材料的电学性能
材料的电学性能与测试方法
材料的电学性能与测试方法引言:材料的电学性能是指材料在电场或电流作用下的响应和性质。
了解材料的电学性能对于材料的研究和应用具有重要意义。
本文将介绍几种常用的测试材料电学性能的方法。
一、电导率测试方法电导率是衡量材料导电性能的重要指标,其测试方法如下:1. 电导率测量仪器:使用四探针测试仪或电导率仪进行测量。
2. 测量步骤:将待测试材料切割成适当的样品尺寸,保持样品的几何形状和尺寸稳定。
然后将四个电极按照规定的间距连接到材料上,并确保电极与材料之间的良好接触。
最后,通过测试仪器施加电流并测量电压,根据欧姆定律计算得出材料的电导率。
二、介电常数测试方法介电常数是材料在电场中对电场强度的响应能力,测试方法如下:1. 介电常数测量仪器:使用恒流恒压法或绝缘材料测试仪进行测量。
2. 测量步骤:将待测试材料加工成平板状或柱形状样品,保证样品的几何形状和尺寸稳定。
然后将测试仪器中的电极引线与样品连接,确保电极与材料的良好接触。
接下来,在测试仪器中施加电流和电压,测量得到材料的介电常数。
三、热释电测试方法热释电是指材料在电场作用下产生的热能释放,其测试方法如下:1. 热释电测量仪器:使用热释电测试仪进行测量。
2. 测量步骤:将待测试材料切割成适当的样品尺寸,保持样品的几何形状和尺寸稳定。
然后将样品放置在测试仪器中,施加电场。
测试仪器会测量样品在电场下产生的温升,根据温升和已知的电场强度计算得出材料的热释电性能。
四、电阻温度系数测试方法电阻温度系数是指材料电阻随温度变化的程度,其测试方法如下:1. 电阻温度系数测量仪器:使用四探针测试仪或电阻测量仪进行测量。
2. 测量步骤:将待测试材料切割成细丝或片状样品,保持样品的几何形状和尺寸稳定。
然后将四个电极按照规定的间距连接到样品上,并确保电极与材料之间的良好接触。
接下来,在测试仪器中施加电流并测量电阻,随后在不同温度下重复测量电阻值。
最后,根据电阻值和温度变化计算得出材料的电阻温度系数。
材料物理性能学之材料的电性能
材料物理性能学之材料的电性能引言材料的电性能是材料物理性能学的一个重要研究分支,它研究的是材料在电场、电流和电磁波等电学环境下的行为和性能。
材料的电性能对于材料的应用具有关键影响,比方在电子学、能源转换和传感器等领域中起着重要作用。
本文将探讨材料的电性能的根本概念、测试方法和常见的应用。
1. 电导率电导率是材料的一个根本电学性能参数,表示材料导电能力的强弱。
它常用符号σ表示,单位为S/m〔西门子/米〕。
电导率的量值越大,材料越好的导电性能。
电导率可以通过测量材料的电阻率来计算。
2. 电阻率电阻率是材料对电流流动的阻碍能力的度量,常用符号ρ表示,单位为Ω·m。
电阻率和电导率是一对相互关联的物理量,它们之间的关系可以用以下公式表示:ρ = 1/σ。
电阻率可以通过测量材料的电阻来得到。
3. 介电性能除了导电性能,材料还具有介电性能。
介电性能是材料对电场的响应能力的度量。
具有良好介电性能的材料可以阻止电流的流动,并被广泛应用于电容器、绝缘材料和电子设备等领域。
介电性能可以通过测量材料的介电常数来评估。
4. 介电常数介电常数是材料在电场中响应的能力的度量,常用符号ε表示。
介电常数可分为静电介电常数和动态介电常数。
静电介电常数表示在静电场中材料的响应能力,而动态介电常数那么表示在交变电场中材料的响应能力。
介电常数越大,材料对电场的响应能力越强。
5. 半导体材料的特性半导体材料是一类介于导体和绝缘体之间的材料,它具有特殊的电性能。
半导体材料的电导率较低,但随着温度的升高会逐渐增大。
