v(米/单位时间), 单位时间用氧量为0.2.记该潜水员在此次考古活动中,总用氧量为y .(1)将y 表示为v 的函数;(2)设0<v ≤5,试确定下潜速度v ,使总的用氧量最少.10、某化工企业2007年底投入100万元,购入一套污水处理设备.该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元. (Ⅰ)求该企业使用该设备x 年的年平均污水处理费用y (万元); (Ⅱ)问为使该企业的年平均污水处理费用最低,该企业几年后需要重新更换新的污水处理设备?11、某单位有员工1000名,平均每人每年创造利润10万元.为了增加企业竞争力,决定优化产业结构,调整出x (x∈*N)名员工从事第三产业,调整后他们平均每人每年创造利润为310500xa⎛⎫-⎪⎝⎭万元(a>0),剩下的员工平均每人每年创造的利润可以提高0.2x%.(1)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润,则最多调整出多少名员工从事第三产业?(2)在(1)的条件下,若调整出的员工创造出的年总利润始终不高于剩余员工创造的年总利润,则a的取值范围是多少?12、为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:()()01035kC x xx=≤≤+,若不建隔热层,每年能源消耗费用为8万元.设()f x为隔热层建造费用与20年的能源消耗费用之和.(Ⅰ)求k的值及()f x的表达式;(Ⅱ)隔热层修建多厚对,总费用()f x达到最小,并求最小值.专业知识整理分享13、围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:元)。
对勾函数的图像与性质 拓展知识专题 高一上学期 人教A版数学必修第一册
![对勾函数的图像与性质 拓展知识专题 高一上学期 人教A版数学必修第一册](https://img.taocdn.com/s3/m/8e5379f5a6c30c2258019e40.png)
对勾函数一、学习过程例1:已知函数xx x f 9)(+=.(1)判断它的奇偶性; (2)判断它的单调性,并加以证明; (3)请画出函数的草图,并求出函数的值域.总结:形如)0(≠+=a xa x y 的函数图像和性质.这类函数非常重要和常见,要加以记忆.)0(>+=a xax y)0(<+=a xax y形如b ax y +=函数的性质研究二、xb ax y +=性质的应用例2:求下列函数在]2,1(∈x 上的值域;(1);1)(2+=x x x f (2);xx x x g 23)(2++= (3).15)(-+=x x x h例3:(1)已知1->x ,则函数1107)(2+++=x x x x f 的最小值是 .(2)函数21)(2++-=x x x x f 在区间),1(+∞上的最大值是 .例4:已知函数)),1[(2)(2+∞∈++=x xax x x f . (1)求当21=a 时)(x f 的最小值;(2)若对任意0)(),,1[>+∞∈x f x 恒成立,求实数a 的取值范围.例5:(1)方程12-=+k kx x 在]2,21[∈x 上有解,则实数k 的取值范围 .(2)不等式12->+k kx x 在]2,21[∈x 上恒成立,则实数k 的取值范围 .三、课后作业 1.函数15)(++=x x x f 的值域是 .2.函数32)(++=x x x f 的值域是 . 3.函数]5,0[522∈+=x x xy 的值域为 .4.函数45)(22++=x x x f 的最小值是 .5.函数324222++++=x x x x y 的最小值是 .6.函数|9|xx y +=的递增区间为 .7.由函数x x x f 1)(+=的图像 得函数21)(-+=x x x g 的图像.8.若不等式a x x x<++42对任意),0(+∞∈x 恒成立,则实数a 的取值范围是 .9.方程022=-+ax x 在区间]5,1[上有解,则实数a 的取值范围是 .10. 若不等式2229tt a t t +≤≤+在]2,0(∈t 上恒成立,则实数a 的取值范围是 .11.请分别画出函数xx y xx y 6,6-=+=的草图(画出关键点和渐近线),并指出它们各自的单调区间.12.已知函数.1,2)(2≥++=x xax x x f (1)当1=a 时,判断函数)(x f 的单调性并证明; (2)若)(x f 在区间]2,1[上有最大值5,求a 的值;(3)若对任意0)(),,2[>+∞∈x f x 恒成立,求实数a 的取值范围.13.设函数)(x f 是定义在R 上的增函数.如果不等式)2()1(2a f x ax f -<--对任意]1,0[∈x 恒成立,求实数a 的取值范围.14.经市场调查,某旅游城市在过去的一个月内(以30天计),日旅游人数)(t f (万人)与时间t (天)的函数关系近似满足tt f 14)(+=,人均消费)(t g 元与时间t (天)的函数关系近似满足.|15|115)(--=t t g(1)求该城市的旅游日收益)(t w 万元与时间),301(N t t t ∈≤≤的函数关系式; (2)求该城市旅游日收益的最小值(万元).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应用题综合复习----对勾函数
1、甲、乙两地相距S千米,汽车从甲地匀速行驶到乙地,速度不得超过c千米/时,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成;可变部分与速度v(千米/时)的平方成正比,比例系数为b;固定部分为a元。
①把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出函数的定义域;②为了使全程运输成本最小,汽车应以多大速度行驶?2、某森林出现火灾,火势正以每分钟2
m
100的速度顺风蔓延,消防站接到警报立即派消防队员前去,在火灾发生后五分钟到达救火现场,已知消防队员在现场平均每人每分钟灭火2
m
50,所消耗的灭火材料、劳务津贴等费用为每人每分钟125元,另附加每次救火所耗损的车辆、器械和装备等费用平均每人100元,而烧毁一平方米森林损失费为60元.
