《图形认识初步》全章复习与巩固(基础)知识讲解
《图形认识初步》全章复习与巩固(基础)知识讲解讲解
《图形认识初步》全章复习与巩固(基础)知识讲解【知识网络】【要点梳理】要点一、多姿多彩的图形1.几何图形的分类几何图形要点诠释:在给几何体分类时,不同的分类标准有不同的分类结果.2.立体图形与平面图形的相互转化(1)立体图形的平面展开图:把立体图形按一定的方式展开就会得到平面图形,把平面图形按一定的途径进行折叠就会得到相应的立体图形,通过展开与折叠能把立体图形和平面图形有机地结合起来.要点诠释:①对一些常见立体图形的展开图要非常熟悉,例如正方体的 11种展开图,三棱柱,圆柱等的展开图;②不同的几何体展成不同的平面图形,同一几何体沿不同的棱剪开,可得到不同的平面图形,那么排除障碍的方法就是:联系实物,展开想象,建立“模型”,整体构想,动手实践.(2)从不同方向看:主(正)视图---------从正面看几何体的三视图(左、右)视图-----从左(右)边看俯视图---------------从上面看要点诠释:①会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.②能根据三视图描述基本几何体或实物原型.(3)几何体的构成元素及关系几何体是由点、线、面构成的.点动成线,线与线相交成点;线动成面,面与面相交成线;面动成体,体是由面组成.要点二、直线、射线、线段1. 直线,射线与线段的区别与联系2. 基本性质(1直线的性质:两点确定一条直线. (2线段的性质:两点之间,线段最短.要点诠释:①本知识点可用来解释很多生活中的现象.如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线.②连接两点间的线段的长度,叫做两点的距离.3.画一条线段等于已知线段(1)度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段.(2)用尺规作图法:用圆规在射线AC上截取AB=a,如下图:4.线段的比较与运算(1)线段的比较:比较两条线段的长短,常用两种方法,一种是度量法;一种是叠合法.(3)线段的中点:把一条线段分成两条相等线段的点,叫做线段的中点.如下图,有:M BA要点诠释:①线段中点的等价表述:如上图,点M在线段上,且有,则点M为线段AB的中点.②除线段的中点(即二等分点)外,类似的还有线段的三等分点、四等分点等.如下图,点M,N,P均为线段AB的四等分点.PN要点三、角1.角的度量(1)角的定义:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边;此外,角也可以看作由一条射线绕着它的端点旋转而形成的图形.(2角的表示方法:角通常有三种表示方法:一是用三个大写英文字母表示,二是用角的顶点的一个大写英文字母表示,三是用一个小写希腊字母或一个数字表示.例如下图:要点诠释:①角的两种定义是从不同角度对角进行的定义;②当一个角的顶点有多个角的时候,不能用顶点的一个大写字母来表示.(3)角度制及角度的换算1周角=360°,1平角=180°,1°=60′,1′=60″,以度、分、秒为单位的角的度量制,叫做角度制.要点诠释:①度、分、秒的换算是60进制,与时间中的小时分钟秒的换算相同.②度分秒之间的转化方法:由度化为度分秒的形式(即从高级单位向低级单位转化时用乘法逐级进行;由度分秒的形式化成度(即低级单位向高级单位转化时用除法逐级进行.③同种形式相加减:度加(减)度,分加(减)分,秒加(减)秒;超60进一,减一成60.(4)角的分类∠β锐角直角钝角平角周角范围0<∠β<90°∠β=90°90°<∠β<180°∠β=180°∠β=360°(5)画一个角等于已知角(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角.(2)借助量角器能画出给定度数的角.(3)用尺规作图法.2.角的比较与运算(1)角的比较方法: ①度量法;②叠合法.(2)角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线,例如:如下图,因为OC是∠AOB的平分线,所以∠1=∠2=∠AOB,或∠AOB=2∠1=2∠2.类似地,还有角的三等分线等.3.角的互余互补关系余角补角(1)若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角.(2)若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角.(3)结论: 同角(或等角的余角相等;同角(或等角的补角相等要点诠释:①余角(或补角是两个角的关系,是成对出现的,单独一个角不能称其为余角(或补角.②一个角的余角(或补角可以不止一个,但是它们的度数是相同的,③只考虑数量关系,与位置无关.④“等角是相等的几个角”,而“同角是同一个角”4.方位角:以正北、正南方向为基准,描述物体运动的方向,这种表示方向的角叫做方位角.要点诠释:(1)方位角还可以看成是将正北或正南的射线旋转一定角度而形成的.所以在应用中一要确定其始边是正北还是正南.二要确定其旋转方向是向东还是向西,三要确定旋转角度的大小.(2)北偏东45 °通常叫做东北方向,北偏西45 °通常叫做西北方向,南偏东45 °通常叫做东南方向,南偏西45 °通常叫做西南方向.(3)方位角在航行、测绘等实际生活中的应用十分广泛.【典型例题】类型一、概念或性质的理解1.下列说法正确的是(A.射线AB与射线BA表示同一条射线.B.连结两点的线段叫做两点之间的距离.C.平角是一条直线.D.若∠1+∠2=900,∠1+∠3=900,则∠2=∠3;【答案】D【解析】选项A中端点和延伸方向不同,所以是两条射线;选项B中两点之间的距离是指线段的长度,是一个数值,而不是图形;C中角和直线是两种不同的概念,不能混淆.【变式】下列结论中,不正确的是()A.两点确定一条直线 B.两点之间,直线最短C.等角的余角相等 D.等角的补角相等【答案】B类型二、立体图形与平面图形的相互转化2. (天门、潜江、仙桃如图所示,是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体的表面上,与“看”相对的面上的汉字是(A.南B.世 C.界 D.杯【答案】C【解析】由图形可以判定“南”与“世”相对,“看”与“界”相对,“非”与“杯”相对.【总结升华】判断两个面是对面的根据是:展开图的对面没有公共边或公共顶点.举一反三:【变式】(瞿州模拟下面形状的四张纸板,按图所示的线经过折叠可以围成一个直三棱柱的是(.【答案】C3.(浙江金华如图所示几何体的主视图是(【答案】A【解析】从正面看球位于桌面右方,故选A.【总结升华】从正面看所得到的图形是主视图,先得到球体的主视图,再得到长方体的主视图,再根据球体在长方体的右边可得出答案.类型三、互余互补的有关计算4.已知∠A=53°27′,则∠A的余角等于(.A.37° B.36°33′ C.63° D.143°【思路点拨】根据互为余角的定义求解.【答案】B【解析】∠A的余角为90°-53°27′=36°33′.【总结升华】本题考查角互余的概念:和为90度的两个角互为余角.举一反三:【变式】一个角与它的余角相等,则这个角是______,它的补角是_______【答案】45°,135°类型四、方位角5.如图,射线OA的方向是:________;射线OB的方向是:_________;射线OC的方向是:________;【思路点拨】OA表示的方向是北偏东,再加上其偏转的角度即可,同理OB、OC也是如此.【答案】北偏东15°;北偏西40°;南偏东45°.【解析】根据方位角的定义解答.【总结升华】熟知方位角的定义结合图形便可解答.类型五、钟表上的角6.钟表分针的运动可看作是一种旋转现象,一只标准时钟的分针匀速旋转,经过15分钟旋转了________度.【答案】90【解析】根据钟表的特征;整个钟面是360°,分针每5分钟旋转30°,所以经过15分钟旋转了90°.【总结升华】在钟表问题中,常利用时针与分针转动的度数关系:时钟上的分针匀速旋转一分钟时的度数为6°,时针一分钟转过的度数为0.5°;两个相邻数字间的夹角为30°,每个小格夹角为6°,并且利用起点时间时针和分针的位置关系建立角的图形.类型六、利用数学思想方法解决有关线段或角的计算1.方程的思想方法7.如图所示,在射线OF上,顺次取A、B、C、D四点,使AB:BC:CD=2:3:4,又M、N分别是AB、CD的中点,已知AD=90cm,求MN的长.【思路点拨】有关比例问题,可设每一份为x,列方程求解,再利用中点定义,找出线段的和、差.【答案与解析】解:设线段AB,BC,CD的长分别是2x cm,3x cm,4x cm,∵AB+BC+CD=AD=90 cm,∴ 2x+3x+4x=90,x=10,∴AB=20 cm, BC=30 cm, CD=40 cm,∴MN=MB+BC+CN=AB+BC+CD=10+30+20=60(cm.【总结升华】当已知某线段被分成的几条线段的长度比时,可根据比设未知数x,用x的式子表示相关的线段的长度,列方程求出x的值,进而求出线段的长.举一反三:【变式】如图所示,已知∠AOC=∠BOD=100°,且∠AOB:∠AOD=2:7,求∠BOC和∠COD的度数.【答案】解:设∠AOB的度数为2x,则∠AOD的度数为7x.由∠AOD=∠AOB+∠BOD及∠BOD=100°,可得7x=2x+100°.解得x=20°,所以∠AOB=2x=40°.所以∠BOC=∠AOC-∠AOB=100°-40°=60°,∠COD=∠BOD-∠BOC=100°-60°=40°.2.分类的思想方法8.以∠AOB的顶点O为端点的射线OC,使∠AOC:∠BOC=5:4.(1若∠AOB=18°,求∠AOC与∠BOC的度数;(2若∠AOB=m,求∠AOC与∠BOC的度数.【答案与解析】解:(1分两种情况:①OC在∠AOB的外部,可设∠AOC=5x,则∠BOC=4x得∠AOB=x,即x=18°所以∠AOC=90°,∠BOC=72°②OC在∠AOB的内部,可设∠AOC=5x,则∠BOC=4x∠AOB=∠AOC+∠BOC=9x所以9x=18°,则x=2°所以∠AOC=10°,∠BOC=8°(2)仿照(1),可得:若∠AOB=m,则∠AOC =,∠BOC=,或∠AOC=5m,∠BOC=4m.【总结升华】本题中的已知条件没有明确地说明OC在∠AOB的内部或外部,所以两个问题都必须分类讨论.举一反三:【变式1】已知线段AB=8cm,在直线AB上画线段BC=3cm,求线段AC的长.【答案】解:分两种情况:(1如图(1,AC=AB-BC=8-3=5(cm;(2如图(2,AC=AB+BC=8+3=11(cm.所以线段AC的长为5cm或11cm.【变式2】下列判断正确的个数有(①已知A、B、C三点,过其中两点画直线一共可画三条②过已知任意三点的直线有1条③三条直线两两相交,有三个交点A.0个 B.1个 C.2个 D.3个【答案】A。
《图形认识初步》知识点
《图形认识初步》1、几何图形:我们把实物中抽象出来的各种图形叫做几何图形。
几何图形分为平面图形和立体图形。
(1)平面图形:图形所表示的各个部分都在同一平面内的图形,如直线、三角形等。
(2)立体图形:图形所表示的各个部分不在同一平面内的图形,如圆柱体。
2、常见的立体图形(1)柱体:A 棱柱---有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边互相平行,由这些面围成的几何体叫做棱柱。
B 圆柱---以矩形的一边所在直线为旋转轴,其余各边围绕它旋转一周二形成的曲面所围成的集合体叫做圆柱。
(2)椎体:A 棱锥—有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
B 圆锥—以直角三角形的一条直角边所在的直线为旋转轴,其余各边旋转一周而形成的曲面围成的几何体叫做圆锥。
(3)球体:半圆以它的直径为旋转轴,旋转一周而形成的曲面所围成的几何体叫做球体。
(4)多面体:围成棱柱和棱锥的面都是平的面,想这样的立体图形叫做多面体。
3、 常见的平面图形(1)多边形:由线段围成的封闭图形叫做多边形。
多边形中三角形是最基本的图形。
(2)圆:一条线段绕它的端点旋转一周而形成的图形。
(3)扇形:由一条弧和经过这条弧的端点的两条半径围成的图形叫做扇形。
4、 从不同方向观察几何体从正面、上面、左面三个不同方向看一个物体,然后描出三张所看到的图(分别叫做正视图、俯视图、侧视图),这样就可以把立体图形转化为平面图形。
例题:1、如图是一些小正方体所搭几何体的俯视图,小正方形中的数字表示该位置的小正方体的个数,请画出这个几何体的主视图和左视图:主视图 左视图例题:2、下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为 ( )5、 立体图形的展开图有些立体图形是有一些平面图形围成的,把它们的表面适当剪开后在平面上展开得到的平面图形称为立体图形的展开图。
图形的初步认识全章复习与巩固
符号
1 颗星 1 面旗
旁白
1 颗星 1 面旗
同学摆擂台!(写在黑板上)
要求:(1)出自网校资源(靠旁白)、非难偏怪题 (2)标明出处、奖励规则。 (3)擂主会解题。
一、师生问好
同学们好!
