《图形认识初步》全章复习与巩固(基础)知识讲解
《图形认识初步》全章复习与巩固(基础)知识讲解讲解

《图形认识初步》全章复习与巩固(基础)知识讲解【知识网络】【要点梳理】要点一、多姿多彩的图形1.几何图形的分类几何图形要点诠释:在给几何体分类时,不同的分类标准有不同的分类结果.2.立体图形与平面图形的相互转化(1)立体图形的平面展开图:把立体图形按一定的方式展开就会得到平面图形,把平面图形按一定的途径进行折叠就会得到相应的立体图形,通过展开与折叠能把立体图形和平面图形有机地结合起来.要点诠释:①对一些常见立体图形的展开图要非常熟悉,例如正方体的 11种展开图,三棱柱,圆柱等的展开图;②不同的几何体展成不同的平面图形,同一几何体沿不同的棱剪开,可得到不同的平面图形,那么排除障碍的方法就是:联系实物,展开想象,建立“模型”,整体构想,动手实践.(2)从不同方向看:主(正)视图---------从正面看几何体的三视图(左、右)视图-----从左(右)边看俯视图---------------从上面看要点诠释:①会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.②能根据三视图描述基本几何体或实物原型.(3)几何体的构成元素及关系几何体是由点、线、面构成的.点动成线,线与线相交成点;线动成面,面与面相交成线;面动成体,体是由面组成.要点二、直线、射线、线段1. 直线,射线与线段的区别与联系2. 基本性质(1直线的性质:两点确定一条直线. (2线段的性质:两点之间,线段最短.要点诠释:①本知识点可用来解释很多生活中的现象.如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线.②连接两点间的线段的长度,叫做两点的距离.3.画一条线段等于已知线段(1)度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段.(2)用尺规作图法:用圆规在射线AC上截取AB=a,如下图:4.线段的比较与运算(1)线段的比较:比较两条线段的长短,常用两种方法,一种是度量法;一种是叠合法.(3)线段的中点:把一条线段分成两条相等线段的点,叫做线段的中点.如下图,有:M BA要点诠释:①线段中点的等价表述:如上图,点M在线段上,且有,则点M为线段AB的中点.②除线段的中点(即二等分点)外,类似的还有线段的三等分点、四等分点等.如下图,点M,N,P均为线段AB的四等分点.PN要点三、角1.角的度量(1)角的定义:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边;此外,角也可以看作由一条射线绕着它的端点旋转而形成的图形.(2角的表示方法:角通常有三种表示方法:一是用三个大写英文字母表示,二是用角的顶点的一个大写英文字母表示,三是用一个小写希腊字母或一个数字表示.例如下图:要点诠释:①角的两种定义是从不同角度对角进行的定义;②当一个角的顶点有多个角的时候,不能用顶点的一个大写字母来表示.(3)角度制及角度的换算1周角=360°,1平角=180°,1°=60′,1′=60″,以度、分、秒为单位的角的度量制,叫做角度制.要点诠释:①度、分、秒的换算是60进制,与时间中的小时分钟秒的换算相同.②度分秒之间的转化方法:由度化为度分秒的形式(即从高级单位向低级单位转化时用乘法逐级进行;由度分秒的形式化成度(即低级单位向高级单位转化时用除法逐级进行.③同种形式相加减:度加(减)度,分加(减)分,秒加(减)秒;超60进一,减一成60.(4)角的分类∠β锐角直角钝角平角周角范围0<∠β<90°∠β=90°90°<∠β<180°∠β=180°∠β=360°(5)画一个角等于已知角(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角.(2)借助量角器能画出给定度数的角.(3)用尺规作图法.2.角的比较与运算(1)角的比较方法: ①度量法;②叠合法.(2)角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线,例如:如下图,因为OC是∠AOB的平分线,所以∠1=∠2=∠AOB,或∠AOB=2∠1=2∠2.类似地,还有角的三等分线等.3.角的互余互补关系余角补角(1)若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角.(2)若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角.(3)结论: 同角(或等角的余角相等;同角(或等角的补角相等要点诠释:①余角(或补角是两个角的关系,是成对出现的,单独一个角不能称其为余角(或补角.②一个角的余角(或补角可以不止一个,但是它们的度数是相同的,③只考虑数量关系,与位置无关.④“等角是相等的几个角”,而“同角是同一个角”4.方位角:以正北、正南方向为基准,描述物体运动的方向,这种表示方向的角叫做方位角.要点诠释:(1)方位角还可以看成是将正北或正南的射线旋转一定角度而形成的.所以在应用中一要确定其始边是正北还是正南.二要确定其旋转方向是向东还是向西,三要确定旋转角度的大小.(2)北偏东45 °通常叫做东北方向,北偏西45 °通常叫做西北方向,南偏东45 °通常叫做东南方向,南偏西45 °通常叫做西南方向.(3)方位角在航行、测绘等实际生活中的应用十分广泛.【典型例题】类型一、概念或性质的理解1.下列说法正确的是(A.射线AB与射线BA表示同一条射线.B.连结两点的线段叫做两点之间的距离.C.平角是一条直线.D.若∠1+∠2=900,∠1+∠3=900,则∠2=∠3;【答案】D【解析】选项A中端点和延伸方向不同,所以是两条射线;选项B中两点之间的距离是指线段的长度,是一个数值,而不是图形;C中角和直线是两种不同的概念,不能混淆.