(1)设派x名消防队员前去救火,用t分钟将火扑灭,试建立t与x的函数关系式;
(2)问应该派多少消防队员前去救火,才能使总损失最少?
3、某学校要建造一个面积为10000平方米的运动场。
如图,运动场是由一个矩形ABCD 和分别以AD 、BC 为直径的两个半圆组成。
跑道是一条宽8米的塑胶跑道,运动场除跑道外,其他地方均铺设草皮。
已知塑胶跑道每平方米造价为150元,草皮每平方米造价为30元 (1) 设半圆的半径OA=r (米),试建立塑胶跑道 面积S 与r 的函数关系S(r )
(2) 由于条件限制[]30,40r ∈,问当r 取何值时,
运动场造价最低?(精确到元)
4、已知某种稀有矿石的价值y (单位:元)与其重量ω(单位:克)的平方成正比,且3克该种矿石的价值为54000元。
⑴写出y (单位:元)关于ω(单位:克)的函数关系式;
⑵若把一块该种矿石切割成重量比为1:3的两块矿石,求价值损失的百分率; ⑶把一块该种矿石切割成两块矿石时,切割的重量比为多少时,价值损失的百分率最大。
(注:价值损失的百分率100%-=⨯原有价值现有价值
原有价值
;在切割过
程中的重量损耗忽略不计)
5、国家加大水利工程建设,某地区要修建一条灌溉水渠,其横断面为等腰梯形(如图),底角A为0
60,考虑到坚固性及用料原因,要求其横断面的面积为63平方米,记水渠深为x米,用料部分的周长(即渠底BC及两腰长的和)为y米,
⑴.求y关于x的函数关系式,并指出其定义域;
⑵.当水渠的腰长x为多少米时,水泥用料
最省(即断面的用料部分的周长最小)?求
此时用料周长的值
⑶.如果水渠的深限制在3,3
⎡⎤
⎣⎦
范围内时,
横断面用料部分周长的最小值是多少米?6、因客流量临时增大, 某鞋店拟用一个高为50㎝(即EF=50㎝)的平面镜自制一个竖直摆放的简易鞋镜. 根据经验,一般顾客AB的眼睛B到地面的距离(cm)
x在区间[140,180]内. 设支架FG高为(090)
h h
<<㎝, 100
AG=㎝, 顾客可视的镜像范围为CD(如图所示), 记CD的长度为y (y GD GC
=-).
(1) 当40
h=㎝时, 试求y关于x的函数关系式和y的最大值;
(2) 当顾客的鞋A在镜中的像1A满足不等关系1
GC GA GD
<≤(不计鞋长)时, 称顾客可在镜中看到自己的鞋. 若使一般顾客都能在镜中看到自己的鞋, 试求h的取值范围.
第6题
A
B
C D
E
F
G A1
·
7、某城市坐落在一个三角形海域的顶点O 处(如图),一条海岸线AO 在城市O 的正东方向,另一条海岸线OB 在城市O 北偏东)3
1(tan =θθ方向,位于城市O 北偏东
3
(cos )25
π
αα-=方向15km 的P 处有一个美丽的小岛. 旅游公司拟开发如下一条旅游观光线路:从城市O 出发沿海岸线OA 到达C 处,再从海面直线航行,途经小岛P 到达海岸线OB 的D 处,然后返回城市O. 为了节省开发成本,要求这条旅游观光线路所围成的三角形区域面积最小,问C 处应选址何处?并求这个三角形区域的最小面积.