课前就位
• 发测评截图的同学:…..加3颗星星 截屏快捷键:Ctrl + PrntScr ; 截图Ctrl + Alt+A) 有高清课堂观看笔记 的 加3颗星星 • 上周积分情况汇报
老师摆擂
10. 如图所示, AB AC (1)AC=BC+______; (2)CD=AD-______; BD (3)CD=______-BC; (4)AB+BC=______-CD. AD
课堂小结及点评
1、合上学案,回想一下这节课我们都复习了 哪些知识点和类型题? 2、各小组积分情况点评。
布置学案
D
5、点评:理解概念,掌握概念与概念的本质区别
例2.(天门、潜江、仙桃)如图所示,是每个面上都有一个 汉字的正方体的一种展开图,那么在原正方体的表面上, 与“看”相对的面上的汉字是 ( ) A.南 B.世 C.界 D.杯
解题思路:由图形可以判定“南”与“世”相对, “看”与“界”相对,“非”与“杯”相对 点评:判断两个面是对面的根据是:展开图的对面没有公共边 或公共顶点
要点梳理——检测
知识点一:多姿多彩的图形 2.立体图形与平面图形的相互转化
抢答
(1)立体图形的平面展开图: 把立体图形按一定的方式展开就 平面图形 会得到-------- ----,把平面图形按一定的途径进行折叠就 会得
到相应的立体图形
正 左、右 上
抢答 知识点二:直线、射线、线段的区别与联系
图形认识初步单元复习与巩固
图形认识初步单元复习与巩固一、目标与策略明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!学习目标:●认识一些简单的几何体的平面展开图及会画简单几何体的三视图,初步培养空间观念和几何直观。
●掌握直线、射线、线段、角这些基本图形的概念、性质、表示方法和画法。
●初步学会应用图形与几何的知识解释生活中的现象以及解决简单的实际问题。
重点难点:●重点:识别简单的几何体,准确认识各种立体图形与平面图形。
由探究得出直线(线段)的性质,掌握直线、射线、线段的表示法,能根据语句画出相应的图形。
度、分、秒之间的换算,角平分线的概念及表示,补角余角的概念及性质.●难点:从具体事物中抽象出几何图形,立体图形与平面图形之间的转化。
学习策略:●通过观察、思考、讨论、操作的过程,认识常见几何图形的特性和常见立体图展开图形状,培养把实际问题转化为数学问题的能力,理解直线、射线、线段和角的概念及性质。
二、学习与应用“凡事预则立,不预则废”。
科学地预习才能使我们上课听讲更有目的性和针对知识网络详细内容请参看网校资源ID:#tbjx1#220705知识点一: 几何图形1、 概念:从实物中抽象出的各种图形统称几何图形;在各种几何图形中,若 我们称它们为立体图形,立体图形又叫做几何体,简称为体。
例如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等;若各部分都在同一平面内,我们称它们为 ,例如:线段、角、三角形、长方形、圆等。
即有:要点诠释:(1)对于各种各样的物体,我们数学中关注的是它们的 、 和 ,而它们的颜色、重量、材料等则是其他学科所关注的。
(2)立体图形与平面图形是两种不同的几何图形,二者也有一定的联系,立体图形中的某些部分是平面图形,例如长方体的侧面是 ;或沿立体图形的某些边剪开后可以展成 ,平面图形也可以 成立体图形;或从不同方向看立体图形可以得到平面图形,同时通过 平面图形也可以想象出相应的立体图形。
(3)在给几何体分类是,不同的分类标准有不同的分类结果。
华东师大初中七年级上册数学图形的初步认识全章复习与巩固提高知识讲解精选
图形的初步认识《》全章复习与巩固(提高)知识讲解【学习目标】 1.认识一些简单的几何体的平面展开图及三视图,初步培养空间观念和几何直观; 2.掌握直线、射线、线段、角这些基本图形的概念、性质、表示方法和画法;.初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题;3.逐步掌握学过的几何图形的表示方法,能根据语句画出相应的图形,会用语句描述简单4 的图形.【知识网络】【要点梳理】要点一、立体图形与平面图形1.几何图形的分类要点诠释:在给几何体分类时,不同的分类标准有不同的分类结果..立体图形与平面图形的相互转化2.(1)立体图形的平面展开图:把立体图形按一定的方式展开就会得到平面图形,把平面图形按一定的途径进行折叠就会得到相应的立体图形,通过展开与折叠能把立体图形和平面图形有机地结合起来.要点诠释:①对一些常见立体图形的展开图要非常熟悉,例如正方体的 11种展开图,三棱柱,圆柱等的展开图.②不同的几何体展成不同的平面图形,同一几何体沿不同的棱剪开,可得到不同的平面图形,那么排除障碍的方法就是:联系实物,展开想象,建立“模型”,整体构想,动手实践.(2)三视图:正视图--------------从正面看?几何体的三视图左视图--------------从侧边看??俯视图--------------从上面看要点诠释:①会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.②三视图的画法原则:高平齐宽相等长对正.③能根据三视图描述基本几何体或实物原型. )几何体的构成元素及关系:3(点动成线,线与线相交成点;线动成面,面与面相交. 、面构成的几何体是由点、线.成线;面动成体,体是由面组成要点二、直线、射线、线段直线,射线与线段的区别与联系1.2. 基本性质(1)直线的性质:两点确定一条直线. (2)线段的性质:两点之间,线段最短.要点诠释:①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线..②连接两点间的线段的长度,叫做两点的距离3.画一条线段等于已知线段(1)度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段.(2)用尺规作图法:用圆规在射线AC上截取AB=a,如下图:.线段的比较与运算4)线段的比较:(1.比较两条线段的长短,常用两种方法,一种是度量法;一种是叠合法 2)线段的和与差:( AD=AB-BD。
《平面图形的认识(一)》全章复习与巩固(基础)知识讲解
《平面图形的认识(一)》全章复习与巩固(基础)知识讲解责编:某老师【学习目标】1.掌握直线、射线、线段、角这些基本图形的概念、性质、表示方法和画法;2.初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题;3.正确理解“相交”、“互相平行”、“互相垂直”等概念,发展空间想象力.【知识网络】【要点梳理】要点一、直线、射线、线段1.直线,射线与线段的区别与联系2. 基本性质(1)直线的性质:两点确定一条直线. (2)线段的性质:两点之间线段最短. 要点诠释:①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线. ②连接两点间的线段的长度,叫做两点的距离.3.画一条线段等于已知线段(1)度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段. (2)用尺规作图法:用圆规在射线AC 上截取AB =a,如下图: 4.线段的比较与运算(1)线段的比较:比较两条线段的长短,常用两种方法,一种是度量法;一种是叠合法.(2)线段的和与差:如下图,有AB+BC =AC ,或AC =a+b ;AD =AB-BD.(3)线段的中点:把一条线段分成两条相等线段的点,叫做线段的中点.如下图,有:12AM MB AB ==.要点诠释:①线段中点的等价表述:如上图,点M 在线段上,且有12AM AB =,则点M 为线段AB 的中点.②除线段的中点(即二等分点)外,类似的还有线段的三等分点、四等分点等. 如下图,点M,N,P 均为线段AB 的四等分点,则有AB PB NP MN AM 41====. PN(4)线段的延长线:如下图,图①称为延长线段AB ,或称为反向延长线段BA ;图②称为延长线段BA ,或称为反向延长线段AB. 图中延长的部分叫做原线段的延长线.要点二、角1.角的概念及其表示(1)角的定义:从一点引出的两条射线所形成的图形叫做角,这个点叫做角的顶点,这两条射线是角的边;此外,角也可以看作由一条射线绕着它的端点旋转而形成的图形.(2)角的表示方法:角通常有三种表示方法:一是用三个大写英文字母表示,二是用角的顶点的一个大写英文字母表示,三是用一个小写希腊字母或一个数字表示.例如下图:要点诠释:①角的两种定义是从不同角度对角进行的定义.②当一个角的顶点有多个角的时候,不能用顶点的一个大写字母来表示. 2.角的分类3.角的度量1周角=360°,1平角=180°,1°=60′,1′=60″. 要点诠释:①度、分、秒的换算是60进制,与时间中的小时分钟秒的换算相同. ②度分秒之间的转化方法:由度化为度分秒的形式(即从高级单位向低级单位转化)时用乘法逐级进行;由度分秒的形式化成度(即低级单位向高级单位转化)时用除法逐级进行. ③同种形式相加减:度加(减)度,分加(减)分,秒加(减)秒;超60进一,减一 成60.4.角的平分线从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线,例如:如下图,因为OC 是∠AOB 的平分线,所以∠1=∠2=12∠AOB ,或∠AOB =2∠1=2∠2.类似地,还有角的三等分线等.5.余角、补角、对顶角(1)余角、补角:若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角. 若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角. 结论: 同角(或等角)的余角相等;同角(或等角)的补角相等.要点诠释:①余角(或补角)是两个角的关系,是成对出现的,单独一个角不能称其为余角(或补角).②一个角的余角(或补角)可以不止一个,但是它们的度数是相同的.③只考虑数量关系,与位置无关.④“等角是相等的几个角”,而“同角是同一个角”.(2)对顶角:对顶角相等.要点三、平行与垂直1.同一平面内的两条直线的位置关系:平行与相交. 平行用符号“∥”表示.要点诠释:只有一个公共点的两条直线叫做相交直线,这个公共点叫做交点.2.垂线(1)垂线的定义:两条直线相交所成的四个角中,有一个角是直角时,就称这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫垂足.垂直用符号“⊥”表示,如下图.(2)垂线的性质:①在同一平面内,过一点有且只有一条直线与已知直线垂直.②垂线段最短.(3)点到直线的距离:从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.【典型例题】类型一、概念或性质的理解1.(2016春•永登县期中)下列叙述中,正确的是()A.在同一平面内,两条直线的位置关系有三种,分别是相交、平行、垂直B.不相交的两条直线叫平行线C.两条直线的铁轨是平行的D.我们知道,对顶角是相等的,那么反过来,相等的角就是对顶角【思路点拨】根据直线的关系,平行线的定义,可得答案.【答案】C【解析】解:A、在同一平面内,两条直线的位置关系有两种,分别是相交、平行,故A错误;B、在同一个平面内,不相交的两条直线叫平行线,故B错误;C、两条直线的铁轨是平行的,故C正确;D、我们知道,对顶角是相等的,那么反过来,相等的角不一定是对顶角,故D错误;故选:C.【总结升华】本题考查了平行线,在同一个平面内,不相交的两条直线叫平行线,注意相等的角不一定是对顶角.举一反三:【变式】(2015春•通辽期末)下列说法不正确的是()A.过任意一点可作已知直线的一条平行线B.同一平面内两条不相交的直线是平行线C.在同一平面内,过直线外一点只能画一条直线与已知直线垂直D.平行于同一直线的两直线平行解:A中,若点在直线上,则不可以作出已知直线的平行线,而是与已知直线重合,错误.B、C、D是公理,正确.故选【答案】A.类型二、角的度量2.钟表分针的运动可看作是一种旋转现象,一只标准时钟的分针匀速旋转,经过15分钟旋转了________度.【思路点拨】画出图形,利用钟表表盘的特征解答.【答案】90【解析】根据钟表的特征;整个钟面是360°,分针每5分钟旋转30°,所以经过15分钟旋转了90°.【总结升华】在钟表问题中,常利用时针与分针转动的度数关系:时钟上的分针匀速旋转一分钟时的度数为6°,时针一分钟转过的度数为0.5°;两个相邻数字间的夹角为30°,每个小格夹角为6°,并且利用起点时间时针和分针的位置关系建立角的图形.举一反三:【变式】100°-60°52′10″=【答案】39°7′50″类型三、利用数学思想方法解决有关线段或角的计算1.方程的思想方法3. 如图所示,在射线OF上,顺次取A、B、C、D四点,使AB:BC:CD=2:3:4,又M、N 分别是AB、CD的中点,已知AD=90cm,求MN的长.【思路点拨】有关比例问题,可设每一份为x,列方程求解,再利用中点定义,找出线段的【答案与解析】解:设线段AB,BC,CD的长分别是2x cm,3x cm,4x cm,∵AB+BC+CD=AD=90 cm,∴ 2x+3x+4x=90,x=10,∴AB=20 cm, BC=30 cm, CD=40 cm,∴MN=MB+BC+CN=12AB+BC+12CD=10+30+20=60(cm).