【变式】下列结论中,不正确的是()A.两点确定一条直线 B.两点之间,直线最短C.等角的余角相等 D.等角的补角相等【答案】B类型二、立体图形与平面图形的相互转化2. (天门、潜江、仙桃如图所示,是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体的表面上,与“看”相对的面上的汉字是(A.南B.世 C.界 D.杯【答案】C【解析】由图形可以判定“南”与“世”相对,“看”与“界”相对,“非”与“杯”相对.【总结升华】判断两个面是对面的根据是:展开图的对面没有公共边或公共顶点.举一反三:【变式】(瞿州模拟下面形状的四张纸板,按图所示的线经过折叠可以围成一个直三棱柱的是(.【答案】C3.(浙江金华如图所示几何体的主视图是(【答案】A【解析】从正面看球位于桌面右方,故选A.【总结升华】从正面看所得到的图形是主视图,先得到球体的主视图,再得到长方体的主视图,再根据球体在长方体的右边可得出答案.类型三、互余互补的有关计算4.已知∠A=53°27′,则∠A的余角等于(.A.37° B.36°33′ C.63° D.143°【思路点拨】根据互为余角的定义求解.【答案】B【解析】∠A的余角为90°-53°27′=36°33′.【总结升华】本题考查角互余的概念:和为90度的两个角互为余角.举一反三:【变式】一个角与它的余角相等,则这个角是______,它的补角是_______【答案】45°,135°类型四、方位角5.如图,射线OA的方向是:________;射线OB的方向是:_________;射线OC的方向是:________;【思路点拨】OA表示的方向是北偏东,再加上其偏转的角度即可,同理OB、OC也是如此.【答案】北偏东15°;北偏西40°;南偏东45°.【解析】根据方位角的定义解答.【总结升华】熟知方位角的定义结合图形便可解答.类型五、钟表上的角6.钟表分针的运动可看作是一种旋转现象,一只标准时钟的分针匀速旋转,经过15分钟旋转了________度.【答案】90【解析】根据钟表的特征;整个钟面是360°,分针每5分钟旋转30°,所以经过15分钟旋转了90°.【总结升华】在钟表问题中,常利用时针与分针转动的度数关系:时钟上的分针匀速旋转一分钟时的度数为6°,时针一分钟转过的度数为0.5°;两个相邻数字间的夹角为30°,每个小格夹角为6°,并且利用起点时间时针和分针的位置关系建立角的图形.类型六、利用数学思想方法解决有关线段或角的计算1.方程的思想方法7.如图所示,在射线OF上,顺次取A、B、C、D四点,使AB:BC:CD=2:3:4,又M、N分别是AB、CD的中点,已知AD=90cm,求MN的长.【思路点拨】有关比例问题,可设每一份为x,列方程求解,再利用中点定义,找出线段的和、差.【答案与解析】解:设线段AB,BC,CD的长分别是2x cm,3x cm,4x cm,∵AB+BC+CD=AD=90 cm,∴ 2x+3x+4x=90,x=10,∴AB=20 cm, BC=30 cm, CD=40 cm,∴MN=MB+BC+CN=AB+BC+CD=10+30+20=60(cm.【总结升华】当已知某线段被分成的几条线段的长度比时,可根据比设未知数x,用x的式子表示相关的线段的长度,列方程求出x的值,进而求出线段的长.举一反三:【变式】如图所示,已知∠AOC=∠BOD=100°,且∠AOB:∠AOD=2:7,求∠BOC和∠COD的度数.【答案】解:设∠AOB的度数为2x,则∠AOD的度数为7x.由∠AOD=∠AOB+∠BOD及∠BOD=100°,可得7x=2x+100°.解得x=20°,所以∠AOB=2x=40°.所以∠BOC=∠AOC-∠AOB=100°-40°=60°,∠COD=∠BOD-∠BOC=100°-60°=40°.2.分类的思想方法8.以∠AOB的顶点O为端点的射线OC,使∠AOC:∠BOC=5:4.(1若∠AOB=18°,求∠AOC与∠BOC的度数;(2若∠AOB=m,求∠AOC与∠BOC的度数.【答案与解析】解:(1分两种情况:①OC在∠AOB的外部,可设∠AOC=5x,则∠BOC=4x得∠AOB=x,即x=18°所以∠AOC=90°,∠BOC=72°②OC在∠AOB的内部,可设∠AOC=5x,则∠BOC=4x∠AOB=∠AOC+∠BOC=9x所以9x=18°,则x=2°所以∠AOC=10°,∠BOC=8°(2)仿照(1),可得:若∠AOB=m,则∠AOC =,∠BOC=,或∠AOC=5m,∠BOC=4m.【总结升华】本题中的已知条件没有明确地说明OC在∠AOB的内部或外部,所以两个问题都必须分类讨论.举一反三:【变式1】已知线段AB=8cm,在直线AB上画线段BC=3cm,求线段AC的长.【答案】解:分两种情况:(1如图(1,AC=AB-BC=8-3=5(cm;(2如图(2,AC=AB+BC=8+3=11(cm.所以线段AC的长为5cm或11cm.【变式2】下列判断正确的个数有(①已知A、B、C三点,过其中两点画直线一共可画三条②过已知任意三点的直线有1条③三条直线两两相交,有三个交点A.0个 B.1个 C.2个 D.3个【答案】A。
《图形认识初步》知识点

《图形认识初步》1、几何图形:我们把实物中抽象出来的各种图形叫做几何图形。
几何图形分为平面图形和立体图形。
(1)平面图形:图形所表示的各个部分都在同一平面内的图形,如直线、三角形等。
(2)立体图形:图形所表示的各个部分不在同一平面内的图形,如圆柱体。
2、常见的立体图形(1)柱体:A 棱柱---有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边互相平行,由这些面围成的几何体叫做棱柱。
B 圆柱---以矩形的一边所在直线为旋转轴,其余各边围绕它旋转一周二形成的曲面所围成的集合体叫做圆柱。