半导体材料的导电性能可以通过添加杂质来调控,从而实现半导体器件的制造。
6. 材料的应用材料的电性能对于众多领域的应用至关重要。
在电子学领域中,导电性能好的材料可以用于制造电路和导线等电子元器件。
在能源转换领域中,材料的电性能对太阳能电池和燃料电池等能源转换器件的效率和稳定性有重要影响。
在传感器领域中,材料的电性能可以用于制造压力传感器、温度传感器和湿度传感器等。
材料的电学性能ppt课件
• b)阳离子电荷,电价高,结合力大,因而活化能也大; • c)堆积程度,结合愈紧密,可供移动的离子数目就少,且
移动也要困难些,可导致较低的电导率。
整理ppt
29
整理ppt
30
• (3)晶体缺陷
• 具有离子电导的固体物质称为固体电解质,必须具备的条件: • a)电子载流子的浓度小。 • b)离子晶格缺陷浓度大并参与电导。故离子性晶格缺陷的生
单位时间内每一间隙离子沿电场方向的剩余跃迁次数为:
- P60exp (U0U)/kT 60exp(U0U)/kT
整理ppt
20
• 载流子沿电场方向的迁移速度V VP
•
• δ-相邻半稳定位置间的距离
• U-无外电场时的间隙离子的势垒(eV)
• 故载流子沿电流方向的迁移率为:
• •
E v62k0T qexpU0/kT
整理ppt
35
• • 氧敏感陶瓷
•
• 工 艺 上 , 在 ZrO2 加 入 10 ~ 20%mol 比 的 CaO , 在 1600℃以上烧结, 即可获得稳定化ZrO2。若加入了 15%mol比的CaO,其分子式为:Ca0.15Zr0.85O1.85, 这是不完整化学成分的晶体(相对于ZrO2而言),氧离子 少了0.15个。结果,在晶体中,氧离子就很容易活动,
霍尔系数RH有如下表达式:
1
RH nie
对于半导体材料:
n型:
RH
1 nie
,
ni
电子浓度
p型:
RH
1 nie
,
ni
空穴浓度
整理ppt
8
②电解效应
材料的电学性能测试实验报告
材料的电学性能测试,实验报告实验报告:材料的电学性能测试一、引言材料的电学性能是决定其在不同应用中的关键因素。
本实验报告主要介绍几种基本的电学性能测试方法,包括电阻率测试、绝缘电阻测试和介电常数测试,并通过具体实验示例对这些方法进行详细阐述。
二、实验材料与方法1.电阻率测试电阻率是衡量材料导电性能的参数,可通过四探针法进行测量。
四探针法的基本原理是:当四个探针在材料上施加一定的电流时,通过测量两对探针之间的电压降,可以计算出材料的电阻率。
2.绝缘电阻测试绝缘电阻是衡量材料绝缘性能的重要参数,可采用直流电压源和电流表进行测量。
基本原理是:在材料两端施加一定的直流电压,然后测量流过材料的电流大小,通过计算可得材料的绝缘电阻值。
3.介电常数测试介电常数是衡量材料介电性能的参数,可采用LCR数字电桥进行测量。
LCR数字电桥具有测量精度高、读数稳定等优点。
基本原理是:在材料上施加一定频率的交流电压,测量通过材料的电流及相位差,通过计算可得材料的介电常数值。
三、实验结果与分析1.电阻率测试结果与分析在本次实验中,我们选取了铜、镍和铝三种材料进行电阻率测试。
实验结果表明,铜的电阻率最低,具有良好的导电性能;而铝和镍的电阻率较高,相对而言导电性能较弱。
2.绝缘电阻测试结果与分析在本次实验中,我们选取了聚乙烯、聚氯乙烯和橡胶三种材料进行绝缘电阻测试。
实验结果表明,橡胶的绝缘电阻最高,具有最好的绝缘性能;而聚乙烯和聚氯乙烯的绝缘电阻相对较低,相对而言绝缘性能较弱。
3.介电常数测试结果与分析在本次实验中,我们选取了聚酰亚胺、聚碳酸酯和聚酯三种材料进行介电常数测试。
实验结果表明,聚酰亚胺的介电常数最高,具有较好的介电性能;而聚酯的介电常数相对较低,相对而言介电性能较弱。