【总结升华】当已知某线段被分成的几条线段的长度比时,可根据比设未知数x,用x的式子表示相关的线段的长度,列方程求出x的值,进而求出线段的长.举一反三:【变式】如图所示,已知∠AOC=∠BOD=100°,且∠AOB:∠AOD=2:7,求∠BOC和∠COD 的度数.【答案】解:设∠AOB的度数为2x,则∠AOD的度数为7x.由∠AOD=∠AOB+∠BOD及∠BOD=100°,可得7x=2x+100°.解得x=20°,所以∠AOB=2x=40°.所以∠BOC=∠AOC-∠AOB=100°-40°=60°,∠COD=∠BOD -∠BOC=100°-60°=40°.2.分类的思想方法4.以∠AOB的顶点O为端点的射线OC,使∠AOC:∠BOC=5:4.(1)若∠AOB=18°,求∠AOC与∠BOC的度数;(2)若∠AOB=m,求∠AOC与∠BOC的度数.【答案与解析】解:(1)分两种情况:①OC在∠AOB的外部,可设∠AOC=5x,则∠BOC=4x得∠AOB=x,即x=18°所以∠AOC=90°,∠BOC=72°②OC在∠AOB的内部,可设∠AOC=5x,则∠BOC=4x∠AOB=∠AOC+∠BOC=9x所以9x=18°,则x=2°所以∠AOC=10°,∠BOC=8°(2)仿照(1),可得:若∠AOB=m,则∠AOC=59m,∠BOC=49m,或∠AOC=5m,∠BOC=4m.【总结升华】本题中的已知条件没有明确地说明OC在∠AOB的内部或外部,所以两个问题都必须分类讨论.【变式1】已知线段AB =8cm ,在直线AB 上画线段BC =3cm ,求线段AC 的长. 【答案】解:分两种情况:(1)如图(1),AC =AB -BC =8-3=5(cm); (2)如图(2),AC =AB+BC =8+3=11(cm). 所以线段AC 的长为5cm 或11cm .【变式2】下列判断正确的个数有 ( ) .①已知A 、B 、C 三点,过其中两点画直线一共可画三条. ②过已知任意三点的直线有1条. ③三条直线两两相交,有三个交点.A .0个B .1个C .2个D .3个 【答案】A3.类比的思想方法【高清课堂:图形认识初步章节复习399079 类比思想例5】5.(1)如图,线段AD 上有两点B 、C,图中共有______条线段.(2)如图,在∠AOD 的内部有两条射线OB 、OC ,则图中共有 个角.【答案】(1)6;(2)6. 【解析】(1)以A 为端点的线段有3条,同样以B,C,D 为一个端点的线段也各有3条,又因为所有线段均重复了一次,所以共有线段条数:3462⨯=(条). (2)以射线OA 为一边的角有3个,同样以OB ,OC ,OD 为一边的角也各有3个,又因为所有角均重复一次,所以共有角的个数:3462⨯=(个). 【总结升华】用同样的方法解决了不同的问题,用已知的知识类比地学习未知的内容. 类型四、平行与垂直6.(2015春•印江县期末)如图,点B 在点A 的南偏东60°方向,点C 在点B 的北偏东30°方向,且BC=12km ,则点C 到直线AB 的距离是 .【答案】12km.【解析】解:∵AD∥BE,∴∠EBA=∠A=60°,∴∠ABC=∠ABE+∠CBE=90°,∴点C到直线AB的距离是BC,即12km,故答案为:12km.【总结升华】本题考查的是方位角和点到直线的距离,正确理解方位角和点到直线的距离的概念是解题的关键.举一反三:【变式1】梯形中,()是平行的.A.上底和下底 B.上底和腰 C.两条腰【答案】A【变式2】已知:如图,在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,AC=12cm ,且CD⊥AB于D.则CD的长.【答案】60 13cm。
第四章 图形的初步认识 知识点归纳
第四章图形的初步认识一、全章知识结构(一)多姿多彩的图形(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图。
(2)能根据三视图描述基本几何体或实物原型。
3、立体图形的平面展开图(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的。
(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型。
4、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
(二)直线、射线、线段1、基本概念2、直线的性质经过两点有一条直线,并且只有一条直线。
简单地:两点确定一条直线。
3、画一条线段等于已知线段(1)度量法(2)用尺规作图法4、线段的大小比较方法(1)度量法(2)叠合法5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点。
图形:符号:若点M是线段AB的中点,则AM=BM=AB,AB=2AM=2BM。
6、线段的性质两点的所有连线中,线段最短。
简单地:两点之间,线段最短。
7、两点的距离连接两点的线段长度叫做两点的距离。
8、点与直线的位置关系(1)点在直线上(2)点在直线外。
(三)角1、角:由公共端点的两条射线所组成的图形叫做角。
2、角的表示法(四种):3、角的度量单位及换算4、角的分类5、角的比较方法(1)度量法(2)叠合法6、角的和、差、倍、分及其近似值7、画一个角等于已知角(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角。
(2)借助量角器能画出给定度数的角。
(3)用尺规作图法。
8、角的平分线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线。
9、互余、互补(1)若∠1+∠2=90°,则∠1与∠2互为余角。
其中∠1是∠2的余角,∠2是∠1的余角。
几何图形初步全章复习与巩固知识讲解.doc
《几何图形初步》全章复习与巩固(基础)知识讲解【学习目标】1.认识一些简单的几何体的平面展开图及三视图,初步培养空间观念和几何直观;2.掌握直线、射线、线段、角这些基本图形的概念、性质、表示方法和画法;3.初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题;4.逐步掌握学过的几何图形的表示方法,能根据语句画出相应的图形,会用语句描述简单的图形.【知识网络】【要点梳理】要点一、多姿多彩的图形1.几何图形的分类立体图形:棱柱、棱锥、圆柱、圆锥、球等.几何图形平面图形:三角形、四边形、圆等 ..要点诠释:在给几何体分类时,不同的分类标准有不同的分类结果2.立体图形与平面图形的相互转化(1)立体图形的平面展开图:把立体图形按一定的方式展开就会得到平面图形,把平面图形按一定的途径进行折叠就会得到相应的立体图形,通过展开与折叠能把立体图形和平面图形有机地结合起来.要点诠释:①对一些常见立体图形的展开图要非常熟悉,例如正方体的11 种展开图,三棱柱,圆柱等的展开图;②不同的几何体展成不同的平面图形,同一几何体沿不同的棱剪开,可得到不同的平面图形,那么排除障碍的方法就是:联系实物,展开想象,建立“模型”,整体构想,动手实践. (2)从不同方向看:几何体的三视图主(正)视图---------从正面看左视图 -----从左(右)边看俯视图 ---------------从上面看要点诠释:①会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.②能根据三视图描述基本几何体或实物原型.(3)几何体的构成元素及关系几何体是由点、线、面构成的 . 点动成线,线与线相交成点;线动成面,面与面相交成线;面动成体,体是由面组成.要点二、直线、射线、线段1.直线,射线与线段的区别与联系2.基本性质(1)直线的性质 : 两点确定一条直线. (2) 线段的性质 : 两点之间,线段最短.要点诠释:①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线.②连接两点间的线段的长度,叫做两点间的距离.3.画一条线段等于已知线段(1)度量法:可用直尺先量出线段的长度 , 再画一条等于这个长度的线段 .(2)用尺规作图法:用圆规在射线 AC上截取 AB=a,如下图:4.线段的比较与运算(1)线段的比较:比较两条线段的长短,常用两种方法,一种是度量法;一种是叠合法. (2)线段的和与差:如下图,有AB+BC=AC,或 AC=a+b; AD=AB-BD。
《图形的初步认识》 讲义
《图形的初步认识》讲义一、图形的世界我们生活在一个充满图形的世界里,从简单的几何形状到复杂的建筑结构,图形无处不在。
当我们睁开眼睛,看到的房屋、桌椅、书本等,都是由各种不同的图形组成的。
比如,我们常见的圆形,像太阳、月亮、车轮;方形则有窗户、书本的页面;三角形能在屋顶、金字塔中找到。
这些图形不仅仅是物体的外在形状,还蕴含着丰富的数学知识。
图形的存在让我们的生活变得更加有序和美好。
建筑师依靠图形设计出美观实用的建筑,工程师利用图形制造出精密的机器,艺术家通过图形创作出令人惊叹的作品。
二、点、线、面、体在数学中,图形的构成要素主要有点、线、面、体。
点是最基本的元素,它没有大小和形状,只是一个位置的标识。
比如,在地图上标记的城市位置,就可以看作一个点。
线是由无数个点组成的,它有长度但没有宽度。
直线是笔直的,没有弯曲;曲线则是弯曲的,像抛物线、圆弧等。
线可以分为线段和射线。
线段有两个端点,长度是固定的;射线只有一个端点,可以无限延伸。
面是由线围成的,它有长度和宽度,但没有厚度。
常见的面有平面和曲面。
平面像黑板的表面、桌面;曲面则如球体的表面、圆柱的侧面。
体是由面围成的,它有长度、宽度和高度。
例如,正方体、长方体、球体、圆柱体等都是常见的体。
三、直线、射线、线段直线是可以向两端无限延伸的,没有端点。
在数学中,我们通常用直线上的两个点来表示一条直线,比如直线 AB。
射线有一个端点,可以向一端无限延伸。
我们用射线的端点和射线上的另一个点来表示射线,比如射线 OA。
线段有两个端点,长度是固定的。
我们可以用两个端点的字母来表示线段,比如线段 AB,也可以用一个小写字母来表示,比如线段 a。
在实际生活中,我们经常会用到直线、射线和线段的概念。
比如,手电筒发出的光可以看作射线,笔直的铁轨可以近似看作直线,连接两个城市的公路可以看作线段。
四、角角是由两条有公共端点的射线组成的图形。
这个公共端点叫做角的顶点,这两条射线叫做角的边。
几何图形初步全章复习及巩固(基础)知识讲解
《几何图形初步》全章复习与巩固(基础)知识讲解【学习目标】1.认识一些简单的几何体的平面展开图及三视图,初步培养空间观念和几何直观; 2.掌握直线、射线、线段、角这些基本图形的概念、性质、表示方法和画法; 3.初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题;4.逐步掌握学过的几何图形的表示方法,能根据语句画出相应的图形,会用语句描述简单的图形.【知识网络】【要点梳理】要点一、多姿多彩的图形 1. 几何图形的分类立体图形:棱柱、棱锥、圆柱、圆锥、球等. ⎧⎨⎩平面图形:三角形、四边形、圆等.几何图形⎧⎨⎩要点诠释:在给几何体分类时,不同的分类标准有不同的分类结果. 2.立体图形与平面图形的相互转化 (1)立体图形的平面展开图:把立体图形按一定的方式展开就会得到平面图形,把平面图形按一定的途径进行折叠就会得到相应的立体图形,通过展开与折叠能把立体图形和平面图形有机地结合起来. 要点诠释:①对一些常见立体图形的展开图要非常熟悉,例如正方体的 11种展开图,三棱柱,圆柱等的展开图;②不同的几何体展成不同的平面图形,同一几何体沿不同的棱剪开,可得到不同的平面图形,那么排除障碍的方法就是:联系实物,展开想象,建立“模型”,整体构想,动手实践. (2)从不同方向看:主(正)视图---------从正面看 几何体的三视图 左视图-----从左(右)边看 俯视图---------------从上面看要点诠释:①会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图. ②能根据三视图描述基本几何体或实物原型. (3)几何体的构成元素及关系几何体是由点、线 、面构成的.点动成线,线与线相交成点;线动成面,面与面相交成线;面动成体,体是由面组成.要点二、直线、射线、线段1. 直线,射线与线段的区别与联系2. 基本性质(1)直线的性质:两点确定一条直线. (2)线段的性质:两点之间,线段最短. 要点诠释:①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线.②连接两点间的线段的长度,叫做两点间的距离.3.画一条线段等于已知线段(1)度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段. (2)用尺规作图法:用圆规在射线AC 上截取AB=a,如下图:4.线段的比较与运算 (1)线段的比较:比较两条线段的长短,常用两种方法,一种是度量法;一种是叠合法.(2)线段的和与差:如下图,有AB+BC=AC ,或AC=a+b ;AD=AB-BD 。