(2)椎体:A 棱锥—有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
B 圆锥—以直角三角形的一条直角边所在的直线为旋转轴,其余各边旋转一周而形成的曲面围成的几何体叫做圆锥。
(3)球体:半圆以它的直径为旋转轴,旋转一周而形成的曲面所围成的几何体叫做球体。
(4)多面体:围成棱柱和棱锥的面都是平的面,想这样的立体图形叫做多面体。
3、 常见的平面图形(1)多边形:由线段围成的封闭图形叫做多边形。
多边形中三角形是最基本的图形。
(2)圆:一条线段绕它的端点旋转一周而形成的图形。
(3)扇形:由一条弧和经过这条弧的端点的两条半径围成的图形叫做扇形。
4、 从不同方向观察几何体从正面、上面、左面三个不同方向看一个物体,然后描出三张所看到的图(分别叫做正视图、俯视图、侧视图),这样就可以把立体图形转化为平面图形。
例题:1、如图是一些小正方体所搭几何体的俯视图,小正方形中的数字表示该位置的小正方体的个数,请画出这个几何体的主视图和左视图:主视图 左视图例题:2、下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为 ( )5、 立体图形的展开图有些立体图形是有一些平面图形围成的,把它们的表面适当剪开后在平面上展开得到的平面图形称为立体图形的展开图。
图形的初步认识全章复习与巩固

符号
1 颗星 1 面旗
旁白
1 颗星 1 面旗
同学摆擂台!(写在黑板上)
要求:(1)出自网校资源(靠旁白)、非难偏怪题 (2)标明出处、奖励规则。 (3)擂主会解题。
一、师生问好
同学们好!
课前就位
• 发测评截图的同学:…..加3颗星星 截屏快捷键:Ctrl + PrntScr ; 截图Ctrl + Alt+A) 有高清课堂观看笔记 的 加3颗星星 • 上周积分情况汇报
老师摆擂
10. 如图所示, AB AC (1)AC=BC+______; (2)CD=AD-______; BD (3)CD=______-BC; (4)AB+BC=______-CD. AD
课堂小结及点评
1、合上学案,回想一下这节课我们都复习了 哪些知识点和类型题? 2、各小组积分情况点评。
布置学案
D
5、点评:理解概念,掌握概念与概念的本质区别
例2.(天门、潜江、仙桃)如图所示,是每个面上都有一个 汉字的正方体的一种展开图,那么在原正方体的表面上, 与“看”相对的面上的汉字是 ( ) A.南 B.世 C.界 D.杯
解题思路:由图形可以判定“南”与“世”相对, “看”与“界”相对,“非”与“杯”相对 点评:判断两个面是对面的根据是:展开图的对面没有公共边 或公共顶点
要点梳理——检测
知识点一:多姿多彩的图形 2.立体图形与平面图形的相互转化
抢答
(1)立体图形的平面展开图: 把立体图形按一定的方式展开就 平面图形 会得到-------- ----,把平面图形按一定的途径进行折叠就 会得
到相应的立体图形
正 左、右 上
抢答 知识点二:直线、射线、线段的区别与联系
图形认识初步单元复习与巩固

图形认识初步单元复习与巩固一、目标与策略明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!学习目标:●认识一些简单的几何体的平面展开图及会画简单几何体的三视图,初步培养空间观念和几何直观。
●掌握直线、射线、线段、角这些基本图形的概念、性质、表示方法和画法。
●初步学会应用图形与几何的知识解释生活中的现象以及解决简单的实际问题。
重点难点:●重点:识别简单的几何体,准确认识各种立体图形与平面图形。
由探究得出直线(线段)的性质,掌握直线、射线、线段的表示法,能根据语句画出相应的图形。
度、分、秒之间的换算,角平分线的概念及表示,补角余角的概念及性质.●难点:从具体事物中抽象出几何图形,立体图形与平面图形之间的转化。
学习策略:●通过观察、思考、讨论、操作的过程,认识常见几何图形的特性和常见立体图展开图形状,培养把实际问题转化为数学问题的能力,理解直线、射线、线段和角的概念及性质。
二、学习与应用“凡事预则立,不预则废”。
科学地预习才能使我们上课听讲更有目的性和针对知识网络详细内容请参看网校资源ID:#tbjx1#220705知识点一: 几何图形1、 概念:从实物中抽象出的各种图形统称几何图形;在各种几何图形中,若 我们称它们为立体图形,立体图形又叫做几何体,简称为体。
例如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等;若各部分都在同一平面内,我们称它们为 ,例如:线段、角、三角形、长方形、圆等。
即有:要点诠释:(1)对于各种各样的物体,我们数学中关注的是它们的 、 和 ,而它们的颜色、重量、材料等则是其他学科所关注的。
(2)立体图形与平面图形是两种不同的几何图形,二者也有一定的联系,立体图形中的某些部分是平面图形,例如长方体的侧面是 ;或沿立体图形的某些边剪开后可以展成 ,平面图形也可以 成立体图形;或从不同方向看立体图形可以得到平面图形,同时通过 平面图形也可以想象出相应的立体图形。
(3)在给几何体分类是,不同的分类标准有不同的分类结果。
华东师大初中七年级上册数学图形的初步认识全章复习与巩固提高知识讲解精选