四、结论本次实验通过电阻率测试、绝缘电阻测试和介电常数测试三种方法对不同材料的电学性能进行了评估。
实验结果表明:在导电性能方面,铜具有最好的导电性能,而铝和镍相对较弱;在绝缘性能方面,橡胶具有最好的绝缘性能,而聚乙烯和聚氯乙烯相对较弱;在介电性能方面,聚酰亚胺具有较好的介电性能,而聚酯相对较弱。
材料性能学第十章--材料的电学性能
+4
+4
+4
+4
电子和空穴在外电场的作用下都将作 定向运动,这种作定向运动电子和空 穴(载流子)参与导电,形成本征半 导体中的电流。
当温度升高时,有更多的电子能够跳到下一个能带去。这有两个结果:在上面的导带 中少数电子所起的作用和它们在金属中所起的作用相同;而价带中留下的空态即空穴 起着类似的作用,不过它们好象是正的电子,因此,它们有来自导带中的激发电子和 来自价带中的空穴的导电性;温度升高时,由于有更多的电子被激发到导带, 所以 电导率随温度而迅速增加。
第一节 导电性能
量子力学证明,对于一个绝对纯的理想的完整晶体,0 K时,电子波 的传播不受阻碍,形成无阻传播,电阻为零,导致所谓的超导现象。
二、导电机理
1、金属及半导体的导电机理
第一节 导电性能
实际金属内部存在着缺陷和杂质。缺陷和杂质产生的静态点阵畸 变和热振动引起的动态点阵畸变,对电磁波造成散射,这是金属 产生电阻的原因。由此导出的电导率为:
合金为:
10-7-
-5 10 Ω.m
半导体材料:ρ=10-2-109Ω.m
绝缘体材料:ρ>1010Ω.m
各种材料在室温的电导率
金属和合金
-1 -1 (Ω .m )
银 铜,工业纯 金 铝, 工业纯 Al-1.2%,Mn 合金 钠 钨, 工业纯 黄铜(70%Cu-30%Zn 镍,工业纯 纯铁,工业纯 钛,工业纯 不锈钢,301型 镍铬合金 (80%Ni-20%Cr)
第一节 导电性能
一、电阻与导电的基本概念
欧姆定律:当在材料的两端施加电压时,材料 中有电流流过
电阻与材料的性质有关,还与材料的长度 及截面积有关
电阻率只与材料本性有关,而与导体的几何 尺寸是无关,作为评定导电性的基本参数
材料物理材料的电学性能
在试样的 x方向上施加电场 Ex,同时在与 x 垂直的方向上 施加磁场Hz,产生洛伦兹力对运动的电子起作用
1 F e [ E H ] c
电子在 y 方向上也受力,稳定状态下,在 y 方向上发生电 子的极化,极化的电场与洛伦兹力处于平衡状态,即在 y上产 生感应电压
x Ey H x c
6.1.2 导电性与温度的关系—高温时的电阻
对于热平衡状态下的谐振子,能量KT/2分别被分配到 平均动能和势能中。 设振幅为x,势能的平均值为2π2ν2DM<x2> (M 为原 子质量),温度为T时振幅的均方值<x2> 为
x
2
kT
2 4 2 D M
因电子运动的平均自由程λF与散射的横截面积成正比, 且认为原子热振动引起的散射横截面积与<x2> 成正比,因此
般金属少4 个数量级——半金属
(6)离子晶体 能带结构与四价元素相同,但Eg很大,一般有效电子数
是0 ,为绝缘体。
例:NaCl,Na+的3s 电子移到Cl-的3p 轨道, 3s 成为 空带,3p成为满带,其间是10eV的禁带,热激发不能使 之进入导带。
6.1.3 导电性与温度的关系
电阻的来源 能带理论认为:能带中的电子可在晶格中自由运动,因此 电子波通过理想晶体点阵(0K )时不受散射,电阻为0 。 电阻的来源:破坏晶格周期性的因素对电子的散射。 A. 杂质和缺陷(空位、间隙原子、位错、晶界等)。 B. 声子:晶格振动波的能量子。
1
1
p
1
i
1
d