《图形的初步认识》全章复习与巩固(提高)知识讲解
《图形的初步认识》全章复习与巩固(提高)知识讲解【学习目标】1. 经历从现实世界抽象几何图形的过程,能说出常见的几何体和平面图形;2.掌握直线、射线、线段、角这些基本图形的概念、表示方法、性质、及画法;3.初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题.【知识网络】【要点梳理】要点一、几何图形1.几何图形的分类要点诠释:在给几何体分类时,不同的分类标准有不同的分类结果.2.几何体的构成元素几何体是由点、线、面构成的.点动成线,线与线相交成点;线动成面,面与面相交成线;面动成体,体是由面组成.要点二、线段、射线、直线1.直线,射线与线段的区别与联系2. 基本事实(1)直线:两点确定一条直线. (2)线段:两点之间线段最短. 要点诠释:①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线. ②连接两点间的线段的长度,叫做两点的距离.3.画一条线段等于已知线段(1)度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段. (2)用尺规作图法:用圆规在射线AC 上截取AB =a,如下图:4.线段的比较与运算(1)线段的比较:①度量法;②叠合法;③估算法.(2)线段的和与差:如下图,有AB+BC =AC ,或AC =a+b ;AD =AB-BD.(3)线段的中点:把一条线段分成两条相等线段的点,叫做线段的中点.如下图,有:12AM MB AB ==.要点诠释:①线段中点的等价表述:如上图,点M 在线段上,且有12AM AB =,则点M 为线段AB 的中点.②除线段的中点(即二等分点)外,类似的还有线段的三等分点、四等分点等. 如下图,点M,N,P 均为线段AB 的四等分点,则有AB PB NP MN AM 41====. PN要点三、角1.角的概念及其表示(1)角的定义:从一点引出的两条射线所形成的图形叫做角,这个点叫做角的顶点,这两条射线是角的边;此外,角也可以看作由一条射线绕着它的端点旋转而形成的图形.(2)角的表示方法:角通常有三种表示方法:一是用三个大写英文字母表示,二是用角的顶点的一个大写英文字母表示,三是用一个小写希腊字母或一个数字表示.例如下图:要点诠释:①角的两种定义是从不同角度对角进行的定义.②当一个角的顶点有多个角的时候,不能用顶点的一个大写字母来表示. 2.角的分类3.角的度量1周角=360°,1平角=180°,1°=60′,1′=60″. 要点诠释:①度、分、秒的换算是60进制,与时间中的小时分钟秒的换算相同. ②度分秒之间的转化方法:由度化为度分秒的形式(即从高级单位向低级单位转化)时用乘法逐级进行;由度分秒的形式化成度(即低级单位向高级单位转化)时用除法逐级进行. ③同种形式相加减:度加(减)度,分加(减)分,秒加(减)秒;超60进一,减一 成60.4.角的比较与运算(1)角的比较方法: ①度量法;②叠合法;③估算法.(2)角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线,例如:如下图,因为OC 是∠AOB 的平分线,所以∠1=∠2=12∠AOB ,或∠AOB=2∠1=2∠2. 类似地,还有角的三等分线等.5.余角、补角(1)定义:若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角. 若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角. (2)性质:同角(或等角)的余角相等;同角(或等角)的补角相等.要点诠释:①余角(或补角)是两个角的关系,是成对出现的,单独一个角不能称其为余角(或补角).②一个角的余角(或补角)可以不止一个,但是它们的度数是相同的.③只考虑数量关系,与位置无关.④“等角是相等的几个角”,而“同角是同一个角”.6.方位角以正北、正南方向为基准,描述物体运动的方向,这种表示方向的角叫做方位角.要点诠释:(1)方位角还可以看成是将正北或正南的射线旋转一定角度而形成的.所以在应用中一要确定其始边是正北还是正南.二要确定其旋转方向是向东还是向西,三要确定旋转角度的大小. (2)北偏东45 °通常叫做东北方向,北偏西45 °通常叫做西北方向,南偏东45 °通常叫做东南方向,南偏西45 °通常叫做西南方向.(3)方位角在航行、测绘等实际生活中的应用十分广泛.【典型例题】类型一、几何图形1.对于棱柱体而言,不同的棱柱体由不同的面构成:三棱柱由2个底面,3个侧面,共5个面构成;四棱柱由2个底面,4个侧面,共6个面构成;五棱柱由2个底面,5个侧面,共7个面构成;六棱柱由2个底面,6个侧面,共8个面构成;(1)根据以上规律判断,十二棱柱共有多少个面?(2)若某个棱柱由24个面构成,那么这个棱柱是什么棱柱?(3)棱柱底面多边形的边数为n,则侧面的个数为多少?棱柱共有多少个面?(4)底面多边形边数为n的棱柱,其顶点个数为多少个?有多少条棱?【答案与解析】解:(1)十二棱柱由2个底面,12个侧面,共14个面构成.(2)这个棱柱有24个面,由于底面有2个,故其侧面共有22个,从而这个棱柱是二十二棱柱.(3)棱柱底面多边形的边数与侧面的个数是相等的,即底面多边形的边数为n,则侧面的个数也为n,棱柱的面数为(n+2).(4)底面多边形的边数为n的棱柱,其顶点个数为2n个,共有3n条棱.【总结升华】根据立体图形的特点,从特殊到一般,寻找规律.举一反三:【变式】如图把一个圆绕虚线旋转一周,得到的几何体是()A. B. C. D.【答案】B类型二、线段和角的概念或性质2.下列判断错误的有( )①延长射线OA;②直线比射线长,射线比线段长;③如果线段PA=PB,则点P是线段AB的中点;④连接两点间的线段,叫做两点间的距离.A.0个B.2个C.3个D.4个【答案】D【解析】①由于射线向一方无限延伸,因此,不能延长射线;②由于直线向两方无限延伸,射线向一方无限延伸,因此它们都是不能度量的,所以它们不存在相等或不相等的关系,而线段是可以度量的,可以比较线段的长短;③线段PA=PB,只有当点P在线段AB上时,才是线段AB的中点,否则就不是;④两点间的距离是表示大小的量,而线段是图形,二者的本质属性不同.【总结升华】本题考查的是基本概念,要抓住概念间的本质区别.举一反三:【变式】下列说法正确的个数有( )①若∠1+∠2+∠3=90°,则∠1,∠2,∠3互余.②互补的两个角一定是一个锐角和一个钝角.③因为钝角没有余角,所以,只有当角为锐角时,“一个角的补角比这个角的余角大”这个说法才正确.A.0个B.1个C.2个D.3个【答案】B 提示:③正确3. (安徽芜湖)如图所示的4×4正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7等于().A.330°B.315°C.310°D.320°【答案】B【解析】通过网格的特征首先确定∠4=45°.由图形可知:∠l与∠7互余,∠2与∠6互余,∠3与∠5互余,所以∠l+∠2+∠3+∠4+∠5+∠6+∠7=90°+90°+90°+45°=315°.【总结升华】互余的两个角只与数量有关,而与位置无关.举一反三:【变式】如图所示,AB和CD都是直线,∠AOE=90°,∠3=∠FOD,∠1=27°20′,求∠2,∠3.【答案】解:因为∠AOE =90°,所以∠2=90°-∠1=90°-27°20′=62°40′. 又∠AOD =180°-∠1=152°40′,∠3=∠FOD .所以∠3=12∠AOD =76°20′. 答:∠2为62°40′,∠3为76°20′.4. 如图所示,时钟的时针由3点整的位置(顺时针方向)转过多少度时,与分针第一次重合.【答案与解析】解:设时针转过的度数为x °时,与分针第一次重合,依题意有: 12x =90+x 解得9011x =答:时针转过9011⎛⎫⎪⎝⎭°时,与分针第一次重合. 【总结升华】在相同时间里,分针转过的度数是时针的12倍,此外此问题可以转化为追及问题来解决. 举一反三:【变式】125°÷4= °= ° ′ 【答案】31.25,31、15类型三、利用数学思想方法解决有关线段或角的计算 1.方程的思想方法5. 如图所示,B 、C 是线段AD 上的两点,且32CD AB =,AC =35cm ,BD =44cm ,求线段AD 的长.【答案与解析】解:设AB =x cm ,则3cm 2CD x =(35)cm BC x =-或3(44)cm 2x -于是列方程,得335442x x -=-解得:x =18,即AB =18(cm ) 所以BC =35-x =35-18=17(cm )33182722CD x ==⨯=(cm ) 所以AD =AB+BC+CD =18+17+27=62(cm )【总结升华】根据题中的线段关系,巧设未知数,列方程求解. 2.分类的思想方法6. 同一直线上有A 、B 、C 、D 四点,已知AD =59DB ,AC =95CB ,且CD =4cm ,求AB 的长.【思路点拨】先根据题意画出图形,再从图上直观的看出各线段的关系及大小. 【答案与解析】 解:利用条件中的AD =59DB ,AC =95CB ,设DB =9x ,CB =5y , 则AD =5x ,AC =9y ,分类讨论:(1)当点D ,C 均在线段AB 上时,如图所示:∵ AB =AD+DB =14x ,AB =AC+CB =14y ,∴ x =y∵ CD =AC -AD =9y -5x =4x =4,∴ x =1,∴ AB =14x =14(cm ). (2)当点D ,C 均不在线段AB 上时,如图所示:方法同上,解得87AB =(cm ).(3)如图所示,当点D 在线段AB 上而点C 不在线段AB 上时,方法同上,解得11253AB =(cm ).(4)如图所示,当点C 在线段AB 上而点D 不在线段AB 上时,方法同上,解得11253AB =(cm ).综上可得:AB的长为14cm,87cm,11253cm.【总结升华】解决没有图形的题目时,一要注意满足条件下的图形的多样性;二要注意解决的方法,注意方程法在解决图形问题中的应用. 在正确答案中,(3)与(4)的答案虽然相同,但作为图形上的差别应了解.。
word完整版几何图形初步全章复习与巩固提高知识讲解
《几何图形初步》全章复习与巩固(提高)知识讲解【学习目标】 1.认识一些简单的几何体的平面展开图及三视图,初步培养空间观念和几何直观; 2.掌握直线、射线、线段、角这些基本图形的概念、性质、表示方法和画法;.初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题;3.逐步掌握学过的几何图形的表示方法,能根据语句画出相应的图形,会用语句描述简单4 的图形.【知识网络】【要点梳理】要点一、多姿多彩的图形1.几何图形的分类立体图形:棱柱、棱锥、圆柱、圆锥、球等. ?几何图形??平面图形:三角形、四边形、圆等.要点诠释:在给几何体分类时,不同的分类标准有不同的分类结果.2.立体图形与平面图形的相互转化(1)立体图形的平面展开图:把立体图形按一定的方式展开就会得到平面图形,把平面图形按一定的途径进行折叠就会得到相应的立体图形,通过展开与折叠能把立体图形和平面图形有机地结合起来.要点诠释:①对一些常见立体图形的展开图要非常熟悉,例如正方体的 11种展开图,三棱柱,圆柱等的展开图;②不同的几何体展成不同的平面图形,同一几何体沿不同的棱剪开,可得到不同的平面图形,那么排除障碍的方法就是:联系实物,展开想象,建立“模型”,整体构想,动手实践.(2)从不同方向看:主(正)视图----------从正面看?几何体的三视图左视图----------------从左边看??俯视图----------------从上面看要点诠释:①会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.②能根据三视图描述基本几何体或实物原型. )几何体的构成元素及关系(3点动成线,线与线相交成点;线动成面,面与面相交、面构成的.几何体是由点、线.成线;面动成体,体是由面组成要点二、直线、射线、线段直线,射线与线段的区别与联系1.2. 基本性质(1)直线的性质:两点确定一条直线. (2)线段的性质:两点之间,线段最短.要点诠释:①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线。
2023年图形认识初步知识点串讲及考点透视最新版