图形的初步认识《》全章复习与巩固(提高)知识讲解【学习目标】 1.认识一些简单的几何体的平面展开图及三视图,初步培养空间观念和几何直观; 2.掌握直线、射线、线段、角这些基本图形的概念、性质、表示方法和画法;.初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题;3.逐步掌握学过的几何图形的表示方法,能根据语句画出相应的图形,会用语句描述简单4 的图形.【知识网络】【要点梳理】要点一、立体图形与平面图形1.几何图形的分类要点诠释:在给几何体分类时,不同的分类标准有不同的分类结果..立体图形与平面图形的相互转化2.(1)立体图形的平面展开图:把立体图形按一定的方式展开就会得到平面图形,把平面图形按一定的途径进行折叠就会得到相应的立体图形,通过展开与折叠能把立体图形和平面图形有机地结合起来.要点诠释:①对一些常见立体图形的展开图要非常熟悉,例如正方体的 11种展开图,三棱柱,圆柱等的展开图.②不同的几何体展成不同的平面图形,同一几何体沿不同的棱剪开,可得到不同的平面图形,那么排除障碍的方法就是:联系实物,展开想象,建立“模型”,整体构想,动手实践.(2)三视图:正视图--------------从正面看?几何体的三视图左视图--------------从侧边看??俯视图--------------从上面看要点诠释:①会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.②三视图的画法原则:高平齐宽相等长对正.③能根据三视图描述基本几何体或实物原型. )几何体的构成元素及关系:3(点动成线,线与线相交成点;线动成面,面与面相交. 、面构成的几何体是由点、线.成线;面动成体,体是由面组成要点二、直线、射线、线段直线,射线与线段的区别与联系1.2. 基本性质(1)直线的性质:两点确定一条直线. (2)线段的性质:两点之间,线段最短.要点诠释:①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线..②连接两点间的线段的长度,叫做两点的距离3.画一条线段等于已知线段(1)度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段.(2)用尺规作图法:用圆规在射线AC上截取AB=a,如下图:.线段的比较与运算4)线段的比较:(1.比较两条线段的长短,常用两种方法,一种是度量法;一种是叠合法 2)线段的和与差:( AD=AB-BD。
《平面图形的认识(一)》全章复习与巩固(基础)知识讲解

《平面图形的认识(一)》全章复习与巩固(基础)知识讲解责编:某老师【学习目标】1.掌握直线、射线、线段、角这些基本图形的概念、性质、表示方法和画法;2.初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题;3.正确理解“相交”、“互相平行”、“互相垂直”等概念,发展空间想象力.【知识网络】【要点梳理】要点一、直线、射线、线段1.直线,射线与线段的区别与联系2. 基本性质(1)直线的性质:两点确定一条直线. (2)线段的性质:两点之间线段最短. 要点诠释:①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线. ②连接两点间的线段的长度,叫做两点的距离.3.画一条线段等于已知线段(1)度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段. (2)用尺规作图法:用圆规在射线AC 上截取AB =a,如下图: 4.线段的比较与运算(1)线段的比较:比较两条线段的长短,常用两种方法,一种是度量法;一种是叠合法.(2)线段的和与差:如下图,有AB+BC =AC ,或AC =a+b ;AD =AB-BD.(3)线段的中点:把一条线段分成两条相等线段的点,叫做线段的中点.如下图,有:12AM MB AB ==.要点诠释:①线段中点的等价表述:如上图,点M 在线段上,且有12AM AB =,则点M 为线段AB 的中点.②除线段的中点(即二等分点)外,类似的还有线段的三等分点、四等分点等. 如下图,点M,N,P 均为线段AB 的四等分点,则有AB PB NP MN AM 41====. PN(4)线段的延长线:如下图,图①称为延长线段AB ,或称为反向延长线段BA ;图②称为延长线段BA ,或称为反向延长线段AB. 图中延长的部分叫做原线段的延长线.要点二、角1.角的概念及其表示(1)角的定义:从一点引出的两条射线所形成的图形叫做角,这个点叫做角的顶点,这两条射线是角的边;此外,角也可以看作由一条射线绕着它的端点旋转而形成的图形.(2)角的表示方法:角通常有三种表示方法:一是用三个大写英文字母表示,二是用角的顶点的一个大写英文字母表示,三是用一个小写希腊字母或一个数字表示.例如下图:要点诠释:①角的两种定义是从不同角度对角进行的定义.②当一个角的顶点有多个角的时候,不能用顶点的一个大写字母来表示. 2.角的分类3.角的度量1周角=360°,1平角=180°,1°=60′,1′=60″. 要点诠释:①度、分、秒的换算是60进制,与时间中的小时分钟秒的换算相同. ②度分秒之间的转化方法:由度化为度分秒的形式(即从高级单位向低级单位转化)时用乘法逐级进行;由度分秒的形式化成度(即低级单位向高级单位转化)时用除法逐级进行. ③同种形式相加减:度加(减)度,分加(减)分,秒加(减)秒;超60进一,减一 成60.4.角的平分线从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线,例如:如下图,因为OC 是∠AOB 的平分线,所以∠1=∠2=12∠AOB ,或∠AOB =2∠1=2∠2.类似地,还有角的三等分线等.5.余角、补角、对顶角(1)余角、补角:若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角. 若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角. 结论: 同角(或等角)的余角相等;同角(或等角)的补角相等.要点诠释:①余角(或补角)是两个角的关系,是成对出现的,单独一个角不能称其为余角(或补角).②一个角的余角(或补角)可以不止一个,但是它们的度数是相同的.