τ i与τ d,τ p不同,与温度无关。因此有缺陷的金属电阻 为纯金属ρ0与杂质和缺陷对金属电阻的贡献ρ(t)之和,则
材料的电学性能
电阻的本质 电子波在晶体点阵中传播时,受到散射,从而产 生阻碍作用,降低了导电性。 电子波在绝对零度下,通过一个理想点阵时,将 不会受到散射,无阻碍传播,电阻率为0。
35
能带理论认为:导带中的电子可在晶格中自由运 动——电子波通过理想晶体点阵(0K)时不受散射, 电阻为0——破坏晶格周期性的因素对电子的散射 形成电阻
10
2、迁移率和电导率的一般表达式 物体的导电现象,其微观本质是载流子在
电场作用下的定向迁移。
设单位截面积为 S 1cm2 ,在单位体积 1cm3 内载流子数
为ncm3 ,每一载流子的电荷量为q ,则单位体积内参加导
电的自由电荷为nq 。
11
电导率为 J nqv
EE
令 v E (载流子的迁移率)。其物理意义为载流
(金属的纯度和完整性)
41
理想晶体和实际晶体在 低温时的电阻率-温度 关系
e2n F e2nlF
m mvF
与经典自由电子理论下的电导率的形式相同。但
其豫时中间的、F、平l均F、自vF由分程别和是运费动米速面度附。近的电子的弛
——可以成功地解释一价的碱金属的电导。 但对其他金属,如过渡金属,其电子结构复杂, 电子分布不是简单的费米球,必须用能带理论才 能解释其导电性。
的温度。
在T<<D的低温,有 T5
在2K以下的极低温,声子对电子的散射效应变得很微弱, 电子-电子之间的散射构成了电阻的主要机制,此时有:
T2
理想晶体的电阻总是随温度的升高而升高。
38
定义=1/lF为散射系数
1
m * vF e2n *lF
1 lF
由于实际材料总是有杂质和缺陷的,所以对实际材 料散射系数可表示为
培训_第三章材料的电学性能
离子在晶格点附近不断的热振动,偏离了晶格格
点,这种偏离引起晶格对电子的散射,称为晶格 实散际射金。属内部还存在着缺陷和杂质,产生的静态
点阵畸变和热振动引起的动态点阵畸变,对电子
波造成散射而形成电阻。 而对于一个纯的理想的完整晶体,0K时,电子波
的传播不受阻碍,形成无阻传播,电阻为零,导
致所谓的超导现象。
为自由电子,同时在价带中形成空穴,这样就使 半导体具有一些导电能力。
绝缘体:
禁带宽度大。在室温下,几乎没有价电子能 跃迁到导带中去,故基本无自由电子和空穴,所 以绝缘体几乎没有导电能力。
三、影响金属导电性的因素
晶体点阵的不完整性是引起电子散射的原因,而电阻来
源于晶体对自由运动电子的散射,因此电阻具有 组织结构敏感性,温度、形变(应力)、合金
18
同自由电子理论一样,也认为金属中的价电子 是公有化和能量是量子化的,所不同的是,它 认为金属中由离子所造成的势场不是均匀的, 而是呈周期性变化的,能带理论就是研究金属 中的价电子在周期势场作用下的能量分布问题
的电。子在周期势场中运动,随着位置的变化, 它的能量也呈周期变化,即接近正离子时势能 降低,离开时势能增高。这样价电子在金属中 的运动就不能看成是完全自由的。
原因:由于高压作用,导致原子间距发生变化(变小),使
金属内部的电子结构、费米能和能带结构发生变化,从而影 响导电性。
能带结构和导电机理:由于周期场的影响,使得价电子在
金属中以不同能量状态分布的能带发生分裂,也就是说,
有些能态是电子不能取值的。 由右图可以看到:
禁带宽窄取决于周期 势场的变化幅度,变 化越大,则禁带越宽。
当 线规-K律1<连K 续<K变1时化,;曲线按抛物 当增K=K1时,只要波数稍微
第三章 材料的电学性能——材料物理性能课件PPT
v eEl / vme
j nev ne(eEl / vme ) (ne2l / vme )E