《图形结识初步》知识点串讲及考点透视一、知识网络1,通常画一个立体图形要分别从正面看、从左面看、从上面看.如从不同方向看图2就可得到图3中的三个图形.同样由图3的三个图形也可以画出图2.假如不能认真的观测分析立体图形的特性,就不能对的画出相应的平面图形.2,在研究直线、线段、射线的有关概念时,容易出现延长直线或延长射线之类的错误,在用两个大写字母表达射线时,忽视第一个字母表达的是这条射线的顶点.3,直线有这样一个重要性质:通过两点有一条直线,并且只有一条直线.即两点拟定一条直线.线段有这样一条重要性质:两点的所有连线中,线段最短.简朴说成:两点之间,线段最短.这两个性质是研究几何图形的基础,复习时应抓住性质中的关键性字眼,不能出现似是而非的错误.4,注意线段的中点是指把线段提成相等的两条线段的点;而连结两点间的线段的长度,叫做这两点的距离.这里应特别注意线段与距离的区别是,即距离是线段的长度,是一个量;线段则是一种图形,它们图2从正面看 从左面看 从上面看图3之间是不能等同的.5,在复习角的概念时,应注意理解两种方式来描述,即一种是从一些实际问题中抽象地概括出来,即有公共端点的两条射线组成的图形,叫做角;另一种是用旋转的观点来定义,即一条射线绕着端点从一个位置旋转到另一个位置所成的图形叫做角.角的两种定义都告诉我们这样一些事实:(1)角有两个特性:一是角有两条射线,二是角的两条射线必须有公共端点,两者缺一不可;(2)由于射线是向一方无限延伸的,所以角的两边无所谓长短,即角的大小与它的边的长短无关;(3)当角的大小一旦拟定,它的大小就不因图形的位置、图形的放大或缩小而改变.如一个37°的角放在放大或缩小若干倍的放大镜下它仍然是37°不能误认为角的大小也放大或缩小若干倍.此外对角的表达方法中,当用三个大写字母来表达时,顶点的字母必须写在中间,在角的两边上各取一点,将表达这两个点的字母分别写在顶点字母的两旁,两旁的字母不分前后.6,在研究互为余角和互为补角时,容易混淆这两个概念.经常误认为互为余角的两个角的和等于180°,互为补角的两个角的和等于90°.例1两条相交直线与此外一条直线在同一平面内,它们的交点个数是()A.1B.2C.3或2D.1或2或3分析由于题设条件中并没有明确这三条直线的具体位置,所以应分情况讨论.解依题意可以画出如图4图4二、方程思想.在解决有关角的大小,线段大小的计算时常需要通过列方程来解决.例2假如一个角的补角是150°,求这个角的余角.分析若设这个角的大小为x°,则这个角的余角是90°-x,于是由这个角的补角是150°可列出方程求解.解设这个角为x°,则这个角的余角是90°-x,根据题意,得180°-x=150°,解得:x=30°,即90°-x=60°.故这个角的余角是60°.三、图形变换思想.在研究角的概念时要充足体会对射线旋转的结识,在解决图形时应注意转化思想的运用,如立体图形与平面图形的互相转化的学习.例3 请画出正六棱柱表面展开图.分析 要将一个立体图形转化为平面图形,只要按照立体图形的折叠原理即可求解. 解 正六棱柱表面展开图如图5所示四、化归思想.在进行线段、射线、直线、角以及相关图形的计数时总要化归到公式()12n n -的具体运用上来.例4 若点C 、D 、E 、F 是线段AB 上的四个点.则这个图形中共有多少条线段?分析 已知线段上除了端点外,尚有4个点,即这条线段共有6个点,这样规定这个图形中共有多少条线段,则由代数式()12n n -即求. 解 由于依题意已知线段上共有6个点,所以这个图形中共有线段的为:()12n n -=()6612-=15.四、考点解密(所选例题均出自2023年全国部分省市中考试卷) 考点1 从不同方向看立体图形例5(河北省)图1中几何体的主视图是如图7所示中的( )个长方体,这样问题就简朴了. 解 由于要画出的是从正面看到的主视图,而已知的立体图形是由两个部分组成的,上面是一个球,球的下面是一个长方体,所以我们从正面看到的上面是一个圆,下面是一个长方形.又由于原立体图形中上面的球是放在中间的,所以对的的平面图形应当是C .故应选C .说明 要画出从不同方向看到的平面图形,通常画出分别从正面看、从左面看、从上面看一个立体图形的平面图形.考点2 立体图形的侧面展开图正面 图6C. A.D. B. 图7例2(嘉兴市)如图8所示的图形中,不能..通过折叠围成正方体的是( B )分析 观测这四个平面图形,A 、C 、D 能围成一个正方体,只有B 不能围成正方体. 解 应选B .说明 判断一个图形能否围成正方体,关键是要看这个平面图形是否是某一个正方体的侧面展开图,假如是,即能围成一个正方体,否则就不是.此外,一个立体图形可以有不同的平面展开图.也就是说,同一个立体图形,按不同方式展开得到的平面展开图是不同样的.反之,一些平面图形也可以围成立体图形,就是说,平面图形可以围成立体图形.但要注意,并不是所有的平面图形都可以围成多面体.考点3 拟定平面图形的个数例3(绍兴市)若有一条公共边的两个三角形称为一对“共边三角形”,则如图9中以BC 为公共边的“共边三角形”有( )A.2对B.3对C.4对D.6对分析 要知道有多少“共边三角形”,只要能依据图形写出所有的满足题意的三角形即可.解 结合图形,满足题意的三角形是:△ABC 与△DBC ,△DBC 与△EBC ,△EBC 与△ABC ,共3对.故应选B .说明 求解本题一定要注意抓住以BC 为公共边的“共边三角形”,不能忽视关键性的字眼.考点4 图形角度大小的计算例4(大连市)如图10,∠PQR 等于138°,SQ ⊥QR ,QT ⊥PQ .则∠SQT 等于( ) A.42° B.64° C.48° D.24°分析 规定∠SQT 的大小,由于SQ ⊥QR ,QT ⊥PQ ,可知∠PQS =∠RQT ,进而即可求得.解 由于SQ ⊥QR ,QT ⊥PQ ,所以∠PQS +∠SQT =∠SQT +∠RQT =90°,即∠PQS =∠RQT ,又∠PQS +∠SQT +∠RQT =138°,所以∠PQS =∠RQT =48°,所以∠SQT =138°-2×48°=42°.故应选A .说明 在进行图形的有关计算时,除了要能灵活运用所学的知识外,还要能从图形中捕获求解的信息.PQ T SR图10图9A B C D考点5 互为余角与互为补角例5(内江市)一个角的余角比它的补角的12少20°.则这个角为( ) A.30° B.40° C.60° D.75°分析 若设这个角为x ,则这个角的余角是90°-x ,补角是180°-x ,于是构造出方程即可求解. 解 设这个角为x ,则这个角的余角是90°-x ,补角是180°-x . 则根据题意,得12(180°-x )-(90°-x )=20°.解得:x =40°.故应选B . 说明 解决有关互为余角与互为补角的问题,除了要弄清楚它们的概念,通常情况下不要引进未知数,构造方程求解.考点6 平面图形的操作问题例6(旅顺口区)如图11,将一块正方形纸片沿对角线折叠一次,然后在得到的三角形的三个角上各挖去一个圆洞,最后将正方形纸片展开,得到的图案是如图12所示的( )要想知道展开后得到的图案是什么,可以依据题意,结合正方形的图形特性,发挥想象即可求解.解 由于将正方形沿对角线折叠一次,然后在得到的三角形的三个角上各挖去一个圆洞,就是说这个正方形上共有6个小圆,其中提成3组关于正方形的对角线即折痕对称,且1对圆在两个直角的顶点上,2对圆位于对角线即折痕的两侧.故应选C .说明 这种图形的操作问题的求解一定要在灵活运用基础知识的同时,充足发挥想象,并能大胆地归纳与推断.考点7 平面图形的面积问题例7(临安市)如图13,正方形硬纸片ABCD 的边长是4,点E 、F 分别是AB 、BC 的中点,若沿左图中的虚线剪开,拼成右图的一座“小别墅”,则图中阴影部分的面积是( )A.2B.4C.8D.10分析 规定图中阴影部分的面积,由于由剪到拼可知阴影部分的面积应是原正方形面积的四分之一,于是即求.DCBA图12图11解 根据题意“小别墅”的图中阴影部分的面积应等于正方形面积的四分之一,而正方形的面积是16,所以阴影部分的面积应等于4.故应选B .说明 本题的图形在操作过程中,虽然形状发生了改变,但是图形的面积却没有变化,抓住这一点问题就可以简洁求解.考点8 拼图问题例8(烟台市)如图14,有三种卡片,其中边长为a 的正方形卡片1张,边长分别为a ,b 的矩形卡片6张,边长为b 的正方形卡片9张.用这16张卡片拼成一个正方形,则这个正方形的边长为___.分析 16张卡片,拼成一个正方形,而边长为a 的正方形卡片1张,边长分别为a ,b 的矩形卡片6张,边长为b 的正方形卡片9张,由此可知正方形的每边上应有4张,并且这个正方形的边长应为a +3b .解 由于边长为a 的正方形卡片1张,边长分别为a ,b 的矩形卡片6张,边长为b 的正方形卡片9张,而用这16张卡片拼成一个正方形,所以正方形的每边上应有4张,并且这个正方形的边长应为a +3b .但拼得的正方形的形式是不同样的,如图15就是其中的一种.说明 这是一道结论开放型问题,只要符合题意且结论对的的都可以. 考点9 规律探索问题例9(江西省)用黑白两种颜色的正方形纸片,按黑色纸片数逐渐加1的规律拼成如图16一列图案:(1)第4个图案中有白色纸片___张;(2)第n 个图案中有白色纸片___张. 分析 要解答这两个问题,只要能求出第n 个图案中有白色纸片的张数即可,由于第1个图案中有白色纸片1张,第2个图案中有白色纸片7张,第3个图案中有白色纸片10张,…,由此可以得到第n 个图案中有白色纸片3n + 1张,从而求解.解 由于第1个图案中有白色纸片1张,第2个图案中有白色纸片7张,第3个图案中有白色纸片10张,…,所以可以得到第n 个图案中有白色纸片3n +1张.于是(1)当n =4时,3n +1=13;(2)3n + 1.第3个第2个第1个图16 图13图14a 图15 ba b说明 这种运用几何图形探索规律型问题是近年各地中考的热点,同学们在求解时一定要通过认真的观测、归纳、猜想、验证,才干对的地获解.练习题:1,(十堰市)观测如图17甲,从左侧正对长方体看到的结果是图乙中的( )2,(衡阳市)如图18所示的图形中,不是正方体平面展开图的是( )3,(江阴市)如图19,把一个边长为1的正方形通过三次对折后沿中位线(虚线)剪下,则右图展开得到的图形的面积为( )A.43B.21C.83D.3164,(广东省)水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表达,如图20是一个正方体的表面展开图,若图中“2”在正方体的前面,则这个正方体的后面是 ( )A.0B.6C.快D.乐5,(南通市)已知∠α=35°19′,则∠α的余角等于( )A.144°41′B.144°81′ C .54°41′ D .54°81 6,(枣庄市)如图21,B 是线段AC 的中点,过点C 的直线l 与AC 成60°的角,在直线l 上取一点P ,使∠APB =30°,则满足条件的点P 的个数是( )图17(图甲)ABC D(图乙)图22图21 图23图19沿虚线剪开图18图20A.3个B.2个C.l个D.不存在7,(十堰市)如图22,将一张长方形纸片对折两次,然后剪下一个角,打开.假如要剪出一个正方形,那么剪口线与折痕成()A.22.5°角B.30°角C.45°角D.60°角8,(烟台市)一位美术老师在课堂上进行立体模型素描教学时,把14个棱长为1分米的正方体摆在课桌上成如图23形式,然后他把露出的表面都涂上不同的颜色,则被他涂上颜色部分的面积为()A.33分米2B.24分米2C.21分米2D.42分米2参考答案:1,B;2,D;3,A;4,B;5,C;6,B;7,C;8,A.。
华东师大初中七年级上册数学《图形的初步认识》全章复习与巩固(提高)知识讲解
《图形的初步认识》全章复习与巩固(提高)知识讲解【学习目标】1.认识一些简单的几何体的平面展开图及三视图,初步培养空间观念和几何直观;2.掌握直线、射线、线段、角这些基本图形的概念、性质、表示方法和画法;3.初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题;4.逐步掌握学过的几何图形的表示方法,能根据语句画出相应的图形,会用语句描述简单的图形.【知识网络】【要点梳理】要点一、立体图形与平面图形1.几何图形的分类要点诠释:在给几何体分类时,不同的分类标准有不同的分类结果.2.立体图形与平面图形的相互转化(1)立体图形的平面展开图:把立体图形按一定的方式展开就会得到平面图形,把平面图形按一定的途径进行折叠就会得到相应的立体图形,通过展开与折叠能把立体图形和平面图形有机地结合起来.要点诠释:①对一些常见立体图形的展开图要非常熟悉,例如正方体的 11种展开图,三棱柱,圆柱等的展开图.②不同的几何体展成不同的平面图形,同一几何体沿不同的棱剪开,可得到不同的平面图形,那么排除障碍的方法就是:联系实物,展开想象,建立“模型”,整体构想,动手实践. (2)三视图:正视图--------------从正面看几何体的三视图左视图--------------从侧边看俯视图--------------从上面看要点诠释:①会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.②三视图的画法原则:高平齐宽相等长对正.③能根据三视图描述基本几何体或实物原型.(3)几何体的构成元素及关系:几何体是由点、线、面构成的.点动成线,线与线相交成点;线动成面,面与面相交成线;面动成体,体是由面组成.要点二、直线、射线、线段1.直线,射线与线段的区别与联系2. 基本性质(1)直线的性质:两点确定一条直线. (2)线段的性质:两点之间,线段最短.要点诠释:①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线.②连接两点间的线段的长度,叫做两点的距离.3.画一条线段等于已知线段(1)度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段.(2)用尺规作图法:用圆规在射线AC 上截取AB=a,如下图:4.线段的比较与运算(1)线段的比较:比较两条线段的长短,常用两种方法,一种是度量法;一种是叠合法.(2)线段的和与差:如下图,有AB+BC=AC ,或AC=a+b ;AD=AB-BD 。