③只考虑数量关系,与位置无关.④“等角是相等的几个角”,而“同角是同一个角”.(2)对顶角:对顶角相等.要点三、平行与垂直1.同一平面内的两条直线的位置关系:平行与相交. 平行用符号“∥”表示.要点诠释:只有一个公共点的两条直线叫做相交直线,这个公共点叫做交点.2.垂线(1)垂线的定义:两条直线相交所成的四个角中,有一个角是直角时,就称这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫垂足.垂直用符号“⊥”表示,如下图.(2)垂线的性质:①在同一平面内,过一点有且只有一条直线与已知直线垂直.②垂线段最短.(3)点到直线的距离:从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.【典型例题】类型一、概念或性质的理解1.(2016春•永登县期中)下列叙述中,正确的是()A.在同一平面内,两条直线的位置关系有三种,分别是相交、平行、垂直B.不相交的两条直线叫平行线C.两条直线的铁轨是平行的D.我们知道,对顶角是相等的,那么反过来,相等的角就是对顶角【思路点拨】根据直线的关系,平行线的定义,可得答案.【答案】C【解析】解:A、在同一平面内,两条直线的位置关系有两种,分别是相交、平行,故A错误;B、在同一个平面内,不相交的两条直线叫平行线,故B错误;C、两条直线的铁轨是平行的,故C正确;D、我们知道,对顶角是相等的,那么反过来,相等的角不一定是对顶角,故D错误;故选:C.【总结升华】本题考查了平行线,在同一个平面内,不相交的两条直线叫平行线,注意相等的角不一定是对顶角.举一反三:【变式】(2015春•通辽期末)下列说法不正确的是()A.过任意一点可作已知直线的一条平行线B.同一平面内两条不相交的直线是平行线C.在同一平面内,过直线外一点只能画一条直线与已知直线垂直D.平行于同一直线的两直线平行解:A中,若点在直线上,则不可以作出已知直线的平行线,而是与已知直线重合,错误.B、C、D是公理,正确.故选【答案】A.类型二、角的度量2.钟表分针的运动可看作是一种旋转现象,一只标准时钟的分针匀速旋转,经过15分钟旋转了________度.【思路点拨】画出图形,利用钟表表盘的特征解答.【答案】90【解析】根据钟表的特征;整个钟面是360°,分针每5分钟旋转30°,所以经过15分钟旋转了90°.【总结升华】在钟表问题中,常利用时针与分针转动的度数关系:时钟上的分针匀速旋转一分钟时的度数为6°,时针一分钟转过的度数为0.5°;两个相邻数字间的夹角为30°,每个小格夹角为6°,并且利用起点时间时针和分针的位置关系建立角的图形.举一反三:【变式】100°-60°52′10″=【答案】39°7′50″类型三、利用数学思想方法解决有关线段或角的计算1.方程的思想方法3. 如图所示,在射线OF上,顺次取A、B、C、D四点,使AB:BC:CD=2:3:4,又M、N 分别是AB、CD的中点,已知AD=90cm,求MN的长.【思路点拨】有关比例问题,可设每一份为x,列方程求解,再利用中点定义,找出线段的【答案与解析】解:设线段AB,BC,CD的长分别是2x cm,3x cm,4x cm,∵AB+BC+CD=AD=90 cm,∴ 2x+3x+4x=90,x=10,∴AB=20 cm, BC=30 cm, CD=40 cm,∴MN=MB+BC+CN=12AB+BC+12CD=10+30+20=60(cm).【总结升华】当已知某线段被分成的几条线段的长度比时,可根据比设未知数x,用x的式子表示相关的线段的长度,列方程求出x的值,进而求出线段的长.举一反三:【变式】如图所示,已知∠AOC=∠BOD=100°,且∠AOB:∠AOD=2:7,求∠BOC和∠COD 的度数.【答案】解:设∠AOB的度数为2x,则∠AOD的度数为7x.由∠AOD=∠AOB+∠BOD及∠BOD=100°,可得7x=2x+100°.解得x=20°,所以∠AOB=2x=40°.所以∠BOC=∠AOC-∠AOB=100°-40°=60°,∠COD=∠BOD -∠BOC=100°-60°=40°.2.分类的思想方法4.以∠AOB的顶点O为端点的射线OC,使∠AOC:∠BOC=5:4.(1)若∠AOB=18°,求∠AOC与∠BOC的度数;(2)若∠AOB=m,求∠AOC与∠BOC的度数.【答案与解析】解:(1)分两种情况:①OC在∠AOB的外部,可设∠AOC=5x,则∠BOC=4x得∠AOB=x,即x=18°所以∠AOC=90°,∠BOC=72°②OC在∠AOB的内部,可设∠AOC=5x,则∠BOC=4x∠AOB=∠AOC+∠BOC=9x所以9x=18°,则x=2°所以∠AOC=10°,∠BOC=8°(2)仿照(1),可得:若∠AOB=m,则∠AOC=59m,∠BOC=49m,或∠AOC=5m,∠BOC=4m.【总结升华】本题中的已知条件没有明确地说明OC在∠AOB的内部或外部,所以两个问题都必须分类讨论.【变式1】已知线段AB =8cm ,在直线AB 上画线段BC =3cm ,求线段AC 的长. 【答案】解:分两种情况:(1)如图(1),AC =AB -BC =8-3=5(cm); (2)如图(2),AC =AB+BC =8+3=11(cm). 所以线段AC 的长为5cm 或11cm .【变式2】下列判断正确的个数有 ( ) .①已知A 、B 、C 三点,过其中两点画直线一共可画三条. ②过已知任意三点的直线有1条. ③三条直线两两相交,有三个交点.A .0个B .1个C .2个D .3个 【答案】A3.类比的思想方法【高清课堂:图形认识初步章节复习399079 类比思想例5】5.(1)如图,线段AD 上有两点B 、C,图中共有______条线段.(2)如图,在∠AOD 的内部有两条射线OB 、OC ,则图中共有 个角.【答案】(1)6;(2)6. 