E
其中,电导率为: ne2l / vme = ne2t me
从金属的经典电子理论导出了欧姆定律的微分形 式,而且得到了电导率的表达式。
从电导率表达式知:电导率与自由电子的数量成 正比,与电子的平均自由程成正比。
22
❖ 容易想象温度越高,x2越大振幅愈大,振动愈激烈,因而对 周期场扰动愈甚,电子愈容易被散射,故有:散射几率p与x2 成正比,可得出:R∝ρ∝p∝x2∝T。即电阻R与绝对温度T 成正比。这样就解决了经典电子理论长期得不到定量解释的 困难。
一、电阻和导电的基本概念 ❖ 电阻率
❖ 电导率
电阻率和电导率都与材料的尺寸无关,而只决定于它 们的性质,因此是物质的本征参数,可用来作为表征 材料导电性的尺度。
根据材料导电性能好坏,可把材料分为:
❖ 导体 : ρ<10-5Ω•m
❖ 半导体 : 10-3Ω•m < ρ< 109Ω•m
❖ 绝缘体 : ρ> 109Ω•m ❖ 不同材料的导电能力相差很大,这是由它们的结构
作为太阳能电池的半导体对其导电性能的要求更高,以追求 尽可能高的太阳能利用效率。
电学性能包括:导电性能、超导电性、介电性、铁 电性、热电性、接触电性、磁电性、光电性。
本章主要讨论材料产生电学性能的机理,影响材料 电学性能的因素,测量材料各类电学性能参数的方法 以及不同电学性能材料的应用等。
3.1 金属的导电性
第三章 材料的电学性能
在许多情况下,材料的导电性能比材料的力学性能还要重要。
导电材料、电阻材料、电热材料、半导体材料、超导材料和 绝缘材料都是以材料的导电性能为基础。
材料的电学性能课件
电介质的损耗
电介质损耗
电介质在电场作用下,由于电导和极化的原因,将电能转换为热 能的现象。
损耗与电介质性能的关系
损耗的大小反映了电介质的导电和极化能力,是评估电介质性能的 重要参数。
损耗的测量方法
通过测量电介质在交流电场下的功率损耗或相位角来计算。
电介质的击穿
01
02
03
击穿
当电场强度足够高时,电 介质丧失其绝缘性能的现 象。
热电材料的应用
温差发电
利用热电材料将热能转 化为电能。
温度传感器
利用热电材料对温度的 敏感性,检测温度变化
。
热电制冷
利用热电材料的皮尔兹 效应实现制冷效果。
航天器热控
利用热电材料调节航天 器内部温度。
热电材料的发展趋势
高性能热电材料研究
提高热电材料的转换效率,降 低成本。
多功能化
开发具有多种功能的热电材料 ,如导热、导电、发光等。
材料的电学性能研究历史与现状
材料的电学性能研究始于19世纪初, 随着电子学的兴起和发展,逐渐成为 一门独立的学科。
随着新材料和新技术的发展,材料的 电学性能研究将不断深入,为电子器 件和集成电路的发展提供更多的理论 和技术支持。
目前,材料的电学性能研究已经取得 了长足的进展,涉及的研究领域不断 扩大,研究手段和方法也日益丰富和 先进。
材料的电学性能课件
目录
CONTENTS
• 引言 • 材料的导电性能 • 材料的介电性能 • 材料的磁学性能 • 材料的铁电性能 • 材料的热电性能
01 引言
材料的电学性能定义
材料的电学性能是指材料在电场 作用下的各种物理性质,包括导 电性、电阻、电导率、电场效应
第九章材料的电学性能
第九章材料的电学性能导体是能够让电流通过的材料,而绝缘体则是阻挡电流流动的材料。
这些特性与材料的电学性能密切相关。
本章将详细讨论导体、绝缘体和半导体这三种不同材料的电学性能。
9.1导体导体是那些允许电流通过的材料。
导体具有以下几个主要特征:1.高电导率:导体能够容易地传递电荷。
这是因为导体中的自由电子可以在材料中自由移动。
金属是最常见的导体,因为金属中存在着大量的自由电子。
