行动跟进,促进青年教师的专业成长

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

行动跟进,促进青年教师的专业成长

“同课异构”是当前我区小学数学教学研究中常用的方式。在活动过程中由联校教研组或学校指定同一课题,再各自备课,然后同时展示教学。

从活动效益看,这样做能体现联校教研或学校教研的不同水平,激发教师互补、互学、互促,应该说对年轻教师的专业成长起到了促进作用。但在观察中也发现存在着一定的问题:(1)展示的年轻教师在异构的过程后缺少再次实践的机会;(2)在过程中缺少教研员或骨干教师的跟进式的具体指导,因而很难实现在同课异构的基础上促进教师深化研究、再次实践,从而切实形成高效课堂的有效教学方式。

对此,我认为采用“跟进式同课异构”教研方式:让年轻教师先独立备课上课->联校教研共同体评课议课、开展教研活动(教研员、骨干教师参与教研)->被指导教师再次独立备课上展示课->进一步互动交流、提升总结(教研员、骨干教师、执教教师)。整个教研过程突出了“跟进”,从教育教学理念的更新、教法学法的优化到教学策略的选择,教研员(或骨干教师)全程参与,从而更好地发挥了教研员(或骨干教师)的指导与研究作用,较好地解决了上述两个问题,而且使年轻教师在这一过程中专业得到快速成长,深受一线领导和教师们的欢迎。具体说来有如下几个特点。

一、突出行动跟进,注重教研过程的连续性

教研员要想帮助教师解决教学中感到困惑的问题,就必须把目光聚焦到教师与课堂上,做到“三跟进”:跟进课堂,跟进教师,跟进教研组。同时,这种跟进也包含着联校教研和本校教研组对执教教师的跟进共研。

正是有了这种跟进的机会,所以整个教研活动是真正能发现问题、解决问题的。问题的解决经历了“教研组集体研究—实践—教研反思—再实践—观摩对比—再反思”的一个完整的、螺旋式上升的教研过程。

二、从理论与实践的结合点上,注重对执教教师具体细致的指导

很多教师在听完一节赏心悦目的公开课后,常常会发出这样的感慨:这位老师的教学设计真是太巧妙了!以至于当自己因有教学任务要备课时,往往急不可待的到网上搜名家的教案,时间一长,便形成了对网上教案的依赖。

我们不否认网上有一些精品教案,但这种行为导致的结果却是一线教师们独立备课能力的逐步削弱。那么怎样改进呢?我想主要是培养教师们一种备课的思考习惯。备课应该备什么?其实答案很简单,就是“备教材、备学生、备教法学法”。而“跟进式同课异构”恰好给了教研员(或骨干教师)一个和年轻教师们共同备课的过程。

1.备教材

教师们一般认为备教材就是弄清楚教学目标、重点难点、教材的地位与作用、教学起点等。确实,这些都是需要弄明白的,但仅仅知道这些是不是就算教材理解到位了呢?答案当然是否定的。就像我们平时听课,一节课下来,内容讲得比较清楚了,但总感觉离数学的真谛好像还很远。原因在哪儿?主要还是备课时没能养成一种追问的意识。追问什么?说简单点就是九个字:是什么,为什么,干什么。比如,以我跟进指导的“圆的认识”为例,教参上的分析如下。

教材的地位与作用:本节课是在学生掌握了直线图形的周长和面积计算,并且对圆已有初步认识的基础上进行教学的。从学习直线图形到学习曲线图形,不论是内容本身,还是研究问题的方法,都有所变化,教材通过对圆的研究,使学生初步认识研究曲线图形的基本方法,同时也渗透了曲线图形与直线图形的内在联系。对后面即将学习的圆的周长和面积、圆柱、圆锥等知识的学习有奠基作用。

教学目标:认识圆,掌握圆的基本特征,理解直径与半径的相互关系;学会用圆规画圆。

教学重点:理解并掌握圆的特征。

教学难点:圆和圆面的区分;圆的特征的完整的构建过程

执教教师也是亦步亦趋地为了完成书上的目标,安排了一个个密集的教学活动,一节课(40分钟)下来,画圆还没开始。下课后教师们评完课后,我问执教教师和整个教研组:“圆的特征是什么?”(圆有无数条半径,长度都相等;圆有无数条直径,长度都相等;且半径长度是直径的二分之一。)我紧接着问:“这些结论都是通过实验得到的,如果从追问为什么的角度继续思考,为什么圆有无数条对称轴?为什么圆有无数条直径和半径?圆与以前学过的平面直线图形有什么联系和区别?”几个问题问下来,大家都陷入了一种思考的沉默中。是啊,多少遍的教学,使我们对圆的特征这几句话已经司空见惯了,却不曾想结论为什么是这样,这种追问意识的淡薄使我们忽略了太多数学本原的东西。经过讨论,我们达成一致:把本节课的重点放到探讨这几个为什么上,课堂上学生们研究热情比第一节课高涨了很多。由此及彼,我们一并研究并追问了如下多个教学内容。

案例1:2和5 的倍数的特征

是什么——2和5的倍数的特征

为什么——为什么判断一个数是否是2和5的倍数只要看个位就可以了?

干什么——学了2和5的倍数的特征有什么用?(为以后的最大公因数、最小公倍数、约分、通分打下基础。)

案例2:质数和合数

为什么1既不是质数也不是合数?

用埃拉托塞尼的“筛法”为什么找100以内的质数只划到7的倍数就可以了?

案例3:循环小数

两个自然数相除,如果不能得到整数商,商可能会是哪几种情况?

思考:为什么除不尽,就一定会得到循环小数呢?

案例4:比例的基本性质

为什么两个外项积等于两个内项积?

几个回合下来,教师们对于教材的理解更加深刻了,追问“为什么”的习惯初步形成。

2.备学生

教学高手和一般教师之间的差别,除了对教材有深刻的理解外,对学生的把握更是值得关注。把握学生除了我们通常所说的研究学生的生活经验和知识基础外,更重要的是研究、琢磨学生的心理:说到底就是你能不能从学生的眼神、声音、动作中洞察出学生在想什么,哪里遇到了困难;你能否及时地把学生心中的“闷”及时放大引起大家的思考……这些能力也是需要慢慢修炼的。在跟进研究四年级上册“商的变化规律”这一课中。在听完执教教师第一节课后,我和教师们在进行教材分析时,感觉这两条规律对学生都不难,于是放在了课下自学,课上进一步研究不完全商的除法算式中余数的规律。在第二遍试教中,教师提出了问题“是不是商不变的规律适用于一切除法算式”后,接着如下呈现几组算式。

7÷3=2 (1)

70÷30=()……()

700÷300=()……()

学生在研究完后出现如下两种答案:

70÷30=2......1 70÷30=2 (10)

700÷300=2......1 700÷300=2 (100)

于是全班交流。

甲:根据商不变的规律,70÷30=2……1。

乙:结合验算,2×30+1≠70,所以70÷30=2……1是错的。

经过交流,甲组学生(还有一部分具有相同想法的学生)已经知道第二种答案是正确的,但对于第一种到底错在哪里还有些模糊,于是出现了结果正确的学生在讲完后问大家听明白没有,大部分学生虽然嘴上说明白了,但语气显然不够自信,这时教师并没有往下进行,而是适时抛出问题:“刚才大家回答问题的声音告诉我有些同学还不太明白,对吗?”(一部分学生使劲点头。)“大家能不能想办法动手画一画,让大家一眼就能看出余数是10?”经过大家的讨论,用分小棒的方式直观地呈现出70÷30的过程(如下图),从而把本节课的研究继续往深处发展。

相关文档
最新文档