《基本平面图形》全章复习与巩固(基础)知识讲解.doc
《基本平面图形》全章复习与巩固(基础)知识讲解撰稿:孙景艳审稿:吴婷婷【学习目标】1.掌握直线、射线、线段、角这些基本图形的概念、性质、表示方法和画法;2.掌握圆、扇形及多边形的概念及相关计算;3.初步学会应用图形与儿何的知识解释生活中的现象及解决简单的实际问题;4.逐步掌握学过的几何图形的表示方法, 能根据语句画出相应的图形,会用语句描述简单的图形.【知识网络】基本平面图形【要点梳理】要点一、线段、射线、直线1.直线,射线与线段的区别与联系类别、直线射线VW,图形 A B ' A B 1 A B1表示方法%1两个大写字母;%1一个小写字母%1再个大写字母(表示端点的字母在筑);%1一个小写字母①表示两端点的两个大写字号;②一个小写字母端点个数无I个2个延伸性向两方无限延伸向一方无限延伸不可延伸性质两点确定一条宜或两点之间,线段最短SB不可以不可以可以过4、8作直线48以4为端点作射或48连粮48作图叙述2.基本性质(1)直线的性质:两点确定一条直线.(2)线段的性质:两点之间,线段最短.要点诠释:%1本知识点可用来解释很多生活中的现象.如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线.%1连接两点间的线段的长度,叫做两点的距离.3 .画一条线段等于已知线段(1)度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段.(2)用尺规作图法:用圆规在射线AC上截取AB=a ,如下图:4.线段的比较与运算(1)线段的比较:比较两条线段的长短,常用两种方法,一种是度量法;一种是叠合法.(2)线段的和与差:如下图,有AB+BOAC,或AC二a+b; AD=AB-BD«a A a Bb cb A D B(3)线段的中点:把一条线段分成两条相等线段的点,叫做线段的中点.如下图,有:AM=MB = -AB2 要点诠释:%1线段中点的等价表述:如上图,点M在线段AB上,且有AM=-AB,则点M为线段2AB的中点.%1除线段的中点(即二等分点)夕卜,类似的还有线段的三等分点、四等分点等.如下图,点M, N, P均为线段AB的四等分点.A M N P BAM =MN = NP=PB =、AB4要点二、角1.角的度量(1)角的定义:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边;此外,角也可以看作由-•条射线绕着它的端点旋转而形成的图形.(2)角的表示方法:角通常有三种表示方法:一是用三个大写英文字母表示,二是用角的顶点的一个大写英文字母表示,三是用一个小写希腊字母或一个数字表示.例如下图:要点诠释:%1角的两种定义是从不同角度对角进行的定义;%1当一个角的顶点有多个角的时候,不能用顶点的一个大写字母来表示.(3)角度制及角度的换算1周角二360° , 1平角二180° , 1° =60' , 1' =60",以度、分、秒为单位的角的度量制,叫做角度制.要点诠释:%1度、分、秒的换算是60进制,与时间中的小时分钟秒的换算相同.%1度分秒之间的转化方法:由度化为度分秒的形式(即从高级单位向低级单位转化)时用乘法逐级进行;由度分秒的形式化成度(即低级单位向高级单位转化)时用除法逐级进行.%1同种形式相加减:度加(减)度,分加(减)分,秒加(减)秒;超60进一,减一成60.(4)角的分类:五边形(1)n 边形有n 个顶点、n 条边, (5)画一个角等于己知角(1) 借助三角尺能画出15°的倍数的角,在0〜180。
《几何图形初步》全章复习与巩固(基础)知识讲解及练习巩固
⎧⎨⎩①对一些常见立体图形的展开图要非常熟悉,例如正方体的 11种展开图,三棱柱,圆柱等的展开图;②不同的几何体展成不同的平面图形,同一几何体沿不同的棱剪开,可得到不同的平面图形,那么排除障碍的方法就是:联系实物,展开想象,建立“模型”,整体构想,动手实践.(2)从不同方向看:主(正)视图---------从正面看 几何体的三视图 左视图-----从左(右)边看俯视图---------------从上面看要点诠释:①会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.②能根据三视图描述基本几何体或实物原型.(3)几何体的构成元素及关系几何体是由点、线 、面构成的.点动成线,线与线相交成点;线动成面,面与面相交成线;面动成体,体是由面组成.要点二、直线、射线、线段1. 直线,射线与线段的区别与联系2. 基本性质(1)直线的性质:两点确定一条直线. (2)线段的性质:两点之间,线段最短.要点诠释:①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线.②连接两点间的线段的长度,叫做两点间的距离.3.画一条线段等于已知线段(1)度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段.(2)用尺规作图法:用圆规在射线AC 上截取AB=a,如下图:4.线段的比较与运算(1)线段的比较:比较两条线段的长短,常用两种方法,一种是度量法;一种是叠合法.(2)线段的和与差:如下图,有AB+BC=AC ,或AC=a+b ;AD=AB-BD 。
(3)线段的中点:把一条线段分成两条相等线段的点,叫做线段的中点.如下图,有:12AMMB AB ==要点诠释:①线段中点的等价表述:如上图,点M 在线段上,且有12AM AB =,则点M 为线段AB 的中点. ②除线段的中点(即二等分点)外,类似的还有线段的三等分点、四等分点等.如下图,点M,N,P 均为线段AB 的四等分点.P NAB PB NP MN AM 41==== 要点三、角1.角的度量 (1)角的定义:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边;此外,角也可以看作由一条射线绕着它的端点旋转而形成的图形.(2)角的表示方法:角通常有三种表示方法:一是用三个大写英文字母表示,二是用角的顶点的一个大写英文字母表示,三是用一个小写希腊字母或一个数字表示.例如下图:C b a M B A要点诠释:①角的两种定义是从不同角度对角进行的定义;②当一个角的顶点有多个角的时候,不能用顶点的一个大写字母来表示.(3)角度制及角度的换算1周角=360°,1平角=180°,1°=60′,1′=60″,以度、分、秒为单位的角的度量制,叫做角度制.要点诠释:①度、分、秒的换算是60进制,与时间中的小时分钟秒的换算相同.②度分秒之间的转化方法:由度化为度分秒的形式(即从高级单位向低级单位转化)时用乘法逐级进行;由度分秒的形式化成度(即低级单位向高级单位转化)时用除法逐级进行. ③同种形式相加减:度加(减)度,分加(减)分,秒加(减)秒;超60进一,减一 成60.(4)角的分类(5)画一个角等于已知角(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角.(2)借助量角器能画出给定度数的角.(3)用尺规作图法.2.角的比较与运算(1)角的比较方法: ①度量法;②叠合法.(2)角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线,例如:如下图,因为OC 是∠AOB 的平分线,所以∠1=∠2=12∠AOB ,或∠AOB=2∠1=2∠2. 类似地,还有角的三等分线等.3.角的互余互补关系余角补角(1)若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角.(2)若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角. ∠β锐角 直角 钝角 平角 周角 范围 0<∠β<90° ∠β=90° 90°<∠β<180° ∠β=180° ∠β=360°(3)结论: 同角(或等角)的余角相等;同角(或等角)的补角相等.要点诠释:①余角(或补角)是两个角的关系,是成对出现的,单独一个角不能称其为余角(或补角).②一个角的余角(或补角)可以不止一个,但是它们的度数是相同的.③只考虑数量关系,与位置无关.④“等角是相等的几个角”,而“同角是同一个角” .4.方位角以正北、正南方向为基准,描述物体运动的方向,这种表示方向的角叫做方位角.要点诠释:(1)方位角还可以看成是将正北或正南的射线旋转一定角度而形成的.所以在应用中一要确定其始边是正北还是正南.二要确定其旋转方向是向东还是向西,三要确定旋转角度的大小.(2)北偏东45 °通常叫做东北方向,北偏西45 °通常叫做西北方向,南偏东45 °通常叫做东南方向,南偏西45 °通常叫做西南方向.(3)方位角在航行、测绘等实际生活中的应用十分广泛.【典型例题】类型一、概念或性质的理解1.下列说法正确的是( )A.射线AB与射线BA表示同一条射线.B.连结两点的线段叫做两点之间的距离.C.平角是一条直线.D.若∠1+∠2=90°,∠1+∠3=90°,则∠2=∠3. 【答案】D【解析】选项A中端点和延伸方向不同,所以是两条射线;选项B中两点之间的距离是指线段的长度,是一个数值,而不是图形;C中角和直线是两种不同的概念,不能混淆.【总结升华】理解概念,掌握概念与概念的本质区别,并进行“比较”性分析和记忆.举一反三:【变式】下列结论中,不正确的是().A.两点确定一条直线B.两点之间,直线最短C.等角的余角相等D.等角的补角相等【答案】B类型二、立体图形与平面图形的相互转化2.(2015•泰州)一个几何体的表面展开图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱【答案】A.【总结升华】此题主要考查了几何体的展开图,熟记常见立体图形的平面展开图的特征是解决此类问题的关键.举一反三:【变式】(瞿州模拟)下面形状的四张纸板,按图所示的线经过折叠可以围成一个直三棱柱的是().【答案】C3. (浙江金华)如图所示几何体的主视图是()【答案】A【解析】从正面看球位于桌面右方,故选A.【总结升华】从正面看所得到的图形是主视图,先得到球体的主视图,再得到长方体的主视图,再根据球体在长方体的右边可得出答案.类型三、互余互补的有关计算4. 已知∠A=53°27′,则∠A的余角等于().A.37°B.36°33′C.63°D.143°【思路点拨】根据互为余角的定义求解.【答案】B【解析】∠A的余角为90°-53°27′=36°33′.【总结升华】本题考查角互余的概念:和为90度的两个角互为余角.举一反三:(2015•东莞模拟)一个角的余角比这个角的补角的一半小40°,则这个角为度.【变式】【答案】80.解:设这个角为x,则它的余角为(90°﹣x),补角为(180°﹣x),由题意得,(180°﹣x)﹣(90°﹣x)=40°,解得x=80°.类型四、方位角5.如图,射线OA的方向是:________;射线OB的方向是:_________;射线OC的方向是:________ .【思路点拨】OA表示的方向是北偏东,再加上其偏转的角度即可,同理OB、OC也是如此.【答案】北偏东15°;北偏西40°;南偏东45°.【解析】根据方位角的定义解答.【总结升华】熟知方位角的定义结合图形便可解答.类型五、钟表上的角6. (广西钦州)钟表分针的运动可看作是一种旋转现象,一只标准时钟的分针匀速旋转,经过15分钟旋转了________度.【答案】90【解析】根据钟表的特征;整个钟面是360°,分针每5分钟旋转30°,所以经过15分钟旋转了90°.【总结升华】在钟表问题中,常利用时针与分针转动的度数关系:时钟上的分针匀速旋转一分钟时的度数为6°,时针一分钟转过的度数为0.5°;两个相邻数字间的夹角为30°,每个小格夹角为6°,并且利用起点时间时针和分针的位置关系建立角的图形.类型六、利用数学思想方法解决有关线段或角的计算1.方程的思想方法7.如图所示,在射线OF上,顺次取A、B、C、D四点,使AB:BC:CD=2:3:4,又M、N分别是AB、CD的中点,已知AD=90cm,求MN的长.【思路点拨】有关比例问题,可设每一份为x,列方程求解,再利用中点定义,找出线段的和、差.【答案与解析】解:设线段AB,BC,CD的长分别是2x cm,3x cm,4x cm,∵AB+BC+CD=AD=90 cm,∴2x+3x+4x=90,x=10,∴AB=20 cm,BC=30 cm,CD=40 cm,∴MN=MB+BC+CN=12AB+BC+12CD=10+30+20=60(cm).【总结升华】当已知某线段被分成的几条线段的长度比时,可根据比设未知数x,用x的式子表示相关的线段的长度,列方程求出x的值,进而求出线段的长.举一反三:【变式】如图所示,已知∠AOC=∠BOD=100°,且∠AOB:∠AOD=2:7,求∠BOC和∠COD的度数.【答案】解:设∠AOB的度数为2x,则∠AOD的度数为7x.由∠AOD=∠AOB+∠BOD及∠BOD=100°,可得7x=2x+100°.解得x=20°,所以∠AOB=2x=40°.