【解析】(1)以A 为端点的线段有3条,同样以B,C,D 为一个端点的线段也各有3条,又因为所有线段均重复了一次,所以共有线段条数:3462⨯=(条). (2)以射线OA 为一边的角有3个,同样以OB ,OC ,OD 为一边的角也各有3个,又因为所有角均重复一次,所以共有角的个数:3462⨯=(个). 【总结升华】用同样的方法解决了不同的问题,用已知的知识类比地学习未知的内容. 类型四、平行与垂直6.(2015春•印江县期末)如图,点B 在点A 的南偏东60°方向,点C 在点B 的北偏东30°方向,且BC=12km ,则点C 到直线AB 的距离是 .【答案】12km.【解析】解:∵AD∥BE,∴∠EBA=∠A=60°,∴∠ABC=∠ABE+∠CBE=90°,∴点C到直线AB的距离是BC,即12km,故答案为:12km.【总结升华】本题考查的是方位角和点到直线的距离,正确理解方位角和点到直线的距离的概念是解题的关键.举一反三:【变式1】梯形中,()是平行的.A.上底和下底 B.上底和腰 C.两条腰【答案】A【变式2】已知:如图,在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,AC=12cm ,且CD⊥AB于D.则CD的长.【答案】60 13cm。
第四章 图形的初步认识 知识点归纳

第四章图形的初步认识一、全章知识结构(一)多姿多彩的图形(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图。
(2)能根据三视图描述基本几何体或实物原型。
3、立体图形的平面展开图(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的。
(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型。
4、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
(二)直线、射线、线段1、基本概念2、直线的性质经过两点有一条直线,并且只有一条直线。
简单地:两点确定一条直线。
3、画一条线段等于已知线段(1)度量法(2)用尺规作图法4、线段的大小比较方法(1)度量法(2)叠合法5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点。
图形:符号:若点M是线段AB的中点,则AM=BM=AB,AB=2AM=2BM。
6、线段的性质两点的所有连线中,线段最短。
简单地:两点之间,线段最短。
7、两点的距离连接两点的线段长度叫做两点的距离。
8、点与直线的位置关系(1)点在直线上(2)点在直线外。
(三)角1、角:由公共端点的两条射线所组成的图形叫做角。
2、角的表示法(四种):3、角的度量单位及换算4、角的分类5、角的比较方法(1)度量法(2)叠合法6、角的和、差、倍、分及其近似值7、画一个角等于已知角(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角。
(2)借助量角器能画出给定度数的角。
(3)用尺规作图法。
8、角的平分线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线。
9、互余、互补(1)若∠1+∠2=90°,则∠1与∠2互为余角。
其中∠1是∠2的余角,∠2是∠1的余角。
几何图形初步全章复习与巩固知识讲解.doc

《几何图形初步》全章复习与巩固(基础)知识讲解【学习目标】1.认识一些简单的几何体的平面展开图及三视图,初步培养空间观念和几何直观;2.掌握直线、射线、线段、角这些基本图形的概念、性质、表示方法和画法;3.初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题;4.逐步掌握学过的几何图形的表示方法,能根据语句画出相应的图形,会用语句描述简单的图形.【知识网络】【要点梳理】要点一、多姿多彩的图形1.几何图形的分类立体图形:棱柱、棱锥、圆柱、圆锥、球等.几何图形平面图形:三角形、四边形、圆等 ..要点诠释:在给几何体分类时,不同的分类标准有不同的分类结果2.立体图形与平面图形的相互转化(1)立体图形的平面展开图:把立体图形按一定的方式展开就会得到平面图形,把平面图形按一定的途径进行折叠就会得到相应的立体图形,通过展开与折叠能把立体图形和平面图形有机地结合起来.要点诠释:①对一些常见立体图形的展开图要非常熟悉,例如正方体的11 种展开图,三棱柱,圆柱等的展开图;②不同的几何体展成不同的平面图形,同一几何体沿不同的棱剪开,可得到不同的平面图形,那么排除障碍的方法就是:联系实物,展开想象,建立“模型”,整体构想,动手实践. (2)从不同方向看:几何体的三视图主(正)视图---------从正面看左视图 -----从左(右)边看俯视图 ---------------从上面看要点诠释:①会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.②能根据三视图描述基本几何体或实物原型.(3)几何体的构成元素及关系几何体是由点、线、面构成的 . 点动成线,线与线相交成点;线动成面,面与面相交成线;面动成体,体是由面组成.要点二、直线、射线、线段1.直线,射线与线段的区别与联系2.基本性质(1)直线的性质 : 两点确定一条直线. (2) 线段的性质 : 两点之间,线段最短.要点诠释:①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线.②连接两点间的线段的长度,叫做两点间的距离.3.画一条线段等于已知线段(1)度量法:可用直尺先量出线段的长度 , 再画一条等于这个长度的线段 .(2)用尺规作图法:用圆规在射线 AC上截取 AB=a,如下图:4.