其他导体材料包括水、盐溶液和等离子体等。
导体的电导率通常用电阻率的倒数来表示,即电导率=1/电阻率。
2.低电阻率:与电导率相对应,导体具有很低的电阻率。
电阻率是导体阻碍电流流动的程度的衡量指标。
电阻率取决于导体材料的特性以及温度。
普通金属的电阻率通常很低,而超导体则可以具有接近于零的电阻率。
3.低电阻:与电阻率一样,导体材料的电阻也是非常低的。
电阻是材料对电流流动的阻碍程度的量度。
导体的电阻通常可以忽略不计。
4.高导电性:导体材料能够传导电荷。
这是因为导体中的自由电子可以移动。
导体通常具有良好的导电性能,能够有效地传递电流。
导体材料的应用非常广泛,例如用于电线、电路板和其他电子器件中。
9.2绝缘体绝缘体是那些不能让电流通过的材料。
绝缘体具有以下几个主要特征:1.低电导率:与导体相比,绝缘体的电导率非常低。
这是因为绝缘体中的电子并不容易移动,电流无法在材料中传递。
2.高电阻率:绝缘体的电阻率通常很高。
这意味着绝缘体对电流的阻碍程度很大,电流很难在绝缘体材料中流动。
3.高电阻:与电阻率相对应,绝缘体的电阻也很高。
电阻是材料对电流流动的阻碍程度的量度。
绝缘体的电阻非常大,电流几乎无法通过。
4.低导电性:绝缘体材料几乎完全不传导电荷。
绝缘体中的电子不能自由移动,电流无法在材料中流动。
绝缘体材料在电力设备、绝缘体材料和其他高电压应用中得到广泛使用。
9.3半导体半导体是处于导体和绝缘体之间的材料。
半导体具有以下几个主要特征:1.可变电导率:半导体的电导率介于导体和绝缘体之间。
材料的电学性能
材料的电学性能材料的电学性能是指材料在电场作用下的响应特性,包括导电性、介电性、磁电性等。
这些性能对于材料在电子器件、电力设备、通信技术等领域的应用具有重要意义。
本文将就材料的电学性能进行详细介绍,以便更好地理解和应用这些性能。
首先,导电性是材料的一种重要电学性能。
导电性好的材料能够快速传导电流,常见的导电材料包括金属、导电聚合物等。
金属具有良好的导电性,是电子器件中常用的材料。
而导电聚合物则是一种新型的导电材料,具有轻质、柔韧等特点,适用于柔性电子器件的制备。
导电性的大小取决于材料内部自由电子的数量和迁移率,因此在材料设计和制备过程中需要考虑材料的电子结构和晶格结构。
其次,介电性是材料的另一重要电学性能。
介电性好的材料能够在电场作用下产生极化现象,常用于电容器、绝缘材料等领域。
常见的介电材料包括氧化物、聚合物、玻璃等。
这些材料具有不同的介电常数和介质损耗,适用于不同的电子器件和电力设备。
在实际应用中,需要根据具体的工作条件选择合适的介电材料,以确保设备的稳定性和可靠性。
最后,磁电性是材料的另一重要电学性能。
磁电材料能够在外加电场下产生磁化现象,常用于传感器、存储器件等领域。
常见的磁电材料包括铁电体、铁磁体等。
这些材料具有不同的铁电极化和磁化强度,适用于不同的磁电器件和磁存储器件。
磁电性的大小取决于材料内部的磁矩和电偶极矩,因此在材料设计和制备过程中需要考虑材料的晶体结构和磁电耦合效应。
综上所述,材料的电学性能是材料科学和电子技术领域的重要研究内容。
通过对导电性、介电性、磁电性等性能的深入理解,可以更好地设计和制备新型的电子器件和电力设备,推动电子技术的发展和应用。
希望本文能够为相关领域的研究人员和工程师提供一定的参考和帮助,促进材料的电学性能在实际应用中的进一步发展和创新。
材料的电学性能
本征半导体和杂质半导体的电导率与温 度的关系:
0 exp( Eg / 2kT)
材料性能学
(2) 无机非金属的导电机理
无机非金属材料电导的载流子可以是电子 、电子空穴,或离子、离子空穴.