8、某工厂利用辐射对食品进行灭菌消毒,现准备在该厂附近建一职工宿舍,并对宿舍进行防辐射处理,建房防辐射材料的选用与宿舍到工厂距离有关.若建造宿舍的所有费用p (万元)和宿舍与工厂的距离()x km 的关系为:
(08)35
k
p x x =
≤≤+,若距离为1km 时,测算宿舍建造费用为100万元.为了交通方便,工厂与宿舍之间还要修一条道路,已知购置修路设备需5万元,铺设路面每公里成本为6万元,设()f x 为建造宿舍与修路费用之和. (I )求()f x 的表达式;
(II )宿舍应建在离工厂多远处,可使总费用()f x 最小,并求最小值.
(第7题图)
9、在某次水下考古活动中,需要潜水员潜入水深为30米的水底进行作业.其用氧量包含3个方面:①下潜时,平均速度为v (米/单位时间),单位时间内用氧量为
2cv (c 为正常数);②在水底作业需5个单位时间,每个单位时间用氧量为0.4;③
返回水面时,平均速度为2
v
(米/单位时间), 单位时间用氧量为0.2.记该潜水员
在此次考古活动中,总用氧量为y . (1)将y 表示为v 的函数;
(2)设0<v ≤5,试确定下潜速度v ,使总的用氧量最少.
10、某化工企业2007年底投入100万元,购入一套污水处理设备.该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元. (Ⅰ)求该企业使用该设备x 年的年平均污水处理费用y (万元); (Ⅱ)问为使该企业的年平均污水处理费用最低,该企业几年后需要重新更换新的污水处理设备?
11、某单位有员工1000名,平均每人每年创造利润10万元.为了增加企业竞争力,决定优化产业结构,调整出x (x∈*
N)名员工从事第三产业,调整后他
们平均每人每年创造利润为
3
10
500
x
a
⎛⎫
-
⎪
⎝⎭
万元(a>0),剩下的员工平均每人每
年创造的利润可以提高0.2x%.
(1)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润,则最多调整出多少名员工从事第三产业?
(2)在(1)的条件下,若调整出的员工创造出的年总利润始终不高于剩余员工创造的年总利润,则a的取值范围是多少?12、为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:()()
010
35
k
C x x
x
=≤≤
+
,若不建隔热层,每年能源消耗费用为8万元.设()
f x为隔热层建造费用与20年的能源消耗费用之和.
(Ⅰ)求k的值及()
f x的表达式;
(Ⅱ)隔热层修建多厚对,总费用()
f x达到最小,并求最小值.
13、围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:元)。
(Ⅰ)将y表示为x的函数:
(Ⅱ)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用。
14、某工厂去年的某产品的年产量为100万只,每只产品的销售价为10元,固定成本为8元.今年,工厂第一次投入100万元(科技成本),并计划以后每年比上一年多投入100万元(科技成本),预计产量年递增10万只,第n 次投入后,每只产品的固定成本为
1
)
(
+
=
n
k
n
g(k>0,k为常数,Z
∈
n且n≥0),若产品销售价保持不变,第n次投入后的年利润为)
(n
f万元.(1)求k的值,并求出)
(n
f的表达式;
(2)问从今年算起第几年利润最高?最高利润为多少万元?
15、某渔业公司今年初用98万购进一艘渔船用于捕捞.第一年需各种费
用12万元,从第二年开始每年包括维修费在内,所需费用均比上一年增加4万元,该船捕捞总收入预计每年50万元.
(1)该船捕捞几年开始盈利(即总收入减去成本及所有费用之差为正)?(2)该船捕捞若干年后,处理方案有两种:
①年平均盈利达到最大值时,以26万元的价格卖出;
②盈利总额达到最大时,以8万元的价格卖出.
问哪一种方案较为合算?并说明理由. 16、如图,一科学考察船从港口O出发,沿北偏东α角的射线OZ方向航行,而在离港口O13a(a为正常数)海里的北偏东β角的A处共有一个供给科考船物资的小岛,其中已知=
=β
αcos
,
3
1
tan
13
2
.现指挥部需要紧急征调沿海岸线港口O正东m海里的B处的补给船,速往小岛A装运物资供给科考船.该船沿BA方向全速追赶科考船,并在C处相遇.经测算当两船运行的航线与海岸线OB围成的三角形OBC的面积S最小时,这种补给最适宜.
(Ⅰ)(本问6分)求S关于m的函数关系式S(m);
(Ⅱ)(本问6分)应征调m为何值处的船只,
补给最适宜?。