线段的比较与运算(1)线段的比较:比较两条线段的长短,常用两种方法,一种是度量法;一种是叠合法. (2)线段的和与差:如下图,有AB+BC=AC,或 AC=a+b; AD=AB-BD。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《图形认识初步》全章复习与巩固(基础)知识讲解【知识网络】【要点梳理】要点一、多姿多彩的图形 1. 几何图形的分类要点诠释:在给几何体分类时,不同的分类标准有不同的分类结果. 2.立体图形与平面图形的相互转化 (1)立体图形的平面展开图:把立体图形按一定的方式展开就会得到平面图形,把平面图形按一定的途径进行折叠就会得到相应的立体图形,通过展开与折叠能把立体图形和平面图形有机地结合起来. 要点诠释:①对一些常见立体图形的展开图要非常熟悉,例如正方体的 11种展开图,三棱柱,圆柱等的展开图;②不同的几何体展成不同的平面图形,同一几何体沿不同的棱剪开,可得到不同的平面图形,那么排除障碍的方法就是:联系实物,展开想象,建立“模型”,整体构想,动手实践.立体图形:棱柱、棱锥、圆柱、圆锥、球等. ⎧⎨⎩平面图形:三角形、四边形、圆等.几何图形⎧⎨⎩(2)从不同方向看:主(正)视图---------从正面看 几何体的三视图 (左、右)视图-----从左(右)边看 俯视图---------------从上面看要点诠释:①会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图. ②能根据三视图描述基本几何体或实物原型. (3)几何体的构成元素及关系几何体是由点、线 、面构成的.点动成线,线与线相交成点;线动成面,面与面相交成线;面动成体,体是由面组成.要点二、直线、射线、线段1. 直线,射线与线段的区别与联系2. 基本性质(1)直线的性质:两点确定一条直线. (2)线段的性质:两点之间,线段最短. 要点诠释:①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线. ②连接两点间的线段的长度,叫做两点的距离.3.画一条线段等于已知线段(1)度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段. (2)用尺规作图法:用圆规在射线AC 上截取AB=a,如下图:4.线段的比较与运算 (1)线段的比较:比较两条线段的长短,常用两种方法,一种是度量法;一种是叠合法.(2)线段的和与差:如下图,有AB+BC=AC ,或AC=a+b ;AD=AB-BD 。
(3)线段的中点:把一条线段分成两条相等线段的点,叫做线段的中点.如下图,有:12AM MB AB ==要点诠释:①线段中点的等价表述:如上图,点M 在线段上,且有12AM AB =,则点M 为线段AB 的中点.②除线段的中点(即二等分点)外,类似的还有线段的三等分点、四等分点等.如下图,点M,N,P 均为线段AB 的四等分点.PNMBAAB PB NP MN AM 41==== 要点三、角 1.角的度量(1)角的定义:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边;此外,角也可以看作由一条射线绕着它的端点旋转而形成的图形. (2)角的表示方法:角通常有三种表示方法:一是用三个大写英文字母表示,二是用角的顶点的一个大写英文字母表示,三是用一个小写希腊字母或一个数字表示.例如下图:要点诠释:①角的两种定义是从不同角度对角进行的定义;②当一个角的顶点有多个角的时候,不能用顶点的一个大写字母来表示. (3)角度制及角度的换算1周角=360°,1平角=180°,1°=60′,1′=60″,以度、分、秒为单位的角的度量制,叫做角度制.BCBbba MBA要点诠释:①度、分、秒的换算是60进制,与时间中的小时分钟秒的换算相同.②度分秒之间的转化方法:由度化为度分秒的形式(即从高级单位向低级单位转化)时用乘法逐级进行;由度分秒的形式化成度(即低级单位向高级单位转化)时用除法逐级进行. ③同种形式相加减:度加(减)度,分加(减)分,秒加(减)秒;超60进一,减一 成60. (4)角的分类(5)画一个角等于已知角(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角. (2)借助量角器能画出给定度数的角. (3)用尺规作图法. 2.角的比较与运算(1)角的比较方法: ①度量法;②叠合法. (2)角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线,例如:如下图,因为OC 是∠AOB 的平分线,所以∠1=∠2=12∠AOB ,或∠AOB=2∠1=2∠2. 类似地,还有角的三等分线等.3.角的互余互补关系余角补角(1)若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角. (2)若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角. (3)结论: 同角(或等角)的余角相等;同角(或等角)的补角相等 要点诠释:①余角(或补角)是两个角的关系,是成对出现的,单独一个角不能称其为余角(或补角).②一个角的余角(或补角)可以不止一个,但是它们的度数是相同的, ③只考虑数量关系,与位置无关.④“等角是相等的几个角”,而“同角是同一个角”∠β 锐角直角钝角平角周角 范围0<∠β<90° ∠β=90° 90°<∠β<180° ∠β=180°∠β=360°4.方位角:以正北、正南方向为基准,描述物体运动的方向,这种表示方向的角叫做方位角.要点诠释:(1)方位角还可以看成是将正北或正南的射线旋转一定角度而形成的.所以在应用中一要确定其始边是正北还是正南.二要确定其旋转方向是向东还是向西,三要确定旋转角度的大小.