载流子是电子或电子空穴的电导称为电子 式电导,载流子是离子或离子空位的称为离 子式电导.
对于材料中存在的多种载流子的情况,材料的总电 导率可以看成是各种电导率的总和.
材料性能学
②玻璃的导电机理
玻璃的电阻率和温度与组成有关,在通常情 况下是绝缘体
玻璃与晶体的比较,玻璃具有:
•
结构疏松
•
组成中有碱金属离子
•
势垒不是单一的数值,有高有低
导电的粒子:
•
离子
•
电子
材料性能学
(3) 超导电性
第二类超导体:有两个临界磁场 , 下 临 界 磁 场 Hc1, 上 临 界 磁 场 Hc2. Hc1比Hc2低一个数量级.外 磁场小于Hc1,处于完全抗磁状 态.介于Hc1与Hc2之间时,处于超 导态与正常态的混合状态,磁场 部分地穿透到超导体内部,电流 在超导体内部分流动.等于Hc2, 超导部分消失,转变为正常态.
材料性能学
半导体的能带结构与绝缘体 相同,所不同的是它的禁带比 较窄,电子跳过禁带不像绝缘 体那么困难.如果存在外界作 用(如热、光辐射等),则价带 中的电子就有能量可能跃迁 到导带中去,在价带中同时出 现空穴.在外电场的作用下, 电子和空穴会定向移动而产 生电流.
材料性能学
空带中的电子导电和价带中的空穴导电同时 存在的导电方式称为本征电导.本征电导的特 点是参加导电的电子和空穴的浓度相等.具有 本征电导特性的半导体称为本征半导体(完全 纯净的、结构完整的半导体晶体).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 允许的能级是固体中相邻原子间距的函数。 • 孤立原子中的分立能级,在固体中展宽成能带。 • 最外层电子,或者价电子,不再处于一个特定原子的周围空间中。
能带结构与原子间距的关系
当原子间距较大 (x1)时,任何 一个原子的电子 都与其它原子的 电子相互独立 。
导电条件:
能带中需要存在空能级,并且空能级的能量值与电子已经占有的能级的 能量之间不能相差太多。这是必要条件。其原因可浅显解释如下:考虑一个 处于E0能级上的电子,受外加电场作用被加速,其能量会少量地增加ΔE, 对于要移动的电子,必须在E0+ΔE的能量位置上存在一个未被占据的能级。
(2)三种典型材料的能带结构
J nqv
E
则有: J nqv
EE
定义: v
E
μ为载流子的迁移率(Mobility),其含义为单位电场下载流子的平
均漂移速度。
(3)电导率与载流子浓度和迁移率的关系
nq
若材料中对电导率有贡献的载流子有多种种,则总电导率为
i niqii
i
i
由此式可见,决定材料导电性好坏的本质因素有两个:
材料的电学性能
• 导电性 • 介电性 • 热电性 • 压电性 • 铁电性 • 热释电性 • 光电性
重点介绍
简单介绍
8.1 导电性
8.1.1 概述
8.1.1.1 导电性的表征
导电现象:在材料两端施加电压时,材料中有电流通过。
规律:欧姆定律 电阻: R L
S
I V R
电阻率: R S
L
1μ·cm=10-9·m=10-6·cm=10-2·mm2/m
实质:自由电子之间以及它们与正离子之间的相互作用类似于 机械碰撞。
ne2l ne2 t
2mv 2m
l -电子平均自由程;m -电子质量; v -电子平均运动速度;e -电子电荷; t -两次碰撞之间的平均时间; n -单位体积内的自由电子数;
由上式可见,金属的导电性取决于自由电子数量、平均 自由程和平均运动速度。
空带
价带
导 带
重 叠 区
导 带
Eg ≈ 0.2~3.5eV
Eg>3.5eV
价带与空带重叠
价带半满
金属导体
半导体
例如: Si: Eg=1.1eV Ge:Eg=0.71eV
绝缘体
例如: 金刚石 Eg=6.0eV
8.1.1.5 电子电导理论
(1)经典电子理论