所以∠BOC=∠AOC-∠AOB=100°-40°=60°,∠COD=∠BOD-∠BOC=100°-60°=40°.2.分类的思想方法8.以∠AOB的顶点O为端点的射线OC,使∠AOC:∠BOC=5:4.(1)若∠AOB=18°,求∠AOC与∠BOC的度数;(2)若∠AOB=m,求∠AOC与∠BOC的度数.【答案与解析】解:(1)分两种情况:①OC在∠AOB的外部,可设∠AOC=5x,则∠BOC=4x得∠AOB=x,即x=18°所以∠AOC=90°,∠BOC=72°②OC在∠AOB的内部,可设∠AOC=5x,则∠BOC=4x∠AOB=∠AOC+∠BOC=9x所以9x=18°,则x=2°所以∠AOC=10°,∠BOC=8°(2)仿照(1),可得:若∠AOB=m,则∠AOC=59m,∠BOC=49m,或∠AOC=5m,∠BOC=4m.【总结升华】本题中的已知条件没有明确地说明OC在∠AOB的内部或外部,所以两个问题都必须分类讨论.举一反三:【变式1】已知线段AB=8cm,在直线AB上画线段BC=3cm,求线段AC的长.【答案】解:分两种情况:(1)如图(1),AC=AB-BC=8-3=5(cm);(2)如图(2),AC=AB+BC=8+3=11(cm).所以线段AC的长为5cm或11cm.【变式2】下列判断正确的个数有( )①已知A、B、C三点,过其中两点画直线一共可画三条②过已知任意三点的直线有1条③三条直线两两相交,有三个交点A.0个B.1个C.2个D.3个【答案】A3.类比的思想方法9.(1)如图,线段AD上有两点B、C,图中共有______条线段.(2)如图,在∠AOD的内部有两条射线OB、OC,则图中共有个角.【答案】(1)6;(2)6.【解析】(1)以A为端点的线段有3条,同样以B,C,D为一个端点的线段也各有3条,又因为所有线段均重复了一次,所以共有线段条数:3462⨯=(条).(2)以射线OA为一边的角有3个,同样以OB,OC,OD为一边的角也各有3个,又因为所有角均重复一次,所以共有角的个数:3462⨯=(个).【总结升华】用同样的方法解决了不同的问题,用已知的知识类比地学习未知的内容. 【巩固练习】一、选择题1.从左边看图1中的物体,得到的是图2中的().2.如图所示是正方体的一种平面展开图,各面都标有数,则标有数“-4”的面与其对面上的数之积是().A.4 B.12 C.-4 D.03.在下图中,是三棱锥的是().4.如图所示,点O在直线AB上,∠COB=∠DOE=90°,那么图中相等的角的对数是().A.3 B.4 C.5 D.75.如图所示的图中有射线().A.3条B.4条C.2条D.8条6.(2015•宝应县校级模拟)在地理课堂上,老师组织学生进行寻找北极星的探究活动时,李佳同学使用了如图所示的半圆仪,则下列四个角中,最可能和∠AOB互补的角为()A.B.C.D.7.十点一刻时,时针与分针所成的角是().A.112°30′B.127°30′C.127°50′D.142°30′8.在海面上有A和B两个小岛,若从A岛看B岛是北偏西42°,则从B岛看A岛应是().A.南偏东42°B.南偏东48°C.北偏西48°D.北偏西42°二、填空题9.把一条弯曲的公路改为直道,可以缩短路程,其理由是________.10.已知∠α=30°18′,∠β=30.18°,∠γ=30.3°,则相等的两角是________.11.用平面去截一个几何体,如果得出的横截面是圆形,那么被截的几何体是________(填一个答案即可).12.(2015秋•泾阳县期中)如图是一个正方体的展开图,和C面的对面是 面.13.若∠1+∠2=90°,∠1+∠3=90°,则∠2=∠3,其根据是________.14.若∠α是它的余角的2倍,∠β是∠α的2倍,那么把∠α和∠β拼在一起(有一条边重合)组成的角是________度.15.一副三角板如图摆放,若∠BAE=135 °17′,则∠CAD 的度数是 .16.如下图,点A 、B 、C 、D 代表四所村庄,要在AC 与BD 的交点M 处建一所“希望小学”,请你说明选择校址依据的数学道理 .三、解答题 17. (2015春•淄博校级期中)如图,已知点C 为AB 上一点,AC=12cm ,CB=AC ,D 、E 分别为AC 、AB 的中点,求DE 的长.18.如图所示,已知∠COB =2∠AOC ,OD 平分∠AOB ,且∠COD =19°,求∠AOB 的度数.19.在一张城市地图上,如图所示,有学校、医院、图书馆三地,图书馆被墨水染黑,具体位置看不清,但知道图书馆在学校的北偏东45°方向,在医院的南偏东60°方向,你能确定图书馆的位置吗?MB C DA20.如图所示,线段AB =4,点O 是线段AB 上一点,C 、D 分别是线段OA 、OB 的中点,小明据此很轻松地求得CD =2.在反思过程中突发奇想:若点O 运动到AB 的延长线上,原来的结论“CD =2”是否仍然成立?请帮小明画出图形并说明理由.【答案与解析】一、选择题1.【答案】B【解析】从左边看,圆台被遮住一部分,故选B .2.【答案】B【解析】由正方体的平面展开图可知,标有数-4的面的对面是标有数-3的面,故两个数之积为12.3.【答案】B【解析】A 选项是四棱锥,B 选项是三棱锥,C 、D 两项都是三棱柱,故选B .4.【答案】C【解析】因为∠COB =90°,所以∠BOD+∠COD =90°,即∠BOD =90°-∠COD .因为∠DOE =90°,所以∠EOC+∠COD =90°,即∠EOC =90°-∠COD ,所以∠BOD =∠EOC .同理∠AOE =∠COD .又因为∠AOC =∠COB =∠DOE =90°(∠AOC =∠COB ,∠AOC =∠DOE ,∠COB =∠DOE ),所以图中相等的角有5对,故选C .5.【答案】D6.【答案】D .【解析】根据图形可得∠AOB 大约为135°,∴与∠AOB 互补的角大约为45°,综合各选项D 符合.7.【答案】D【解析】一刻是15分钟,十点一刻,即10点15分时,时针与分针所成的角为:34304⎛⎫+⨯ ⎪⎝⎭°=142.5°=142°30′,故选D . 8.【答案】A【解析】方位角存在这样的规律:甲、乙两地之间的方位角,方向相反,角度相等.由此可知从B 岛看A 岛的方向为南偏东42°,故选A .二、填空题9. 【答案】两点之间,线段最短【解析】本题是应用线段的性质解释生活中的现象,由于这是两点之间连线长度的比较,符合“两点之间,线段最短”.10.【答案】∠α和∠γ【解析】30.3601810︒''=⨯=,于是∠α=∠γ.11.【答案】圆柱(圆锥、圆台、球体等)【解析】答案不唯一,例如用平面横截圆锥即可得到圆形.12.【答案】F.【解析】这是一个正方体的平面展开图,共有六个面,其中面“B”与面“D”相对,面“A”与面“E”相对,“C”与面“F”相对.13.【答案】同角的余角相等【解析】根据余角的性质解答问题.14.【答案】60度或180【解析】先求出∠α=60°,∠β=120°;再分∠α在∠β内部和外部两种情况来讨论.15.【答案】44°43′;【解析】∠BAD+∠CAE=180°,即∠BAE+∠CAD=180°,所以∠CAD=180°-135°17′=44°43′.16.【答案】两点之间,线段最短.三、解答题17.【解析】解:∵AC=12cm,CB=AC,∴CB=6cm,∴AB=AC+BC=12+6=18cm,∵E为AB的中点,∴AE=BE=9cm,∵D为AC的中点,∴DC=AD=6cm,所以DE=AE﹣AD=3cm.18.【解析】解:设∠AOC=x°,则∠COB=2x°.因为OD平分∠AOB,所以∠AOD=12∠AOB=12(∠AOC+∠BOC)=32x°.又因为∠DOC=∠AOD-∠AOC,所以3192x x=-.解得x=38,所以∠AOB=3x°=114°.19.【解析】解:如图所示.在医院A处,以正南方向为始边,逆时针转60°角,得角的终边射线AC.在学校B处,以正北方向为始边,顺时针旋转45°角,得角的终边射线BD.AC与BD的交点为点O,则点O就是图书馆的位置.20.【解析】解:原有的结论仍然成立,理由如下:当点O在AB的延长线上时,如图所示,CD=OC-OD=12(OA-OB)=12AB=142 2⨯=.。
几何图形初步基础知识详解
几何图形初步目录一、几何图形二、直线、射线、线段三、角四、《几何图形初步》全章复习与巩固一、几何图形基础知识讲解【学习目标】1.理解几何图形的概念,并能对具体图形进行识别或判断;2.掌握立体图形从不同方向看得到的平面图形及立体图形的平面展开图,在平面图形和立体图形相互转换的过程中,初步培养空间想象能力;3.理解点线面体之间的关系,掌握怎样由平面图形旋转得到几何体,能够借助平面图形剖析常见几何体的形成过程.【要点梳理】要点一、几何图形1.定义:把从实物中抽象出的各种图形统称为几何图形.要点诠释:几何图形是从实物中抽象得到的,只注重物体的形状、大小、位置,而不注重它的其它属性,如重量,颜色等.2.分类:几何图形包括立体图形和平面图形(1)立体图形:图形的各部分不都在同一平面内,这样的图形就是立体图形,如长方体,圆柱,圆锥,球等.(2)平面图形:有些几何图形(如线段、角、三角形、圆等)的各部分都在同一平面内,它们是平面图形.要点诠释:(1)常见的立体图形有两种分类方法:(2)常见的平面图形有圆和多边形,其中多边形是由线段所围成的封闭图形,生活中常见的多边形有三角形、四边形、五边形、六边形等.(3)立体图形和平面图形是两类不同的几何图形,它们既有区别又有联系.要点二、从不同方向看从不同的方向看立体图形,往往会得到不同形状的平面图形.一般是从以下三个方向:(1)从正面看;(2)从左面看;(3)从上面看.从这三个方向看到的图形分别称为正视图(也称主视图)、左视图、俯视图.要点三、简单立体图形的展开图有些立体图形是由一些平面图形围成,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.要点诠释:(1)不是所有的立体图形都可以展成平面图形.例如,球便不能展成平面图形.(2)不同的立体图形可展成不同的平面图形;同一个立体图形,沿不同的棱剪开,也可得到不同的平面图.要点四、点、线、面、体长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体也简称体;包围着体的是面,面有平的面和曲的面两种;面和面相交的地方形成线,线也分为直线和曲线两种;线和线相交的地方形成点.从上面的描述中我们可以看出点、线、面、体之间的关系.此外,从运动的观点看:点动成线,线动成面,面动成体.A.题目典型易错,重思路分析—“渔、鱼”兼得!按照★到★★★★标注难度。
浙教版初中数学七年级上册《图形的初步认识》全章复习与巩固(基础)知识讲解
浙教版初中数学七年级上册《图形的初步认识》全章复习与巩固(基础)知识讲解本文讲述了几何图形的初步认识,包括常见的几何体和平面图形的分类和构成元素。
同时,讲解了直线、射线、线段、角等基本图形的概念、表示方法、性质和画法,并介绍了应用图形与几何的知识解释生活中的现象及解决简单的实际问题的能力。
在几何体的分类中,不同的分类标准会得到不同的分类结果。
而几何体是由点、线、面构成的,点可以动成线,线与线相交成点,线动成面,面与面相交成线,面动成体,体是由面组成。
在线段、射线和直线的区别与联系中,直线由两点确定,线段是两点之间的最短距离,而射线则是从一个点出发,延伸出去的线段。
在画一条线段等于已知线段时,可以用度量法或尺规作图法。
而线段的比较与运算可以通过度量法、叠合法或估算法来实现。
同时,线段的中点可以将一条线段分成两条相等的线段。
最后,本文介绍了角的概念及其表示方法。
角是由两条射线共同确定的,可以用度数或弧度来表示。
角是由两条射线或一条射线绕着端点旋转形成的图形,其中端点称为角的顶点,射线称为角的边。
角的表示方法有三种:用三个大写字母表示、用顶点的一个大写字母表示、用一个小写希腊字母或数字表示。
角可以根据其大小和范围进行分类,包括锐角、直角、钝角、平角和周角。
角的度量单位是度,一周角等于360度,一平角等于180度,一度等于60分,一分等于60秒。
度、分、秒之间的转换方法是逐级进行乘除法,超过60进一或减一成60.角的比较和运算有三种方法:度量法、叠合法和估算法。
角的平分线是从角的顶点出发,将角分成相等的两个或三个角的射线。
余角和补角是两个角的关系,同角(或等角)的余角和补角相等。
方位角是以正北、正南方向为基准,描述物体运动方向的角。
(全册系列精选)华东师大初中七年级上册数学《图形的初步认识》全章复习与巩固(提高)知识讲解