(2)北偏东45 °通常叫做东北方向,北偏西45 °通常叫做西北方向,南偏东45 °通常叫做东南方向,南偏西45 °通常叫做西南方向.(3)方位角在航行、测绘等实际生活中的应用十分广泛.【典型例题】类型一、概念或性质的理解1.下列说法正确的是( )A.射线AB与射线BA表示同一条射线.B.连结两点的线段叫做两点之间的距离.C.平角是一条直线.D.若∠1+∠2=900,∠1+∠3=900,则∠2=∠3;【答案】D【解析】选项A中端点和延伸方向不同,所以是两条射线;选项B中两点之间的距离是指线段的长度,是一个数值,而不是图形;C中角和直线是两种不同的概念,不能混淆.【变式】下列结论中,不正确的是()A.两点确定一条直线B.两点之间,直线最短C.等角的余角相等D.等角的补角相等【答案】B类型二、立体图形与平面图形的相互转化2.(天门、潜江、仙桃)如图所示,是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体的表面上,与“看”相对的面上的汉字是()A.南B.世C.界D.杯【答案】C【解析】由图形可以判定“南”与“世”相对,“看”与“界”相对,“非”与“杯”相对.【总结升华】判断两个面是对面的根据是:展开图的对面没有公共边或公共顶点.举一反三:【变式】(瞿州模拟)下面形状的四张纸板,按图所示的线经过折叠可以围成一个直三棱柱的是().【答案】C3. (浙江金华)如图所示几何体的主视图是()【答案】A【解析】从正面看球位于桌面右方,故选A.【总结升华】从正面看所得到的图形是主视图,先得到球体的主视图,再得到长方体的主视图,再根据球体在长方体的右边可得出答案.类型三、互余互补的有关计算4. 已知∠A=53°27′,则∠A的余角等于().A.37°B.36°33′C.63°D.143°【思路点拨】根据互为余角的定义求解.【答案】B【解析】∠A的余角为90°-53°27′=36°33′.【总结升华】本题考查角互余的概念:和为90度的两个角互为余角.举一反三:【变式】一个角与它的余角相等,则这个角是______,它的补角是_______【答案】45°,135°类型四、方位角5.如图,射线OA的方向是:________;射线OB的方向是:_________;射线OC的方向是:________;【思路点拨】OA表示的方向是北偏东,再加上其偏转的角度即可,同理OB、OC也是如此.【答案】北偏东15°;北偏西40°;南偏东45°.【解析】根据方位角的定义解答.【总结升华】熟知方位角的定义结合图形便可解答.类型五、钟表上的角6. 钟表分针的运动可看作是一种旋转现象,一只标准时钟的分针匀速旋转,经过15分钟旋转了________度.【答案】90【解析】根据钟表的特征;整个钟面是360°,分针每5分钟旋转30°,所以经过15分钟旋转了90°.【总结升华】在钟表问题中,常利用时针与分针转动的度数关系:时钟上的分针匀速旋转一分钟时的度数为6°,时针一分钟转过的度数为0.5°;两个相邻数字间的夹角为30°,每个小格夹角为6°,并且利用起点时间时针和分针的位置关系建立角的图形.类型六、利用数学思想方法解决有关线段或角的计算1.方程的思想方法7.如图所示,在射线OF上,顺次取A、B、C、D四点,使AB:BC:CD=2:3:4,又M、N分别是AB、CD的中点,已知AD=90cm,求MN的长.【思路点拨】有关比例问题,可设每一份为x,列方程求解,再利用中点定义,找出线段的和、差.【答案与解析】解:设线段AB,BC,CD的长分别是2x cm,3x cm,4x cm,∵AB+BC+CD=AD=90 cm,∴2x+3x+4x=90,x=10,∴AB=20 cm,BC=30 cm,CD=40 cm,∴MN=MB+BC+CN=12AB+BC+12CD=10+30+20=60(cm).【总结升华】当已知某线段被分成的几条线段的长度比时,可根据比设未知数x,用x的式子表示相关的线段的长度,列方程求出x的值,进而求出线段的长.举一反三:【变式】如图所示,已知∠AOC=∠BOD=100°,且∠AOB:∠AOD=2:7,求∠BOC和∠COD的度数.【答案】解:设∠AOB的度数为2x,则∠AOD的度数为7x.由∠AOD=∠AOB+∠BOD及∠BOD=100°,可得7x=2x+100°.解得x=20°,所以∠AOB=2x=40°.所以∠BOC=∠AOC-∠AOB=100°-40°=60°,∠COD=∠BOD-∠BOC=100°-60°=40°.2.分类的思想方法8.以∠AOB的顶点O为端点的射线OC,使∠AOC:∠BOC=5:4.(1)若∠AOB=18°,求∠AOC与∠BOC的度数;(2)若∠AOB=m,求∠AOC与∠BOC的度数.【答案与解析】解:(1)分两种情况:①OC在∠AOB的外部,可设∠AOC=5x,则∠BOC=4x得∠AOB=x,即x=18°所以∠AOC=90°,∠BOC=72°②OC在∠AOB的内部,可设∠AOC=5x,则∠BOC=4x∠AOB=∠AOC+∠BOC=9x所以9x=18°,则x=2°所以∠AOC=10°,∠BOC=8°(2)仿照(1),可得:若∠AOB=m,则∠AOC=59m,∠BOC=49m,或∠AOC=5m,∠BOC=4m.【总结升华】本题中的已知条件没有明确地说明OC在∠AOB的内部或外部,所以两个问题都必须分类讨论.举一反三:【变式1】已知线段AB=8cm,在直线AB上画线段BC=3cm,求线段AC的长.【答案】解:分两种情况:(1)如图(1),AC=AB-BC=8-3=5(cm);(2)如图(2),AC=AB+BC=8+3=11(cm).所以线段AC的长为5cm或11cm.【变式2】下列判断正确的个数有( )①已知A、B、C三点,过其中两点画直线一共可画三条②过已知任意三点的直线有1条③三条直线两两相交,有三个交点A.0个B.1个C.2个D.3个【答案】A。