基础:将自由电子当作“电子气”,用经典气体分子运动理论 来处理。
能带的类型及导电条件
类型:
• 至少被电子部分地占据的那个具有最高能量的能带,称为价带(Valence band)。 • 所有能量低于价带的能带,称为内层能带。 • 从能量角度看,位于价带上方的能带,称为导带(Conduction band)。 • 位于价带与导带之间的禁带,称为能带间隙(Band gap),用Eg表示。
当间距小于x2时, 一个原子中本来 独立的能级展宽 成一个由分立能 级组成的能带, 能带中这些能级 的能量差别很小, 仅相差约10-23eV
当原子间距进 一步减小时 (x4),能带 增宽,且能级 愈高,相对应 的能带愈宽
在金属键固体和离子键固体中,一个能带中能级的数量,等于固 体中的原子数与一个孤立原子中分立能级数的乘积。
该式表明,通过材料的电流密度正比于电场强度,比例系数即为电导
率σ,其量纲为-1·m-1或S/m(西/米)。
相对电导率(IACS%):
把国际标准软纯铜(20℃时电阻率为0.01724·mm2/m)的电导率作 为100%,其它材料的电导率与之相比的百分数即为该材料的相对电导率。 例如,铁的IACS%为17%,铝的IACS%为65%。
8.1.1.2 材料导电性的划分
典型材料的室温电导率
8.1.1.3 导电机理
(1)载流子
电流是电荷在空间的定向流动。任何物质,只要存 在带电荷的自由粒子-载流子,就可以在电场作用下产 生电流。 • 金属中,载流子是自由电子,故称电子电导; • 无机材料中,载流子有两类:
– 离子(正、负离子、空位),故称离子电导;
根据导电性能的高低,常把材料分为三大类: 导 体: ρ<10-2 Ω.m; 半导体: ρ=10-2 ~ 1010 Ω.m; 绝缘体: ρ>1010 Ω.m;
电导率
因为I=SJ(J为电流密度),V=LE(E为电场强度),则有:
定义电阻率的倒数为电导率,用σ来表示,即 : 1
J1E
则有: J E
• 载流子浓度;
• 载流子迁移率。
温度、压力等外界条件,以及键合、成分等材料因素都对载流子数 目和载流子迁移率有影响。任何提高载流子浓度或载流子迁移率的因素, 都能提高电导率,降低电阻率。
8.1.1.4 能带理论
(1)基本概念
出发点:
-正离子势场具有周期性(不均匀性),使得自由电子的运动不是完 全自由的
电子迁移模型及温度和点缺陷的影响
温度和点缺陷的影响
(2)量子自由电子理论
基本假设:
• 金属中正离子形成的电场是均匀的;
• 价电子与离子间无相互作用,且为整个金属共有,可自由运动;
• 每个原子的内层电子保持单个原子时的能量状态,而所有价电子却按量子 化规律具有不同的能量状态,即具有不同的能级。
处理方法:波粒二象性。 h h 或 2 2mv 2p
– 电子(负电子、空穴);
• 高分子聚合物中,载流子是孤子; • 超导材料中,载流子是双电子库柏对。
输运数
表征材料导电载流子种类对导电贡献的参数称为输运数 (Transference number电导率;σ 为各种载流
x
T
子输运电荷形成的总电导率;tx表示某一种载流子输运电荷
占全部电导率的分数。
通常以
、 ti
t
i
、te
、t
e
分别表示正离子、负离子、电
子和空穴的输运数,并把离子输运数 ti >0.99的导体称为离
子导体,把 ti <0.99的称为混合导体。
一些化合物载流子的输运数
(2)载流子迁移率
设有一横截面积为单位面积的导体,其单位体积内载流子数目为 n, 每一载流子携带的电荷量为 q。若沿长度方向施加强度为 E 的外电场, 则作用在每一个载流子上的力为 qE。在这个力的作用下,每一载流子在 E 的方向上发生迁移,其平均速度为 v。则单位时间内通过截面的电荷 (电流密度)为