《图形的初步认识》全章复习与巩固(提高)知识讲解【学习目标】1.认识一些简单的几何体的平面展开图及三视图,初步培养空间观念和几何直观;2.掌握直线、射线、线段、角这些基本图形的概念、性质、表示方法和画法;3.初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题;4.逐步掌握学过的几何图形的表示方法,能根据语句画出相应的图形,会用语句描述简单的图形.【知识网络】【要点梳理】要点一、立体图形与平面图形1.几何图形的分类要点诠释:在给几何体分类时,不同的分类标准有不同的分类结果.2.立体图形与平面图形的相互转化(1)立体图形的平面展开图:把立体图形按一定的方式展开就会得到平面图形,把平面图形按一定的途径进行折叠就会得到相应的立体图形,通过展开与折叠能把立体图形和平面图形有机地结合起来.要点诠释:①对一些常见立体图形的展开图要非常熟悉,例如正方体的 11种展开图,三棱柱,圆柱等的展开⎧⎨⎩图.②不同的几何体展成不同的平面图形,同一几何体沿不同的棱剪开,可得到不同的平面图形,那么排除障碍的方法就是:联系实物,展开想象,建立“模型”,整体构想,动手实践. (2)三视图:正视图--------------从正面看几何体的三视图 左视图--------------从侧边看俯视图--------------从上面看要点诠释:①会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图. ②三视图的画法原则:高平齐宽相等长对正. ③能根据三视图描述基本几何体或实物原型. (3)几何体的构成元素及关系:几何体是由点、线 、面构成的.点动成线,线与线相交成点;线动成面,面与面相交成线;面动成体,体是由面组成.要点二、直线、射线、线段1. 直线,射线与线段的区别与联系2. 基本性质(1)直线的性质:两点确定一条直线. (2)线段的性质:两点之间,线段最短. 要点诠释:①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线. ②连接两点间的线段的长度,叫做两点的距离.3.画一条线段等于已知线段(1)度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段. (2)用尺规作图法:用圆规在射线AC 上截取AB=a,如下图:4.线段的比较与运算 (1)线段的比较:比较两条线段的长短,常用两种方法,一种是度量法;一种是叠合法.(2)线段的和与差:如下图,有AB+BC=AC ,或AC=a+b ;AD=AB-BD 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《图形认识初步》全章复习与巩固(基础)知识讲解【知识网络】【要点梳理】要点一、多姿多彩的图形 1. 几何图形的分类要点诠释:在给几何体分类时,不同的分类标准有不同的分类结果. 2.立体图形与平面图形的相互转化 (1)立体图形的平面展开图:把立体图形按一定的方式展开就会得到平面图形,把平面图形按一定的途径进行折叠就会得到相应的立体图形,通过展开与折叠能把立体图形和平面图形有机地结合起来. 要点诠释:①对一些常见立体图形的展开图要非常熟悉,例如正方体的 11种展开图,三棱柱,圆柱等的展开图;②不同的几何体展成不同的平面图形,同一几何体沿不同的棱剪开,可得到不同的平面图形,那么排除障碍的方法就是:联系实物,展开想象,建立“模型”,整体构想,动手实践.立体图形:棱柱、棱锥、圆柱、圆锥、球等. ⎧⎨⎩平面图形:三角形、四边形、圆等.几何图形⎧⎨⎩(2)从不同方向看:主(正)视图---------从正面看 几何体的三视图 (左、右)视图-----从左(右)边看 俯视图---------------从上面看要点诠释:①会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图. ②能根据三视图描述基本几何体或实物原型. (3)几何体的构成元素及关系几何体是由点、线 、面构成的.点动成线,线与线相交成点;线动成面,面与面相交成线;面动成体,体是由面组成.要点二、直线、射线、线段1. 直线,射线与线段的区别与联系2. 基本性质(1)直线的性质:两点确定一条直线. (2)线段的性质:两点之间,线段最短. 要点诠释:①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线. ②连接两点间的线段的长度,叫做两点的距离.3.画一条线段等于已知线段(1)度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段. (2)用尺规作图法:用圆规在射线AC 上截取AB=a,如下图:4.线段的比较与运算 (1)线段的比较:比较两条线段的长短,常用两种方法,一种是度量法;一种是叠合法.(2)线段的和与差:如下图,有AB+BC=AC ,或AC=a+b ;AD=AB-BD 。
(3)线段的中点:把一条线段分成两条相等线段的点,叫做线段的中点.如下图,有:12AM MB AB ==要点诠释:①线段中点的等价表述:如上图,点M 在线段上,且有12AM AB =,则点M 为线段AB 的中点.②除线段的中点(即二等分点)外,类似的还有线段的三等分点、四等分点等.如下图,点M,N,P 均为线段AB 的四等分点.PNMBAAB PB NP MN AM 41==== 要点三、角 1.角的度量(1)角的定义:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边;此外,角也可以看作由一条射线绕着它的端点旋转而形成的图形. (2)角的表示方法:角通常有三种表示方法:一是用三个大写英文字母表示,二是用角的顶点的一个大写英文字母表示,三是用一个小写希腊字母或一个数字表示.例如下图:要点诠释:①角的两种定义是从不同角度对角进行的定义;②当一个角的顶点有多个角的时候,不能用顶点的一个大写字母来表示. (3)角度制及角度的换算1周角=360°,1平角=180°,1°=60′,1′=60″,以度、分、秒为单位的角的度量制,叫做角度制.BCBbba MBA要点诠释:①度、分、秒的换算是60进制,与时间中的小时分钟秒的换算相同.②度分秒之间的转化方法:由度化为度分秒的形式(即从高级单位向低级单位转化)时用乘法逐级进行;由度分秒的形式化成度(即低级单位向高级单位转化)时用除法逐级进行. ③同种形式相加减:度加(减)度,分加(减)分,秒加(减)秒;超60进一,减一 成60. (4)角的分类(5)画一个角等于已知角(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角. (2)借助量角器能画出给定度数的角. (3)用尺规作图法. 2.角的比较与运算(1)角的比较方法: ①度量法;②叠合法. (2)角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线,例如:如下图,因为OC 是∠AOB 的平分线,所以∠1=∠2=12∠AOB ,或∠AOB=2∠1=2∠2. 类似地,还有角的三等分线等.3.角的互余互补关系余角补角(1)若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角. (2)若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角. (3)结论: 同角(或等角)的余角相等;同角(或等角)的补角相等 要点诠释:①余角(或补角)是两个角的关系,是成对出现的,单独一个角不能称其为余角(或补角).②一个角的余角(或补角)可以不止一个,但是它们的度数是相同的, ③只考虑数量关系,与位置无关.④“等角是相等的几个角”,而“同角是同一个角”∠β 锐角直角钝角平角周角 范围0<∠β<90° ∠β=90° 90°<∠β<180° ∠β=180°∠β=360°4.方位角:以正北、正南方向为基准,描述物体运动的方向,这种表示方向的角叫做方位角.要点诠释:(1)方位角还可以看成是将正北或正南的射线旋转一定角度而形成的.所以在应用中一要确定其始边是正北还是正南.二要确定其旋转方向是向东还是向西,三要确定旋转角度的大小.(2)北偏东45 °通常叫做东北方向,北偏西45 °通常叫做西北方向,南偏东45 °通常叫做东南方向,南偏西45 °通常叫做西南方向.(3)方位角在航行、测绘等实际生活中的应用十分广泛.【典型例题】类型一、概念或性质的理解1.下列说法正确的是( )A.射线AB与射线BA表示同一条射线.B.连结两点的线段叫做两点之间的距离.C.平角是一条直线.D.若∠1+∠2=900,∠1+∠3=900,则∠2=∠3;【答案】D【解析】选项A中端点和延伸方向不同,所以是两条射线;选项B中两点之间的距离是指线段的长度,是一个数值,而不是图形;C中角和直线是两种不同的概念,不能混淆.【变式】下列结论中,不正确的是()A.两点确定一条直线B.两点之间,直线最短C.等角的余角相等D.等角的补角相等【答案】B类型二、立体图形与平面图形的相互转化2.(天门、潜江、仙桃)如图所示,是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体的表面上,与“看”相对的面上的汉字是()A.南B.世C.界D.杯【答案】C【解析】由图形可以判定“南”与“世”相对,“看”与“界”相对,“非”与“杯”相对.【总结升华】判断两个面是对面的根据是:展开图的对面没有公共边或公共顶点.举一反三:【变式】(瞿州模拟)下面形状的四张纸板,按图所示的线经过折叠可以围成一个直三棱柱的是().【答案】C3. (浙江金华)如图所示几何体的主视图是()【答案】A【解析】从正面看球位于桌面右方,故选A.【总结升华】从正面看所得到的图形是主视图,先得到球体的主视图,再得到长方体的主视图,再根据球体在长方体的右边可得出答案.类型三、互余互补的有关计算4. 已知∠A=53°27′,则∠A的余角等于().A.37°B.36°33′C.63°D.143°【思路点拨】根据互为余角的定义求解.【答案】B【解析】∠A的余角为90°-53°27′=36°33′.【总结升华】本题考查角互余的概念:和为90度的两个角互为余角.举一反三:【变式】一个角与它的余角相等,则这个角是______,它的补角是_______【答案】45°,135°类型四、方位角5.如图,射线OA的方向是:________;射线OB的方向是:_________;射线OC的方向是:________;【思路点拨】OA表示的方向是北偏东,再加上其偏转的角度即可,同理OB、OC也是如此.【答案】北偏东15°;北偏西40°;南偏东45°.【解析】根据方位角的定义解答.【总结升华】熟知方位角的定义结合图形便可解答.类型五、钟表上的角6. 钟表分针的运动可看作是一种旋转现象,一只标准时钟的分针匀速旋转,经过15分钟旋转了________度.【答案】90【解析】根据钟表的特征;整个钟面是360°,分针每5分钟旋转30°,所以经过15分钟旋转了90°.【总结升华】在钟表问题中,常利用时针与分针转动的度数关系:时钟上的分针匀速旋转一分钟时的度数为6°,时针一分钟转过的度数为0.5°;两个相邻数字间的夹角为30°,每个小格夹角为6°,并且利用起点时间时针和分针的位置关系建立角的图形.类型六、利用数学思想方法解决有关线段或角的计算1.方程的思想方法7.如图所示,在射线OF上,顺次取A、B、C、D四点,使AB:BC:CD=2:3:4,又M、N分别是AB、CD的中点,已知AD=90cm,求MN的长.【思路点拨】有关比例问题,可设每一份为x,列方程求解,再利用中点定义,找出线段的和、差.【答案与解析】解:设线段AB,BC,CD的长分别是2x cm,3x cm,4x cm,∵AB+BC+CD=AD=90 cm,∴2x+3x+4x=90,x=10,∴AB=20 cm,BC=30 cm,CD=40 cm,∴MN=MB+BC+CN=12AB+BC+12CD=10+30+20=60(cm).【总结升华】当已知某线段被分成的几条线段的长度比时,可根据比设未知数x,用x的式子表示相关的线段的长度,列方程求出x的值,进而求出线段的长.举一反三:【变式】如图所示,已知∠AOC=∠BOD=100°,且∠AOB:∠AOD=2:7,求∠BOC和∠COD的度数.【答案】解:设∠AOB的度数为2x,则∠AOD的度数为7x.由∠AOD=∠AOB+∠BOD及∠BOD=100°,可得7x=2x+100°.解得x=20°,所以∠AOB=2x=40°.所以∠BOC=∠AOC-∠AOB=100°-40°=60°,∠COD=∠BOD-∠BOC=100°-60°=40°.2.分类的思想方法8.以∠AOB的顶点O为端点的射线OC,使∠AOC:∠BOC=5:4.(1)若∠AOB=18°,求∠AOC与∠BOC的度数;(2)若∠AOB=m,求∠AOC与∠BOC的度数.【答案与解析】解:(1)分两种情况:①OC在∠AOB的外部,可设∠AOC=5x,则∠BOC=4x得∠AOB=x,即x=18°所以∠AOC=90°,∠BOC=72°②OC在∠AOB的内部,可设∠AOC=5x,则∠BOC=4x∠AOB=∠AOC+∠BOC=9x所以9x=18°,则x=2°所以∠AOC=10°,∠BOC=8°(2)仿照(1),可得:若∠AOB=m,则∠AOC=59m,∠BOC=49m,或∠AOC=5m,∠BOC=4m.【总结升华】本题中的已知条件没有明确地说明OC在∠AOB的内部或外部,所以两个问题都必须分类讨论.举一反三:【变式1】已知线段AB=8cm,在直线AB上画线段BC=3cm,求线段AC的长.【答案】解:分两种情况:(1)如图(1),AC=AB-BC=8-3=5(cm);(2)如图(2),AC=AB+BC=8+3=11(cm).所以线段AC的长为5cm或11cm.【变式2】下列判断正确的个数有( )①已知A、B、C三点,过其中两点画直线一共可画三条②过已知任意三点的直线有1条③三条直线两两相交,有三个交点A.0个B.1个C.2个D.3个【答案】A。